





show that all derivations of T,( R) arisc from these; namely, we prove the followic;

Theorem. Let R be a ring with unity and let d : T,(R) — Tu(R) be a derivation.
Then, there ezists a derivation § : R - R and matru: A € Ty(R) such that
d=13+da.

A similar result for full matrix rings appears in (4] and the special case where R
is an algebra over a field, with char(R) # 2,3 and n > 2 is given in [6).

The proof we give below is very simple and constructive in nature: we show how
the matrix A is determined by the values of d on the usual matrix units e;; € Ta(R).
Actually,this technique also applies to the ring Mu(R) »0, it gives an elementary

proof for the description of the derivations of this ring.

2 Proof of the Theorem.

Notice that a’ matrix unit e;; belongs to Tx(R) provided that i < j. Hence, in
particular, ezx € Tu(R),1 < k< n.

Since ez is an idempotent, we have that d(ext) = exsd(err) + d(ert)ern. Thus,

if we write d(ew) = Yicj ®ij(k)eij, we have that:

d(ew) = Y zij(k)es; = Y zaj(K)en; + 3 zan(k)ein
i) ik isk

which shows readily that zu(k) = 0 and that zi;(k) = 0 if i < j aze both differezt
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from k.

Given a matrix X € T,(R), we shall denote by [X);; the ij entry of this matrix.
If i < j we define aj; = —[e;id(eis)ejj] e, aij = —~z,(i). Also weset a;; =0if i > j.

Lema 1. Let A be a matriz with entries chosen as above and arbitrary diagonal
entries. Set h = d — dy4; then:
(i) h(epe)=0,1 < k< n.
(ii) Furthermore, if we set a;; = 0 and aj; = [d(eg;))1; , 1 < j < n, then
h(e;;)=0, fori < j.

Proof. (i) We compute

dalens) = Aexy — exA =Y _anein — 3 aije;j
i<k izh

By our definition —az; = zx;(k). Also, notice that if e, f € Tu(R) are orthogonal
idempotents, we have that ed(f) + d{e)f = 0 which implies ed(f)f = —ed(e)f.
Hence, in particular, e;;d(e;;)ej; = —eid(ei)ers 00, if § < k then gy, = e;id(e;j;)ej; =

—zx(i). Hence da(ew) = d(ers),1 < k < n and (i) follows.
(ii) We shall show first that h(e;;) =0,1 < j < n.

Since e1; = eji€1j€jj, using (i) we obtain:

h(ey) = enh(erj)e)j

en(d(ey;) — Aes; + e1jA)e;;

~ajje1j — aneyj + ajje5 =0
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Now we prove that h(e;j) = 0,1 < i< j. In fact, since e3; = €jiei; we see that

« 0= h(e1;) = erih(eij) = erid(ei;) — erideij + erieijA.

[d(eis)lij = aii — ajj.

‘Finally, we have that €ij = ¢ii¢ije;; B0 We can write:

eish(eij)ejj

h(ey;)

eiid(eij)ej; — eiideij + eijAej;

[d(ei))ijeis — aiiei; + ajjei = 0

From now on, we shall assume that the elements in the diagonal of A are chosen
as in (ii) above and hence, that h{e;;) =0 ,i < j.

Lema 2. There ezisis a derivation § : R — R such that h(rI) = 6(r)I , Vr € R.

Proof. Set r € R. Notice first that
h(re11) = h(rlen) = h(rI)ey = r'eyy, for some ¥ € R
Also, we have that:
h(reiz) = h(reyrer3) = h(ren)erz = ez,

Now, we wish to compute h(reg3). To do so, we write:

r'e13 = h(reys) = h(reizeas) = e1ah(res);
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h(reaa) = h(rI)ess = riega + roens.

Hence,

r'e1z = exg(riena + raezn) = ryeqy, thus ¥ = 1y,

Since ejregz = 0 we have that e;1h(rez) = 0 i.e. rie)3 = 0.

. Consequently r; = 0 and h{reg;) = req.

Repeating the argument above we see, inductively, that A(re;) = re;, 1 < i< n.
Hence, A(rI) = 1. It is now easy to see that the map § : R — R given by r — ¢/

is a derivation of R. o

Proof of the Theorem:
Set a = (r;;)icj € Tu(R). We have that:

(d=da)(a) = h(ri)= h(;'ﬁhn’i)
23]
= Y 8(riiMei; = 3 6(ri)ei; = 8(rii) = §(a).
i<y <
Hence, d(a) = da(a) + §(a) , Va € Ta(R). o

It may be interesting to note that the derivation & and the matrix A are unique

up to inner derivations,

Proposition. Let d: T (R) — To(R) be ¢ derivation and let A,8 be as in the
theorem above. If A' € To(R) and &' : R ~ R are such that d=da + 8 then, there
erists an elementa € R such that §' =§— 6, and A' = A+ al (sody = da+day).

Proof.-We have that dyp—dy=38- 3"50, computing in an arbitrary e.lementé.ry
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matrix e;; we obtain:

(A’ = A)esj = ei;(A'— A) =0
ie. :
3 (aki = andens = D (87 = ain)ein-
A A

Hence, @}, = ans if h # k and af; - a;; = a}; — ajj.

If we set j = 1 we obtain a); = a}; + a;; 80, if we denote a = af; we have that
Al=A+al. '

If we choose r € R we can compute:
(dar —da)(rD) = = F)(rI)

which gives:
(ar — ra)I = (6(r) - &'(r))I

80 &' = 6 — bs. £

We note that the derivation d : Ta(R) — Tw(R) is inner if and only if the
corresponding derivation § : R — R is inner. This fact, together with the well-
known theorem of Skolem-Noether, readily gives:

Theorem. Let R be a finite dimensional central simple algebra. Then, cll linear

derivations of Tu(R) are inner.

As we mentioned before, the same techniques also prove the following.



Theorem ([4] , [6] ) Let R be a ring with unity and let d : My(R) — My(R) be
a derivation. Then, there exists a derivation § : R — R and a matrix A € Ma(R)
such thatd =8 + d4. -
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