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1 Introduction. 

Let R be a ring with llllity and denote by T,.(R) the ring of upper triangular n X n 

matriCeB over R. The group of automorphiama of thia ring, given certain restrictio111 

on R, hu been the object of several recent papers ( aee [1), [2], [5] ). In this note 

we shall give a description of the deriva.tiona in T,.(R) assuming no restriction on 

R other than the existence of an identity element. We ahall ahow that they are 

obtalned ln a very natural WI¥. 

First, note that if 6: R-+ Ria adetjva.tionof R then thema.p 6: T,.(R)-. T,.(R) 

defined by i(zi;) = ((6(zij)), V(zi;) e' T,.(R) ia a derivation. Also, if A e T,.(R), 

we &hall denote by d,A the.inner deriva.tion induced by A. In what follows, we ,hall 
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■how that all derivation■ or T,.( R) ul1a from the1e; namely; we prow the Collowi~ 

Theorem. Let R 6e a ring wit/a unitr and Id d: T,.(R) - 7',.(R) 6e ci derivation. 

Thm, there aiat, a derivation I : R - R and a matris A E T,.(R) nc/a Uaal 

d = 1 +dA, 

A 1imilar result for full matrix rings appear■ in [4) and the 1pecial cue where R 

i• an algebra mer a field, with char(R) 'I 2,3 and n > 2 I• giftll in (6). 

The proof we giw below i• very limple and con■tructiw in nature: we ■how how 

the matrix A i• determined by .. the valuee of 4 on the 111Ual matrix unit■ ~i e T,.(R). 

Actually,Uua technique alao applieii so the ring M,.(R) eo, II gi'NI an elemenlvy 

proof for the description of the derivatiou of thi■ ring. 

~ Proof of the Theorem. 

Notice that a' matrix unit e.; belong■ to T,.(R) provided that i S j, Hence, in 

pa.rticalv, e» e T,.(R),1 S Ir Sn. 

Since ew 11 an idempotent, we have that d(eu) = eud(ew) + d(e.,.)ew, Thu■, 

If we write cf(eli) = l:i:s;; z;;(lr)e.;, we haw that: 

. . 
which ■hon readily that ~»(Ir} = ~ and that z;;(i:} = 0 if i S j an both differc.~ 
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from k. 

Given a matrix XE T,.(R), we ■hall denote by [X];; the ij entry of this matrbt. 

If i <; we define G;J = -[e;,d(e;;)eJJ] i.e. a.;; = -z;,(i). Alao we ■et G;J = 0 if i > ;. 

Lema 1. Let A be a matriz mith entriu cha.en a, a6ove and ar6itrarJt diagonal 

entries. Set h = d - dA; then: 

(i) h(eu) = O, 1 :S k :Sn. 

(ii)Furthermott, i/ toe ,et a11 = 0 and a;; = -[d(ei;)]i; , 1 < j :S n , then 

h(e;;) = 0, /or i < ;. 

Proof. (i) We compute 

dA(eu) = Aeu - e.uA = I:o;.1:e;.1: - I:0.1:;e.1:1 
iS.I: i2::" 

By our definition -ar.; = <rt.;(k). Also, notice that if e,/ E T,.(R) are orthogonal 

idempotents, we haw that ed(/) + d(e)/ = O which impliea ed(nJ = -ed(e)/. 

Hence, In particular, e;;d(e;;)e;; = -e;;d(e;;)eu 10, ifi :S k tha ~ = e;;d(e;;)e;; = 

(ii) We ■hall show fine that h(etj) = 0, 1 < j :Sn. 

Since ev = e11eve;;-, using {i) we obtain: 

h{etj) = euh(ei;)e;; 

= e11(d(e]j)-Ae1; + e1;A)ej; 
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Now we prow _that h(eij) = 0, 1 < i < j. In fact, since e1; = e1iei; we see that 

• 0 = h(e1;) = e1ih(ei;) = e1id(ei;) - euAeiJ + e1ieiJA, 

Hew:e: 

·FiDally, 119 have th&&~;= ~iei;e;; 10 we ca.n write: 

h(ei,i) = ~ih(ei;)e;; 

= ~id(ei;)e;; - eiiA~; + ei;Ae;; 

= [d(ei;)};;e;; - Giiei; + a;;~ = 0 

□ 

From aow on, we shall asaume that the element, in the diagonal of A I.NI choaen 

u iJa (ii) above and hence, that h(e;;) = 0 , i S j. 

Lema :a. ~ emu a deriuatfun 6: R- R nch that h(rl) = 6(r)I, Vr e R. 

Proof. Set r E R. Notice flnl\ that 

h(reu) = h(rleu) =:= h(r/)eu = r'eu, for aome r' e R 

Alao, we haw that: 

Now, we wiah to c.ompute h(re22), To do ao, we wriie: 

r'eu = h(reu) = h(reaaeaa) = eaah(rea,); 



• 

Hence, 

r'en = e12(r1en + rae22) = r2'-12, th\18 r' = ra, 

Since eure22 = 0 we have that euh(re22) = 0 i.e. r1e12 = O • 

• CollM!quenUy r1 = 0 and h(re22) = r'ei,. 

Repeating the argument above we see, inductively, th:i.t h(re;;) = r'e;;, 1 ~ i ~ n. 

Hence, h(rl) = r'I. It is now easy io see that the ma.p 6: B- R given by r,... r' 

ia 11, derivation of R. 

Proof of the Theorem: 

Set a= (rv)is; e T,.(R). We have th&t: 

(d- d..4)(0:) = h(r;;) = h(E rvle;;) 
iSj 

= L6(r;;)le;; = L6(r;;)e;; = l(r;;) = 6(a). 
iSj iSj 

Hence, d(a) = d..4(a) + l(a) , Va E T,.(R). 

0 

a 

It 111&y be intel'eliting io no\e th&t the deriv:won 6 and the matrix A a.re uniq·uc 

up to inner derivations • . 

Proposition. Let d : T,.(R) -+ T,.(R) be a deriootion ,md let A,6 be as in the 

theorem above. q A' E T,.(R) and 6' : R. -+ R are ~ucl, that d = d..4, + l then, there 

ezuu an element a ER .uch that6' = '6 - 6,. and A'= ,i+ al (,o d..4, = d..4 + d..i). 

Proof.-We have th~ ti.A, - dA = 1-f ·ao, computing in a.n arbitrary element~y 
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• 
matrix e,; we obtain: 

(A' - A)e;; - e;;(A' - A) = 0 

i.e. 

E(a~ - a1u)ew = L(Gji,. - •;11.)e;i,.. 
la " 

Hence, a~, = au if h t,. k and •~; - a;, = a~; - a;;. 

If we let j = 1 ,ye obtain ~ = ~1 + Clii 10, if we denote • • ~ 1 we have that 

A'= A+al. 

If we chOOlle r e R we cu compute: 

which giff!I: 

(ar - ra)I = (6(r) - 6'(r))J 

1106'=6-I •• ~ 

_ We note that the deriration d : T,.(R) - T,.(R) ia inner if ud only if the 

corresponding derivation 6 : R - R ia inner. Thi• fact, together with the weD­

kno1VD theorem of Skolem-Noether, readily giftll: 

Theorem. Let R 6e a finite dirnemional centrul 1imple algebra. Then, all linear 

derimfiona o/T,.(R) are inner. 

A1 we mentioned before, the nme techniquea ilao prove the following. 
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Theorem ((4] , (6] ) Let R be a ring with unity &nd let d: M,.(R)-+ M11(R) be 

a derivation. Then, th~ exists a derivation 6 : R -+ R aad a matrix A e M11(R) 

■uch that d = l + tlA. 
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