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Abstract

Chernyshev, Rauch, and Rautenbach proved that every connected graph G on n ver-
tices for which e(G) < %n - % has a vertex cut that induces a forest, and conjectured

that the same remains true if e(G) < 3n — 6 edges. We improve their result by proving

that every connected graph on n vertices for which ¢(G) < %n — % has a vertex cut that

induces a forest. We also study weaker versions of the problem that might lead to an
improvement on the bound obtained.

1 Introduction

Let G be a connected graph. A set S C V(GQ) is a vertex cut if G — S is disconnected. If
|S| = k, we say S is a k-vertex cut. If S is an independent set, we say S is an independent
cut. Vertex cuts with special properties have been studied in different contexts. Chen and
Yu [1] showed that every connected graph with less than 2n — 3 edges has an independent cut,
confirming a conjecture due to Caro. Recently, Chernyshev, Rauch, and Rautenbach proposed
the following analogue conjecture, replacing independent set by forest [2, Conjecture 1]. A
forest cut is a vertex cut that induces a forest.
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Conjecture 1 (Chernyshev—Rauch-Rautenbach, 2024). If G is a connected graph on n ver-
tices with no forest cut, then e(G) > 3n — 6.

Chernyshev et al. |2] also showed that Conjecture 1 holds for some classes of graphs. For
instance, they showed that a graph G with n vertices has a forest cut if (i) G is a planar
graph that is not triangulated; (ii) G has a universal vertex and e(G) < 3n — 6; or (iii) G is
connected and e(G) < 1—51n - %.

We say a graph is k-cyclic if every vertex set of size at most k£ is dominating or has a
cycle in its neighborhood. Note that any (forest) cut disconnects the graph into at least two
components, which are not dominating sets, and one of these components has less than n/2
vertices. So, Conjecture 1 claims that any (”T_l)—cyclic graph has at least 3n — 6 edges.
Moreover, any 2-vertex cut is trivially a forest, so Chernyshev et al. [2] noted that finding
good lower bounds for the number of edges on 1-cyclic 3-connected graphs would imply a

result towards Conjecture 1, and stated the following.

Conjecture 2 (Chernyshev—Rauch-Rautenbach, 2024). If G is a 8-connected graph on n

vertices such that there is a cycle in the neighborhood of every vertex, then e(G) > %n — %

The conjecture addresses a proper subclass of 1-cyclic graphs as it requires cycles in the
neighborhood of universal vertices. However, it is functionally the same as for 1-cyclic graphs,
as even Conjecture 1 holds for graphs with universal vertices [2]. In this paper, we improve
the bound from [2]| towards Conjecture 1, disprove Conjecture 2, and present lower bounds on
the number of edges for 3-connected graphs to be 1-cyclic and 2-cyclic.

Theorem 3. Let G be a graph on n vertices. Then the following hold. (a) If G is connected
and has no forest cut, then e(G) > %n— 14—5; (b) If G is 3-connected, 1-cyclic, and n > 6, then
e(G) > 1§5n; (¢) If G is 3-connected, 2-cyclic, and n > 6, then e(G) > 2n.

The n > 6 is necessary in Theorem 3(b) and 3(c¢) as K5 minus an edge is 3-connected and
2-cyclic (hence also 1-cyclic), has five vertices and nine edges, but 9 < % -5 = % < 10.

Remark 4. There are infinite families of (a) 3-connected 1-cyclic graphs on n vertices with
exactly 1%" edges and no universal vertices; (b) 4-connected 1-cyclic graphs on n wvertices
with exactly 2n edges; (c) 3-connected 2-cyclic graphs on n vertices with exactly %n edges;

(d) 4-connected 2-cyclic graphs on n vertices with exactly %n edges.

Remark 4(a) disproves Conjecture 2, proving that Theorem 3(b) is asymptotically tight.
For Theorem 3(c), we present a 3-connected 2-cyclic graph and a 4-connected 2-cyclic graph,
both with 6 vertices and 12 edges, and, based on Remark 4(d), we pose the following conjecture
that would imply an improvement on Theorem 3(a), towards Conjecture 1.

Conjecture 5. If G is a 4-connected 2-cyclic graph on n > 9 vertices, then e(G) > %n

In Section 2, we prove Theorem 3(a). In Section 3, we prove Theorem 3(b)-(c), and
Remark 4. A recent independent work by Li, Tang, and Zhan [3] contains results similar to
the ones on 1-cyclic graphs in Section 3. Due to space constraints, we omit a few proofs.

2 Avoiding forest cuts

Chernyshev et al. [2] proved that a connected graph on n vertices with no forest cut must have
at least “T" — 1—58 edges. For that, they studied properties its counterexamples with a minimum
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number of vertices. Such properties are in fact shared with a minimum counterexample to
Theorem 3(a) and Conjecture 1. To help the exposition, we state a conjecture parameterized
by a number a with 2 < a < 3.

Conjecture 6 (a-FC Conjecture). If G is a connected graph on n vertices with no forest cut,
then e(G) > a(n — 3) + 3.

Note that Theorem 3(a) is the same as the %—FC Conjecture, Chernyshev et al. [2] proved
the 1—51—FC Conjecture and Conjecture 1 is the same as the 3-FC Conjecture. For 2 < o < 3,
a minimum counterexample to the a-FC Conjecture is a graph G on n vertices with no forest
cut, e(G) < a(n — 3) + 3 and n as small as possible. The following lemma is used in the proof
of Theorem 3(a).

Lemma 7. Let G be a minimum counterezample to the a-FC Conjecture, for 2 < a < 3.
Then (a) G is 4-connected and has at least 8 vertices; (b) no degree-4 vertex in G has a Cy
in its neighborhood; and (¢) no two degree-4 vertices are in the same K4 in G.

Lemma 7(a) was adapted from the proof of Claim 1 in Chernyshev et al. [2]. They |2,
Claim 2| also proved that, in a minimum counterexample to Conjecture 1, every degree-4
vertex has at most two neighbors of degree 4. Lemma 7(b) and 7(c) are strengthenings of this
statement. Lemma 7(b) implies that every degree-4 vertex in a minimum counterexample to
the a-FC Conjecture lies in a K4, and we deduce the following from Lemma 7(c).

Corollary 8. Let G be a minimum counterexample to the a-FC Conjecture, for 2 < a < 3.
Then the following hold: (a) every degree-4 vertex in G has at most one degree-4 neighbor;
and (b) each vertex with degree at least 5 in G has at least two neighbors of degree at least &.

Corollary 8(b) is also a strengthening of a result of Chernyshev et al. [2, Claim 3|. We
conclude this section with the proof of Theorem 3(a).

Proof of Theorem 3(a). Suppose G is a minimum counterexample to Theorem 3(a), and hence
to the %-FC Conjecture. Let n be the number of vertices of G, and n; be the number of degree-
i vertices in G. By Lemma 7(a), G is 4-connected and n = Y 7' n; > 8. Let Fj be the set of
edges joining degree-4 vertices to vertices with degree at least 5. By Corollary 8(a), we have
that |Fy| > 3n4. By Corollary 8(b), each degree-j vertex in G with j > 5 contributes with
at most j — 2 edges to Fy, and hence |Fy| < E;l:_g(j — 2)n;. Now, since j —2 < 65 — 27 for
j > 5, we have 3ny < Y170 (j — 2)n; < Y05 (65 — 27)n; = 6(2e(G) — 4na) — 27(n — n4)

] =
12¢(G) + 3ng4 — 27n, so e(G) > 9n/4, a contradiction. O

3 Bounds for 1-cyclic and 2-cyclic graphs

First, we present a family of counterexamples to Conjecture 2 and prove Remark 4(a). Take
any 3-connected 3-regular graph (see [4]) with k vertices and replace each vertex with a Ky,
connecting each of its neighbors to a distinct vertex in the K4 and leaving only one vertex of
each Ky with degree 3 (see, e.g., Figure 1). We obtain a 3-connected graph G with precisely n =
4k vertices and m = % + 6k = %n edges. Moreover, G is 1-cyclic because each of its vertices
isin a Ky.

Remark 4(a) shows that Theorem 3(b) is tight. We denote by K2 the graph obtained
from K3 by adding s new vertices adjacent to the three vertices of the K3. The proof of
Theorem 3(b) uses the following lemma, whose proof we omit.
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Figure 1: A counterexample to Conjecture 2 built from Kjy.

Lemma 9. If G is a 3-connected 1-cyclic graph on n > 5 vertices. Then the following hold:
(a) every degree-3 vertex has no degree-3 neighbor; and (b) either G is isomorphic to KnA_3
or every vertex of G has at least three neighbors of degree at least 4.

Proof of Theorem 3(b). Let G be a 3-connected 1-cyclic graph on n > 6 vertices, and n; be
the number of degree-i vertices in G. By Lemma 9(b), either G is isomorphic to K nA_g or every
vertex of GG has at least three neighbors of degree at least 4. In the former case, as desired,
e(G) =3n—-6> %n as n > 6. In the latter case, as 4j — 15 > j — 3 for j > 4, we have
Bng < 307 (5 — B)ny < 32074 (45 — 15)n; = 8e(G) — 15n + 3ng, ie., e(G) > £n. 0

Note that if we pick an arbitrary 4-connected 4-regular graph and replace each of its
vertices by a K4, leaving all vertices of each K, with degree 4, then the graph obtained is
4-connected, 4-regular, and 1-cyclic. Therefore, the lower bound e(G) > 2n is best possible
for 4-connected 1-cyclic graphs, and proves Remark 4(b). Now, we prove a lower bound on the
number of edges for a 3-connected graph to be 2-cyclic. Specifically, we prove Theorem 3(c).
We start by proving some properties of 3-connected 2-cyclic graphs.

Lemma 10. Let G be a 3-connected 2-cyclic graph on n > 6 vertices. Then every degree-3
vertex has at least two neighbors of degree at least 5.

Proof. Let v be a degree-3 vertex in G, and z, y, and z be its neighbors. By Lemma 9(a),
these three vertices have degree at least 4, and they form a triangle, because n > 5 and G is
1-cyclic. Suppose, for a contradiction, that =z and y have degree 4. Then the neighborhood
N({v,z}) ={y, z,w}, where w is the other neighbor of . As n > 6 and G is 2-cyclic, y, z, w
form a triangle, and w is also the other neighbor of y. But then N({z,y}) = {v, 2z, w}, which
must form a cycle because n > 6. However there is no edge vw, a contradiction. g

Proof of Theorem 3(c). Let n; be the number of degree-i vertices in G and F be the set of
edges joining degree-3 vertices to vertices with degree at least 5. By Lemma 10, we have
that |F| > 2n3. By Lemma 9(b), either G is isomorphic to KnA_3 or every vertex of G
has at least three neighbors of degree at least 4. In the former case, G has 3n — 6 > 2n
edges as n > 6. In the latter case, each degree-j vertex for j > 5 contributes with at
most 7 — 3 edges to F, so |F| < 237:_51(] —3)nj. As2j—8 > j—3 for j > 5, we have
2ng < |F| < 020 (5 — 3)ny < Y0125 (25 — 8)ny = 4e(G) — 8n + 2n3, ie., e(G) > 2n. 0

In Figure 2, on the left, we show two tight examples for Theorem 3(c): the graph K3A ,
which is 3-connected, and the octahedral graph, which is 4-connected. The third graph in
Figure 2 has 9 vertices and 20 edges. Consider the construction illustrated in Figure 1,
starting from a 3-connected 3-regular graph on k vertices. If we replace each vertex by an
octahedral graph instead of a K4, we end up with a 3-connected 2-cyclic graph on 6k vertices
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and %k + 12k = 2—271<: = %n edges, which proves Remark 4(c). As far as we know, it may hold
that m > §n for the graphs addressed by Theorem 3(c) if n > 10. The requirement n > 10 is
necessary to exclude the third graph in Figure 2, because % < %.

The lower bound on the number of edges in a 4-connected 2-cyclic graph might be larger.
Take a 4-connected 4-regular graph on k vertices, and replace each of its vertices by an
octahedral graph, leaving precisely four vertices of each octahedral graph with degree 5. The
graph obtained is 4-connected, 2-cyclic, has 6k vertices and m = 2k + 12k = 14k = %n edges.
This proves Remark 4(d), which shows that Conjecture 5 is tight. In Figure 2, on the right,
we show a 4-connected 2-cyclic graph on 7 vertices and 16 edges, and two 4-connected 2-cyclic
graphs with 8 vertices and 18 edges. Since 1—76 and % are less than %, these examples justify

the condition n > 9 in Conjecture 5.

\ 45 N7 ¢

Figure 2: Left: Three 3-connected 2-cyclic graphs, two with 6 vertices and 12 edges and one
with 9 vertices and 20 edges. Right: Three 4-connected 2-cyclic graphs, one with 7 vertices
and 16 edges, and two with 8§ vertices and 18 edges.

4 Final remarks

Several questions remain open. Of course it would be nice to settle Conjecture 1, or to obtain
an improvement on Theorem 3(a). Proving Conjecture 5 or finding a family of 4-connected
2-cyclic graphs on n vertices with less than %n edges would also be interesting.

The study of k-cyclic graphs with & more than 2 seems to be a possible way to achieve
better results towards Conjecture 1. Our exposition points out that we barely use the forest
cut requirement for sets larger than 2 in the current results.
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