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Introduction: This study aimed to develop and evaluate an artificial intelligence
pipeline combining object detection and classification models to assist in early
identification and differentiation of oral diseases.

Methods: This retrospective cross-sectional study utilized clinical images of
oral potentially malignant disorders and oral squamous cell carcinoma,
comprising a baseline dataset of 773 images from Faculdade de Odontologia
de Piracicaba, Universidade Estadual de Campinas (FOP-UNICAMP) and an
external validation dataset of 132 images from Federal University of Paraiba
(UFPB). All images were obtained prior to biopsy, all with corresponding
histopathological reports. For object detection, ten YOLOv1l models were
developed with varying data augmentation strategies, trained for 200 epochs
using pretrained COCO weights. For classification, three MobileNetV2 models
were trained on images cropped according to the experts’ reference
bounding box annotations, each using different combinations of learning
rates and data augmentation. After selecting the best detector—classifier
combination, we integrated them into a two-step pipeline in which the
images cropped by the detector were subsequently forwarded to the classifier.
Results: The best YOLOv11 configuration achieved a mAP50 of 0.820, precision
of 0.897, recall of 0.744, and Fl-score of 0.813. For classification, the best
MobileNetV2 configuration achieved an accuracy of 0.846, precision of 0.871
recall of 0.846, Fl-score of 0.844, and AUC-ROC of 0.852. On external
validation, this same model reached an accuracy of 0.850, precision of 0.866,
recall of 0.850, Fl-score of 0.851, and an AUC-ROC of 0.935. The two-step
approach, when applied to the test set from the baseline dataset, achieved an
accuracy of 0.784, precision of 0.793, recall of 0.784, Fl-score of 0.784, and
an AUC-ROC of 0.811. When evaluated on the external validation dataset, it
yielded an accuracy of 0.863, precision of 0.879, recall of 0.863, Fl-score of
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0.866, and an AUC-ROC of 0.934. The visual inspection of YOLO's inference
outputs confirmed consistent lesion localization across diverse oral cavity
images, with some missing (17.4%). The t-SNE visualization demonstrated
partial separation between oral potentially malignant disorder (OPMD) and oral
squamous cell carcinoma (OSCC) feature embeddings, indicating the model
captured discriminative patterns with some class overlap.

Conclusion: This proof-of-concept study demonstrates the feasibility of a two-
step artificial intelligence (Al) pipeline combining object detection and
classification to support early diagnosis of oral diseases. However, caution is
warranted when interpreting the results of two-step approaches, as images
missed by YOLO during detection are excluded from the classification stage,

which may affect the reported performance metrics.

KEYWORDS

object detection, image classification, artificial intelligence, pre-training, oral potentially
malighant disorders, oral squamous cell carcinoma

Early detection of oral cancerous and precursor lesions is essential
to reduce diagnoses at advanced stages, significantly improving
treatment outcomes and prognosis and delaying potential
malignant transformation (1). However, delays in diagnosis are
common, mainly because, in the initial stages, oral potentially
malignant disorders (OPMDs) often present as asymptomatic and
smooth-surfaced lesions that do not raise suspicion among patients.
Such initial lesions may be clinically indistinguishable from
indolent forms of oral squamous cell carcinoma (OSCC), the
socalled incipient lesions, which present as plaques in up to 80% of
cases (2). The lack of awareness about early signs contributes to late
diagnosis by general practitioners and delays in seeking care by
patients. Additionally, barriers to accessing specialists in remote
regions further exacerbate the problem, limiting opportunities for
timely assessment and intervention.

Currently, in the context of oral cancer, conventional oral
examination is the only widely used resource for -early
identification of lesions (3), which depends heavily on the
examiner’s experience and vigilance. According to Tarakji et al. (4)
the diagnosis of OPMDs depends on adequate clinical skills and
histological investigation with specialists showing better knowledge
than general practitioners. To help fill this gap, investing in
continuing education and training, as well as developing support
systems to aid clinicians in identifying early lesions, are promising
strategies. In this regard, many alternative testing and diagnostic
aids have been proposed to improve early detection and risk
assessment. Among them, artificial intelligence (AI) approaches
based on clinical photographs have the potential to simplify the
diagnostic workflow by applying computer vision techniques to
distinguish OPMD from malignant lesions (5, 6), accelerate expert
referral (7) and biopsy procedures, and help overcome the
limitations of conventional oral examination, which relies mainly
on clinical indicators of malignancy, such as increased redness and
ulceration (8, 9) that are sometimes present in OPMDs, creating
diagnostic uncertainty. Therefore, when training convolutional
neural networks (CNNs) with white-light photographs, two main
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tasks are usually explored: object detection for lesion localization
and image classification. (10) The exploration of both detection
and classification strategies is fundamental for the development of
robust Al-based diagnostic frameworks.

Object detection refers to a process in computer vision that
determines where objects are located in a given image, typically by
drawing bounding boxes around them, and identifying which class
each object belongs to (11). Such algorithms stand out as innovative
tools to support clinical decision-making, as they allow for precise
localization of suspicious regions within oral photographs. This
minimizes the risk of missing subtle abnormalities and ensures that
clinically relevant areas are systematically analyzed, while also
enabling their incorporation into pipelines for lesion identification
and subsequent classification. The main architectures explored in
this oral disease’s context include YOLO, Faster R-CNN, RetinaNet,
and CenterNet2. These models are particularly valuable for
identifying smooth-surfaced leukoplakias, which could otherwise go
unnoticed during routine examinations. Nonetheless, important
limitations have been reported in the literature, such as reliance on
limited datasets, absence of external validation, and challenges in
detecting small lesions (12-16).

Classification algorithms, in turn, assign diagnostic labels to entire
images or regions of interest without necessarily determining lesion
boundaries. By learning patterns in clinical photographs, these
models can distinguish between benign, potentially malignant, and
malignant conditions, thereby guiding referrals and supporting
clinical decision-making, particularly in resource-limited settings. In
oral diseases, CNN-based classification has been increasingly
explored to automate diagnosis and prioritize cases for specialist
evaluation (5, -23). Despite their potential, classification
algorithms also face challenges related to dataset representativeness,
interpretability, and integration into clinical workflows.

The aim of this research is to develop detection and
classification algorithms to assist in the early detection of
OPMD and OSCC and further integrate them in a two-step
pipeline enhancing the reliability of classification by restricting
the analysis to pertinent regions, whereas classification provides
clinical interpretation to the detected areas. This sequential
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approach not only strengthens diagnostic performance but also
reflects the conventional workflow of clinicians, who initially
identify lesions before assessing their malignant potential,
thereby increasing both the accuracy and interpretability of the
proposed model.

2 Materials and methods

2.1 Dataset

This retrospective cross-sectional study was developed based on a
real-world dataset comprising 773 clinical photographs collected from
patients diagnosed with oral lesions at Faculdade de Odontologia de
Piracicaba, Universidade Estadual de Campinas (Piracicaba, Sao
Paulo, Brazil) between 2000 and 2025. Images were categorized as
OPMD (n=380) and OSCC (n=393). For external validation, an
independent subset comprising 53 OPMD and 79 OSCC images
from patients at the Federal University of Paraiba (UFPB) (Jodo
Pessoa, Paraiba, Brazil) was included. Both categories were defined
according to the clinical and histopathological criteria established by
the World Health Organization (WHO Classification of Tumours
Editorial Board, 2022). The OPMD category included proliferative
verrucous leukoplakia and conventional leukoplakia (with or
without oral epithelial dysplasia), while the OSCC category
comprised several clinical and histopathological variants (i.e.,
conventional, verrucous, and incipient) to increase dataset
variability. To ensure consistency in imaging and diagnostic labels,
we excluded images of poor quality or those from non-
defined as (1)

histopathological diagnosis of OED despite clear clinical features of

representative  biopsies, biopsies with a
OSCGC, or (2) biopsies that were too small or technically inadequate
to permit a definitive diagnosis. In cases with significant clinical
changes prompting a repeat biopsy, only images acquired prior to
each biopsy were included, provided there was a minimum interval
of three months between procedures. All images were obtained
before biopsy and had corresponding histopathological reports. The
dataset was non-randomly divided into independent subsets
of training, validation and testing, in which photos from the
same patient were kept in the training subset to avoid data
leakage, and proportions of the main class were followed in the
subsets (Table 1).

Bounding box annotations were made by A.LD.A, in
consultation with C.S.S. to reach a consensus, using Aperio
ImageScope software (Leica Biosystems) and a Huion Inspiroy
H1060P graphics tablet, blinded to the diagnosis, and focusing

on framing the lesions within rectangular boxes.

TABLE 1 Datasets.

10.3389/froh.2025.1659323

This study was conducted in accordance with the Checklist for
Artificial Intelligence in Medical Imaging (CLAIM) (24) and the
Must Al Criteria-10 (MAIC-10) Checklist (25) (Supplementary
Table SI). It adhered to the principles of the Declaration of
Helsinki and received ethical approval from the Piracicaba
Dental School Ethical Committee (Registration number:
42235421.9.0000.5418) and from the Federal University of Paraiba
Ethical Committee (Registration number: 72314323.0.0000.5188).
The approvals also included Material Transfer Agreements
between participating institutions to facilitate the sharing of images.

2.2 Workstation

All experiments were conducted on Google Colab using a
standardized virtualized environment with an Intel(R) Xeon(R)
CPU @ 2.00 GHz (2 threads, 1 physical core), 39 MB of L3
cache. The system was also equipped with an NVIDIA Tesla T4
GPU (15,360 MiB VRAM, CUDA 12.4, Driver 550.54.15).

2.3 Object detection task

YOLO (You Only Look Once) (26) is one of the most efficient
algorithms for object detection in images, based on convolutional
neural networks (CNNs). Unlike traditional approaches that
analyze the image in several steps or propose regions of interest
before classification, YOLO treats detection as a single regression
problem, where the entire image is processed at once. The model
divides the image into a grid and, for each cell of the grid, it
provides bounding boxes, class probabilities and associated
confidence gains. This structure allows YOLO to be extremely
fast, applications,
compromising accuracy. In addition, its end-to-end training

enabling real-time without  significantly
capability (end-to-end learning) makes the process more efficient
and straightforward, being widely used in tasks such as security
monitoring, medical imaging diagnosis and driving.

YOLOv1l (27), the latest iteration in the YOLO series,
introduces several architectural innovations aimed at enhancing
tasks.
advancements include the incorporation of the C3k2 (Cross
Stage Partial with kernel size 2) block, SPPF (Spatial Pyramid
Pooling—Fast), and C2PSA (Convolutional block with Parallel

Spatial Attention) components. These additions contribute to

performance across various computer vision Key

improved feature extraction and overall model efficiency.
Ten models were developed using four different YOLOvI11
architecture variants: YOLOvl1n (2.6M parameters), YOLOvI11s

Classes Baseline dataset (FOP-UNICAMP) External validation dataset (UFPB)
Training (80%) Validation (10%) Test (10%) Total

OPMD 312 34 34 380 53

oscc 316 39 38 393 79

Total 328 73 72 773 132

OPMD, oral potentially malignant disorder; OSCC, oral squamous cell carcinoma.
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(9.4M), YOLOvllm (20.1M), and YOLOvlll (25.3M). Each
configuration was combined with specific data augmentation
strategies to evaluate their impact on performance. All versions
were initialized with COCO’s (28) pretrained weights and
trained for 200 epochs using images resized to 640 x 640 pixels.
The following augmentations were applied: hue adjustment
(+0.015), saturation adjustment (+0.7), image translation (+10%
of the image size), and scaling (£50%). Horizontal flipping was
also applied with a probability of 0.5. Additional variations were
included, such as mosaic augmentation, which randomly
combines one to four images during training.

In object detection experiments, the mean Average Precision
at 50% Intersection over Union (mAP50) was used as the
primary evaluation metric, emphasizing accurate localization of
lesion regions. A single target class, “lesion” (merging OPMD
and OSCC), was adopted because performance would not be
adversely affected, and preliminary results showed that while the
model was effective at locating lesions, it was significantly less
capable of distinguishing between their specific types. When
both classes were evaluated separately, the mAP50 dropped to
approximately 22%. Consequently, calculation of the AUROC
was considered inappropriate, as the task effectively constitutes a
Recall, and
F1-Score were computed using the built-in evaluation tools

single-class problem. Additionally, Precision,
provided by the Ultralytics library.

Although mAP50 was chosen as our primary metric for
consistency with common object detection literature, it is
important to note that for a single-class problem, mAP50 is
(AP) at IoU=0.5.
Furthermore, AP is formally defined as the area under the
precision-recall curve (AUC-PR). Thus, AP and AUC-PR are
synonymous metrics; reporting both would be redundant. We

equivalent to the Average Precision

have chosen to report AP to align with the standard reporting
conventions in our field.

2.4 Classification task

Three models based on MobileNetV2 (29,
developed with distinct

) architecture
and data
augmentation strategies. The classifiers were trained on images

were learning rates
cropped according to the experts’ reference bounding box
annotations, not the whole image. The learning rate values were
selected through systematic hyperparameter tuning, guided by
the observed decay in loss during preliminary experiments. All
versions were initialized with ImageNet (31, 32) pretrained
weights and trained for 200 epochs with image sizes of
224 x 224 pixels. The following augmentations were applied:
brightness, contrast, and saturation adjustments (£0.2), hue
adjustment (£0.1), and image translation (+10% of the image
size). Random horizontal and vertical flipping were
implemented with some variations. Since the classes were
perfectly equal, no strategies to account for class imbalance
were conducted.

Performance metrics as accuracy, precision, recall, F1-score

and the Area Under the Receiver Operating Characteristic Curve
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(AUC-ROC) were computed using the scikit-learn library (33).
After selecting the best detector—classifier combination, we
integrated them into a two-step pipeline in which the images
cropped by the detector were subsequently forwarded to the
classifier.

3.1 Object detection

The YOLOv11 models achieved variable performance on the
lesion detection task, with mAP50 values ranging from 0.718-
0.820 across The best-
performing configuration used Albumentations with slight blur,

different augmentation strategies.

grayscale conversion, CLAHE (34), and minimal geometric
transformations like an 80-degree rotation and a small
perspective shift (0.001), achieving the highest mAP50 (0.820),
precision (0.897), and Fl-score (0.813). Although this setup
yielded a slightly lower recall (0.744) compared to some other
models, the substantial gains in precision and the resulting
harmonic mean captured by the Fl-score indicate a favorable
trade-off (
confirmed consistent localization of lesions, as illustrated by

). Visual inspection of detection outputs

bounding boxes and confidence scores over diverse oral cavity
These that
augmentations, especially rotation and limited perspective

images. results demonstrate carefully tuned
distortion, contributed to improved detection accuracy in the

test set derived from the baseline dataset ( ).

3.2 Classification

The MobileNetV2 models trained for lesion classification
showed notable improvements in performance when both
horizontal and vertical flipping augmentations were applied.
Specifically, the model trained with a learning rate of 0.0001 and
both flipping augmentations achieved the highest accuracy of
0.846 (95% CI: 0.756-0.923), precision of 0.871 (95% CI: 0.817-
0.933), recall of 0.846 (95% CI: 0.756-0.923), and Fl-score of
0.844 (95% CI: 0.756-0.923), as well as the second-best AUC-
ROC of 0.852 (95% CIL 0.759-0.941). Although it did not
achieve the top AUC-ROC score, the difference was minimal
(only 0.004), indicating that the overall discriminative ability of
the model remained virtually unaffected. In comparison,
omitting vertical flipping resulted in lower metrics across all
evaluation measures, indicating that combining horizontal and
vertical flipping contributed substantially to better generalization
performance on the test set derived from the baseline dataset.
Interestingly, reducing the learning rate to 0.00001 slightly
decreased all performance metrics, suggesting that a moderately
low learning rate coupled with diverse augmentations is optimal
for this classification task ( ). After selecting the best
MobileNetV2 configuration (Model 2, see
conducted an external validation which yielded an accuracy of
0.850 (0.798-0.902), precision of 0.866 (0.822-0.912), recall of

) we further
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TABLE 2 YOLO11 results for lesion detection (one-class) using the baseline dataset.

Test set metrics (baseline dataset)

Augmentations

Precision F1-Score

Degrees Perspective Flipud

Close_mosaic

Albumentations

0.761

0.792
0.772
0.792
0.745
0.732

0.705

0.695

0.760
0.813

0.718

0.748

0.782
0.758

0.718

0.740

0.692

0.679

0.754

0.744

0.811

0.841

0.763

0.831

0.775
0.724
0.720
0.713

0.766
0.897

0.767

0.784

0.743

0.776

0.765

0.766

0.752

0.718

0.788

0.820

0.0
0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.001

0.0
80.0

0.0

0.0

0.0
80.0

80.0

80.0

80.0

80.0

50
100

True

True

True

True

True

True

True

True

False

True

YOLOvlin

YOLOvlin

YOLOvlin

YOLOvlin

YOLOvlin
YOLOvlls

YOLOvllm
YOLOv11l

YOLOvlin

YOLOvlin
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Albumentations: image augmentation library used to apply transformations; Close_mosaic: augmentation strategy that merges images into a single composite; Degrees: angle range applied for random rotation augmentation; flipud: vertical flipping; mAP: mean

average precision; Perspective: perspective transformation applied to images during augmentation.

In bold: best metrics.
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0.850 (0.798-0.902), Fl-score of 0.851 (0.799-0.902), and an
AUC-ROC of 0.935 (0.900-0.968).

3.3 Two-step pipeline

For the two-step pipeline approach, we selected the best-
performing MobileNetV2 model (Model 2, see Table 3), where
the classifier was applied to image crops generated by the best-
performing YOLOvlln (Table 2), applying a methodology
similar to that reported by Fu et al. (35). We additionally
computed the performance of the two-step pipeline in the
external validation dataset (Table 4).

The visual representations are particularly important, as
relying solely on YOLO’s evaluation metrics may not fully
reflect the model’s performance. Examining the detection results
themselves provides complementary insights that enhance model
interpretability (Figure 2).

3.4 t-SNE plot

We further employed t-SNE to visualize the feature embeddings
extracted by the two-step approach (YOLOv11n + MobileNetV2)
applied to the external validation dataset, projecting them into
a two-dimensional space to qualitatively assess the learned
representations. The resulting plot (Figure 3) reveals a partial
separation between OPMD and OSCC samples. This separation is
evidenced by the formation of distinct, localized clusters
predominantly populated by a single class. However, the model’s
ability to perfectly discriminate between classes is challenged by a
significant area of overlap in the central and lower regions of
the plot, where embeddings from both classes are intermingled.
This visualization provides crucial insight into the model’s
performance: the partial clustering shows that MobileNetV2
has successfully captured discriminative, class-specific features.
Conversely, the substantial overlap in the t-SNE plot, where
points colored by their true diagnoses intermingle, reveals the
intrinsic ambiguity in the dataset rather than a model
shortcoming. This latent ambiguity reflects the real-world
diagnostic challenge posed by borderline cases, where lesions
from both classes share highly similar visual characteristics,
leading to convergent feature representations. Consequently,
classification errors often occur within this ambiguous region.
The visualization thus explains the model’s performance ceiling,
indicating that some misclassifications stem from the inherent
complexity and similarity of the lesions, rather than a failure of
the model to learn.

4 Discussion

This study aimed to develop detection and classification
algorithms to assist in oral cancer screening through a mobile
application incorporating standardized clinical photography. Our
results are consistent with prior research indicating that pre-

frontiersin.org
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Lesion detection results with YOLO on the test set. Note the ground truth bounding boxes in orange and the generated bounding boxes in blue with
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TABLE 3 MobileNetV2 classification results on images cropped according to the experts’ reference bounding box annotations using the

baseline dataset.

LR Horizontal Vertical Accuracy Precision Recall (Cl) | F1-score (Cl)| AUC-ROC
flipping flipping (CI (CI) (CI

1 0.0001 True False 0.743 (0.654- 0.750 (0.656- 0.743 (0.654- 0.742 (0.647- 0.823 (0.725-
0.846) 0.852) 0.846) 0.846) 0.913)

2 0.0001 True True 0.846 (0.756- 0.871 (0.817- 0.846 (0.756- 0.844 (0.756- 0.852 (0.759-
0.923) 0.933) 0.923) 0.923) 0.941)

3 0.00001 True True 0.820 (0.731- 0.844 (0.772- 0.820 (0.731- 0.818 (0.727- 0.856 (0.755-
0.897) 0.909) 0.897) 0.897) 0.928)

Values are presented as mean (95% confidence interval) calculated via bootstrap with N = 1,000 resamples. LR, learning rate.

In bold: best metrics.

TABLE 4 Classification results of the best-performing MobileNetV2 model (Model 2) applied to image crops guided by the bounding box detections of

the best-performing YOLOv1ln.

Datasets Accuracy (Cl) Precision (Cl)

Recall (Cl) F1-score (Cl)

AUC-ROC (CI)

Baseline dataset® 0.784 (0.696-0.863) 0.793 (0.712-0.872)

0.784 (0.696-0.863) 0.784 (0.696-0.863)

0.811 (0.712-0.889)

External dataset

0.863 (0.806-0.914) 0.879 (0.831-0.928)

0.863 (0.806-0.914) 0.866 (0.807-0.916) 0.934 (0.883-0.975)

Values are presented as mean (95% confidence interval) calculated via bootstrap with N = 1,000 resamples.

In bold: best metrics.
*Test set derived from the baseline dataset (FOP-UNICAMP).

trained weights, particularly from COCO, can accelerate model
convergence and (12-15)
(Supplementary Table S2). However, in line with findings by
Welikala et al. (16), our observations also highlight that
ImageNet pre-training may offer superior feature transfer for

improve detection performance

clinical images, likely due to its broader diversity and richer
established
architectures such as YOLO and Faster R-CNN and applying

low-level —representations. Despite leveraging
common practices including data augmentation and consensus-

based annotations, our approach remains constrained by the

Frontiers in Oral Health

inherent subjectivity in lesion labeling, and the challenges of
detecting small or subtle lesions, especially in OPMDs.
Nonetheless, the comparable or superior performance of Al
models relative to clinicians reported in the literature
underscores the potential of such tools to augment early
detection of OSCC, particularly when integrated into accessible
mobile platforms aimed at supporting routine clinical workflows.

Our two-step pipeline follows a methodology similar to that
reported by Fu et al. (35) which implemented backbone

networks for detection and classification to localize lesions

06 frontiersin.org
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FIGURE 2

Visual inspection of YOLO's inference outputs. (A) Example of an optimal detection, with near-perfect overlap between the reference standard
(ground truth, in orange) and the YOLO detection bounding box. (B) In some cases, the experts’ reference bounding box annotations consisted
of multiple boxes to encompass the entire lesion due to its size and arrangement. The single bounding box generated by the object detection
model does not always cover the entire lesion. This suggests that YOLO may have difficulty predicting such lesions, as most images can typically
be delineated with only one bounding box. Consequently, only the detected region (in blue) is forwarded to the MobileNetV2 classifier. This
limited context may lead to misclassification in certain cases. (C) Example of an image in which the detector failed to identify the lesion. Of the
132 images in the external validation set, 23 (17.4%) did not yield a detection box. In such cases, these images were not forwarded to the
classifier. (D) Example of a single large bounding box detected by YOLO, encompassing the lesional area with multiple annotated regions.
Although the detection is visually and clinically accurate, the mAP score is penalized due to the presence of multiple annotated boxes, illustrating
a potential discrepancy between visual performance and quantitative evaluation.

lesion 0.70

ground truth

ground truth

W
5K

within clinical photographs by drawing bounding boxes. These
cropped regions were subsequently used as input to the
classifier. Unfortunately, our results are not directly comparable
to those of Fu et al, as their work did not report detection
metrics. The performance of our two-step pipeline on the
external validation dataset [AUC =0.934 (95% CI: 0.883-0.975)]
was comparable to the results reported by Fu et al, [AUC=
0.935 (95% CI: 0.910-0.957)] suggesting that our approach
achieves a similar level of discriminative ability despite
differences in dataset composition and preprocessing protocols.
The consistent results from external validation reinforce the
potential generalizability of our pipeline across independent
datasets. It is important to note that YOLO detections may
present inherent limitations, such as bounding boxes that do not
precisely encompass the lesion region or, in some instances, a
complete omission of the lesion. Therefore, these factors must
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be considered when interpreting the performance of the two-
step pipeline classifier, as they may affect the overall evaluation
of the proposed approach.

As well as the majority of published studies (12-15) we also
applied COCO weights to initialize models in their object detection
tasks, enabling faster convergence and improved performance by
leveraging pre-trained knowledge from a large and diverse dataset.
Only one previously published study (16) pre-trained their model
on ImageNet and the superior recall and F1-score achieved suggest
that ImageNet may provide more effective feature transfer for
clinical image analysis than COCO, likely due to its broader visual
diversity and low-level representation capacity. Despite this, we
cannot affirm that pre-trained weights guarantee better results,
since models, datasets, and categories are different in each study.
Other factors such as data augmentation, class balancing, and IoU
threshold also influence the results.
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FIGURE 3
t-SNE visualization of feature embeddings in the external validation dataset. Each point represents an image projected into a 2-dimensional space,
where similar embeddings (i.e., similar learned features) are mapped closer together. The points are color-coded by their true class (reference
standard or “ground truth’): red for oral potentially malignant disorders (OPMD) and blue for oral squamous cell carcinoma (OSCC). The
interpretation is that certain OSCC cases (blue points) exhibit such close clinical similarity to OPMDs that they overlap with the red points in the
central and lower regions of the plot.

It is well known that image labeling (lesion delineation or
bounding box placement) may suffer from the subjectivity of the
clinical exam, transferring this bias to the models if only one
labeler is involved in data preparation. The largest area of
diagnostic overlap (i.e., the most frequent area of intersection) is
often defined as the ground truth for model training, (13-15)
though combined annotations from multiple experts also
represent a robust alternative approach (16). In our protocol, a
consensus between two labelers during annotation generated a
single bounding box to train the models (with the exception of
some lesions due to their size and arrangement), reducing one
step of complexity in the engineering process.

After an extensive literature review, we identified five studies
(12-16) that implemented object detection models using various
architectures. These included different versions of YOLO
(12-14), Faster R-CNN (13-16), RetinaNet (13), and CenterNet2
(14). Among these, YOLO was the most frequently used
architecture, being adopted in all studies except (15, 16). The
popularity of YOLO can be attributed to its direct regression
approach to bounding boxes, which aligns with end-to-end
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object detection goals, its compact model size, and low
implementation complexity, making it particularly suitable for
real-time applications and mobile deployment (26). However, a
notable limitation is that some versions of YOLO tend to lose
accuracy when detecting small objects (36).

With respect to sampling strategies, the baseline dataset was
partitioned into an 80:10:10 ratio, with an independent test set
derived from the baseline dataset to assess generalization.
Furthermore, to reinforce the robustness of our approach, an
external validation was performed using a separate dataset, in line
with the recommendations of Cerda-Alberich et al. and Tejani
et al. (24, 25). This 80:10:10 split is consistent with the approach
of Tanriver et al. (12), although it is not the most commonly used
sampling strategy in published object detection studies. Five-fold
cross-validation remains a good alternative when data are limited
(13-15), but strategies such as bootstrapping, ensemble learning,
label smoothing, stratified/nested cross-validation, and early
stopping should be applied to account for data heterogeneity,
label noise, and potential overfitting to ensure the robustness and
generalizability of the models (37).
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For object detection evaluation, the recommended metrics to
assess a model’s ability to correctly identify meaningful regions
include precision, recall (sensitivity), F1-score, Intersection over
Union (IoU), and mean Average Precision (mAP). Among
these, mAP is the most comprehensive, as it evaluates how well
the model detects objects across all classes, at multiple
confidence thresholds, and is well-suited for comparing different
object detection models as well as assessing performance across
object sizes and complexities (28). Despite its relevance, only
one previously published study (12) and the present research
have reported this metric. It is also important to note that IoU
is a particularly strict metric, as it measures how well the
predicted bounding box overlaps with the reference (ground
truth), effectively defining what counts as a correct detection.
This often leads to penalization of partially accurate predictions,
especially in cases of small or irregularly shaped lesions.

Warin et al. (14) compared the sensitivity of Al models with that
of oral and maxillofacial surgeons in the detection of OSCC.
Surprisingly, their least performant model, CenterNet2, still
outperformed the surgeons in detecting OSCC. On the other hand,
surgeons maintained higher sensitivity in detecting OPMD
compared to the models. This may be explained by the fact that
OPMDs encompass a heterogeneous group of lesions with often
subtle features, which can be easily confused with other conditions
and may be difficult to recognize, even for experienced clinicians.
There is also evidence suggesting that fast detection models may
not be ideal for capturing the nuanced features of OPMDs.

A strength of the present work is that the baseline dataset spans 25
years (2000-2025), adding potential variability in image acquisition
(e.g., devices, lighting), which may improve model robustness
(if consistently annotated). The classes are roughly balanced,
avoiding the need for heavy resampling or weighting (38). Still, we
performed data augmentation on the training set to improve model
robustness, following methods established in previous studies.
This approach was necessary due to the limited size of our
dataset. Concerning data variability, we included incipient and
conventional OSCC and different OPMD subtypes, which is
valuable for clinical realism. The small number of images in certain
subclasses mirrors the real-world scenario, where some lesion types
are inherently less frequent.

Our study shares common limitations found in most deep
learning (DL) work in the health domain: DL models typically
perform better with thousands of labeled examples. Although the
dataset is limited in size, several measures were implemented during
training to mitigate this constraint: data augmentation, and a
rigorous training regimen utilizing a dedicated training split and a
validation split to monitor loss throughout the epochs, enabling
early stopping if necessary. The model’s performance was then
evaluated on a held-out test set. Furthermore, the model was
validated on an external dataset acquired under different conditions,
including capture parameters, sensors, and geolocation. The high
performance observed on this external set strongly suggests that the
model generalized effectively and did not overfit to the training
data. It is important to note that a proportion of images (17.4%) did
not generate a detection box and were therefore excluded from the
classification stage. This limitation should be taken into account
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when interpreting the results, as it may introduce bias by reducing
the effective sample size and potentially underrepresenting certain
lesion presentations. Another limitation of this study is that the
image augmentation parameters were based on default values from
the YOLO framework rather than being optimized for our specific
dataset; we plan to address this in future work by conducting a
detailed ablation study to evaluate and refine these hyperparameters.
Although explainability methods were not applied in this study, the
YOLO-based detection stage inherently provides an intuitive
understanding of the model’s behavior through object localization.
Given that the MobileNetV2 classifier was applied exclusively to
cropped regions of interest, post-hoc attribution techniques like
Grad-CAM would offer limited incremental insight in this context.
Nonetheless, we fully acknowledge the critical role of model
interpretability for clinical adoption and intend to investigate
complementary explainability approaches, such as Gradient-
weighted Class Activation Mapping (Grad-CAM) (41, 42) and
SHapley Additive exPlanations (SHAP) (43), in future work.

To date, no technology has provided definitive evidence of
improved sensitivity or specificity for oral cancer screening when
compared to conventional oral examination (39). By definition,
screening refers to the systematic application of a test or procedure
to asymptomatic individuals in order to detect disease at an early,
treatable stage (3). Therefore, Al systems that aim to classify lesions
already identified during the intraoral clinical exam cannot be
considered true screening tools. Instead, they function as diagnostic
support systems, assisting clinicians in the evaluation of lesions that
have already been detected. Additionally, there is not enough
evidence that these support systems alter the course of the disease or
reduce mortality. Even in the context of early detection, whether
using Al-based systems or not, leukoplakia often recurs over time
despite the different treatment modalities employed (e.g., surgery or
CO, laser) (40). It is also unclear whether any meaningful changes in
the disease course would occur even if we could accurately identify
which patients will eventually develop malignant transformation.

This study serves as an exploratory or proof-of-concept two-
step pipeline for the early detection of oral cancer and the
classification of OPMD and OSCC. Future work will focus on a
prospective study in which patients are diagnosed with the
assistance of a mobile application, offering a real-time, low-cost,
non-invasive, support

and user-friendly system for oral

diseases diagnosis.

The datasets used and/or analyzed during the current study are
available from the corresponding author on reasonable request. All
authors agree to be accountable for any aspects of the work and we
ensure that questions related to the accuracy or integrity of any part
of the work are appropriately investigated and resolved.



Araujo et al.

Ethics statement

This study was performed in accordance with the Declaration
of Helsinki and was approved by the Piracicaba Dental School
Ethical Committee (Registration number: 42235421.9.0000.5418)
and by the Federal University of Paraiba Ethical Committee
72314323.0.0000.5188),
comprised Material Transfer Agreements between co-participant

(Registration  number: which  also

Institutions to share images.

Author contributions

AA: Conceptualization, Data curation, Funding acquisition,
Methodology, Project administration, Supervision, Writing -
original draft. AS: Conceptualization, Formal analysis, Investigation,
Methodology, Software, Validation, Writing - review & editing. AG:
Methodology, Writing - review & editing. CS: Conceptualization,
Data curation, Writing — review & editing. DF: Data curation,
Writing - review & editing. CC: Data curation, Writing — review &
editing. IC: Data curation, Writing — review & editing. PV: Project
editing. ML: Project
administration, Writing — review & editing. PB: Data curation,

administration, Writing - review &
Writing — review & editing. AC: Project administration, Writing —
review & editing. MQ: Formal analysis, Methodology, Project
editing. AS: Project
editing. LK: Project

administration, Writing - review &

administration, Writing - review &

administration, Writing - review & editing.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. This study was
financed, in part, by the Sdo Paulo Research Foundation
(FAPESP), Brasil. Process Numbers #2021/14585-7, #2022/
13069-8 and #2024/20694-1.

References

1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global
cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer ] Clin. (2024) 74:229-63. doi: 10.3322/caac.21834

2. Saldivia-Siracusa C, Aratijo AL, Arboleda LP, Abrantes T, Pinto MB, Mendonga
N, et al. Insights into incipient oral squamous cell carcinoma: a comprehensive south-
American study. Med Oral Patol Oral Cir Bucal. (2024) 29(4):¢575. doi: 10.4317/
medoral.26551

3. Speight PM, Epstein J, Kujan O, Lingen MW, Nagao T, Ranganathan K, et al.
Screening for oral cancer—a perspective from the global oral cancer forum. Oral Surg
Oral Med Oral Pathol Oral Radiol. (2017) 123:680-7. doi: 10.1016/j.0000.2016.08.021

4. Tarakji B. Dentists’ perception of oral potentially malignant disorders. Int Dent J.
(2022) 72:414-9. doi: 10.1016/j.identj.2022.01.004

5. Fliigge T, Gaudin R, Sabatakakis A, Tréltzsch D, Heiland M, van Nistelrooij N,

et al. Detection of oral squamous cell carcinoma in clinical photographs using a
vision transformer. Sci Rep. (2023) 13:2296. doi: 10.1038/s41598-023-29204-9

Frontiers in Oral Health

10.3389/froh.2025.1659323

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that Generative AI was used in the
creation of this manuscript. During the preparation of this work
the authors used ChatGPT (Mar 14 version) from OpenAl
(https://chat.openai.com/chat) to specifically review grammar and
spelling. After utilizing this tool/service, the authors thoroughly
reviewed and edited the content as necessary. The authors assume
full responsibility for the content of the publication. No large
language models/tools/ service were used to analyze and draw
insights from data as part of the research process.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever
possible. If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/froh.2025.

1659323/full#supplementary-material

6. Saldivia-Siracusa C, Carlos de Souza ES, Barros da Silva AV, Damaceno Aratjo
AL, Pedroso CM, Aparecida da Silva T, et al. Automated classification of oral
potentially malignant disorders and oral squamous cell carcinoma using a
convolutional neural network framework: a cross-sectional study. Lancet Reg
Health Am. (2025) 47:101138. doi: 10.1016/j.Jlana.2025.101138

7. Lim JH, Tan CS, Chan CS, Welikala RA, Remagnino P, Rajendran S, et al.
D’oraca: deep learning-based classification of oral lesions with mouth landmark
guidance for early detection of oral cancer. In: Proceedings (2021). p. 408-22

8. Warnakulasuriya S. Oral potentially malignant disorders: a comprehensive
review on clinical aspects and management. Oral Oncol. (2020) 102:104550.
doi: 10.1016/j.oraloncology.2019.104550

9. Warnakulasuriya S, Kovacevic T, Madden P, Coupland VH, Sperandio M, Odell
E, et al. Factors predicting malignant transformation in oral potentially malignant
disorders among patients accrued over a 10-year period in South East England.
] Oral Pathol Med. (2011) 40:677-83. doi: 10.1111/§.1600-0714.2011.01054.x

frontiersin.org


https://www.frontiersin.org/articles/10.3389/froh.2025.1659323/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/froh.2025.1659323/full#supplementary-material
https://doi.org/10.3322/caac.21834
https://doi.org/10.4317/medoral.26551
https://doi.org/10.4317/medoral.26551
https://doi.org/10.1016/j.oooo.2016.08.021
https://doi.org/10.1016/j.identj.2022.01.004
https://doi.org/10.1038/s41598-023-29204-9
https://doi.org/10.1016/j.lana.2025.101138
https://doi.org/10.1016/j.oraloncology.2019.104550
https://doi.org/10.1111/j.1600-0714.2011.01054.x

Araujo et al.

10. Aratjo ALD, Pedroso CM, Vargas PA, Lopes MA, Santos-Silva AR. Advancing
oral cancer diagnosis and risk assessment with artificial intelligence: a review. Explor
Digit Heal Technol. (2025) 3:101147. doi: 10.37349/edht.2025.101147

11. Kaur J, Singh W. Tools, techniques, datasets and application areas for object
detection in an image: a review. Multimed Tools Appl. (2022) 81:38297-351.
doi: 10.1007/s11042-022-13153-y

12. Tanriver G, Soluk Tekkesin M, Ergen O. Automated detection and classification
of oral lesions using deep learning to detect oral potentially malignant disorders.
Cancers (Basel). (2021) 13:2766. doi: 10.3390/cancers13112766

13. Warin K, Limprasert W, Suebnukarn S, Jinaporntham S, Jantana P.
Performance of deep convolutional neural network for classification and detection
of oral potentially malignant disorders in photographic images. Int ]| Oral
Maxillofac Surg. (2022) 51:699-704. doi: 10.1016/j.ijom.2021.09.001

14. Warin K, Limprasert W, Suebnukarn S, Jinaporntham S, Jantana P,
Vicharueang S. Al-based analysis of oral lesions using novel deep convolutional
neural networks for early detection of oral cancer. PLoS One. (2022b) 17:¢0273508.
doi: 10.1371/journal.pone.0273508

15. Warin K, Limprasert W, Suebnukarn S, Jinaporntham §, Jantana P. Automatic
classification and detection of oral cancer in photographic images using deep learning
algorithms. J Oral Pathol Med. (2021) 50:911-8. doi: 10.1111/jop.13227

16. Welikala RA, Remagnino P, Lim JH, Chan CS, Rajendran S, Kallarakkal TG,
et al. Automated detection and classification of oral lesions using deep learning for
early detection of oral cancer. IEEE Access. (2020) 8:132677-93. doi: 10.1109/
ACCESS.2020.3010180

17. Camalan S, Mahmood H, Binol H, Aradjo ALD, Santos-Silva AR, Vargas PA,
et al. Convolutional neural network-based clinical predictors of oral dysplasia: class
activation map analysis of deep learning results. Cancers (Basel). (2021) 13:1-18.
doi: 10.3390/cancers13061291

18. Figueroa KC, Song B, Sunny S, Li S, Gurushanth K, Mendonca P, et al.
Interpretable deep learning approach for oral cancer classification using guided
attention inference network. J Biomed Opt. (2022) 27(1):015001-015001. doi: 10.
1117/1.JBO.27.1.015001

19. Jubair F, Al-karadsheh O, Malamos D, Al Mahdi S, Saad Y, Hassona Y. A novel
lightweight deep convolutional neural network for early detection of oral cancer. Oral
Dis. (2022) 28:1123-30. doi: 10.1111/0di.13825

20. Shamim MZM, Syed S, Shiblee M, Usman M, Ali SJ, Hussein HS, et al. Automated
detection of oral pre-cancerous tongue lesions using deep learning for early diagnosis of
oral cavity cancer. Comput J. 65(1):91-104. doi: 10.1093/comjnl/bxaal36

21. Sharma D, Kudva V, Patil V, Kudva A, Bhat RS. A convolutional neural
network based deep learning algorithm for identification of oral precancerous and
cancerous lesion and differentiation from normal Mucosa: a retrospective study.
Eng Sci. (2022) 18:278-87. doi: 10.30919/es8d663

22. Song B, Zhang C, Sunny S, Kc DR, Li S, Gurushanth K, et al. Interpretable and reliable
oral cancer classifier with attention mechanism and expert knowledge embedding via
attention map. Cancers (Basel). (2023) 15:1421. doi: 10.3390/cancers15051421

23. Song B, Li S, Sunny S, Gurushanth K, Mendonca P, Mukhia N, et al.
Classification of imbalanced oral cancer image data from high-risk population.
J Biomed Opt. (2021) 26(10):105001. doi: 10.1117/1.JBO.26.10.105001

24. Tejani AS, Klontzas ME, Gatti AA, Mongan JT, Moy L, Park SH, et al. Checklist
for artificial intelligence in medical imaging (CLAIM): 2024 update. Radiol Artif
Intell. (2024) 6(4):¢240300. doi: 10.1148/ryai.240300

25. Cerda-Alberich L, Solana J, Mallol P, Ribas G, Garcia-Junco M, Alberich-Bayarri A,
et al. MAIC-10 brief quality checklist for publications using artificial intelligence and
medical images. Insights Imaging. (2023) 14:11. doi: 10.1186/s13244-022-01355-9

26. Redmon J., Divvala S., Girshick R., Farhadi A., 2016. You only look once:
unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, pp. 779-88.

Frontiers in Oral Health

1

10.3389/froh.2025.1659323

27. Khanam R, Hussain M. YOLOv11: An Overview of the Key Architectural
Enhancements (2024).

28. Lin T.-Y., Maire M., Belongie S., Bourdev L., Girshick R., Hays J., Perona P.,
Ramanan D., Zitnick C.L., Dolldr P., 2015. Microsoft coco: common objects in
context. In European Conference on Computer Vision, pp. 740-55. Cham: Springer
International Publishing, 2014.

29. Howard A.G., Zhu M., Chen B., Kalenichenko D., Wang W., Weyand T.,
Andreetto M., Adam H., 2017. Mobilenets: efficient convolutional neural networks
for mobile vision applications. arXiv [Preprint]. arXiv:1704.04861 (2017). doi: 10.
48550/arXiv.1704.04861

30. Sandler M., Howard A., Zhu M., Zhmoginov A., Chen L.-C., 2018. Mobilenetv2:
inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition. IEEE, pp. 4510-20.

31. Deng J., Dong W, Socher R,, Li L.-J., Li Kai, Fei-Fei Li, 2009. Imagenet: a large-
scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition. IEEE, pp. 248-55.

32. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. Imagenet large
scale visual recognition challenge. Int ] Comput Vis. (2015) 115:211-52. doi: 10.1007/
511263-015-0816-y

33. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
Scikit-learn: machine learning in Python. ] Mach Learn Res. (2011) 12:2825-30.
doi: 10.5555/1953048.2078195

34. Khan SA, Hussain S, Yang S. Contrast enhancement of low-contrast medical
images using modified contrast limited adaptive histogram equalization. ] Med
Imaging Health Inform. (2020) 10:1795-803. doi: 10.1166/jmihi.2020.3196

35. Fu Q, Chen Y, Li Z, Jing Q, Hu C, Liu H, et al. A deep learning algorithm for
detection of oral cavity squamous cell carcinoma from photographic images: a
retrospective study. EClinicalMedicine. (2020) 27:100558. doi: 10.1016/j.eclinm.
2020.100558

36. Yan B, Li J, Yang Z, Zhang X, Hao X. AIE-YOLO: auxiliary information
enhanced YOLO for small object detection. Sensors (Basel). (2022) 22(21):8221.
doi: 10.3390/s22218221

37. Aratijo ALD, Sperandio M, Calabrese G, Faria SS, Cardenas DAC, Martins MD,
et al. Artificial intelligence in healthcare applications targeting cancer diagnosis—part
II: interpreting the model outputs and spotlighting the performance metrics. Oral
Surg Oral Med Oral Pathol Oral Radiol. (2025c) 140(1):89-99. doi: 10.1016/j.0000.
2025.01.002

38. Araujo ALD, Sperandio M, Calabrese G, Faria SS, Cardenas DAC, Martins
MD, et al. Artificial intelligence in healthcare applications targeting cancer
diagnosis—part I: data structure, preprocessing and data organization. Oral
Surg Oral Med Oral Pathol Oral Radiol. (2025b) 140(1):79-88. doi: 10.1016/j.
0000.2025.01.004

39. Lingen MW, Kalmar JR, Karrison T, Speight PM. Critical evaluation of
diagnostic aids for the detection of oral cancer. Oral Oncol. (2008) 44:10-22.
doi: 10.1016/j.oraloncology.2007.06.011

40. van der Waal I. Oral leukoplakia: diagnosis and management revisited. J Dent
Indones. (2023) 30:73-80. doi: 10.14693/jdi.v30i2.1507

41. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM:
Visual explanations from deep networks via gradient-based localization (2017).
Available online at: http://gradcam.cloudcv.org (Accessed June 4, 2025).

42. Zhang Y, Hong D, McClement D, Oladosu O, Pridham G, Slaney G. Grad-
CAM helps interpret the deep learning models trained to classify multiple sclerosis
types using clinical brain magnetic resonance imaging. J Neurosci Methods. (2021)
353:109098. doi: 10.1016/j.jneumeth.2021.109098

43. Lundberg SM, Lee S-I. A unified approach to interpreting model predictions.

arXiv [Preprint]. arXiv:1705.07874 (2017). Available online at: https://arxiv.org/abs/
1705.07874 (Accessed June 14, 2025).

frontiersin.org


https://doi.org/10.37349/edht.2025.101147
https://doi.org/10.1007/s11042-022-13153-y
https://doi.org/10.3390/cancers13112766
https://doi.org/10.1016/j.ijom.2021.09.001
https://doi.org/10.1371/journal.pone.0273508
https://doi.org/10.1111/jop.13227
https://doi.org/10.1109/ACCESS.2020.3010180
https://doi.org/10.1109/ACCESS.2020.3010180
https://doi.org/10.3390/cancers13061291
https://doi.org/10.1117/1.JBO.27.1.015001
https://doi.org/10.1117/1.JBO.27.1.015001
https://doi.org/10.1111/odi.13825
https://doi.org/10.1093/comjnl/bxaa136
https://doi.org/10.30919/es8d663
https://doi.org/10.3390/cancers15051421
https://doi.org/10.1117/1.JBO.26.10.105001
https://doi.org/10.1148/ryai.240300
https://doi.org/10.1186/s13244-022-01355-9
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.1166/jmihi.2020.3196
https://doi.org/10.1016/j.eclinm.2020.100558
https://doi.org/10.1016/j.eclinm.2020.100558
https://doi.org/10.3390/s22218221
https://doi.org/10.1016/j.oooo.2025.01.002
https://doi.org/10.1016/j.oooo.2025.01.002
https://doi.org/10.1016/j.oooo.2025.01.004
https://doi.org/10.1016/j.oooo.2025.01.004
https://doi.org/10.1016/j.oraloncology.2007.06.011
https://doi.org/10.14693/jdi.v30i2.1507
http://gradcam.cloudcv.org
https://doi.org/10.1016/j.jneumeth.2021.109098
https://arxiv.org/abs/1705.07874
https://arxiv.org/abs/1705.07874

	Two-step pipeline for oral diseases detection and classification: a deep learning approach
	Introduction
	Materials and methods
	Dataset
	Workstation
	Object detection task
	Classification task

	Results
	Object detection
	Classification
	Two-step pipeline
	t-SNE plot

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References


