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ABSTRACT:- H. J. Zassenhaus has conjectured that every torsion unit
in an integral group ring of a finite group is rationally conjugate
to a trivial one. In this paper, we survey the known results
regarding this conjecture; namely, that it holds when G isa nilpotent
class 2 group or a split metacyclic group G = A » B with some
restrictions on the order of A and B.

1. INTRODUCTION

Let G be a finite group. We denote by ZG the group ring of G
‘over the ring Z of rational integers and by U(ZE) the group of
‘units of ZG.

Let ¢: ZG + Z denote the augmentation function. The set

V(ZG) = {a & U(ZG) | ela) = 1}

is called the group of noamalfized units of ZG. It is easily seen
that

‘ U(ZG) = {+1)} = V(ZG)

i For a given group X, we shall denote by TX the set of Zoarsion
celements of X, -i.e. the set of elements of finite order in X.

! 6. Higman, in tﬁe first classical paper on units in group rings
![6] showed, among other things, that if G is abelian, then every
torsion unit of ZG is trivial, i.e. of the form 1g, g 6 6 or, in
iother words, that )

‘ TV(ZG) = G

When G is not abelian, an obvious way to exibit new units of
‘finite order is to consider the conjugates of the trivial ones by
elements u 6 U{ZG). Of course, these units would have the same
order as the elements in G.

D.S. Berman [2) showed that, in general, if u € TV(ZG) then the
order of u is a divisor of |[G]. Also, S.K. Sehgal has shown that
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1f u € TV(ZG) is a unit whose order is a power of a rational prime,
then there exists an element g € supp(u) such that o(u) = olg)
{see [15, theorem V1.2.1]).

Hence, one might have a hope that eveay element u € Tv(ZG) s
conjugate to an element in G.

This question was first considered by I. Hughes and K. R.
Pearson [7], who atribute it to Prof. H. Zassenhaus and showed
that there exist torsion elements in V(ZS3) which are .not conjugate,
in ZS3. to a trivial unit. Shortly afterwords, C. Polcino Milies
[10] showed that the same happens in ZD,. Nevertheless, it iseasy -
to show, in both cases, that this 1s not so if we allow conjugation
to take place inside QG, the rational group algebra of the given
group.

Finally, H. Zassenhaus stated his conjecture precisely in [18]:

{1.1) Let u € TV(ZG). Then, there exists an invertible element
a € Q6 and an element g € G such that o lug = q.

In this case, we shall say that u is ratfonally conjugate to g

and write ung.

The first positive result in regard to this conjecture is quite
recent. It is due to A. K. Bhandari and 1.5. Luthar [3] who (gi)
proved that the conjecture holds when G is a metacyclic group of -
order pq, where p and q are both primes and q divides (p-1).

2. SOME GENERAL RESULTS

Before broceeding to survey the known results in regard to this
conjecture, let us recall several well-known facts.

A. ¥Whitcomb [17] showed that if 6 is a metabelian group, 1i.e,
if it contains a normal subgroup A such that both A and G/A are
abelian, then G is determined by its integral group ring. In
other words, if H is another group such that ZG=ZH then G= H. J

Let us denote by I(A) the kernel of the augmentation eA:EA-rZ
and by I(G,A) the kernel of the map ZG -+ ZG/A induced by the
natural homomorphism G + G/A.

It is easily seen that:

(2.1) 1(6,A) = ze._x(A) . {a}EAva(a-n]ya €26). 5
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The essencial partof whitcomb's argument censists in showing
that, for each unit u € TV(ZG), there exists a unique element gE€G
such that

(2.2) u=g (mod 1{6).I(A)).

This is derived from the following remark which we record for
latter use:

Given elements a,b € A we have that:
{a-1)(b-1) = ab-a-b+} = (ab-1)-(a-1)-(b-1)}
and hence:

(a-1)+{b-1) = (ab-1) (mod I(B)I{A))
(2.3) . .
-{a-1)= PRl (mod 1{G)IA{))
Also, we recall the following result.

(2.4) Proposition (G. Cl1iff, S.K. Sehal and A. Weiss [4]) - The
group u(1+I(G)I(A)) is torsion-free.

Hence, we have:

(2.5) Corollary Let u€TV(ZG) and g€ G be as in formula (2.2).
Then

o(u) = olg)
Proof Set o(u) .= n, o{g) = m. Then:
W= g™  (mod I(G)I(A))

Since g™ = 1, we have that u™€1 + I(G)I(A) and, because of
Proposition (2.4), we must have u=1. Hence n|m.

In-a similar way we also get that m|n. ’ 4
We now turn our attention to split metabelian groups f.e. we
shall assume that G is a semidirect product of the form A 28 where
A and B ere abelian.
Hence, we have a split exact. sequence of groups:
t+A+628-1
which, {is turn, induces a sequence -
o+ 1(6,A) +Z6 + ZB + 0

Since the sequence splits, the restriction to units V(ZG)-»V(ZB)
is onto and thus we have another split sequence:

: 1+ V(1+1(G,A)) » V(ZG) 2 V(ZB) =+ 1
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Hence, we see that V(ZG), is agaip a semidirect product of
groups:

(2.86) V{ZG) = V(1+I(G,A)) » V(ZB).

We shall now show that the conjecture holds at least for some
of the units in Z6. The technique involved goes back to Hilbert's
theorem 90. First we need the following lemma.

(2.7) temma Let 6 be a finite group and let A be a normal
p-subgroup of G, where p is a rational prime. Then any element
of the form ¢ = t+§, where t€Z 1is not divisible by pand 56 I(G,A),

is invertible in §G.

Proof Since QG is semisimple, artinian, if o was not invertible
it should be a zero divisor. Hence, there would exist an element
BEZG such that:

Ba = gt+Rs = 0
thus,

Bt = -Bs.

Since (t,p) = 1, we can find integers r,s such that rt+ps = 1

so, if we work modulo p {i.e. if we go to ZPG), we obtain:

B = -rgs (mod p).
It follows immediately that:
8 = +r"gs"  (mod p), for all nEN.

Since I1(G,A) is nilpotent in ZPG. we ‘'see that g = 0 (mod p)
hence

2 : B = pgy with 31626.
Thén. again we must have that Bya = 0 “and the same argument
above shows that B4 is of the form By = PBy, With 8, €Z4G.

Inductively, we would prove that all powers of p divide the
coefficients of 8 a contradiction. A

(2.8) Theorem {C. Polcino Milies and S.K." Sehgal [11]) Let
G=A x B be such that (o(u), |A]) = 1. Then u is rationally .
conjugate to an element b€ B,

Proof We shall proceed by induction on the number of primes
dividing |A|. So, let us first assume that A is a p-group, for
some rational prime p,

Let u€ V(ZG) be as in the statement of the theorem and write u=vw,
with vEV(1+1(G,A)) and weV(ZB) and set t=o(u). writing v swvw"|



we have that:

w
ut = V.V e oV .wt =1
Hence:
wt =1
t-1
v.vW, o v¥ = 1.
Now, set: ' . ‘ N t-2
Z = f4vevov¥ie,Levovl L Y
Then .
2 t-1
. - C W - WOW W
wIw ! PO B A R L
and hence
. t-1
- oW - W v
vwzw.'l = VEV 4., .4V ¥V L.V =2,

Now, since v=1 (mod I{G,A)), it follows that z t (mod I(G,A))
thus, it exists &€ I(G,A) such that z = t+8 and, since {t,p) = 1,
the previous lemma shows that z is invertible

Consequently:

zluz « 27wz =W, with we TV(zB).

Since B is abelian, the result by G. Hiéman mentioned in the
introduction shows that w=b, for some b€B.

For the induction step, write A = Alx A, , where A1 is a p-group
and A2 a p'-group for some rational prime p. Then writting
Gz = <A2,B> we have that G1 = A1 x GZ.

If u8TV(ZG) is such that (o(u).[A]) = 1 then also (o(u).[AD=1
and we can use the argument above to Show that there exists an
invertible element 2 € §G such that 27 luz - wE TV(IGZ). From the
" {nduction hypothesis, since G, = A, %8, w itself is conjugate to
an element g€ Gz and the proof is completed. A

We still have another information about units in V{ZG) which is
worth mentioning.

{2.9) Proposition 1f u€TV(1+1(G,A)) then the order of u is a
divisor of [A].

Proof Assume u=1+6 with § € I{G,A). Then u is of the form:
u=1+ly,(a-1) , 1y, EZG.
3
Now, each Y, is of the form:

Yo o LyTigbidy s I Raglogiageag).
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Hence:

Y,(a-1) = 1.?_‘Jz”(bi-I)(a-1)aJ +1§J21j(aja-1)

.

and thus
v, (a-1) Eiszij(aja-?) (mod I(G)I(A))

and formulas (2.3) show that
Iv,(a=1)=a_-1(modI(G)I(A)) for somé a_ €A
K 0 ()}

and, hence:

usa, (mod I(G).I(A)).

Now, corollary (2.5) shows that olu) = o(a ), which is adivisor
of |A]" : A

No other general result is known so far, so we shall have to
consider some special cases. However, we shall first show how
representations can be used to help to solve this problem.

3. CORNECTION WITH REPRESENTATIONS

First, we shall prove a result that evab]es us to consider the
problem in a bigger field. 9

{3.1) Lemma Let k=K be fields of characteristic 0 and G any finite
group. If two given elements a,BE kG are conjugate in KG then
they are.also conjugate in kG,

Proof Let x,8 be given elements in kG and let us first consider
the equation
ax = XB

with x = ing,I where x,, 1Sisn are unknowns,
i

If we write down explicitely both sides of the equation, we
shall obtain a linear sistem of the form:

MX = 0

X
with X « [x;} and M€k, , where n=[G].

Since the assumptions of the theorem imply that there exists a
non trivial solution in K i then we must have detM =0 and hence
there exists a non trivial solution also in knx1' Actually, we
can fipd t independent vectors v1....,vt€ ktx1 such that every
solution in an1 of the system is ,of the form:



v = k1v1+ —ethyVy . xie k , tgign.

We wish to show first that at least for one of these solutions
3
v =L51J the corresponding element u = ):aigi is not a zero divisor
in k6"
Hence assume that all of them are, Let T be the regular

representation of KG. We shall denote by T(vi), for briefness,
the representation of the element corresponding to vy in kG.

Then:
t -
T(V) = -IikiT(vi)
1=

Stnce we are assuming that T(v) is a zero divisor, for every
choice of x,,....xts k we have:

t
det('{1x§7(vi)) =0
I=

. t
Since k is infinite, this means that the polynomialdet( § xiT(v@
i=

in the indeterminates xi,...,xt is 0. However, we know that there
exists a solution of the system, in KnXI , say (r’,...,rt) such
that the corresponding element is invertible, and thus

t
det( ] riT(v;)) = 0

a contradiction.

Hence, we must also have a solution Al....,AtE k such that the
corresponding element u is not a zero divisor and verifies:
- au = uB .

Since kG is artinian, semisimple, an element u € kG which is not
a zero divisor is invertible. Thus v lou = 8 and a,B are
conjugate in kG, as desired. . A

As an immediate consequence, it follows:

(3.2) Corollary Let u€TV(ZG). To show that u is rationally
conjugate to an element g€ G is suffices to show that there exists
an element a6 U(CG) such that o« 'ua = g.

Hence, we have:

(3.3) Lemma Let u€7TV(ZG). Then u is rationally conjugate to an
element g€ G if and only if for every irreducible complex
representation T of G the matrices T(u) and T(g) are conjugate.
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Proof From Wedderburn's theorem we know that £G is of the form:
t

6y 6¢
§ ep %0

Let T, be the irreducible representation corresponding to the
i-th simple component, and assume that there exists Ai etn_

Xt
-1
such that Ai Ti(u)Ai = Ti(g). .
We can assume that the isomorphism ¢ is given by¢= © Ti'
iz .
Then, if a€ €6 is the element corresponding to (Al""’At) is the
isomorphism, we have that a"ua = g.

{3.4) temma Llet u€ V(ZG) and gEG be elements such that
of{u) = olg). If x(u¥) = x(gk) for all positive integers k and all
compliex irreducible characters x then u is conjugate to g in (G,

Proof IfT is the irreducible representation corresponding to the
character X , then: :

g+ T(g) and ¢ ~u — T(u)

are two representations of the cyclic group <g> which afford the
same character; hence, they are similar and thus T(g)aT(u),

Since this happens for all irreducible complex representations,
the result follows from lemma (3.3). . A

4. NILPOTENT CLASS 2 GROUPS

J. Ritter and S$.K. Sehgal [13] have shown that the Zassenhaus
Conjecture holds for nilpotent class 2 groups. More precisely,
their result is as follows:

(4.1) Theorem Llet G be a nilpotent class 2 group and set eial
uETV(ZG). Let g be the unique element of G such that uzg (mod
I{(G)IG')). Then u fs rationally conjugate to g.

Proof - Let X be one such irreducible character and let NG be the
kernel of X. For an element u€ZG we shal) denote by U its image
in ZG/N.

Since  I{G)I(G') = 1(G)I{G') we have that
izg {mod I(G)I(G")).
Write

Ao 150 Lo
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If ag = 0 for same X in the center of G , then a weli-know
theorem of Berman [2] shows that actually @ = X, Because of
the uniqueness of the correspondence modulo I{G}I(G') we must
have:

u:i-a
hence, obviously x(u) = x{g) in this case.

Then, we can assume that all elements in the expression of u
are noncentral,

Notice that also g must be non-centrai. since otherwise we
would have

5.5 =1 mod(1(E)I(E")

-and §‘1 u would be of finite order, contradicting (2.4).

Now, T.R. Berger [1] has shown that irreducible complex
" characters of nilpotent class 2 groups vanish outside the center.
Hence we have:

x{(g) = 0
x(@) = "% ag.x(X) =0
XEG

Thus, x{g) = x{(u) also in this case.

Finally, since u=zg (mod I(G)I(G')) also implies that uk zgk

(mod I(G)I(G*')), our proof is complete because of Lemma (3.4). &

" The resulf above might suggest that, in the metabelian case,if
u=g{mod I(G).1(A)) and the Zassenhaus conjecture holds, then u
is rationally conjugate precisely to g. However, this is not the
case. -

Actually d. G1iff, S.K. Sehgal and A. Weiss gave in [4] a
whole family of ideals Ik such that for each unit u € TV(ZG) there
exists an element g, €G such that u=zg, {mod Ik).

In the very same paper [13] , J. Ritter and S.K. Sehgal gave
the following example:

2 b -1

Set D10 = ea.blas = b =l , a =2 '> = <av>x<b> .

Then, all the ideals I coincide with either I{G)I(R) or
I(A)I(G), where A = <a> ,

The element u = -al+a>+a*+(-142°)b is a unit of order § such
that: -

[1Y8 O R I I
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uza*> mod I(A)I(E)
u = a? mod I(G)I(R).

On the other hand, they show that u is rationally conjugate to
both a and a4.

5. METACYCLIC GROUPS
As we mentioned in the introduction, the first positive result
on the Zassenhaus conjecture was obtained by A.K. Bhandari and I.
S. Luther [3] who proved it for the metacyclic group:
G = <a,b[ap = b9 . 1, ba b'1 = aj> s <a>xnch>
where p,q are primer, p odd, q|(p-1) and jfs 1 (mod p).
This result has been extended to the following.

Theorem (c. Pclc{no Milies, J. Ritter, S.K. Sehgal [12]) Let G be
the split metacyclic group 6 = <a>x<b> with (o(a),o(b)) = 1.
Then every unit u € TV(ZG) is rationally conjugate to an element
gEa@G.

Actua]]y; this result was achieved in Several steps. With the
notations of the theorem, we have:

The Zassenhaus conjecture holds if <a> 1is a p-group,
<b> a p'-group and the action of b on <a> is faithful [11].

In [13], the restriction about the faithfullness of the action
was removed and it was also shown that the conjecture holds when
o{a) = n an odd integer and o(b) = q, a prime not dividing n.

The final result was obtained in [12],
To give an idea of the methods involved in the proof, let us

consider the first case, where o(a) = p" L o(b) = s, o(p,s) = 1
and bab~T . aj, and o(j) =s inZ/p™2.°

Given an element g € G we can write it on the form g =qaf where

a€<a> and B E<b> .,

If B= 1, itis of the form 8 = bh. As before, we see that:

g = u.ajh. ,ujh(s'”_ss N, °‘(1+.‘]h-i-...-|-jh(s‘1))':
And we have:
(1= (egPerag® 1) L ghs 2 0 (moa oM.

- If p|(1-jh) we can write " = 1+kp, hence

A RS
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and, inductivelly

So we would have s]hpm'1 and since {s,p)=1, we have that s|h,

a contradiction. Then PT(1-Jh) S0
15" o e M S g (od ™)
This argument shows that, for any element g€EG we have that
either o{g}|s or olg)|p™.

Because of Corollary {2.5), the same is true for a unit
u € TV(ZG) and Theorem (2.8) shows that we only need to consider
units u such that o(u)|p™.

Notice also that, if u=v.w with vEV(1+I{(G,<a>)) and
weVv(Z<b>), with w=1, the initial part of the argument in
theorem (2.8) shows that (0{u),s)=1.

Hence, we only have to consider units u€ V(1+I{G,<a>) and
Proposition (2.9) shows that these are certainly p-elements.

To treat this case we shall use representations. It is shown
in Curtis-Reiner, [5,p.336] that the irreducible representations
of G are among the ones given by:

i o 1
gl
Ti(2) =

—

£

(a5 P T

,_.._-____
m
.
.
o -

-

where-£ is a pmth root of unity._

s-1
Write u in the form u = J ak(a)bk where uk(a)(-21<a> 1skss-1.
k=0

If ¢: Q&) -'.'Q(E) denote’s the automorphism such that ¢(£) -;j,
it is easy to see that:

ale)  ayle)) ool ag ()
T = | of (") ofteh) . af ,leh)

s-1 s-1 s-1
of (g of e (Y]

Now, we notice that
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T;(0) To(w) T(0)7" - rhu)

m

Since Ti(u)p = 1, the matrix is diagonalizable and, because

of the observation above, we see that if gq is an eigenvalue of
Ti(u), then EriJ is again an eingenvalue. Thus:

g

==

"y
Ti(u) 4 . = T'i(a )

\ &t

The rest of the proof, which is still rather long, consists in
showing that actually the element a'l does not depend an the
representation Ti considered.

In the general case additional difficulties arrise, since the
reduction to the case where u € TV(1+I(G,<a>)) is more delicate
and the representations of G , up to rational equivalence, are
given by:

Ed I
dj J 4

E (b} .

Tga) - :. Td,n = L.
oM S ..

J P 1
g4
l u H
tdxtd n 0 thtd

where d ruas over the divisors of n, £ is a fixed n-th root of
unity; t, is the order of j in Z/%Z, n is a primitive t/t -th root
of unity and p = 0,1,2,...,t/td-1. :

6. RECENT RESULTS

Recently, some results regarding the Zassenhaus Conjecture have
been obtained for some special classes of split metabelian groups,
which we wish to mention. y

Theorem (S.K. Sehcal and A, Weiss [16]) Let 6 = AxB beasplit
metabelian group, where A is an elementary abelian p-group and 8
is any abelian group. If B acts faithfully irreducibly on A then
the Zassenhaus Conjecture holds for ZG .

Theorem (Z. Marciniak, J. Rittér. 5.K. Sehgal and A. Weiss [ 81)




2

Let G = A%B be a split metabelian group. Then the Zassenhaus
conjecture holds for ZG in the following two cases:

(i) When A is abelian, B is of prime order q and q<p for every
prime p dividing |A].

(ii) When A = <a> , B is abelian of order m and m<p for every
prime p dividing |A|.

7. FINAL REMARK

There is anothe conjecture due to H.J. Zassenhaus which is
stronger then the one we have considered, namely:

Every finite subgroup of units in V(ZG) is rationally conjuga-
te to a subgroup of G.

If we restrict ourselves to consider only maximal subgroups of
V(ZG) i.e. subgroups K< V(ZG) such that |H]| = |G} then some
results are known, -

For example, in 1963, S.K. Sehgal [14] showed that this is
true for nilpotent class 2 groups and in 1976 G. Peterson [9]
showed that it is also true for the symmetric groups S,. In his
conference in this same meeting, prof. K.W. Roggenkamp has
announced that the result also holds for arbitrary nilpotent
groups.

No results are known in regard to the conjecture in its full
generality as stated above.
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