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Introduction: This study aimed to develop and evaluate an artificial intelligence 

pipeline combining object detection and classification models to assist in early 

identification and differentiation of oral diseases.

Methods: This retrospective cross-sectional study utilized clinical images of 

oral potentially malignant disorders and oral squamous cell carcinoma, 

comprising a baseline dataset of 773 images from Faculdade de Odontologia 

de Piracicaba, Universidade Estadual de Campinas (FOP-UNICAMP) and an 

external validation dataset of 132 images from Federal University of Paraíba 

(UFPB). All images were obtained prior to biopsy, all with corresponding 

histopathological reports. For object detection, ten YOLOv11 models were 

developed with varying data augmentation strategies, trained for 200 epochs 

using pretrained COCO weights. For classification, three MobileNetV2 models 

were trained on images cropped according to the experts’ reference 

bounding box annotations, each using different combinations of learning 

rates and data augmentation. After selecting the best detector–classifier 

combination, we integrated them into a two-step pipeline in which the 

images cropped by the detector were subsequently forwarded to the classifier.

Results: The best YOLOv11 configuration achieved a mAP50 of 0.820, precision 

of 0.897, recall of 0.744, and F1-score of 0.813. For classification, the best 

MobileNetV2 configuration achieved an accuracy of 0.846, precision of 0.871 

recall of 0.846, F1-score of 0.844, and AUC-ROC of 0.852. On external 

validation, this same model reached an accuracy of 0.850, precision of 0.866, 

recall of 0.850, F1-score of 0.851, and an AUC-ROC of 0.935. The two-step 

approach, when applied to the test set from the baseline dataset, achieved an 

accuracy of 0.784, precision of 0.793, recall of 0.784, F1-score of 0.784, and 

an AUC-ROC of 0.811. When evaluated on the external validation dataset, it 

yielded an accuracy of 0.863, precision of 0.879, recall of 0.863, F1-score of 
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0.866, and an AUC-ROC of 0.934. The visual inspection of YOLO’s inference 

outputs confirmed consistent lesion localization across diverse oral cavity 

images, with some missing (17.4%). The t-SNE visualization demonstrated 

partial separation between oral potentially malignant disorder (OPMD) and oral 

squamous cell carcinoma (OSCC) feature embeddings, indicating the model 

captured discriminative patterns with some class overlap.

Conclusion: This proof-of-concept study demonstrates the feasibility of a two- 

step artificial intelligence (AI) pipeline combining object detection and 

classification to support early diagnosis of oral diseases. However, caution is 

warranted when interpreting the results of two-step approaches, as images 

missed by YOLO during detection are excluded from the classification stage, 

which may affect the reported performance metrics.

KEYWORDS

object detection, image classification, artificial intelligence, pre-training, oral potentially 

malignant disorders, oral squamous cell carcinoma

1 Introduction

Early detection of oral cancerous and precursor lesions is essential 

to reduce diagnoses at advanced stages, significantly improving 

treatment outcomes and prognosis and delaying potential 

malignant transformation (1). However, delays in diagnosis are 

common, mainly because, in the initial stages, oral potentially 

malignant disorders (OPMDs) often present as asymptomatic and 

smooth-surfaced lesions that do not raise suspicion among patients. 

Such initial lesions may be clinically indistinguishable from 

indolent forms of oral squamous cell carcinoma (OSCC), the 

socalled incipient lesions, which present as plaques in up to 80% of 

cases (2). The lack of awareness about early signs contributes to late 

diagnosis by general practitioners and delays in seeking care by 

patients. Additionally, barriers to accessing specialists in remote 

regions further exacerbate the problem, limiting opportunities for 

timely assessment and intervention.

Currently, in the context of oral cancer, conventional oral 

examination is the only widely used resource for early 

identification of lesions (3), which depends heavily on the 

examiner’s experience and vigilance. According to Tarakji et al. (4) 

the diagnosis of OPMDs depends on adequate clinical skills and 

histological investigation with specialists showing better knowledge 

than general practitioners. To help fill this gap, investing in 

continuing education and training, as well as developing support 

systems to aid clinicians in identifying early lesions, are promising 

strategies. In this regard, many alternative testing and diagnostic 

aids have been proposed to improve early detection and risk 

assessment. Among them, artificial intelligence (AI) approaches 

based on clinical photographs have the potential to simplify the 

diagnostic work4ow by applying computer vision techniques to 

distinguish OPMD from malignant lesions (5, 6), accelerate expert 

referral (7) and biopsy procedures, and help overcome the 

limitations of conventional oral examination, which relies mainly 

on clinical indicators of malignancy, such as increased redness and 

ulceration (8, 9) that are sometimes present in OPMDs, creating 

diagnostic uncertainty. Therefore, when training convolutional 

neural networks (CNNs) with white-light photographs, two main 

tasks are usually explored: object detection for lesion localization 

and image classification. (10) The exploration of both detection 

and classification strategies is fundamental for the development of 

robust AI-based diagnostic frameworks.

Object detection refers to a process in computer vision that 

determines where objects are located in a given image, typically by 

drawing bounding boxes around them, and identifying which class 

each object belongs to (11). Such algorithms stand out as innovative 

tools to support clinical decision-making, as they allow for precise 

localization of suspicious regions within oral photographs. This 

minimizes the risk of missing subtle abnormalities and ensures that 

clinically relevant areas are systematically analyzed, while also 

enabling their incorporation into pipelines for lesion identification 

and subsequent classification. The main architectures explored in 

this oral disease’s context include YOLO, Faster R-CNN, RetinaNet, 

and CenterNet2. These models are particularly valuable for 

identifying smooth-surfaced leukoplakias, which could otherwise go 

unnoticed during routine examinations. Nonetheless, important 

limitations have been reported in the literature, such as reliance on 

limited datasets, absence of external validation, and challenges in 

detecting small lesions (12–16).

Classification algorithms, in turn, assign diagnostic labels to entire 

images or regions of interest without necessarily determining lesion 

boundaries. By learning patterns in clinical photographs, these 

models can distinguish between benign, potentially malignant, and 

malignant conditions, thereby guiding referrals and supporting 

clinical decision-making, particularly in resource-limited settings. In 

oral diseases, CNN-based classification has been increasingly 

explored to automate diagnosis and prioritize cases for specialist 

evaluation (5, 17–23). Despite their potential, classification 

algorithms also face challenges related to dataset representativeness, 

interpretability, and integration into clinical work4ows.

The aim of this research is to develop detection and 

classification algorithms to assist in the early detection of 

OPMD and OSCC and further integrate them in a two-step 

pipeline enhancing the reliability of classification by restricting 

the analysis to pertinent regions, whereas classification provides 

clinical interpretation to the detected areas. This sequential 
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approach not only strengthens diagnostic performance but also 

re4ects the conventional work4ow of clinicians, who initially 

identify lesions before assessing their malignant potential, 

thereby increasing both the accuracy and interpretability of the 

proposed model.

2 Materials and methods

2.1 Dataset

This retrospective cross-sectional study was developed based on a 

real-world dataset comprising 773 clinical photographs collected from 

patients diagnosed with oral lesions at Faculdade de Odontologia de 

Piracicaba, Universidade Estadual de Campinas (Piracicaba, São 

Paulo, Brazil) between 2000 and 2025. Images were categorized as 

OPMD (n = 380) and OSCC (n = 393). For external validation, an 

independent subset comprising 53 OPMD and 79 OSCC images 

from patients at the Federal University of Paraíba (UFPB) (João 

Pessoa, Paraíba, Brazil) was included. Both categories were defined 

according to the clinical and histopathological criteria established by 

the World Health Organization (WHO Classification of Tumours 

Editorial Board, 2022). The OPMD category included proliferative 

verrucous leukoplakia and conventional leukoplakia (with or 

without oral epithelial dysplasia), while the OSCC category 

comprised several clinical and histopathological variants (i.e., 

conventional, verrucous, and incipient) to increase dataset 

variability. To ensure consistency in imaging and diagnostic labels, 

we excluded images of poor quality or those from non- 

representative biopsies, defined as (1) biopsies with a 

histopathological diagnosis of OED despite clear clinical features of 

OSCC, or (2) biopsies that were too small or technically inadequate 

to permit a definitive diagnosis. In cases with significant clinical 

changes prompting a repeat biopsy, only images acquired prior to 

each biopsy were included, provided there was a minimum interval 

of three months between procedures. All images were obtained 

before biopsy and had corresponding histopathological reports. The 

dataset was non-randomly divided into independent subsets 

of training, validation and testing, in which photos from the 

same patient were kept in the training subset to avoid data 

leakage, and proportions of the main class were followed in the 

subsets (Table 1).

Bounding box annotations were made by A.L.D.A., in 

consultation with C.S.S. to reach a consensus, using Aperio 

ImageScope software (Leica Biosystems) and a Huion Inspiroy 

H1060P graphics tablet, blinded to the diagnosis, and focusing 

on framing the lesions within rectangular boxes.

This study was conducted in accordance with the Checklist for 

Artificial Intelligence in Medical Imaging (CLAIM) (24) and the 

Must AI Criteria-10 (MAIC-10) Checklist (25) (Supplementary 

Table S1). It adhered to the principles of the Declaration of 

Helsinki and received ethical approval from the Piracicaba 

Dental School Ethical Committee (Registration number: 

42235421.9.0000.5418) and from the Federal University of Paraíba 

Ethical Committee (Registration number: 72314323.0.0000.5188). 

The approvals also included Material Transfer Agreements 

between participating institutions to facilitate the sharing of images.

2.2 Workstation

All experiments were conducted on Google Colab using a 

standardized virtualized environment with an Intel(R) Xeon(R) 

CPU @ 2.00 GHz (2 threads, 1 physical core), 39 MB of L3 

cache. The system was also equipped with an NVIDIA Tesla T4 

GPU (15,360 MiB VRAM, CUDA 12.4, Driver 550.54.15).

2.3 Object detection task

YOLO (You Only Look Once) (26) is one of the most efficient 

algorithms for object detection in images, based on convolutional 

neural networks (CNNs). Unlike traditional approaches that 

analyze the image in several steps or propose regions of interest 

before classification, YOLO treats detection as a single regression 

problem, where the entire image is processed at once. The model 

divides the image into a grid and, for each cell of the grid, it 

provides bounding boxes, class probabilities and associated 

confidence gains. This structure allows YOLO to be extremely 

fast, enabling real-time applications, without significantly 

compromising accuracy. In addition, its end-to-end training 

capability (end-to-end learning) makes the process more efficient 

and straightforward, being widely used in tasks such as security 

monitoring, medical imaging diagnosis and driving.

YOLOv11 (27), the latest iteration in the YOLO series, 

introduces several architectural innovations aimed at enhancing 

performance across various computer vision tasks. Key 

advancements include the incorporation of the C3k2 (Cross 

Stage Partial with kernel size 2) block, SPPF (Spatial Pyramid 

Pooling—Fast), and C2PSA (Convolutional block with Parallel 

Spatial Attention) components. These additions contribute to 

improved feature extraction and overall model efficiency.

Ten models were developed using four different YOLOv11 

architecture variants: YOLOv11n (2.6M parameters), YOLOv11s 

TABLE 1 Datasets.

Classes Baseline dataset (FOP-UNICAMP) External validation dataset (UFPB)

Training (80%) Validation (10%) Test (10%) Total

OPMD 312 34 34 380 53

OSCC 316 39 38 393 79

Total 328 73 72 773 132

OPMD, oral potentially malignant disorder; OSCC, oral squamous cell carcinoma.
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(9.4M), YOLOv11m (20.1M), and YOLOv11l (25.3M). Each 

configuration was combined with specific data augmentation 

strategies to evaluate their impact on performance. All versions 

were initialized with COCO’s (28) pretrained weights and 

trained for 200 epochs using images resized to 640 × 640 pixels. 

The following augmentations were applied: hue adjustment 

(±0.015), saturation adjustment (±0.7), image translation (±10% 

of the image size), and scaling (±50%). Horizontal 4ipping was 

also applied with a probability of 0.5. Additional variations were 

included, such as mosaic augmentation, which randomly 

combines one to four images during training.

In object detection experiments, the mean Average Precision 

at 50% Intersection over Union (mAP50) was used as the 

primary evaluation metric, emphasizing accurate localization of 

lesion regions. A single target class, “lesion” (merging OPMD 

and OSCC), was adopted because performance would not be 

adversely affected, and preliminary results showed that while the 

model was effective at locating lesions, it was significantly less 

capable of distinguishing between their specific types. When 

both classes were evaluated separately, the mAP50 dropped to 

approximately 22%. Consequently, calculation of the AUROC 

was considered inappropriate, as the task effectively constitutes a 

single-class problem. Additionally, Precision, Recall, and 

F1-Score were computed using the built-in evaluation tools 

provided by the Ultralytics library.

Although mAP50 was chosen as our primary metric for 

consistency with common object detection literature, it is 

important to note that for a single-class problem, mAP50 is 

equivalent to the Average Precision (AP) at IoU = 0.5. 

Furthermore, AP is formally defined as the area under the 

precision-recall curve (AUC-PR). Thus, AP and AUC-PR are 

synonymous metrics; reporting both would be redundant. We 

have chosen to report AP to align with the standard reporting 

conventions in our field.

2.4 Classification task

Three models based on MobileNetV2 (29, 30) architecture 

were developed with distinct learning rates and data 

augmentation strategies. The classifiers were trained on images 

cropped according to the experts’ reference bounding box 

annotations, not the whole image. The learning rate values were 

selected through systematic hyperparameter tuning, guided by 

the observed decay in loss during preliminary experiments. All 

versions were initialized with ImageNet (31, 32) pretrained 

weights and trained for 200 epochs with image sizes of 

224 × 224 pixels. The following augmentations were applied: 

brightness, contrast, and saturation adjustments (±0.2), hue 

adjustment (±0.1), and image translation (±10% of the image 

size). Random horizontal and vertical 4ipping were 

implemented with some variations. Since the classes were 

perfectly equal, no strategies to account for class imbalance 

were conducted.

Performance metrics as accuracy, precision, recall, F1-score 

and the Area Under the Receiver Operating Characteristic Curve 

(AUC-ROC) were computed using the scikit-learn library (33). 

After selecting the best detector–classifier combination, we 

integrated them into a two-step pipeline in which the images 

cropped by the detector were subsequently forwarded to the 

classifier.

3 Results

3.1 Object detection

The YOLOv11 models achieved variable performance on the 

lesion detection task, with mAP50 values ranging from 0.718– 

0.820 across different augmentation strategies. The best- 

performing configuration used Albumentations with slight blur, 

grayscale conversion, CLAHE (34), and minimal geometric 

transformations like an 80-degree rotation and a small 

perspective shift (0.001), achieving the highest mAP50 (0.820), 

precision (0.897), and F1-score (0.813). Although this setup 

yielded a slightly lower recall (0.744) compared to some other 

models, the substantial gains in precision and the resulting 

harmonic mean captured by the F1-score indicate a favorable 

trade-off (Table 2). Visual inspection of detection outputs 

confirmed consistent localization of lesions, as illustrated by 

bounding boxes and confidence scores over diverse oral cavity 

images. These results demonstrate that carefully tuned 

augmentations, especially rotation and limited perspective 

distortion, contributed to improved detection accuracy in the 

test set derived from the baseline dataset (Figure 1).

3.2 Classification

The MobileNetV2 models trained for lesion classification 

showed notable improvements in performance when both 

horizontal and vertical 4ipping augmentations were applied. 

Specifically, the model trained with a learning rate of 0.0001 and 

both 4ipping augmentations achieved the highest accuracy of 

0.846 (95% CI: 0.756–0.923), precision of 0.871 (95% CI: 0.817– 

0.933), recall of 0.846 (95% CI: 0.756–0.923), and F1-score of 

0.844 (95% CI: 0.756–0.923), as well as the second-best AUC- 

ROC of 0.852 (95% CI: 0.759–0.941). Although it did not 

achieve the top AUC-ROC score, the difference was minimal 

(only 0.004), indicating that the overall discriminative ability of 

the model remained virtually unaffected. In comparison, 

omitting vertical 4ipping resulted in lower metrics across all 

evaluation measures, indicating that combining horizontal and 

vertical 4ipping contributed substantially to better generalization 

performance on the test set derived from the baseline dataset. 

Interestingly, reducing the learning rate to 0.00001 slightly 

decreased all performance metrics, suggesting that a moderately 

low learning rate coupled with diverse augmentations is optimal 

for this classification task (Table 3). After selecting the best 

MobileNetV2 configuration (Model 2, see Table 3) we further 

conducted an external validation which yielded an accuracy of 

0.850 (0.798–0.902), precision of 0.866 (0.822–0.912), recall of 
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0.850 (0.798–0.902), F1-score of 0.851 (0.799–0.902), and an 

AUC-ROC of 0.935 (0.900–0.968).

3.3 Two-step pipeline

For the two-step pipeline approach, we selected the best- 

performing MobileNetV2 model (Model 2, see Table 3), where 

the classifier was applied to image crops generated by the best- 

performing YOLOv11n (Table 2), applying a methodology 

similar to that reported by Fu et al. (35). We additionally 

computed the performance of the two-step pipeline in the 

external validation dataset (Table 4).

The visual representations are particularly important, as 

relying solely on YOLO’s evaluation metrics may not fully 

re4ect the model’s performance. Examining the detection results 

themselves provides complementary insights that enhance model 

interpretability (Figure 2).

3.4 t-SNE plot

We further employed t-SNE to visualize the feature embeddings 

extracted by the two-step approach (YOLOv11n + MobileNetV2) 

applied to the external validation dataset, projecting them into 

a two-dimensional space to qualitatively assess the learned 

representations. The resulting plot (Figure 3) reveals a partial 

separation between OPMD and OSCC samples. This separation is 

evidenced by the formation of distinct, localized clusters 

predominantly populated by a single class. However, the model’s 

ability to perfectly discriminate between classes is challenged by a 

significant area of overlap in the central and lower regions of 

the plot, where embeddings from both classes are intermingled. 

This visualization provides crucial insight into the model’s 

performance: the partial clustering shows that MobileNetV2 

has successfully captured discriminative, class-specific features. 

Conversely, the substantial overlap in the t-SNE plot, where 

points colored by their true diagnoses intermingle, reveals the 

intrinsic ambiguity in the dataset rather than a model 

shortcoming. This latent ambiguity re4ects the real-world 

diagnostic challenge posed by borderline cases, where lesions 

from both classes share highly similar visual characteristics, 

leading to convergent feature representations. Consequently, 

classification errors often occur within this ambiguous region. 

The visualization thus explains the model’s performance ceiling, 

indicating that some misclassifications stem from the inherent 

complexity and similarity of the lesions, rather than a failure of 

the model to learn.

4 Discussion

This study aimed to develop detection and classification 

algorithms to assist in oral cancer screening through a mobile 

application incorporating standardized clinical photography. Our 

results are consistent with prior research indicating that pre- T
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trained weights, particularly from COCO, can accelerate model 

convergence and improve detection performance (12–15) 

(Supplementary Table S2). However, in line with findings by 

Welikala et al. (16), our observations also highlight that 

ImageNet pre-training may offer superior feature transfer for 

clinical images, likely due to its broader diversity and richer 

low-level representations. Despite leveraging established 

architectures such as YOLO and Faster R-CNN and applying 

common practices including data augmentation and consensus- 

based annotations, our approach remains constrained by the 

inherent subjectivity in lesion labeling, and the challenges of 

detecting small or subtle lesions, especially in OPMDs. 

Nonetheless, the comparable or superior performance of AI 

models relative to clinicians reported in the literature 

underscores the potential of such tools to augment early 

detection of OSCC, particularly when integrated into accessible 

mobile platforms aimed at supporting routine clinical work4ows.

Our two-step pipeline follows a methodology similar to that 

reported by Fu et al. (35) which implemented backbone 

networks for detection and classification to localize lesions 

FIGURE 1 

Lesion detection results with YOLO on the test set. Note the ground truth bounding boxes in orange and the generated bounding boxes in blue with 

the correspondent confidence scores.

TABLE 3 MobileNetV2 classification results on images cropped according to the experts’ reference bounding box annotations using the 
baseline dataset.

Model LR Horizontal 
flipping

Vertical 
flipping

Accuracy 
(CI)

Precision 
(CI)

Recall (CI) F1-score (CI) AUC-ROC 
(CI)

1 0.0001 True False 0.743 (0.654– 

0.846)

0.750 (0.656– 

0.852)

0.743 (0.654– 

0.846)

0.742 (0.647– 

0.846)

0.823 (0.725– 

0.913)

2 0.0001 True True 0.846 (0.756– 

0.923)

0.871 (0.817– 

0.933)

0.846 (0.756– 

0.923)

0.844 (0.756– 

0.923)

0.852 (0.759– 

0.941)

3 0.00001 True True 0.820 (0.731– 

0.897)

0.844 (0.772– 

0.909)

0.820 (0.731– 

0.897)

0.818 (0.727– 

0.897)

0.856 (0.755– 

0.928)

Values are presented as mean (95% confidence interval) calculated via bootstrap with N = 1,000 resamples. LR, learning rate.

In bold: best metrics.

TABLE 4 Classification results of the best-performing MobileNetV2 model (Model 2) applied to image crops guided by the bounding box detections of 
the best-performing YOLOv11n.

Datasets Accuracy (CI) Precision (CI) Recall (CI) F1-score (CI) AUC-ROC (CI)

Baseline dataseta 0.784 (0.696–0.863) 0.793 (0.712–0.872) 0.784 (0.696–0.863) 0.784 (0.696–0.863) 0.811 (0.712–0.889)

External dataset 0.863 (0.806–0.914) 0.879 (0.831–0.928) 0.863 (0.806–0.914) 0.866 (0.807–0.916) 0.934 (0.883–0.975)

Values are presented as mean (95% confidence interval) calculated via bootstrap with N = 1,000 resamples.

In bold: best metrics.
aTest set derived from the baseline dataset (FOP-UNICAMP).

Araújo et al.                                                                                                                                                              10.3389/froh.2025.1659323 

Frontiers in Oral Health 06 frontiersin.org



within clinical photographs by drawing bounding boxes. These 

cropped regions were subsequently used as input to the 

classifier. Unfortunately, our results are not directly comparable 

to those of Fu et al., as their work did not report detection 

metrics. The performance of our two-step pipeline on the 

external validation dataset [AUC = 0.934 (95% CI: 0.883–0.975)] 

was comparable to the results reported by Fu et al., [AUC =  

0.935 (95% CI: 0.910–0.957)] suggesting that our approach 

achieves a similar level of discriminative ability despite 

differences in dataset composition and preprocessing protocols. 

The consistent results from external validation reinforce the 

potential generalizability of our pipeline across independent 

datasets. It is important to note that YOLO detections may 

present inherent limitations, such as bounding boxes that do not 

precisely encompass the lesion region or, in some instances, a 

complete omission of the lesion. Therefore, these factors must 

be considered when interpreting the performance of the two- 

step pipeline classifier, as they may affect the overall evaluation 

of the proposed approach.

As well as the majority of published studies (12–15) we also 

applied COCO weights to initialize models in their object detection 

tasks, enabling faster convergence and improved performance by 

leveraging pre-trained knowledge from a large and diverse dataset. 

Only one previously published study (16) pre-trained their model 

on ImageNet and the superior recall and F1-score achieved suggest 

that ImageNet may provide more effective feature transfer for 

clinical image analysis than COCO, likely due to its broader visual 

diversity and low-level representation capacity. Despite this, we 

cannot affirm that pre-trained weights guarantee better results, 

since models, datasets, and categories are different in each study. 

Other factors such as data augmentation, class balancing, and IoU 

threshold also in4uence the results.

FIGURE 2 

Visual inspection of YOLO’s inference outputs. (A) Example of an optimal detection, with near-perfect overlap between the reference standard 

(ground truth, in orange) and the YOLO detection bounding box. (B) In some cases, the experts’ reference bounding box annotations consisted 

of multiple boxes to encompass the entire lesion due to its size and arrangement. The single bounding box generated by the object detection 

model does not always cover the entire lesion. This suggests that YOLO may have difficulty predicting such lesions, as most images can typically 

be delineated with only one bounding box. Consequently, only the detected region (in blue) is forwarded to the MobileNetV2 classifier. This 

limited context may lead to misclassification in certain cases. (C) Example of an image in which the detector failed to identify the lesion. Of the 

132 images in the external validation set, 23 (17.4%) did not yield a detection box. In such cases, these images were not forwarded to the 

classifier. (D) Example of a single large bounding box detected by YOLO, encompassing the lesional area with multiple annotated regions. 

Although the detection is visually and clinically accurate, the mAP score is penalized due to the presence of multiple annotated boxes, illustrating 

a potential discrepancy between visual performance and quantitative evaluation.
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It is well known that image labeling (lesion delineation or 

bounding box placement) may suffer from the subjectivity of the 

clinical exam, transferring this bias to the models if only one 

labeler is involved in data preparation. The largest area of 

diagnostic overlap (i.e., the most frequent area of intersection) is 

often defined as the ground truth for model training, (13–15) 

though combined annotations from multiple experts also 

represent a robust alternative approach (16). In our protocol, a 

consensus between two labelers during annotation generated a 

single bounding box to train the models (with the exception of 

some lesions due to their size and arrangement), reducing one 

step of complexity in the engineering process.

After an extensive literature review, we identified five studies 

(12–16) that implemented object detection models using various 

architectures. These included different versions of YOLO 

(12–14), Faster R-CNN (13–16), RetinaNet (13), and CenterNet2 

(14). Among these, YOLO was the most frequently used 

architecture, being adopted in all studies except (15, 16). The 

popularity of YOLO can be attributed to its direct regression 

approach to bounding boxes, which aligns with end-to-end 

object detection goals, its compact model size, and low 

implementation complexity, making it particularly suitable for 

real-time applications and mobile deployment (26). However, a 

notable limitation is that some versions of YOLO tend to lose 

accuracy when detecting small objects (36).

With respect to sampling strategies, the baseline dataset was 

partitioned into an 80:10:10 ratio, with an independent test set 

derived from the baseline dataset to assess generalization. 

Furthermore, to reinforce the robustness of our approach, an 

external validation was performed using a separate dataset, in line 

with the recommendations of Cerdá-Alberich et al. and Tejani 

et al. (24, 25). This 80:10:10 split is consistent with the approach 

of Tanriver et al. (12), although it is not the most commonly used 

sampling strategy in published object detection studies. Five-fold 

cross-validation remains a good alternative when data are limited 

(13–15), but strategies such as bootstrapping, ensemble learning, 

label smoothing, stratified/nested cross-validation, and early 

stopping should be applied to account for data heterogeneity, 

label noise, and potential overfitting to ensure the robustness and 

generalizability of the models (37).

FIGURE 3 

t-SNE visualization of feature embeddings in the external validation dataset. Each point represents an image projected into a 2-dimensional space, 

where similar embeddings (i.e., similar learned features) are mapped closer together. The points are color-coded by their true class (reference 

standard or “ground truth”): red for oral potentially malignant disorders (OPMD) and blue for oral squamous cell carcinoma (OSCC). The 

interpretation is that certain OSCC cases (blue points) exhibit such close clinical similarity to OPMDs that they overlap with the red points in the 

central and lower regions of the plot.
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For object detection evaluation, the recommended metrics to 

assess a model’s ability to correctly identify meaningful regions 

include precision, recall (sensitivity), F1-score, Intersection over 

Union (IoU), and mean Average Precision (mAP). Among 

these, mAP is the most comprehensive, as it evaluates how well 

the model detects objects across all classes, at multiple 

confidence thresholds, and is well-suited for comparing different 

object detection models as well as assessing performance across 

object sizes and complexities (28). Despite its relevance, only 

one previously published study (12) and the present research 

have reported this metric. It is also important to note that IoU 

is a particularly strict metric, as it measures how well the 

predicted bounding box overlaps with the reference (ground 

truth), effectively defining what counts as a correct detection. 

This often leads to penalization of partially accurate predictions, 

especially in cases of small or irregularly shaped lesions.

Warin et al. (14) compared the sensitivity of AI models with that 

of oral and maxillofacial surgeons in the detection of OSCC. 

Surprisingly, their least performant model, CenterNet2, still 

outperformed the surgeons in detecting OSCC. On the other hand, 

surgeons maintained higher sensitivity in detecting OPMD 

compared to the models. This may be explained by the fact that 

OPMDs encompass a heterogeneous group of lesions with often 

subtle features, which can be easily confused with other conditions 

and may be difficult to recognize, even for experienced clinicians. 

There is also evidence suggesting that fast detection models may 

not be ideal for capturing the nuanced features of OPMDs.

A strength of the present work is that the baseline dataset spans 25 

years (2000–2025), adding potential variability in image acquisition 

(e.g., devices, lighting), which may improve model robustness 

(if consistently annotated). The classes are roughly balanced, 

avoiding the need for heavy resampling or weighting (38). Still, we 

performed data augmentation on the training set to improve model 

robustness, following methods established in previous studies. 

This approach was necessary due to the limited size of our 

dataset. Concerning data variability, we included incipient and 

conventional OSCC and different OPMD subtypes, which is 

valuable for clinical realism. The small number of images in certain 

subclasses mirrors the real-world scenario, where some lesion types 

are inherently less frequent.

Our study shares common limitations found in most deep 

learning (DL) work in the health domain: DL models typically 

perform better with thousands of labeled examples. Although the 

dataset is limited in size, several measures were implemented during 

training to mitigate this constraint: data augmentation, and a 

rigorous training regimen utilizing a dedicated training split and a 

validation split to monitor loss throughout the epochs, enabling 

early stopping if necessary. The model’s performance was then 

evaluated on a held-out test set. Furthermore, the model was 

validated on an external dataset acquired under different conditions, 

including capture parameters, sensors, and geolocation. The high 

performance observed on this external set strongly suggests that the 

model generalized effectively and did not overfit to the training 

data. It is important to note that a proportion of images (17.4%) did 

not generate a detection box and were therefore excluded from the 

classification stage. This limitation should be taken into account 

when interpreting the results, as it may introduce bias by reducing 

the effective sample size and potentially underrepresenting certain 

lesion presentations. Another limitation of this study is that the 

image augmentation parameters were based on default values from 

the YOLO framework rather than being optimized for our specific 

dataset; we plan to address this in future work by conducting a 

detailed ablation study to evaluate and refine these hyperparameters. 

Although explainability methods were not applied in this study, the 

YOLO-based detection stage inherently provides an intuitive 

understanding of the model’s behavior through object localization. 

Given that the MobileNetV2 classifier was applied exclusively to 

cropped regions of interest, post-hoc attribution techniques like 

Grad-CAM would offer limited incremental insight in this context. 

Nonetheless, we fully acknowledge the critical role of model 

interpretability for clinical adoption and intend to investigate 

complementary explainability approaches, such as Gradient- 

weighted Class Activation Mapping (Grad-CAM) (41, 42) and 

SHapley Additive exPlanations (SHAP) (43), in future work.

To date, no technology has provided definitive evidence of 

improved sensitivity or specificity for oral cancer screening when 

compared to conventional oral examination (39). By definition, 

screening refers to the systematic application of a test or procedure 

to asymptomatic individuals in order to detect disease at an early, 

treatable stage (3). Therefore, AI systems that aim to classify lesions 

already identified during the intraoral clinical exam cannot be 

considered true screening tools. Instead, they function as diagnostic 

support systems, assisting clinicians in the evaluation of lesions that 

have already been detected. Additionally, there is not enough 

evidence that these support systems alter the course of the disease or 

reduce mortality. Even in the context of early detection, whether 

using AI-based systems or not, leukoplakia often recurs over time 

despite the different treatment modalities employed (e.g., surgery or 

CO2 laser) (40). It is also unclear whether any meaningful changes in 

the disease course would occur even if we could accurately identify 

which patients will eventually develop malignant transformation.

5 Conclusion

This study serves as an exploratory or proof-of-concept two- 

step pipeline for the early detection of oral cancer and the 

classification of OPMD and OSCC. Future work will focus on a 

prospective study in which patients are diagnosed with the 

assistance of a mobile application, offering a real-time, low-cost, 

non-invasive, and user-friendly support system for oral 

diseases diagnosis.
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