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Resumo: O desempenho metrológico de uma Máquina de M.edir a Três Coordenadas (MM3C) está
relacionado com a sua capacidade de medir peças com a precisão requerida ou desejada. No

entanto, como todo instrumento de medição, as MM3Cs possuem erros inerentes à sua estrutura

que afetam a acuracidade e a repetibilidade das medições, gerando o que se convencionou chamar

de erro volumétrico. Tal erro pode ser obtido através de uma calibração da máquina.

Recentemente, o uso da cinemática do corpo rígido, com matrizes de transformação homogénea

para modelar os erros, tem sido muito utilizada para o modelamento de máquinas ferramentas e

MM3Cs. A presente pesquisa tem por objetivo determinar as equações que sintetizam as

componentes dos erros volumétricos através da teoria de transformações homogéneas. O sistema

desenvolvido foi aplicado a uma MM3C. Durante a implementação e análise de erros, sistemas de

coordenadas foram colocados em posições estratégicas, tais como, desempeno, ponte móvel, braço

móvel e ponta da sonda. A fim de atingir o objetívo proposto, levantou-se os erros individuais de

uma MM3C da marca Brown & Sharp do tipo Ponte Móvel, utilizando um sistema de
Interferômetria Laser HP.

Palavras-chave: Máquina de Medir a Três Coordenadas, Erro Volumétrico, Teoria das

Transformações Homogéneas.

l. INTRODUÇÃO

A modelagem das Máquinas de Medir a Três Coordenadas tem crescido na sua importância pois
através de modelos matemáticos é possível determinar a grandeza e o comportamento dos erros com

o objetivo de compensá-los. Durante muitos anos tem-se dedicado tempo e esforço à modelagem

matemática das MM3Cs. Técnicas variadas tem sido utilizadas para este fim.
A diferença entre o caminho real e o caminho ideal descrito pela ponta da sonda pode ser

detemünada através de um modelo matemático especialmente desenvolvido para a máquina
avaliada. Tal modelo combina de forma conveniente os erros individuais de cada uma das direções
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preferências da máquina formando o que convencionalmente é chamado de erro volumétrico. Uma
vez calculado o erro, ele pode ser usado para fms de compensação.

O modelo matemático dos erros pode ser construído através das seguintes técnicas: Análise
Geométrica Estrutural; Análise Vetorial dos Caminhos de Medição e a Análise Matricial através de
Transformações Homogéneas. A seguir apresenta-se uma ampla abordagem das Transformações
Homogéneas.

2. TRANSFORMADAS HOMOGÉNEAS:

Foi em í 876 que F. REULEAUX aplicou pela primeira vez as técnicas de transformações
homogéneas nos problemas de cinemática, com a publicação do trabalho "Kinematics of
Machinery" apresentou uma notação simbólica para descrever o comportamento de mecanismos.

DENAVIT e HARTEMBERG em 1955 desenvolveram uma notação simbólica, hábil para
descrever completamente mecanismos de duas articulações. Esta notação forneceu uma análise

poderosa e confiável baseada em matrizes algébricas. Apresentando o que é hoje conhecido como
teoria das Transformações Homogéneas (TH).

Através desta técnica, e mediante o uso de matrizes de transformação 4x4, é possível representar

movimentos de translaçao, de rotação ou a combinação desses dois, possibilitando estabelecer as
relações entre partes móveis de um mecanismo e um sistema de coordenadas de referência.

Cada componente da máquina sofre rotações e translações com relação a um sistema de
coordenadas, e cada um destes componentes pode ser representado por um sistema de coordenadas
intermediário. Desta forma, através de vetares e matrizes é desenvolvida uma sistemática que
generaliza a representação da posição e da orientação da sonda da máquina em relação ao sistema
de coordenadas de referência. A definição do comportamento cinemáíico da máquina consiste na
determinação das matrizes de transformação homogénea dos diferentes sistemas de coordenadas,
com relação a um sistema de coordenadas.

HOCKEN et al (1977), modelaram através das matrizes de TH os erros angulares em máquinas
de medir.

Dl GIACOMO et al. (1997), utilizando técnica de TH, modelaram MM3Cs com o objetivo de
determinar a influência dos termos de segunda ordem no erro volumétrico. Dois modelos foram

desenvolvidos, um deles incluindo os termos de segunda ordem e um outro desprezando-os. Como

resultado obteve-se que a inclusão dos termos de segunda ordem nos modelos acarreta uma

diferença menor que Inm, mostrando que eles podem ser desprezados, desde que o valor esperado

dos erros volumétricos esteja na ordem do 4.111. No futuro próximo os íemios de segunda ordem não

poderão ser desprezados.
As TH é uma poderosa ferramenta matemática, com relativa facilidade de uso. Alguns conceitos

fundamentais para conhecimento das Transformações Homogéneas serão explanados a seguir.
Primeiramente, deve ser entendido o que são as coordenadas homogéneas.

Um ponto Q pertencente a 9Í" pode ser representado pelo vetor V de n coordenadas em relação
a um sistema de coordenadas cartesianas de referência. Em coordenadas homogéneas, o mesmo

ponto é representado por um vetar que tem (n+1) coordenadas.
Seja então um ponto Q pertencente a um espaço tridimensional representado pelo vetor,

==»v==ai +bj +ck

onde i, j, k são os vetares unitários na direção dos eixos X, Y e Z respectivamente.



Em coordenadas homogéneas pode se escrever o ponto Q como o vetor v da seguinte forma:

v =\x y ^ w]T (2)

onde : a=— b=-L e c=— e wé chamado de fator de escala.
w w w

Então pode-se observar que se w == l as coordenadas homogéneas são exatamente iguais as

coordenadas cartesianas.

No caso, onde w = 0, temos a, b, c tendendo a iafmito, esses vetares são usados para

representarem direções ou ângulos.

RESHETOV & PORTMAN em 1988 dividiram a representação tridimensional, para vetares de
4a ordem, em duas classes distintas, os autovetores e os não-autovetores. Os autovetores

representam um ponto no espaço e sua 4a coordenada homogénea é não nula. E os não-autovetores

são aquelas que representam direções ou ângulos e seu fator escala é nulo.
Em um espaço tridmiensional as Transformações Homogéneas são constituídas de matrizes 4x4.

Estas servem para representar matematicamente os 6 (seis) graus de liberdade de um corpo rígido.
Considerando dois sistemas de coordenadas S; e SM.
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(3)

onde O i , O 2 , O 3 descrevem orientação de um sistema de coordenadas S; com relação a outro

sistema de coordenadas SM. E o vetor P descreve a posição relativa da origem do sistema S; no
sistema Si-.i.

As três primeiras colunas da matriz da Equação 3 são não-autovetores e a quarta coluna é um
autovetor.

No caso de matrizes de TH que representara movimentos de translação simples. Podemos
considerar dois sistemas de coordenadas, S; e SM. Suponha que o sistema S; tenha executado um

movimento de translação em X com relação ao sistema SM, Figura l. Observe que os eixos

coordenados caminham paralelos, havendo uma alteração apenas quanto à origem do sistema.

A notação comumente utilizada nas TH é Tj que é a matriz que descreve a posição e a
orientação do sistema j com relação ao sistema i.

A matriz de TH que descreve o movimento de translação em X é dado pela equação 4.



A matriz de TH que descreve o movimento de transíação em X é dado pela equação 4.
/

t-1
r. ===

'l O O x^

0100
0010

0001~ ~ ~ ~}

(4)

Figura l - Translação de um sistema de coordenadas na direção de X

Suponha agora que o sistema Si tenha executado um movimento de translação em Y com

relação ao sistema Si-1, Figura 2.

A matriz de TH que descreve o movimento de translação em Y é dado por 5.

z,_i-U ^iz;

t-1

^1 YÍ
T:=

(\ O O 0^|

O l O y
0010

0001

(5)

Figura 2 - Translação de um sistema de coordenadas na direção de Y

Da mesma forma tem-se a equação (6) que mostra a execução de um movimento de

translação em Z do sistema Si com relação ao sistema Si" l, mostrado na Figura 3.

2;

i-Ï
r. =

'l O O 0}

0100
O O l z

0001

(6)

Figura 3 - Translação de um sistema de coordenadas na direção de Z

A matriz de TH que descreve o movimento de translação em Z é dado pela Equação 6.



No caso de matrizes de TH que representam movimentos de rotação. Seja Si e Si-1 dois
sistemas de coordenadas e a o ângulo de rotação em tomo de X que transforma o sistema Si -l

no sistema Si.
i=I+OJ+QKZÍ-1À

xi-l = x
O sena

lo o
Figura 4 - Rotação a do sistema em tomo do eixo X.

j = 0/+ coses/ + sen aK

k == O/ - sen Oí/ + cos aK

10 O 0-

O cosa -sena O

cosa O

O l

Rot{X,a)^

(7)

(8)

Assumindo ;", y, k os vetares unitários de düreção no sistema Si, Ï,J,K os vetores unitários de

dü-eção no sistema Si-1. Pode-se considerar que a origem do sistema Si-1 coincide com a origem

do sistema Si.
O sistema de equações 7 representa as novas direções do sistema de coordenadas, ou seja, os

elementos de Si em termos de Si" l.

Então a matriz de transformação homogénea (Equação 8) que representa a rotação
apresentada é dada pelas equações 7 agrupadas convenientemente, onde i, j, k são colocados na

transposta e a quarta coluna representa a translação, que é zero devido a origem dos sistemas

coincidirem. A última linha de zeros e um, dá a coluna o significado de rotação ou de translação,
zero: rotação e um: translação.

Agora seja Si e Si-1 dois sistemas de coordenadas e p o ângulo de rotação em tomo de Y que
transforma o sistema Si —l no sistema Si.

Zi.i

Zi

Roí(Y,f3) =

(9)

(10)

i == cos RI + O J - sen f5K

j =OI+J+OK

k=senpI+OJ+cospK
cos /i O sen fS O

0100

- sen /3 O cos /? O

0001

Figura 5 - Rotação p do sistema em tomo do ebco Y.

Para rotação em tomo de Z, considera-se dois sistemas de coordenadas Si e Si-1 e y o ângulo

de que transforma o sistema Si -l no sistema Si.
í =cosyf + sen yj + OK

j =-sen y[ 4- cos j} + QK

k=QI+OJ+K
cos/ -seny O O

sen/ cos/ O O

Yi-il

Yí\-j

jí<^\,VÏif??Tl

i-1 = Z^

Rot(Z,y)=
O l O
O O l

(11)

(12)

Figura 6 - Rotação R do sistema em tomo do eixo Z.



Com as matrizes descritas nas equações 4, 5 e 6 para translação e 8, 10 e 12 para rotação, pode-se

representar os 6 graus de liberdade característicos de um corpo rígido, ou seja, a cada elemento de uma

máquina pode-se associar um sistema de coordenadas, para descrever os movimentos destes elementos
e modelar o desempenho total da máquina.

3. AS TÉCNICAS DE TRANSFORMAÇÕES HOMOGÉNEAS APLICADAS AS MM3CS

O equacionamento dos erros é fruto de um modelo matemático elaborado exclusivamente para a

máquina considerada. O modelo matemático da MM3C da marca Brown & Shaipe de propriedade da
USP-São Carlos foi elaborado tomando-se por hipótese que os elementos estruturais da máquina tem o

comportamento de corpo rígido e, como tal, atuam sobre cada um deles seis erros individuais, cada um

associado a um dos seis graus de liberdade de um corpo rígido (Paul, 1981).

>1 Ifix1

Figura 7 - Representação da MM3C tipo Ponte Móvel com os sistemas de coordenadas

Alguns conceitos fundamentais serão ainda explicados, antes de ser aplicado as MM3Cs.

Figura 8 - a) Movimento de um carro transladando, b) movünento de um corpo rígido.



Na Figura 8a, pode-se observar dois sistemas de coordenadas, um sistema fixo a referência e outro

solidário ao carro. Durante um deslocamento ideal a matriz de transformação que relaciona os 2

sistemas de coordenadas é dado pela equação:

l O O XOl-hx

010 Y01
001 Z01

(13)

|0 O O l
onde, X01, Y01 e Z01 são distâncias fixas entre as origens dos sistemas de referência e o sistema
solidário ao carro.

No entanto os carros das máquinas não possuem movimentos perfeitos unidirecionais.

Para melhor entendimento, considere um carro de uma máquina como um corpo rígido, com a

possibilidade de movimento de translação em apenas uma direção, como ilustra a Figura 8b. Observe

que o movimento de deslocamento é realizado na direção X. No entanto, a leitura na escala do eixo X

não indica o valor exalo do deslocamento experimentado pelo carro. Este erro é denominado erro de

posição ou de escala e denota-se por Ôx(x).

As translações nas outras direções e rotações indesejáveis, que o carro experimenta são

denominados de erros de retilineidade e angulares, respectivamente. Os erros de rotação são

comumente conhecidos como pitch, yaw e roll conforme a direção do deslocamento do carro, e

particularmente, para a ilustração da Figura 9, são respectivamente denotados por ey(x), ez(x) e ex(x).
Frequentemente a sequência das rotações que é utilizada para a construção da matriz de

Transformação homogénea é roll, pitch e yaw. Especifica-se a ordem de rotação como

RPY(ez, ey, ex) = Rot(z, ez). Rot(y, ey). Rot(x, £x). (14)

Através da multiplicação mostrada na equação 14 pode-se chegar a matriz resultante que descreve
qualquer erro angular (PAUL, 1981):

COS(£;) COS(£ ) COS(£^ )sen(e^)sen(e^) - sen(e;)cos(s,) cos(e,) sen(e^) cos(e, ) + sen(£;) sen(Ê^) O

sen(e;) cos(e ) sen(e;) sen(e ) sen(e^) + cos(e; )cos(e^) sen(e;) sen(e^ ) cos(e, ) - COS(Ê.. ) sen(£^) O

-sen(ej cos(e;)sen(ej cos(e.-)cos(€^) O

00 01

(15)

Pode-se assumir que, para elementos móveis com um grau de liberdade para translação, os erros

angulares são muito pequenos com valores bem próximos do zero (a ^ 0). Então é possível utilizar a

seguinte aproximação, sen(a)=a e cos(a)=l. Portanto:

E_. ==

l

£.

•£y

o

-Ê.

l

£.

o

£y

£.

l

o

o

o
o
l

(16)

onde : £^ é o erro rotacional infinitesimal em tomo do eixo x, Ê é o erro rotacional infinitesimal em

tomo do eixo y, e €^ é o erro rotacional mfínitesimal em tomo do eixo z.
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A matriz de erro total é obtida através do produto matícial expresso em (17) e o resultado desta
operação é dado pela matriz (18).

(17)

(18)

E importante observar que esta matriz de transformação homogénea. Equação 18, contém todos os

erros geométricos de carros de movimentação em translação de máquinas (Paul, 1981).

3.1. Caminho da Sonda

A posição dos sistemas de coordenadas e os braços fixos podem ser verificados na Erro! A

origem da referência não foi encontrada..

A matriz que representa o movimento do sistema de coordenadas l com relação ao sistema O

pode ser escrito como:

1 -SÁ» £y(y) W

£Áy)
~sM

B-
fl==

o

l

£M
o

-e.ÜO

l

o

Ô, (y) +Y.

SM
l

(19)

onde Yreg é a medida indicada no mostrador da MM3C.

Em relação ao sistema de coordenadas 2 com relação ao sistema l pode ser escrito abaixo, por

se tratar de uma transíação pura entre os dois sistemas num mesmo corpo rígido não apresenta nenhum

erro.

1000

0100

O O l

000

'7-. =

'ftX\

l
(20)

onde Zfíxi é uma distância fixa e é chamado de Braço de Abbè.
Porém ocorreu uma mudança do eixo Y para o eixo X, o sistema 2 esta na parte do eixo X. Se

tratando de um instrumento mecânico e que depende de ajustes, podem ocorrer possíveis erros de

ortogonalidade entre os sistemas l e 2. Neste caso, definisse uma matriz de ortogonalidade [Oxv] dada
por:

o o1

0>

l -szQ

£ZO l

o o

o o

o o

(21)

A matriz de transformação entre os sistemas 2 e 3 está descrita em (22).
I -sz(x) sy(x) X^+Sx(x~)

£z(x) l -sxÇx) §y(x)

•£y(,x) sx(x) ï Sz(x)

000 l
onde Xreg é a medida indicada no mostrador da máquina.

f3= (22)



Entre os sistemas 3 e 4 há apenas uma translação pura e possíveis erros de ortogonalidade, isto

deve-se ao sistema 4 estar sobre o eixo Z que desliza sobre mancais fíxos no carro X. Neste caso será

modelado o erro de ortogonalidade entre os eixos ZeXeZeY.A matriz de ortogonalidade será dada
por:

I O sy0 O l

0>
o i -0:0 o

-ey0 exO Ï O

0001
(23)

O sinal que é negativo indica que a translação ocorre no sentido contrário à direção positiva do
eixo.

3r.=

l -ss(z) £y{z) Sx(z)

fâ(z) l -ex(z) ôy{z}-Y^

-€y(z) sx(z) l &(z)

000 I

(24)

A outra designada por [ T5] modela o comprimento fixo do término do eixo Z até o centro da
esfera da sonda.

(25)
4r -
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o
o

onde Zf;x2 é
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l

ï

o Braço de Abbè.

3.2. Caminho da peça

T. =5 —

l

o

o

o

o
l

o
o

o
o

l

o

^
rés ^/u-I

'/"l ~ ^ SWi ~ ^reg

l

O vetor que representa o caminho da peça, sem erros, tem como componentes as translações

ideais e são observadas na matriz de transformação abaixo. Observe que nesta matriz não estão

incluídos os erros de rotação e também os erros de translação.

(26)

onde: Xreg, Yreg e Zreg são as leituras mostradas na máquina.

3.3. Matriz de Erro Final da Máquina

Com o correio emprego da técnica de modelamento pode-se detenmnar o erro de

posicionamento relativo entre a ponta da sonda e peça através da expressão (27).

sondaj x 1 peça)

onde Tgonáa 6 Tpeça representam respectivamente a posição do ponto de trabaüio da ponta da sonda e o

ponto ideal de contato na peça, isto tudo com relação ao sistema de referência.



O sistema sonda com relação ao sistema referência é dado pelo produto das matrizes: Tsonáa ^

JTi x T^ x OXY x Ta x OXYZ x Ï4 e o sistema peça com relação ao sistema referência é dado por Tpeça=
o'

.5

Realizando as operações indicadas nas equações obtém-se a matriz de erro sintetizado.

Considerando que a máquina analisada utiliza uma sonda de ponta única, pode-se tomar

apenas a última coluna da matriz encontrada como resultado. E o erro para cada direção vai ser dada

por:

_ &(^)+&Cy)+&(z)+(s<}+s(y))*^ +^*(Z^+2^)-
'x —

^r(-^-z^)-^r(-z^z^)+^r^+z^+z^)

g = 5y(y) + ôy(x) + ôy(z) + X^ * (szO + £z(y)) + Z^ + (ezQ ~ fx(x) + ec(y) - oc(z)) ^

Z^ * (a0 - ©cQc) + ex(y) - £x(z)) - sc(y) * Z^

EVz =&(z) + &(x) + Sz(y) - ey{y) * ^ - £x(x) * 7^; - oc(y) * 7^ (30)

onde: ôa(a) -^ erro de posição "a"; ôa(b) ^ erro de retilineidade do eixo "b" devido ao movimento no
eixo "a"; ea(b) ^ erro angular em tomo do eixo "a" devido ao movimento no eixo "b"; ew0 •">- erro de

ortogonalidade entre os eixos que pertencem ao plano perpendicular ao eixo "w".

4. CONCLUSÕES

Foi feita uma vasta revisão bibliográfica sobre as Técnicas de Transformações Homogéneas e um
modelamento cinemático para a Máquina de medir Brown Sc Sharpe modelo Ponte Móvel foi realizado.

De acordo com o objetivo deste trabalho a conclusão mais relevante está relacionada com a

utilização da teoria das Transformações Homogéneas. Esta exige um trabalho computacional

relativamente grande, principahnente quando os termos de segunda ordem são considerados.

A metodologia proposta mostrou-se eficiente na análise da estrutura da máquina.

Apesar de não ter sido mosürado ouü-os métodos para que se proceda uma comparação entre

métodos, o resultado mostra-se coerente e dentro das estimativas realizadas.

A metodologia é aplicável a todas as máquinas complexas e, portanto, eventualmente pode ser

utilizada também na comparação de máquinas ferramentas.
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Coordinate measuring machine modelling using homogeneous transformation

Abstract: The metrological performance ofa coordinate measuring machine is related to its capability

ofmeasuring meckanical elements within the required or desired precision. CMMs, however, present

errors that are inherent to its structure and affect accuracy and repeaíability during the measurement

process, producing what was conventionally labelled as volumetríc errors. This error can be obtained

by means ofmachine calibraüon ana mathematícal modelling, wkich describes as the individual errors

of ali the components. The utilízatíon of rigid body kinemaíics wiíh homogeneous transformatíon

matrix hás become more popular in recent days. Thís research aims to determine the volumetric errors

components synthesization equaüons making use of the theory of homogeneous transformatíon. The

developed system was applied to a CMM. During the error analysis implementation, coordinate

systems were placed on strategically defined posiüons, as table to support the part to be measured,

moving bridge, moving arm and probe tip. Looking forward the compleüon of the proposed objective,

individual errors ofa Brown & Sharp CMM were collected using an HP interferometric laser system.

Keywords: Coordinate measuríng machme, volumetric errors, Homogeneous transformation theory.




