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Resumo: O desempenho metroldgico de uma Maquina de Medir a Trés Coordenadas (MM3C) estd
relacionado com a sua capacidade de medir pecas com a precisdo requerida ou desejada. No
entanto, como todo instrumento de medi¢do, as MM3Cs possuem erros inerentes a sua estrutura
que afetam a acuracidade e a repetibilidade das medigbes, gerando o que se convencionou chamar
de erro volumétrico. Tal erro pode ser obtido através de uma calibragdo da maquina.
Recentemente, o uso da cinematica do corpo rigido, com matrizes de transformagdo homogénea
para modelar os erros, tem sido muito utilizada para o modelamento de mdquinas ferramentas e
MM3Cs. A presente pesquisa tem por objetivo determinar as equagdes que sintetizam as
componentes dos erros volumétricos através da teoria de transformagoes homogéneas. O sistema
desenvolvido foi aplicado a uma MM3C. Durante a implementagéo e andlise de erros, sistemas de
coordenadas foram colocados em posigdes estratégicas, tais como, desempeno, ponte movel, brago
movel e ponta da sonda. A fim de atingir o objetivo proposto, levantou-se os erros individuais de
uma MM3C da marca Brown & Sharp do tipo Ponte Movel, utilizando um sistema de
Interferémetria Laser HP.

Palavras-chave: Mdquina de Medir a Trés Coordenadas, Erro Volumétrico, Teoria das
Transformacgdes Homogéneas.

1. INTRODUCAO

A modelagem das Maquinas de Medir a Trés Coordenadas tem crescido na sua importancia pois
através de modelos matematicos é possivel determinar a grandeza e o comportamento dos erros com
0 objetivo de compensa-los. Durante muitos anos tem-se dedicado tempo e esfor¢co a modelagem
matematica das MM3Cs. Técnicas variadas tem sido utilizadas para este fim.

A diferenca entre o caminho real e o caminho ideal descrito pela ponta da sonda pode ser
determinada através de um modelo matematico especialmente desenvolvido para a maquina
avaliada. Tal modelo combina de forma conveniente os erros individuais de cada uma das diregdes
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preferéncias da méquina formando o que convencionalmente é chamado de erro volumétrico. Uma
vez calculado o erro, ele pode ser usado para fins de compensacgo.

O modelo matemético dos erros pode ser construido através das seguintes técnicas: Analise
Geométrica Estrutural; Analise Vetorial dos Caminhos de Medigio e a Analise Matricial através de

Transformagdes Homogéneas. A seguir apresenta-se uma ampla abordagem das Transformacdes
Homogeéneas.

2. TRANSFORMADAS HOMOGENEAS:

Foi em 1876 que F. REULEAUX aplicou pela primeira vez as técnicas de transformacdes
homogéneas nos problemas de cinematica, com a publicagio do trabalho “Kinematics of
Machinery” apresentou uma notago simbdlica para descrever o comportamento de mecanismos.

DENAVIT ¢ HARTEMBERG em 1955 desenvolveram uma notacio simbélica, hébil para
descrever completamente mecanismos de duas articulages. Esta notagiio forneceu uma analise
poderosa e confidvel baseada em matrizes algébricas. Apresentando o que é hoje conhecido como
teoria das Transformag¢des Homogéneas (TH).

Através desta técnica, € mediante o uso de matrizes de transformagio 4x4, é possivel representar
movimentos de translagdo, de rotaghio ou a combinagio desses dois, possibilitando estabelecer as
relagSes entre partes moéveis de um mecanismo e um sistema de coordenadas de referéncia.

Cada componente da maquina sofre rotacBes e translagdes com relagdo a um sistema de
coordenadas, ¢ cada um destes componentes pode ser representado por um sistema de coordenadas
intermediario. Desta forma, através de vetores e matrizes é desenvolvida uma sisteméatica que
generaliza a representacdo da posigdo e da orientagdo da sonda da maquina em relagdo ao sistema
de coordenadas de referéncia. A defini¢do do comportamento cinematico da maquina consiste na
determinac@o das matrizes de transformacfio homogénea dos diferentes sistemas de coordenadas,
com relagdo a um sistema de coordenadas.

HOCKEN et al (1977), modelaram atraves das matrizes de TH os erros angulares em maquinas
de medir.

DI GIACOMO et al. (1997), utilizando técnica de TH, modelaram MM3Cs com o objetivo de
determinar a influéncia dos termos de segunda ordem no erro volumétrice. Dois modelos foram
desenvolvidos, um deles incluindo os termos de segunda ordem e um outro desprezando-os. Como
resultado obteve-se que a inclusdo dos termos de segunda ordem nos modelos acarreta uma
diferenca menor que 1nm, mostrando que eles podem ser desprezados, desde que o valor esperado
dos erros volumétricos esteja na ordem do um. No futuro préximo os termos de segunda ordem nao
poderdo ser desprezados.

As TH é uma poderosa ferramenta matematica, com relativa facilidade de uso. Alguns conceitos
fundamentais para conhecimento das Transformagdes Homogéneas serdo explanados a seguir.

Primeiramente, deve ser entendido o que sdo as coordenadas homogéneas.

Um ponto Q pertencente a R” pode ser representado pelo vetor V de n coordenadas em relagio
a um sistema de coordenadas cartesianas de referéncia. Em coordenadas homogéneas, o mesmo
ponto € representado por um vetor que tem (n+1) coordenadas.

Seja entfio um ponto Q pertencente a um espago tridimensional representado pelo vetor,

= V=ai +bj +ck 1)

onde 1, j,k sdo os vetores unitdrios na diregdo dos eixos X, Y e Z respectivamente.




Em coordenadas homogeéneas pode se escrever o ponto Q como o vetor ¥ da seguinte forma:

v=fx y z wf 2)
onde: a=2 b= ¢ c=Z e wéchamado de fator de escala.
W w w

Entio pode-se observar que se w = 1 as coordenadas homogéneas sio exatamente iguais as
coordenadas cartesianas.

No caso, onde w = 0, temos a, b, ¢ tendendo a infinito, esses vetores sio usados para
representarem dire¢des ou dngulos.

RESHETOV & PORTMAN em 1988 dividiram a representacio tridimensional, para vetores de
4* ordem, em duas classes distintas, os autovetores e os ndo-autovetores. Os autovetores
representam um ponto no espacgo e sua 4* coordenada homogénea é ndo nula. E os nio-autovetores
sdo aquelas que representam diregdes ou Angulos e seu fator escala € nulo.

Em um espaco tridimensional as Transformac¢des Homogéneas sdo constituidas de matrizes 4x4.
Estas servem para representar matematicamente os 6 (seis) graus de liberdade de um corpo rigido.

Considerando dois sistemas de coordenadas S; e S;;.

le OZx O3x Px

T= Oly O2y O3y Py (3)
Oiz 021 032 Pz
0 0 1

onde O, O2, O3 descrevem orientacdo de um sistema de coordenadas S; com relagdo a outro

sistema de coordenadas Sy.;. E o vetor P descreve a posigio relativa da origem do sistema S; no
sistema S;_.

As trés primeiras colunas da matriz da Equagfo 3 sdo ndo—autovetores e a quarta coluna € um
autovetor.

No caso de matrizes de TH que representam movimentos de translagdo simples. Podemos
considerar dois sistemas de coordenadas, S; e S;i;. Suponha que o sistema S; tenha executado um
movimento de translagdo em X com relagio ao sistema S;;, Figura 1. Observe que os eixos
coordenados caminham paralelos, havendo uma alteragfo apenas quanto a origem do sistema.

A notagdo comumente utilizada nas TH é 'Tj que ¢ a matriz que descreve a posi¢do e a
orienta¢do do sistema j com relagdo ao sistema i.

A matriz de TH que descreve o movimento de translacio em X é dado pela equagéo 4.




A matriz de TH que descreve o movimento de translagiio em X é dado pela equacio 4.
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Figura 1 - Translag¢do de um sistema de coordenadas na direcdo de X

Suponha agora que o sistema Si tenha executado um movimento de translagio em Y com

relacdo ao sistema Si-1, Figura 2.

A matriz de TH que descreve o movimento de translagio em Y é dado por 5.
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Figura 2 - Translacfo de um sistema de coordenadas na dire¢éio de Y

Da mesma forma tem-se a equa¢io (6) que mostra a execugdo de um movimento de
transla¢io em Z do sisterna Si com relagio ao sisterna Si-1, mostrado na Figura 3.

Z;
Zi1h

Y;

o O = O

1
0
Yig 10
0

O == O O

(6)

= N O O

Figura 3 - Translagdo de um sistema de coordenadas na diregio de Z

A matriz de TH que descreve o movimento de translagfio em Z € dado pela Equagéo 6.




No caso de matrizes de TH que representam movimentos de rotagdo. Seja Si e Si-1 dois

sisternas de coordenadas e o o dngulo de rotagio em torno de X que transforma o sistema Si —1
no sistema Si.

i={+0J+0K
F=0l+cosaf +senak (7
k=0l -senef + cosak
1 0 0

0 cosa -—senc
Ro{ X, a)=
0 sena coso

0 0 0
Figura 4 - Rotagdo ¢ do sistema em torno do eixo X.

(8)

Lo o [ e Y o}

Assumindo 7, 7,k os vetores unitérios de dire¢o no sistema Si, 7,7, £ os vetores unitérios de
direcdo no sistema Si-1. Pode-se considerar que a origem do sistema Si-1 coincide com a origem
do sistema Si.

O sistema de equagdes 7 representa as novas dire¢Ges do sistema de coordenadas, ou scja, os
elementos de Si em termos de Si-1.

Entdo a matriz de transformacic homogénea (Equagio 8) que representa a rotagio
apresentada € dada pelas equagdes 7 agrupadas convenientemente, onde i, j, k sdo colocados na
transposta ¢ a quarta coluna representa a translagfo, que é zero devido a origem dos sistemas
coincidirem. A tltima linha de zeros e um, da a coluna o significado de rotagio ou de translagio,
zero: rotagdo e um: translacdo.

Agora seja Si e Si-1 dois sistemas de coordenadas e 3 o dngulo de rotacfo em torno de Y que
transforma o sistema Si 1 no sistema Si.

i=cos B +0J —sen BK
j=0I+J+0K )]
k =sen B +0J +cos BK

cosf 0 senf 0

|\ 6 1 6 0 (10)
Rot(¥. ) = -senfB 0 cosB O
Yi=Y;, 0o o0 0 1

Figura 5 - Rotacéo [ do sistema em torno do eixo Y.

Para rota¢do em torno de Z, considera-se dois sistemas de coordenadas Si e Si-1 e ¥ o dngulo
de que transforma o sistema Si—1 no sistema Si.
i=cosy +seny +0K

Jf=—seny +cosW +0K (11)
k=0 +0J+X
cosy —seny 0 0O ( )
_|seny cosy O 0 12
Rot(Z,7}= 0 0 {0
0 0 ¢ 1

Figura 6 - Rotacfo B do sistema em torno do eixo Z.




Com as matrizes descritas nas equacdes 4, 5 e 6 para translagio e 8, 10 e 12 para rotagdo, pode-se
representar os 6 graus de liberdade caracteristicos de um corpo rigido, ou seja, a cada elemento de uma
maquina pode-se associar um sistema de coordenadas, para descrever os movimentos destes elementos

e modelar o desempenho total da maquina.

3. AS TECNICAS DE TRANSFORMACOES HOMOGENEAS APLICADAS AS MM3CS

O equacionamento dos erros ¢ fruto de um modelo matemdtico elaborado exclusivamente para a
maquina considerada. O modelo matemaético da MM3C da marca Brown & Sharpe de propriedade da
USP-S@0 Carlos foi elaborado tomando-se por hipdtese que os elementos estruturais da maquina tem o
comportamento de corpo rigido e, como tal, atuam sobre cada um deles seis erros individuais, cada um
associado a um dos seis graus de liberdade de um corpo rigido (Paul, 1981).

Zﬁx1

T

Figura 7 - Representacio da MM3C tipo Ponte Mdvel com os sistemas de coordenadas

Alguns conceitos fundamentais serfio ainda explicados, antes de ser aplicado as MM3Cs.
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Figura 8 — a) Movimento de um carro transladando, b) movimento de um corpo rigido.



Na Figura 8a, pode-se observar dois sistemas de coordenadas, um sistema fixo a referéncia e outro
solidario ao carro. Durante uwm deslocamento ideal a matriz de transformaciio que relaciona os 2
sistemas de coordenadas ¢ dado pela equagio:

1 0 0 XO0l+x
01 0 Y01
R, = , (13)
0 0 1 Z01
0 0 ¢ 1

onde, X01, Y01 e Z01 sdo distincias fixas entre as origens dos sistemas de referéncia ¢ o sistema
solidario ao carro.

No entanto os carros das maquinas nio possuem movimentos perfeitos unidirecionais.

Para melhor entendimento, considere um carro de uma méquina como um corpo rigido, com a
possibilidade de movimento de translagfio em apenas uma dire¢do, como ilustra a Figura 8b. Observe
que o movimento de deslocamento ¢ realizado na dire¢io X. No entanto, a leitura na escala do eixo X
ndo indica o valor exato do deslocamento experimentado pelo carro. Este erro é denominado erro de
posicdo ou de escala e denota-se por 8x(x).

As translagbes nas outras diregdes e rotagles indesejaveis, que o carro experimenta sdo
denominados de erros de retilineidade e angulares, respectivamente. Qs erros de rotagio sdo
comumente conhecidos como pitch, yaw e roll conforme a dire¢do do deslocamento do carro, e
particularmente, para a ilustrac@o da Figura 9, sdo respectivamente denotados por £y(x), ez(x) e £x(x).

Frequentemente a sequéncia das rotagdes que ¢ utilizada para a construgio da matriz de
Transformagdo homogénea & roll, pitch e yaw. Especifica-se a ordem de rotagio como

RPY(ez, ey, €x) = Rot(z, €z). Rot(y, €y). Rot(x, €x). (14)

Através da multiplicagio mostrada na equagio 14 pode-se chegar a matriz resultante que descreve
qualquer erro angular (PAUL, 1981):

cos(g, )cos(e,) cos(e,)sen{€, )sen(e, ) -sen(g Yeos(E,) cos(e,)sen(e, )cos(e, ) +sen(e, ysen(e,)
sen(€, Jcos{g,) sen(g,)sen(€,}sen(e,)+cos(€, }cos(€,) sen(g,)sen(e,)cos(e, ) —cos(e, }sen(e, )
—sen(g,) cos(e, ysen(e, ) cos(e.)cos(g, )
0 0 0

(15)

Eror -

Lol = =R =]

Pode-se assumir que, para elementos méveis com um grau de liberdade para translagdo, os erros
angulares sdo muito pequenos com valores bem proximos do zero (o = §). Entfio € possivel utilizar a
seguinte aproximagcio, sen{0)=¢. e cos(o)=1. Portanto:

1 —-¢g € ©

E = £, I & 0 , (16)
" j-e, & 1 0
0 0 0 1

onde : €, € o erro rotacional infinitesimal em torno do eixo x, €, € o erro rotacional infinitesimal em

torno do eixo v, e €, € o erro rotacional infinitesimal em torno do eixo z.




A matriz de erro total € obtida através do produto matricial expresso em (17) e o resultado desta
operagdo € dado pela matriz (18).
Etota.l = Etrans ‘E

rot (17)
1 -¢ g &,
=& 1 &9 (18)
-£, £ 1 &,
0 0 0 1

E importante observar que esta matriz de transformacfo homogénea, Equacio 18, contém todos os
erros geoméiricos de carros de movimentagio em translagio de maquinas (Paul, 1981).

3.1. Caminho da Sonda

A posigio dos sistemas de coordenadas e os bragos fixos podem ser verificados na Erro! A
origem da referéncia nio foi encontrada.,

A matriz que representa o movimento do sistema de coordenadas 1 com relagio ao sistema ¢
pode ser escrito como:

1 -2 W 8.(»
o o| &O) 1 -2y 6,(N+7,
-, &»m 1 .(»n |, (19)
0 0 0 1

onde Y, ¢ a medida indicada no mostrador da MM3C.

Em relagdo ao sistema de coordenadas 2 com relagiio ao sistema 1 pode ser escrito abaixo, por
se tratar de uma translagfo pura entre os dois sistemas num mesmo corpo rigido no apresenta nenbum
erro.

100 0

7 010 0

=
001 2z, , (20)
0 00 1

onde Zsz,, é uma distincia fixa e € chamado de Brago de Abbé.

Porém ocorreu uma mudanga do eixo Y para o eixo X, o sistema 2 esta na parte do eixo X. Se
tratando de um instrumento mecinico ¢ que depende de ajustes, podem ocorrer possiveis erros de
ortogonalidade entre os sistemas 1 e 2. Neste caso, definisse uma matriz de ortogonalidade [Oxy] dada
por:

1 —-=0 0 0
0. = £0 1 ¢ 0
7o ¢c 10 , (21)
0 0 01
A matriz de transformacio entre os sistemas 2 e 3 esta descrita em (22).
I —EZ'(X) ‘ny(x) Xreg + &('x)
e | EX) I —ex(x) &)
5= —gp(x)  &x(x) 1 8z(x) 22
0 0 0 1

onde X, ¢ a medida indicada no mostrador da maquina.



Entre os sistemas 3 e 4 ha apenas uma translagio pura e possiveis erros de ortogonalidade, isto
deve-se ao sistema 4 estar sobre o eixo Z que desliza sobre mancais fixos no carro X. Neste caso serd

modelado o erro de ortogonalidade entre os eixos Z e X e Z e Y. A matriz de ortogonalidade serd dada
por:

1 0 &0 0
10 1 —&x0 0

g0 &0 1 0 ’ 23)
0 0 0 1

O sinal que ¢ negativo indica que a translagio ocorre no sentido contrario  dire¢io positiva do

eixo.
1 —ez) o)  &=2)
sy | &62) 1 —&x(z) H(2)-Y | (24)
Plree e@ 1 %(z)
0 0 0 1

A outra designada por [*Ts] modela o comprimento fixo do término do eixo Z até o centro da
esfera da sonda.

i1 00 0
|01 00
L=
001 -2, , (25)
¢ 00 1
onde Zsxn € 0 Brago de Abbé.

3.2. Caminho da peca

O vetor que representa o caminho da peca, sem erros, tem como componentes as translagdes
ideais e sdo observadas na matriz de transformagZo abaixo. Observe que nesta matriz nio estio
incluidos os erros de rotagio e também os erros de translagio.

1 00 X

reg
Yre - Yﬁxl

0
1 ZfoIHZﬁxl_Z
0 1

0T5 =

reg

0
0 ; (26)
0

onde: Xres, Yreg € Zreg 530 as leituras mostradas na maquina.

3.3. Matriz de Erro Final da Miquina

Com o correto emprego da técnica de modelamento pode-se determinar o ermmo de
posicionamento relativo entre a ponta da sonda e peca através da expressdo (27).

E= [Tsonda}-i X Tpecan 27
onde Tsonaa © Tpeqa representam respectivamente a posi¢do do ponto de trabalho da ponta da sonda e o
ponto ideal de contato na peca, isto tudo com relacdo ao sistema de referénceia.



O s1stema sonda com relag:ao ao sistema referéncia € dado pelo produto das matrizes: Teonga =
0T1 X T2 X Oxy x T3 X Oxyz X T4 € 0 sistema peca com relago ao sistema referéncia é dado por Toeea=
Ts

Realizando as operagdes indicadas nas equagdes obtém-se a matriz de erro sintetizado.

Considerando que a maquina analisada utiliza uma sonda de ponta tinica, pode-se tomar

apenas a ultima coluna da matriz encontrada como resultado. E o erro para cada diregfio vai ser dada
por:

Ev. = &(x)+8d))+8(2) HEO+ (¥, +90M(Z  +Z 0 )~ (28)
) Ly Zpe) =D (Zoeg~ L) VOV 4 Z e+ Z0)

By, =P+ @+ &2+ X, * @0+ () + Z,, *(e20~ ex(x) + ex(y) - &x(z))

(29)
Z e *(ex0 - ex(x) + x{y) —ex(2)) ~&x(¥) * Z
BV, =82(2)+ 82(x) + 82(5) — 9(30) ¥ X 1y —&2(2)* ¥ —£2(3) ¥ ¥ (30)
onde: da(a) = erro de posicao “a”; da(b) = erro de retilineidade do eixo “b” devido a0 movimento no

(] !5

eixo “a”; ea(b) =¥ erro angular em torno do eixo “a” devido a0 movimento no eixo “b”; ew0 =» erro de
ortogonahdade entre os eixos que pertencem ao plano perpendicular ao eixo “w”

4. CONCLUSOES

Foi feita uma vasta reviséo bibliografica sobre as Técnicas de Transformagdes Homogéneas e um
modelamento cineméatico para a Maquina de medir Brown & Sharpe modelo Ponte Movel foi realizado.

De acordo com o objetivo deste trabalho a conclusio mais relevante estd relacionada com a
utilizagdo da teoria das Transformagdes Homogéneas. Esta exige um trabalho computacional
relativamente grande, principalmente quando os termos de segunda ordem sfo considerados.

A metodologia proposta mostrou-se eficiente na anilise da estrutura da maguina.

Apesar de ndo ter sido mostrado outros métodos para que se proceda uma comparagdo entre
métodos, o resultado mostra-se coerente e dentro das estimativas realizadas.

A metodologia é aplicavel a todas as méaquinas complexas e, portanto, eventualmente pode ser
utilizada também na compara¢io de maquinas ferramentas.
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Coordinate measuring machine modelling using homogeneous transformation

Abstract: The metrological performance of a coordinate measuring machine is related to its capability
of measuring mechanical elements within the required or desired precision. CMMs, however, present
errors that are inherent to its structure and affect accuracy and repeatability during the measurement
process, producing what was conventionally labelled as volumetric errors. This error can be obtained
by means of machine calibration and mathematical modelling, which describes as the individual errors
of all the components. The utilization of rigid body kinematics with homogeneous transformation
matrix has become more popular in recent days. This research aims to determine the volumetric errors
components synthesization equations making use of the theory of homogeneous transformation. The
developed system was applied to a CMM. During the error analysis implementation, coordinate
systems were placed on strategically defined positions, as table to support the part to be measured,
moving bridge, moving arm and probe tip. Looking forward the completion of the proposed objective,
individual errors of a Brown & Sharp CMM were collected using an HP interferometric laser system.

Keywords: Coordinate measuring machine, volumetric ervors, Homogeneous transformation theory.





