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1. Introduction

Let M be a smooth closed three dimensional manifold and X be a C1+β vector field on 
M with β > 0 which is non-singular, i.e. Xp �= 0 for all p ∈M . We want to code a ``large'' 
subset of M with some non-uniform hyperbolicity for the flow ϕ = {ϕt}t∈R generated 
by X. This subset carries all ϕ--invariant hyperbolic ergodic probability measures with 
the following nonuniform hyperbolic property. Let χ > 0.

χ--hyperbolic measure: A ϕ--invariant probability measure μ on M is χ--hyperbolic if 
μ--a.e. point has one Lyapunov exponent > χ and one Lyapunov exponent < −χ. The 
Lyapunov exponent along the flow, which always vanishes, is called trivial.

This defines a rather natural, large, and uncountable class of measures. For instance, 
by the Ruelle inequality, every ϕ--invariant ergodic probability measure with metric en
tropy larger than χ is χ--hyperbolic. Also, every ϕ--invariant probability measure defined 
by a closed orbit of saddle type with nontrivial Lyapunov exponents larger than χ in 
absolute value is χ--hyperbolic. In this paper, for each χ > 0 we construct a symbolic 
system which lifts all χ--hyperbolic measures.

Main Theorem. Let X be a non-singular C1+β vector field (β > 0) on a closed 3--manifold 
M . Given χ > 0, there exist a locally compact topological Markov flow (Σr, σr) and a 
map πr : Σr →M such that πr ◦ σt

r = ϕt ◦ πr, for all t ∈ R, and satisfying:

(1) The roof function r and the projection πr are Hölder continuous.
(2) πr[Σ#

r ] has full measure for every χ--hyperbolic measure on M .
(3) πr is finite-to-one on Σ#

r , i.e. Card({z ∈ Σ#
r : πr(z) = x}) <∞, for all x ∈ πr[Σ#

r ].

A more precise version of the Main Theorem is stated in Section 9.1, see Theorem 9.1.
A topological Markov flow is the unit speed vertical flow on a suspension space whose 

basis is a topological Markov shift and whose roof function is continuous, everywhere 
positive and uniformly bounded. We can endow (Σr, σr) with a natural metric, called 
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the Bowen-Walters metric, that makes σr a continuous flow. It is with respect to this 
metric that πr is Hölder continuous. The set Σ#

r is the regular set of (Σr, σr), consisting 
of all elements of Σr for which the symbolic coordinate has a symbol repeating infinitely 
often in the future and a symbol repeating infinitely often in the past. See Section 1.2
for the definitions.

The Main Theorem provides a single symbolic extension that codes all χ--hyperbolic 
measures at the same time, and that is finite-to-one almost everywhere. This improves 
on the result by Lima & Sarig [28], whose codings depend on the choice of a measure 
(or a countable class of measures). We will mention later the importance of this novelty.

In applications, it is useful to work with irreducible Markov shifts since, among other 
properties, they are topologically transitive and they carry at most one measure of max
imal entropy (see Section 1.2.1). This is related to the notion of homoclinically related 
measures and of homoclinic classes of measures, defined in Section 10. In this context, 
we prove the following theorem.

Theorem 1.1. In the setting of the Main Theorem, let μ be a hyperbolic ergodic mea
sure. Then Σr contains an irreducible component Σ′

r which lifts any χ--hyperbolic ergodic 
measure ν homoclinically related to μ.

This implies the following local uniqueness result for measures of maximal entropy.

Corollary 1.2. In the setting of the Main Theorem, let μ be a hyperbolic ergodic measure. 
Then there is at most one measure ν which is homoclinically related to μ and maximizes 
the entropy, i.e. satisfies h(ϕ, ν) = sup{h(ϕ, ρ) : ρ is homoclinically related to μ}.

Results about uniqueness of the measure of maximal entropy for flows have been 
obtained previously under various settings, see for instance [8,24,20,11,21,18,19,31].

The field of symbolic dynamics has been extremely successful in analyzing systems 
displaying hyperbolic behavior. Its modern history includes (but is not restricted to) the 
construction of Markov partitions in various uniformly and non-uniformly hyperbolic 
settings:

◦ Adler & Weiss for two dimensional hyperbolic toral automorphisms [1].
◦ Sinăı for Anosov diffeomorphisms [37].
◦ Ratner for Anosov flows [34,33].
◦ Bowen for Axiom A diffeomorphisms [6,4] and Axiom A flows without fixed points [7].
◦ Katok for sets approximating hyperbolic measures of diffeomorphisms [23].
◦ Hofbauer [22] and Buzzi [13,14] for piecewise maps on the interval and beyond.
◦ Sarig for surface diffeomorphisms [36].
◦ Lima & Matheus for two dimensional non-uniformly hyperbolic billiards [27].
◦ Ben Ovadia for diffeomorphisms in any dimension [3].
◦ Lima & Sarig for three dimensional flows without fixed points [28].
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◦ Lima for one-dimensional maps [29].
◦ Araujo, Lima, Poletti for non-invertible maps with singularities in any dimension [2].

In the first four settings above, that dealt with uniformly hyperbolic systems, the coding 
is surjective and one-to-one in a large (Baire generic) set. Katok was the first to treat non
uniformly hyperbolic systems [23]. When applied to surface diffeomorphisms, it implies 
the existence of horseshoes of large (but not necessarily full) topological entropy. Sarig 
was the first to construct non-uniformly hyperbolic horseshoes of full topological entropy 
[36]. His work improved Katok’s to a great extent, proving that for each χ > 0 there is 
a symbolic coding with good properties, among them the finiteness-to-one property in 
the regular set Σ# (see Section 1.2.1 for the definition of Σ#). It codes all χ--hyperbolic 
measures simultaneously, and it implies many dynamical consequences such as estimates 
on the number of closed orbits [36], an at most countable set of ergodic measures of 
maximal entropy [36], ergodic properties of equilibrium measures [35], and the almost 
Borel structure of surface diffeomorphisms [10]. In recent years, more advances are being 
obtained, such as the coding of homoclinic classes of measures by irreducible Markov 
shifts and finiteness/uniqueness of measures of maximal entropy [17], and continuity 
properties of Lyapunov exponents [16].

The work of Lima & Sarig was the first to construct, for three dimensional flows, horse
shoes of full topological entropy [28]. It is not as strong as Sarig’s, since it only codes 
one χ--hyperbolic measure at a time (actually, by an easy adaptation in the proof, it 
codes countably many such measures). It implies some dynamical consequences, such as 
estimates on the number of closed orbits [28], the countability on the number of measures 
of maximal entropy [28], and ergodic properties of equilibrium measures [26]. Unfortu
nately, their techniques do not seem to extend to, say, the coding of all χ-hyperbolic 
measures as in the case of diffeomorphisms.

Our Main Theorem identifies a subset of points in M with non-uniform hyperbolicity 
at least χ possessing local product structure, and constructs a finite-to-one extension of 
this set by a locally compact topological Markov flow. This set carries all χ--hyperbolic 
measures. As an application, we code homoclinic classes of measures by irreducible 
Markov flows.

1.1. Method of proof

We build on the seminal work of Sarig [36] and its extension to flows by Lima & Sarig 
[28]. Lima & Sarig study a flow by considering the Poincaré return map to a section. 
This yields a surface map to which they apply a version of Sarig’s result. The Poincaré 
map has singularities, which are controlled at the price of choosing the section in a way 
that almost all orbits slowly approach the boundary of the section. Here is where their 
construction becomes specific to a single measure. It is still unknown whether there is 
a global Poincaré section such that this latter property holds for every χ--hyperbolic 
measure. We call the presence of boundary the boundary effect.
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Additionally to the work of Sarig [36] and Lima & Sarig [28], we are also inspired 
by the remarkable work of Bowen [7]. Bowen’s idea to construct Markov partitions for 
flows is to replace the Poincaré map by good returns (suitable holonomy maps), which 
are smooth by construction: the artificial singularities of [28] have disappeared. In this 
way, we proceed as follows:

(1) Construct two global Poincaré sections Λ, Λ̂ such that Λ ⊂ Λ̂. We use Λ as the 
reference section for our construction, and Λ̂ as a security section.

(2) Let f : Λ → Λ be the Poincaré return map of Λ (note: f is not the Poincaré 
return map of Λ̂). If μ is χ--hyperbolic and ν is the measure induced on Λ, then 
ν--almost every x ∈ Λ has a Pesin chart Ψx : [−Q(x), Q(x)]2 → Λ̂ whose size satisfies 
lim 1 

n logQ(fn(x)) = 0. Note that the center of the chart is in Λ, while the image is 
on the security section Λ̂. Local changes of coordinates by linear maps of norm Q−1

allow to conjugate f to a uniformly hyperbolic map.
(3) Introduce ε--double charts Ψps,pu

x , which are versions of Pesin charts that control 
separately the local stable and local unstable hyperbolicity at x (the parameters 
ps/pu can be seen as choices of sizes of the local stable/unstable manifolds). Define 
the transition between ε--double charts so that the parameters ps, pu are almost 
maximal, given the previous and next charts.

(4) Construct a countable collection A of ε--double charts that are dense in the space 
of all ε--double charts. The notion of denseness is defined in terms of finitely many 
parameters of the ε--double charts. Using pseudo-orbits, shadowing and the graph 
transform method, the collection A defines a Markov cover Z . Unfortunately, Z
defines a symbolic coding that is usually infinite-to-one. Fortunately, Z is locally 
finite.

(5) Z satisfies a Markov property: for every x ∈
⋃

Z∈Z Z there is k > 0 such that 
fk(x) satisfies a Markov property in the stable direction and 
 > 0 such that f−�(x)
satisfies a Markov property in the unstable direction. The values of k, 
 are uniformly 
bounded.

(6) The local finiteness of Z and the uniform bounds on k, 
 allow to apply a refinement 
method to obtain a countable Markov partition, which defines a topological Markov 
flow (Σr, σr) and a map πr : Σr →M satisfying the Main Theorem.

In analogy with Bowen [7], in our case a good return of the center of a chart is a return 
to Λ. The ideas of [7] are also used in steps (5) and (6).

We use the same method of [36] to obtain step (2). Steps (3) and (4) use ideas 
of [36,28], but they require novel ideas. The main difficulty is the following: there is 
no canonical way to parse a flow orbit into good returns, hence a single orbit might 
be cut into different ways. We call this the parsing problem. It relates to the inverse 
problem, whose goal is to prove that the parameters of the ε--double charts coding an 
orbit are defined ``up to bounded error''. Firstly, since the flow transition times of good 
returns might belong to a continuum (hence uncountable), our definition of a transition 
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between ε--double charts requires inequalities between the parameters ps, pu, see relations 
(4.1) and (4.2). This contrasts with all previous recent literature, whose definitions of 
transition require equalities. Secondly, we compare the parameters of an orbit directly 
with the parameters of the ε--double charts coding it. To do that, we introduce analogues 
of the parameters ps, pu for points of M . Indeed, we introduce continuous and discrete 
versions of such parameters, see Sections 3.3 and 3.5. The continuous version is intrinsic 
and only depends on the flow, while the discrete depends on the parsing. The discrete 
one can more easily be compared with the parameters of the ε--double charts. These new 
parameters, already used in [27] in a non-essential way, are essential to us.

The definition of transition between ε--double charts introduces new difficulties. Since 
equalities between the parameters no longer hold, a single orbit can be shadowed by 
two different sequences of ε--double charts, and the accumulated transition times of the 
two sequences might differ. To investigate this difference, which we call shear, we first 
show that parameters at hyperbolic times are defined ``up to bounded error'', and then 
prove that between two hyperbolic times the shear is uniformly bounded, regardless the 
number of hits to Λ̂ and Λ, see Section 6.3.

Another difficulty we encounter related to Step (4) above is the coarse graining, which 
consists on selecting a countable collection A of ε--double charts that are dense in the 
space of all ε--double charts and such that the pseudo-orbits they generate shadow all 
relevant orbits. This also relates to the definition of transition between ε--double charts, 
that has to be loose enough to code all relevant orbits and tight enough to impose that 
charts parameters are defined ``up to bounded error''. To guarantee that the definition is 
loose enough, the countable collection we consider is much larger than those constructed 
in the recent literature. Yet, proving that this family is sufficient also requires an analysis 
at hyperbolic times, where parameters are essentially uniquely defined. We can then 
define parameters between successive hyperbolic times. See Section 5.

1.2. Preliminaries

1.2.1. Symbolic dynamics
Let G = (V,E) be an oriented graph, where V,E are the vertex and edge sets. We 

denote edges by v → w, and assume that V is countable.

Topological Markov shift (TMS): It is a pair (Σ, σ) where

Σ := {Z--indexed paths on G } =
{
v = {vn}n∈Z ∈ V Z : vn → vn+1,∀n ∈ Z

}
is the symbolic space and σ : Σ→ Σ, [σ(v)]n = vn+1, is the left shift. We endow Σ with 
the distance d(v, w) := exp[− inf{|n| ∈ Z : vn �= wn}]. The regular set of Σ is

Σ# :=
{
v ∈ Σ : ∃v, w ∈ V s.t. vn = v for infinitely many n > 0

vn = w for infinitely many n < 0

}
.
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We only consider TMS that are locally compact, i.e. for all v ∈ V the number of 
ingoing edges u→ v and outgoing edges v → w is finite.

Given (Σ, σ) a TMS, let r : Σ → (0,+∞) be a continuous function. For n ≥ 0, let 
rn = r + r ◦ σ + · · · + r ◦ σn−1 be n--th Birkhoff sum of r, and extend this definition 
for n < 0 in the unique way such that the cocycle identity holds: rm+n = rm + rn ◦ σm, 
∀m,n ∈ Z.

Topological Markov flow (TMF): The TMF defined by (Σ, σ) and the roof func
tion r is the pair (Σr, σr) where Σr := {(v, t) : v ∈ Σ, 0 ≤ t < r(v)} and σr : Σr → Σr is 
the flow on Σr given by σt

r(v, t′) = (σn(v), t′ + t− rn(v)), where n is the unique integer 
such that rn(v) ≤ t′ + t < rn+1(v). We endow Σr with a natural metric dr(·, ·), called 
the Bowen-Walters metric, such that σr is a continuous flow [5,28]. The regular set of 
(Σr, σr) is Σ#

r = {(v, t) ∈ Σr : v ∈ Σ#}.

In other words, σr is the unit speed vertical flow on Σr with the identification 
(v, r(v)) ∼ (σ(v), 0). The roof functions we will consider will be Hölder continuous. 
In this case, there exist κ,C > 0 such that dr(σt

r(z), σt
r(z′)) ≤ Cdr(z, z′)κ for all |t| ≤ 1

and z, z′ ∈ Σr, see [28, Lemma 5.8].

Irreducible component: If Σ is a countable Markov shift defined by an oriented graph 
G = (V,E), its irreducible components are the subshifts Σ′ ⊂ Σ over maximal subsets 
V ′ ⊂ V satisfying the following condition:

∀v, w ∈ V ′, ∃v ∈ Σ and n ≥ 1 such that v0 = v and vn = w.

An irreducible component Σ′
r of a suspended shift Σr is a set of elements (v, t) ∈ Σr

with v in an irreducible component Σ′ of Σ.

1.2.2. Notations
For a, b, ε > 0, we write a = e±εb when e−ε ≤ a

b ≤ eε. We also write a∧b := min(a, b). 
We write �An to represent the disjoint union of sets An.

The Frobenius norm of a 2 × 2 matrix is 
∥∥[ a b

c d

]∥∥
Frob :=

√
a2 + b2 + c2 + d2. It is 

equivalent to the sup norm ‖ · ‖, since ‖ · ‖ ≤ ‖ · ‖Frob ≤
√

2‖ · ‖. The co-norm of an 
invertible matrix A is denoted by m(A) = ‖A−1‖−1. We write u � v if lim u/v = 1.

1.2.3. Metrics
If M is a smooth Riemannian manifold, we denote by dM the distance induced by 

the Riemannian metric. The Riemannian metric induces a Riemannian metric dSas(·, ·)
on TM , called the Sasaki metric, see e.g. [12, §2]. For nearby small vectors, the Sasaki 
metric is almost a product metric in the following sense. Given a geodesic γ in M joining 
y to x, let Pγ : TyM → TxM be the parallel transport along γ. If v ∈ TxM , w ∈ TyM

then dSas(v, w) � d(x, y) + ‖v − Pγw‖ as dSas(v, w)→ 0, see e.g. [12, Appendix A]. The 
rate of convergence depends on the curvature tensor of the metric on M .
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Given an open set U ⊂ Rn and h : U → Rm, let ‖h‖C0 := supx∈U ‖h(x)‖ denote the 
C0 norm of h. For 0 < β ≤ 1, let Hölβ(h) := sup ‖h(x)−h(y)‖

‖x−y‖β where the supremum ranges 
over distinct elements x, y ∈ U . Note that Höl1(h) is a Lipschitz constant of h, that we 
will also denote by Lip(h). If h is differentiable, let ‖h‖C1 := ‖h‖C0 + ‖dh‖C0 denote its 
C1 norm, and ‖h‖C1+β := ‖h‖C1 + Hölβ(dh) its C1+β norm.

For any x, y close to some point z in a Riemannian manifold M , the parallel transport 
along the shortest geodesic between x and y induces a linear map Px,y : TxM → TyM . 
To any linear map A : TxM → TyM , one associates a map Ã := Py,z ◦ A ◦ Pz,x. By 
definition, Ã depends on z but different basepoints z define a map that differs from Ã
by pre and post composition with isometries. In particular, ‖Ã‖ does not depend on 
the choice of z. With this notation, a map f : U ⊂ M → M is C1+β if it is C1 and 
∃C > 0 such that ‖d̃fx − d̃fy‖ ≤ Cd(x, y)β for all nearby x, y ∈ U . In this case, define 

Hölβ(df) := sup ‖d̃fx−d̃fy‖
d(x,y)β where the supremum ranges over distinct nearby elements 

x, y ∈ U .

1.3. Standing assumptions

Let M be a three dimensional closed smooth Riemannian manifold, and let X : M →
TM be a C1+β vector field such that X(x) �= 0, ∀x ∈ M , and let ϕ = (ϕt)t∈R be the 
flow generated by X. We will denote the value of the vector field X at x by either Xx

or X(x). Given a set Y ⊂M and an interval I ⊂ R, write ϕI(Y ) :=
⋃

t∈I ϕ
t(Y ).

Since obtaining a coding for the flow generated by X is equivalent to obtaining a 
coding for the flow generated by cX for some c > 0, we assume from now on that 
‖∇X‖0 ≤ 1 (just change X to cX for c > 0 small enough).1 This assumption avoids the 
introduction of some multiplicative constants. For instance, since an application of the 
Grönwall inequality implies that ‖dϕt‖ ≤ e‖∇X‖0|t| for all t ∈ R (see e.g. [25]), we will 
simply write that ‖dϕt‖ ≤ e|t|, ∀t ∈ R. Another consequence is that every Lyapunov 
exponent of ϕ has absolute value at most 1, hence we can take χ ∈ (0, 1) in the definition 
of χ-hyperbolicity.

2. Poincaré sections

In this section, we:

(1) Construct two sections Λ, Λ̂ with good geometrical properties such that Λ ⊂ Λ̂, 
d(Λ, ∂Λ̂) > 0, and the orbit under ϕ of every point of M hits Λ after some time 
ρ� 1. The section Λ induces a Poincaré return map f and a return time r. We call 
Λ the reference section and Λ̂ the security section.

1 The notation ∇X represents the covariant differential, i.e. for each x ∈ M we have a linear map ∇X(x) :
TxM → TxM defined by [∇X(x)](Y ) = ∇Y X.
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(2) Introduce the induced linear Poincaré flow Φ, which is a flow that describes the local 
behavior of ϕ in the complementary direction to X.

(3) Introduce the holonomy maps g+
x , g−x for each x ∈ Λ, which are local and continuous 

versions of Poincaré return maps. It is for these maps that we will construct suitable 
systems of coordinates in Section 3.

2.1. Transverse discs and flow boxes

Let ρ > 0.

ρ--transverse disc: An open disc D ⊂M is ρ--transverse if:

◦ D is compactly contained in a C∞ disc of M .
◦ diam(D) < 4ρ.
◦ For every x ∈ D, ∠(X(x), TxD

⊥) < ρ.

In other words, a ρ--transverse disc is a small disc that is almost orthogonal to X. It 
is easy to build ρ--transverse discs. For instance, we know by the tubular neighborhood 
theorem that ϕ can be conjugated in local charts to the flow (x, t0) ∈ R2×R �→ (x, t0 +
t). If ρ′ is small enough, then the image of B(0, ρ′) × {t0} under the local chart is a 
ρ--transverse disc.

Flow box: Every ρ--transverse disc D defines a flow box ϕ[−4ρ,4ρ]D.

The assumption that X does not vanish implies that for all ρ > 0 small enough, the 
map ΓD : (y, t) ∈ D×[−4ρ, 4ρ] �→ ϕt(y) is a diffeomorphism onto the flow box ϕ[−4ρ,4ρ]D. 
We denote its inverse by x ∈ ϕ[−4ρ,4ρ]D �→ (qD(x), tD(x)), where qD : ϕ[−4ρ,4ρ]D → D

and tD : ϕ[−4ρ,4ρ]D → [−4ρ, 4ρ].

Lemma 2.1. There is a ρ0 = ρ0(M,X) > 0 such that for every ρ0--transverse discs D,D′:

(1) The maps qD, tD are C1+β.
(2) The map qD has a Lipchitz constant smaller than 2.
(3) If D′ intersects the flow box ϕ[−4ρ0,4ρ0]D, then the restriction to D′ of the map tD

has a Lipschitz constant smaller than 1.

Proof. By the implicit function theorem, for any ρ--transverse disc D the chart 
ΓD : (x, t) ∈ D × [−4ρ, 4ρ] �→ ϕt(x) is C1+β , hence the inverse maps qD, tD are also 
C1+β . This proves part (1).

Let us consider the foliation of R3 whose leaves are the verticals {(x, y)} × R, and 
let Δ be a section whose tangent spaces TxΔ define angles with the horizontal planes 
smaller than γ > 0. Then the holonomy along the vertical lines define a projection to Δ
which is (1/ cos γ)--Lipschitz.
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Given e > 0 arbitrarily small, there exists a covering of M by finitely many charts 
Θ : (−a, a)3 → M which are (1 + e)-biLipschitz and such that the lifted vector field 
X̂ := Θ∗X is tangent to the vertical lines. Choosing e and then ρ0 > 0 small enough, 
for any ρ0--transverse disc D, the set ϕ[−4ρ,4ρ](D) is contained in the image of a chart 
Θ; moreover Θ−1(Δ) is a disc whose tangent spaces define angles with the horizontal 
planes smaller than γ > 0. The projection qD to D is conjugated by Θ to the projection 
by holonomy along vertical lines to the set Θ−1(Δ). Consequently, the map qD is (1 +
e)2/ cos γ--Lipschitz, which can be chosen arbitrarily close to 1 if e, γ, and hence ρ0, are 
small enough. This proves part (2).

Now consider two ρ0--transverse discs D,D′ such that D′ intersects ϕ[−4ρ0,4ρ0]D. Since 
ρ0 is chosen small, both D,D′ are contained in the image of a same chart Θ. As before, 
let X̂ := Θ∗X be the vector field X lifted in the chart. The discs Θ−1(D′),Θ−1(D)
are graphs {(x, y, ϕi(x, y))} over the horizontal hyperplane of C1+β maps ϕ1 and ϕ2
respectively. For z = Θ(x, y, ϕ1(x, y)) ∈ D′ which intersects the flow box ϕ[−4ρ0,4ρ0]D, 
the projection time to D can be computed in the chart as:

tD(z) =
ϕ2(x,y)∫

ϕ1(x,y)

1 
‖X̂(x,y,t)‖

dt.

The C1--norm of 1 
‖X̂‖ is bounded, independently from the charts Θ. Taking ρ0 small, the 

derivatives Dϕi and the differences ϕ2(x, y)−ϕ1(x, y) are close to 0. Hence the derivative 
of the map z �→ tD(z) for z ∈ D′ is close to 0, proving part (3). □

2.2. Proper sections and Poincaré return maps

We begin with some definitions.

Proper section: A proper section of size ρ is a finite union Λ =
⋃n

i=1 Di of ρ--transverse 
discs D1, . . . , Dn such that:

(1) Cover: M =
⋃n

i=1 ϕ
[0,ρ)Di.

(2) Partial order: For all i �= j, at least one of the sets Di∩ϕ[0,4ρ]Dj or Dj∩ϕ[0,4ρ]Di

is empty; in particular Di ∩Dj = ∅.

Define the return time function rΛ : Λ→ (0, ρ) by rΛ(x) := inf{t > 0 : ϕt(x) ∈ Λ}.

Poincaré return map: The Poincaré return map of a proper section Λ is the map 
fΛ : Λ→ Λ defined by fΛ(x) := ϕrΛ(x)(x).

In the following, we fix ρ < min{0.25, ρ0} small and consider two proper sections Λ, Λ̂
of size ρ/2 such that Λ ⊂ Λ̂ and dM (Λ, ∂Λ̂) > 0. We let d = dΛ̂ be the metric on Λ̂
defined by the induced Riemannian metric on Λ̂. For x ∈ Λ̂ and r > 0, we write:
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◦ B(x, r) ⊂ Λ̂ for the ball in the distance d with center x and radius r;
◦ Bx[r] ⊂ TxΛ̂ for the ball with center 0 and radius r;
◦ R[r] := [−r, r]2 ⊂ R2.

Since the associated flow boxes are C1+β, there exists L > 0 such that for any transverse 
disc Di defining the section Λ, the maps qDi

, tDi
satisfy:

Hölβ(dqDi
) < L and Hölβ(dtDi

) < L.

2.3. Exponential maps

Given x ∈ Λ̂, let inj(x) denote the injectivity radius of Λ̂ at x, and let expx be the 
exponential map of Λ̂ at x, wherever it can be defined. Below we list the properties of 
expx that we will use.

Regularity of expx: There is r ∈ (0, ρ) such that for every x ∈ Λ the following 
properties hold on the ball Bx := B(x, 2r) ⊂ Λ̂:

(Exp1) If y ∈ Bx then inj(y) ≥ 2r, the map exp−1
y : Bx → TyΛ̂ is a diffeomorphism onto 

its image, and for all v ∈ TxΛ̂, w ∈ TyΛ̂ with ‖v‖, ‖w‖ ≤ 2r it holds

1
2 (d(x, y) + ‖v − Py,xw‖) ≤ dSas(v, w) ≤ 2(d(x, y) + ‖v − Py,xw‖),

where Py,x is the parallel transport along the geodesic joining y to x.
(Exp2) If y1, y2 ∈ Bx then d(expy1

v1, expy2
v2) ≤ 2dSas(v1, v2) for ‖v1‖, ‖v2‖ ≤ 2r, 

and dSas(exp−1
y1

z1, exp−1
y2

z2) ≤ 2[d(y1, y2) + d(z1, z2)] for z1, z2 ∈ Bx whenever 
the expression makes sense. In particular, ‖d(expx)v‖ ≤ 2 for ‖v‖ ≤ 2r and 
‖d(exp−1

x )y‖ ≤ 2 for y ∈ Bx.

Conditions (Exp1)--(Exp2) say that the exponential maps and their inverses are well
defined and have Lipschitz constants bounded by 2 in balls of radius 2r. The existence 
of r follows from compactness, since dM (Λ, ∂Λ̂) > 0 and d(expx)0 is the identity map.

The next two assumptions describe the regularity of dexpx. For x, x′ ∈ Λ̂, let Lx,x′ :=
{A : TxΛ̂→ Tx′Λ̂ : A is linear} and Lx := Lx,x. In particular, Py,x considered in (Exp1) 
is in Ly,x. Given y ∈ Bx, z ∈ Bx′ and A ∈ Ly,z, let Ã ∈ Lx,x′ , Ã := Pz,x′ ◦ A ◦ Px,y. 
The norm ‖Ã‖ does not depend on the choice of x, x′. If Ai ∈ Lyi,zi then ‖Ã1 − Ã2‖
does depend on the choice of x, x′, but if we change the basepoints x, x′ to w,w′ then 
the respective differences differ by precompositions and postocompositions with norm of 
the order of the areas of the geodesic triangles formed by x,w, yi and by x′, w′, zi, which 
will be negligible to our estimates. For x ∈ Λ, define the map τ = τx : Bx × Bx → Lx

by τ(y, z) = ˜︂d(exp−1
y )z, where we use the identification Tv(TyΛ̂) ∼ = TyΛ̂ for all v ∈ TyΛ̂.

Regularity of dexpx: There is K > 1 such that for all x ∈ Λ the following holds:
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(Exp3) If y1, y2 ∈ Bx then ‖ ˜︂d(expy1
)v1− ˜︂d(expy2

)v2‖ ≤ KdSas(v1, v2), for all ‖v1‖, ‖v2‖ ≤
2r, and ‖τ(y1, z1)− τ(y2, z2)‖ ≤ K[d(y1, y2) + d(z1, z2)] for all z1, z2 ∈ Bx.

(Exp4) If y1, y2 ∈ Bx then the map τ(y1, ·)− τ(y2, ·) : Bx → Lx has Lipschitz constant 
≤ Kd(y1, y2).

Condition (Exp3) controls the Lipschitz constants of the derivatives of expx, and 
(Exp4) controls the Lipschitz constants of their second derivatives. The existence of K is 
guaranteed whenever the curvature tensor of Λ̂ is uniformly bounded, and this happens 
because Λ̂ is the restriction to a compact subset of a finite union of ρ--transverse (open) 
discs.

2.4. Induced linear Poincaré flows

Classically, the linear Poincaré flow is the R--cocycle induced by dϕ in the bundle 
orthogonal to X. In this paper we employ a different definition: we fix a 1--form θ and 
consider parallel projections to X onto the bundle Ker(θ). We begin choosing a suitable 
1--form.

Lemma 2.2. If Λ̂ is a proper section of size ρ/2, there exists a 1--form θ on M such that:

(1) θ(X(x)) = 1 and ∠(X(x),Ker(θx)⊥) < ρ, ∀x ∈M .
(2) Ker(θx) = TxΛ̂, ∀x ∈ Λ̂.

Proof. Take η(v) = 〈v,X(x)〉
‖X(x)‖2 for v ∈ TxM . Clearly η is a 1--form on M satisfying (1) 

above. Let U be a small neighborhood of Λ̂. By the tubular neighborhood theorem, 
there exists a 1--form ζ on U such that ζ(X(x)) = 1 and ∠(X(x),Ker(ζx)⊥) < ρ for all 
x ∈ U , and Ker(ζx) = TxΛ̂ for all x ∈ Λ̂. Let V be a neighborhood of Λ̂ with Λ̂ ⊂ V ⊂ U , 
and take a bump function h : M → [0, 1] such that h ↾V≡ 0 and h ↾M\U≡ 1. The 1--form 
θ := hη + (1− h)ζ satisfies the following:

◦ θ(X(x)) = 1, ∀x ∈M : clear, since η(X(x)) = ζ(X(x)) = 1.
◦ ∠(X(x),Ker(θx)⊥) < ρ, ∀x ∈ M : to see this, write ηx( · ) = 〈 · , vx〉 and ζx( · ) =
〈 · , wx〉, where vx = X(x) 

‖X(x)‖ and ∠(X(x), wx) < ρ. Since Ker(θx)⊥ is generated 

by the linear combination h(x)vx + (1 − h(x))wx, we have ∠(X(x),Ker(θx)⊥) ≤
∠(X(x), wx) < ρ.
◦ Ker(θx) = TxΛ̂, ∀x ∈ Λ̂: since h(x) = 0, we have Ker(θx) = Ker(ζx) = TxΛ̂.

The proof is complete. □

From now on, we fix a 1--form θ satisfying Lemma 2.2. Introduce the two dimensional 
bundle
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N := �
x∈M

Ker(θx).

For each x ∈ M , let px : TxM → Nx be the projection to Nx parallel to X(x). By 
Lemma 2.2(1), for all x ∈M we have:

‖px‖ = 1 
cos∠(X(x),Ker(θx)⊥) < 1 

cos ρ < 1 + ρ.

Induced linear Poincaré flow: The linear Poincaré flow of ϕ induced by θ is the 
flow Φ = {Φt}t∈R : N → N defined by Φt(v) = pϕt(x)[dϕt

x(v)] for v ∈ Nx.

When the context is clear, we will omit the subscripts x and ϕt(x). Clearly Φ is Hölder 
continuous, and ‖Φt

x‖ ≤ ‖pϕt(x)‖‖dϕt
x‖ ≤ (1 + ρ)e|t| < eρ+|t|, ∀t ∈ R. In particular:

‖Φt‖ = e±4ρ, ∀|t| ≤ 2ρ. (2.1)

Lemma 2.3. The following hold.

(1) Φ is a flow: Φt+t′ = Φt ◦ Φt′ , ∀t, t′ ∈ R.
(2) If D ⊂ Λ̂ is a transverse disc, then for all x ∈ D it holds d(qD)x = px.

Proof. (1) If v ∈ Nx and t, t′ ∈ R, then there is γ ∈ R such that

Φt′(Φt(v)) = Φt′(pϕt(x)[dϕt
x(v)]) = Φt′(dϕt

x(v) + γX(ϕt(x)))

= pϕt′+t(x)[dϕ
t′

ϕt(x)(dϕt
x(v) + γX(ϕt(x)))] = pϕt′+t(x)[dϕ

t′+t
x (v) + γX(ϕt′+t(x))]

= pϕt′+t(x)[dϕ
t′+t
x (v)] = Φt′+t(v).

(2) Fix x ∈ D ⊂ Λ̂. It is enough to show that d(qD)x[X(x)] = 0 and d(qD)x[v] = v for 
all v ∈ Nx. We have d(qD)x[X(x)] = d 

dt

∣∣
t=0[qD(ϕt(x))] = 0 because qD(ϕt(x)) = x for 

small t. Now, since Nx = TxΛ̂ and qD ↾Λ̂ is the identity, d(qD)x[v] = v for all v ∈ Nx. □

2.5. Holonomy maps

We have fixed Λ, Λ̂, two proper sections of size ρ/2. From now on, write f := fΛ. The 
maps f, rΛ admit discontinuities, hence we introduce a related family of local diffeomor
phisms. Recall that r > 0 is a fixed small parameter, and that Bx := B(x, 2r). Write 
Λ̂ =

⋃n

i=1 Di as the disjoint union of ρ--transverse discs Di, and let qDi
as before. By 

Lemma 2.1, Lip(qDi
) < 2.

Assume that x, ϕt(x) ∈ Λ for some |t| ≤ ρ, with x ∈ Di and ϕt(x) ∈ Dj . In this case, 
the restrictions qDj

↾Bx
and qDi

↾Bϕt(x)
are diffeomorphisms onto their images, and one 

is the inverse of the other when the compositions makes sense. When this happens, we 
call these restrictions holonomy maps.
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Fig. 1. The holonomy map g+
x : it may differ from f and fΛ̂. 

Lemma 2.4. Under the above conditions, the holonomy map qDj
↾Bx

is a 2--bi-Lipschitz 
C1+β diffeomorphism onto its image, and its derivative at x equals Φt ↾Nx

.

Proof. Write g = qDj
↾Bx

. The first statement follows from Lemma 2.1. Now, since 
g = qDj

◦ ϕt, Lemma 2.3(2) implies dgx = d(qDj
)ϕt(x) ◦ dϕt

x ↾
TxΛ̂= pϕt(x) ◦ dϕt

x ↾Nx
=

Φt ↾Nx
. □

In the sequel we will investigate some particular holonomy maps, defined as follows. 
Let 0 < t, t′ < ρ such that f(x) = ϕt(x) ∈ Dj and f−1(x) = ϕ−t′(x) ∈ Dk.

Holonomy maps: The forward holonomy map at x is g+
x := qDj

↾Bx
. Similarly, the 

backward holonomy map at x is g−x := qDk
↾Bx

.

Note that g+
x differs from f and from the Poincaré return to Λ̂, see Fig. 1. Also, 

(g+
x )−1 = g−f(x).

3. The non-uniformly hyperbolic locus

Up to now, we have fixed ϕ, χ, ρ,Λ, Λ̂ and θ. In this section, we:

(1) Define the set NUH of points that exhibit a hyperbolicity of strength at least χ. We 
fix ε > 0 small enough, and associate to each x ∈ NUH a number Q(x) ∈ (0, 1) that 
approaches zero as the quality of the hyperbolicity at x deteriorates.

(2) Introduce numbers q(x) ∈ [0, 1), that measure how fast Q(ϕt(x)) decreases to zero 
as |t| → ∞. We also associate analogous number qs(x) and qu(x) for future and past 
orbits.

(3) Define the set NUH# of points x ∈ NUH whose hyperbolicity satisfies a recurrence 
property: there is c(x) > 0 such that q(ϕt(x)) > c(x) for some values of t arbitrarily 
close to ±∞. This set carries all χ--hyperbolic measures.

(4) Define Pesin charts Ψx for each x ∈ Λ ∩NUH. We then prove that, in Pesin charts, 
the holonomy maps g±x are close to hyperbolic linear maps.
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3.1. The non-uniformly hyperbolic locus NUH

Non-uniformly hyperbolic locus NUH = NUH(ϕ, χ, ρ, θ): It is the invariant set of 
points x ∈M for which there are unitary vectors ns

x, n
u
x with the following properties:

(NUH1) s--direction: lim inf
t→+∞ 

1
t log ‖Φ−tns

x‖ > 0, lim sup
t→+∞ 

1
t log ‖Φtns

x‖ ≤ −χ, and

s(x) := 2e2ρ

⎛⎝ +∞∫
0 

e2χt‖Φtns
x‖2dt

⎞⎠1/2

< +∞.

(NUH2) u--direction: lim inf
t→+∞ 

1
t log ‖Φtnu

x‖ > 0, lim sup
t→+∞ 

1
t log ‖Φ−tnu

x‖ ≤ −χ, and

u(x) := 2e2ρ

⎛⎝ +∞∫
0 

e2χt‖Φ−tnu
x‖2dt

⎞⎠1/2

< +∞.

It is clear that ns
x, n

u
x are unique up to a choice of signs. We choose the sign so that 

their angle is less than or equal to π/2, and make the following definition.

angle: α(x) := ∠(ns
x, n

u
x).

Let us remind that χ ∈ (0, 1), see Section 1.3. From the estimate before (2.1), we have

+∞∫
0 

e2χt‖Φtns
x‖2dt ≥

+∞∫
0 

e2χte−4ρ−2tdt = e−4ρ

2(1−χ) > e−4ρ

2 ,

therefore for each x ∈ NUH we have s(x), u(x) ∈ [
√

2,+∞) and α(x) �= 0.
Conditions (NUH1)--(NUH2) are weaker than Lyapunov regularity, hence NUH con

tains all Lyapunov regular points with exponents greater than χ in absolute value. 
Moreover, a periodic point x is in NUH iff all of its exponents are greater than χ in 
absolute value. But NUH might contain points with Lyapunov exponents equal to ±χ, 
and even points which are not Lyapunov regular, where the contraction rates oscillate 
infinitely often.

Proposition 3.1. If μ is a χ--hyperbolic measure, then μ[NUH] = 1.

Proof. Fix a χ--hyperbolic measure μ. By the Oseledets theorem, there is a set X ⊂M

with μ[X] = 1 such that for all x ∈ X there are unitary vectors esx, eux ∈ TxM satisfying:

(1) lim 
t→±∞

1
t log ‖dϕtesx‖ < −χ and lim 

t→±∞
1
t log ‖dϕteux‖ > χ.

(2) lim 
t→±∞

1
t log | sin∠(esϕt(x), e

u
ϕt(x))| = lim 

t→±∞
1
t log | sin∠(Xϕt(x), e

s/u
ϕt(x))| = 0.
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If x ∈ X then es/ux �∈ span(Xx), hence there are scalars γs/u(x), δs/u(x) such that

ns
x = γs(x)esx + δs(x)Xx and nu

x = γu(x)eux + δu(x)Xx (3.1)

are unitary vectors in Nx. If X(x) ⊥ Nx then γs/u(x) = ± 1 
sin∠(Xx,e

s/u
x )

. Since by con
struction we have ∠(Nx, X(x)⊥) < ρ (see Lemma 2.2), we conclude that γs/u(x) =
± e±4ρ

sin∠(Xx,e
s/u
x )

and so condition (2) translates to

lim 
t→±∞

1
t log |γs(ϕt(x))| = lim 

t→±∞
1
t log |γu(ϕt(x))| = 0.

We claim that X ⊂ NUH, and we prove this showing that

lim 
t→±∞

1
t log ‖Φtns

x‖ < −χ and lim 
t→±∞

1
t log ‖Φ−tnu

x‖ < −χ.

We show the first estimate (the second is analogous). For that, we claim that ‖Φtns
x‖ =

|γs(x)| 
|γs(ϕt(x))|‖dϕtesx‖ for all x ∈ X. By (3.1),

dϕtns
x = dϕt[γs(x)esx + δs(x)Xx] = γs(x)‖dϕtesx‖esϕt(x) + δs(x)Xϕt(x),

hence

Φtns
x = pϕt(x)[γs(x)‖dϕtesx‖esϕt(x) + δs(x)Xϕt(x)] = γs(x)‖dϕtesx‖pϕt(x)[esϕt(x)]

= γs(x)‖dϕtesx‖pϕt(x)

[
1 

γs(ϕt(x))n
s
ϕt(x) −

δs(ϕt(x)) 
γs(ϕt(x))Xϕt(x)

]
= γs(x) 

γs(ϕt(x))‖dϕ
tesx‖ns

ϕt(x).

Taking norms, we get that ‖Φtns
x‖ = |γs(x)| 

|γs(ϕt(x))|‖dϕtesx‖. Hence

lim 
t→±∞

1
t log ‖Φtns

x‖ = − lim 
t→±∞

1
t log |γs(ϕt(x))|+ lim 

t→±∞
1
t log ‖dϕtesx‖

= lim 
t→±∞

1
t log ‖dϕtesx‖ < −χ. □

3.2. Oseledets-Pesin reduction

Let e1 = (1, 0), e2 = (0, 1) be the canonical basis of R2. We define a change of 
coordinates that diagonalizes the induced linear Poincaré flow.

Linear map C(x): For x ∈ NUH, let C(x) : R2 → Nx be the linear map defined by

C(x) : e1 �→
ns
x

s(x) , C(x) : e2 �→
nu
x

u(x) ·

Lemma 3.2. The following holds for all x ∈ NUH.
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(1) ‖C(x)‖ ≤ ‖C(x)‖Frob ≤ 1 and ‖C(x)−1‖Frob =
√
s(x)2+u(x)2
| sinα(x)| .

(2) C(ϕt(x))−1 ◦ Φt ◦ C(x) is a diagonal matrix with diagonal entries At(x), Bt(x) sat
isfying:

e−4ρ < |At(x)| < e−χt and eχt < |Bt(x)| < e4ρ, ∀ 0 < t ≤ 2ρ.

(3) For all |t| ≤ 2ρ:

s(ϕt(x))
s(x) = e±10ρ, 

u(ϕt(x))
u(x) = e±10ρ, 

| sinα(ϕt(x))|
| sinα(x)| = e±8ρ.

In particular,

‖C(ϕt(x))−1‖Frob

‖C(x)−1‖Frob
= e±18ρ.

The proof is in Appendix A. Part (2) is known as Oseledets-Pesin reduction, and 
represents the diagonalization of Φ.

3.3. Quantification of hyperbolicity: the parameters Q(x),q(x),qs/u(x)

We now introduce another small parameter ε ∈ (0, r) such that ε � ρ � 1 (each 
symbol � is defined by means of a finite number of inequalities that need to be satisfied 
throughout the paper). Instead of working with ‖C(x)−1‖Frob, it is more convenient to 
introduce:

The parameter Q(x): For x ∈ NUH, let Q(x) := ε3/β‖C(x)−1‖−12/β
Frob .

The choice of the powers 3/β and 12/β is not canonical but just an artifact of the 
proof, and any choice of powers larger than these values also makes the proof work. The 
hyperbolicity degenerates as Q goes to 0. Lemma 3.2 immediately implies that

Q(ϕt(x))
Q(x) = e±

250ρ
β , ∀x ∈ NUH,∀ 0 < t ≤ 2ρ, (3.2)

and the following result.

Proposition 3.3. An invariant set K ⊂ NUH is uniformly hyperbolic if and only if 
inf 
x∈K

Q(x) > 0.

It will be important to identify the orbits in NUH whose hyperbolicity satisfies some 
recurrence (to ensure e.g. the existence of stable and unstable manifolds) and ask how 
fast Q(ϕt(x)) can go to zero when k → ±∞. For that reason, we introduce:
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The parameters q(x), qs(x), qu(x): For x ∈ NUH, define:

q(x) := ε inf{eε|t|Q(ϕt(x)) : t ∈ R}
qs(x) := ε inf{eε|t|Q(ϕt(x)) : t ≥ 0}
qu(x) := ε inf{eε|t|Q(ϕt(x)) : t ≤ 0}.

Clearly 0 ≤ q(x), qs(x), qu(x) ≤ εQ(x), hence these parameters are much smaller 
than Q(x). Also, qs(x) ∧ qu(x) = q(x). The families {qs(ϕt(x))}t∈R and {qu(ϕt(x))}t∈R
represent the local quantifications of hyperbolicity along the orbit {ϕt(x)}t∈R. We collect 
the following simple lemma, for later use.

Lemma 3.4. For all x ∈ NUH and t ∈ R, it holds q(ϕt(x)) = e±ε|t|q(x).

Proof. Using that |t′| = |t′ + t| ± |t|, we have

q(ϕt(x)) = e±ε|t|ε inf{eε|t′+t|Q(ϕt′+t(x)) : t′ ∈ R} = e±ε|t|q(x).

The proof is complete. □

3.4. The recurrently non-uniformly hyperbolic locus NUH#

Recurrently non-uniformly hyperbolic locus NUH# = NUH#(ϕ, χ, ρ, θ, ε): It 
is the invariant set of points x ∈ NUH such that:

(NUH3) q(x) > 0.
(NUH4) lim sup

t→+∞ 
q(ϕt(x)) > 0 and lim sup

t→−∞ 
q(ϕt(x)) > 0.

Note that if (NUH3) holds then q(ϕt(x)), qs(ϕt(x)), qu(ϕt(x)) are positive for all t ∈ R. 
Condition (NUH4) requires that these values do not degenerate to zero in the limit. The 
set NUH# carries all χ--hyperbolic measures, as we now prove.

Proposition 3.5. If μ is a ϕ--invariant probability measure with μ[NUH] = 1, then 
μ[NUH#] = 1. In particular, if μ is χ--hyperbolic then μ[NUH#] = 1.

Proof. Note that

lim 
n→±∞

1 
n logQ(ϕnρ(x)) = 0 =⇒ lim 

t→±∞
1
t logQ(ϕt(x)) = 0 =⇒ q(x) > 0.

To establish the first limit, we use the following basic fact of ergodic theory.

Fact: Let (X,μ, T ) be an invertible probability-preserving system, and u : X → (0,+∞)
measurable. If there is C > 0 such that C−1 ≤ u(Tx)

u(x) ≤ C for μ--a.e. x ∈ X, then 

lim 
n→±∞

1 
n log u(Tnx) = 0 for μ--a.e. x ∈ X.
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Proof of the fact. By the Poincaré recurrence theorem, lim inf
n→±∞ 

u(Tnx) < +∞ a.e., hence 

lim inf
n→±∞ 

1 
n log u(Tnx) = 0 a.e. Now, applying the Birkhoff ergodic theorem to the bounded 

function U := log u ◦ T − log u, lim 
n→±∞

1 
n log u(Tnx) exists a.e. Therefore

lim 
n→±∞

1 
n log u(Tnx) = lim inf

n→±∞ 
1 
n log u(Tnx) = 0

for μ--a.e. x ∈ X. □

Now we prove the proposition. Assume that μ[NUH] = 1. By (3.2), Q(ϕρ(x))
Q(x) = e±

250ρ
β

for all x ∈ NUH. Applying the Fact to the transformation T = ϕρ and the function 
Q, we conclude that (NUH3) holds μ--a.e. Finally, by the Poincaré recurrence theorem, 
(NUH4) also holds μ--a.e. □

3.5. The Z--indexed versions of qs/u(x): the parameters ps/u(x)

We now define discrete time approximate versions of qs(x), qu(x) that satisfy recursive 
explicit formulas, which we call Z--indexed versions of qs(x), qu(x). Recall that rΛ is the 
Poincaré return time of the proper section Λ of size ρ/2. In particular, 0 < inf(rΛ) ≤
sup(rΛ) ≤ ρ/2.

Z--indexed versions of qs, qu: Let x ∈ NUH. For each sequence T = {tn}n∈Z of real 
numbers with 1

2 inf(rΛ) ≤ tn+1 − tn ≤ 2 sup(rΛ), define:

ps(x, T , n) := ε inf{eε(tm−tn)Q(ϕtm(x)) : m ≥ n}
pu(x, T , n) := ε inf{eε(tn−tm)Q(ϕtm(x)) : m ≤ n}.

Clearly, ps/u(x, T , n) ≥ qs/u(ϕtn(x)). As the choice of T will be always clear in the 
context, we will simply write ps/u(ϕtn(x)) for ps/u(x, T , n). As a matter of fact, although 
the values ps/u(ϕtn(x)) do depend on the choice of T , they are not very sensitive to this 
choice.

Proposition 3.6. The following holds for all x ∈ NUH# and T = {tn}n∈Z with 
1
2 inf(rΛ) ≤ tn+1 − tn ≤ 2 sup(rΛ).

(1) Robustness: Let H := ερ + 250ρ
β . For all n ∈ Z and t ∈ [tn, tn+1], it holds:

ps/u(ϕtn(x))
qs/u(ϕt(x)) 

= e±H.

(2) Greedy algorithm: For all n ∈ Z it holds:

ps(ϕtn(x)) = min
{
eε(tn+1−tn)ps(ϕtn+1(x)), εQ(ϕtn(x))

}
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pu(ϕtn(x)) = min
{
eε(tn−tn−1)pu(ϕtn−1(x)), εQ(ϕtn(x))

}
.

In particular:

εQ(ϕtn(x)) ≥ ps(ϕtn(x)) ≥ e−ε(tn−tm)ps(ϕtm(x)), ∀n ≥ m,

εQ(ϕtn(x)) ≥ pu(ϕtn(x)) ≥ e−ε(tm−tn)ps(ϕtm(x)), ∀m ≥ n.

(3) Maximality: ps(ϕtn(x)) = εQ(ϕtn(x)) for infinitely many n > 0, and pu(ϕtn(x)) =
εQ(ϕtn(x)) for infinitely many n < 0.

Proof. We prove the statements for ps (the proofs for pu are analogous).

(1) Fix x ∈ NUH#, n ∈ Z, t ∈ [tn, tn+1]. By Lemma 3.4, we have p
s(ϕtn (x))
qs(ϕt(x)) = ps(ϕtn (x))

qs(ϕtn (x)) ·
qs(ϕtn (x))
qs(ϕt(x)) = e±ερ ps(ϕtn (x))

qs(ϕtn (x)) , hence we need to estimate p
s(ϕtn (x))

qs(ϕtn (x)) . For m ≥ n, let γm :=
eε(tm−tn)Q(ϕtm(x)) and δm := inf{eε(t−tn)Q(ϕt(x)) : tm ≤ t ≤ tm+1}. By definition, 
we have ps(ϕtn(x)) = ε inf{γm : m ≥ n} and qs(ϕtn(x)) = ε inf{δm : m ≥ n}. Since 
Q(ϕt(x)) 
Q(ϕtm (x)) = e±

250ρ
β for tm ≤ t ≤ tm+1 (see (3.2)), we get:

γm ≥ δm = eε(tm−tn) inf{eε(t−tm)Q(ϕt(x)) : tm ≤ t ≤ tm+1}

≥ eε(tm−tn)e−
250ρ
β Q(ϕtm(x)) = e−

250ρ
β γm.

Hence 1 ≤ ps(ϕtn (x))
qs(ϕtn (x)) ≤ e

250ρ
β and so p

s(ϕtn (x))
qs(ϕt(x)) = e±H.

(2) We have

ps(ϕtn(x)) = ε inf
{
eε(tm−tn)Q(ϕtm(x)) : m ≥ n

}
= min

{
ε inf

{
eε(tm−tn)Q(ϕtm(x)) : m ≥ n + 1

}
, εQ(ϕtn(x))

}
= min

{
eε(tn+1−tn)ps(ϕtn+1(x)), εQ(ϕtn(x))

}
,

which proves the recursive relation. Clearly ps ≤ εQ. For, the other side of the inequality, 
note that if n ≥ m then:

ps(ϕtn(x)) = ε inf{eε(t�−tn)Q(ϕt�(x)) : 
 ≥ n}
= e−ε(tn−tm)ε inf{eε(t�−tm)Q(ϕt�(x)) : 
 ≥ n}
≥ e−ε(tn−tm)ε inf{eε(t�−tm)Q(ϕt�(x)) : 
 ≥ m} = e−ε(tn−tm)ps(ϕtm(x)).

(3) The proof is based on [36, Prop. 8.3]. Since x ∈ NUH#, lim supt→∞ qs(ϕt(x)) > 0. 
By part (1), lim supn→∞ ps(ϕtn(x)) > 0 hence ∃δ0 > 0 such that ps(ϕtn(x)) > δ0 for 
infinitely many n > 0. By contradiction, assume ∃n0 > 0 such that ps(ϕtn(x)) <
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εQ(ϕtn(x)) for all n ≥ n0. By the greedy algorithm in part (2), ps(ϕtn(x)) =
eε(tn+1−tn)ps(ϕtn+1(x)) for all n ≥ n0. This implies that ps(ϕtn0 (x)) = 
eε(tn0+�−tn0 )ps(ϕtn0+�(x)) for all 
 ≥ 0, hence ps(ϕtn0 (x)) > eε(tn0+�−tn0 )δ0 for infinitely 
many 
 ≥ 0, which is a contradiction since eε(tn0+�−tn0 ) →∞ as 
→∞. □

3.6. Pesin charts Ψx

Recall that R[r] := [−r, r]2 ⊂ R2. We define Pesin charts for x ∈ Λ ∩NUH.

Pesin chart at x: It is the map Ψx : R[r]→ Λ̂ defined by Ψx := expx ◦ C(x).

The center x of the Pesin chart Ψx always belongs to the reference section Λ, while 
its image is contained in the security section Λ̂. In particular, when x is close to the 
boundary of Λ, the image of Ψx is not contained in Λ. This definition is different from 
[28], and it is the first step to bypass the boundary effect mentioned in Section 1.1.

For x ∈ Λ̂, let ιx : TxΛ̂ → R2 be an isometry. If x ∈ Λ, y ∈ Λ̂ with d(x, y) ≤ 2r, we 
consider as in section 1.2.3 an isometry Py,x : TyM → TxM . If A : R2 → TyΛ̂ is a linear 
map, we define Ã : R2 → R2 by Ã := ιx ◦ Py,x ◦ A. The map Ã depends on x but ‖Ã‖
does not.

Lemma 3.7. For all x ∈ Λ∩NUH, the Pesin chart Ψx is a diffeomorphism onto its image 
and:

(1) Ψx is 2--Lipschitz and Ψ−1
x is 2‖C(x)−1‖--Lipschitz.

(2) ‖ ˜︂d(Ψx)v1 − ˜︂d(Ψx)v2‖ ≤ K‖v1 − v2‖ for all v1, v2 ∈ R[r].

Proof. Since C(x) is a contraction, C(x)R[r] ⊂ Bx[2r] and so Ψx is well-defined with 
inverse C(x)−1 ◦ exp−1

x . It is a diffeomorphism because C(x) and expx are.

(1) C(x) is a contraction and expx is 2--bi-Lipschitz in Bx[2r]. Therefore Ψx is 2--Lipschitz 
and Ψ−1

x is 2‖C(x)−1‖--Lipschitz.

(2) Since C(x)vi ∈ Bx[2r], condition (Exp3) gives that

‖ ˜︂d(Ψx)v1 − ˜︂d(Ψx)v2‖ = ‖ ˜︂d(expx)C(x)v1 ◦ C(x)− ˜︂d(expx)C(x)v2 ◦ C(x)‖

≤ K‖C(x)v1 − C(x)v2‖ ≤ K‖v1 − v2‖.

The proof is complete. □

3.7. Holonomy maps g±x in Pesin charts

The parameter Q(x) defines the size of the domain where we can control g±x in Pesin 
charts: in these coordinates, g±x are small perturbations of hyperbolic linear maps.
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Theorem 3.8. The following holds for all ε > 0 small enough. For all x ∈ Λ ∩ NUH the 
map f+

x := Ψ−1
f(x) ◦ g+

x ◦Ψx is well-defined on R[10Q(x)] and satisfies:

(1) d(f+
x )0 = C(f(x))−1 ◦ ΦrΛ(x) ◦ C(x) and e−4ρ < m(d(f+

x )0) ≤ ‖d(f+
x )0‖ < e4ρ.

(2) f+
x =

[
A 0
0 B

]
+ H where:

(a) e−4ρ < |A| < e−χrΛ(x) and eχrΛ(x) < |B| < e4ρ, cf. Lemma 3.2(2).
(b) H(0) = 0 and dH0 = 0.
(c) ‖H‖

C1+β
2 < ε.

A similar statement holds for f−
x := Ψ−1

x ◦ g−f(x) ◦Ψf(x).

The proof is in Appendix A.

3.8. The overlap condition

We now control the coordinate change from Ψx to Ψy when x, y are ``sufficiently close''. 
This can only be made when both x, y and C(x), C(y) are very close. In the sequel we 
will make extensive use of Pesin charts with different domains.

Pesin chart Ψη
x: It is the restriction of Ψx to R[η], where 0 < η ≤ Q(x).

Recall that d is the distance on Λ̂ associated to the induced Riemannian metric.

ε--overlap: We say that two Pesin charts Ψη1
x1
,Ψη2

x2
ε--overlap if η1

η2
= e±ε and d(x1, x2)+

‖˜︂C(x1) − ˜︂C(x2)‖ < (η1η2)4. In particular, x1, x2 belong to the same local connected 
component of Λ. We write Ψη1

x1

ε ≈ Ψη2
x2

.

Lemma 3.9. The following holds for ε > 0 small. If Ψη1
x1

ε ≈ Ψη2
x2

, then

Ψxi
(R[10Q(xi)]) ⊂ Bx1 ∩Bx2 .

In particular, it makes sense to consider ‖˜︂C(x1)−˜︂C(x2)‖.

Proof. Let i = 1. By Lemma 3.7(1), Ψx1(R[10Q(x1)]) ⊂ B(x1, 40Q(x1)). This latter ball 
is contained in Bx1 since 40Q(x1) < 40ε3/β < 2r when ε > 0 is small. Also:

Ψx1(R[10Q(x1)]) ⊂ B(x1, 40Q(x1)) ⊂ B(x2, 40Q(x1) + d(x1, x2)).

Since 40Q(x1) + d(x1, x2) < 40ε3/β + ε24/β < 2r for small ε > 0, Ψx1(R[10Q(x1)]) ⊂
Bx2 . □

The next result guarantees that the ε--overlap of Pesin charts allows to change coor
dinates while maintaining a good control on the dynamics and geometry of the charts.
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Proposition 3.10. The following holds for ε > 0 small. If Ψη1
x1

ε ≈ Ψη2
x2

then:

(1) Control of s, u: s(x1)
s(x2) = e±(η1η2)3 and u(x1)

u(x2) = e±(η1η2)3 .
(2) Control of α: | sinα(x1)|

| sinα(x2)| = e±(η1η2)3 .
(3) Overlap: Ψxi

(R[e−2εηi]) ⊂ Ψxj
(R[ηj ]) for i, j = 1, 2.

(4) Change of coordinates: For i, j = 1, 2, the map Ψ−1
xi
◦ Ψxj

is well-defined in 
R[r], and ‖Ψ−1

xi
◦Ψxj

− Id‖C2 < ε(η1η2)2 where the norm is taken in R[r].

The proof is in Appendix A.

3.9. The maps f+
x,y, f

−
x,y

Let x, y ∈ Λ∩NUH such that Ψη
f(x)

ε ≈ Ψη′
y . In this section, we change Ψf(x) by Ψy in 

the definition of f+
x and obtain a result similar to Theorem 3.8.

The maps f+
x,y and f−

x,y: If Ψη
f(x)

ε ≈ Ψη′
y , we define the map f+

x,y := Ψ−1
y ◦ g+

x ◦ Ψx. If 
Ψη

x

ε ≈ Ψη′

f−1(y), we define f−
x,y := Ψ−1

x ◦ g−y ◦Ψy.

Since any meaningful estimate of f±
x,y in the C1+β/2 norm cannot be better than that 

of Theorem 3.8, and to keep estimates of size ε, we consider the C1+β/3 norm of f±
x,y.

Theorem 3.8’. The following holds for all ε > 0 small enough. If x, y ∈ Λ ∩ NUH
and Ψη

f(x)
ε ≈ Ψη′

y , then f+
x,y is well-defined on R[10Q(x)] and can be written as 

f+
x,y =

[
A 0
0 B

]
+ H where:

(1) e−4ρ < |A| < e−χrΛ(x), eχrΛ(x) < |B| < e4ρ, cf. Lemma 3.2(2).
(2) For i = 1, 2, it holds ‖H(0)‖ < εη, ‖dH0‖ < εηβ/3, Hölβ/3(dH) < ε.

If Ψη
x

ε ≈ Ψη′

f−1(y) then a similar statement holds for f−
x,y.

Proof. We write f+
x,y = (Ψ−1

y ◦Ψf(x)) ◦ f+
x =: g ◦ f+

x and see it as a small perturbation 
of f+

x . By Theorem 3.8,

f+
x (0) = 0, ‖d(f+

x )‖C0 < 2e4ρ, ‖d(f+
x )v − d(f+

x )w‖ ≤ ε‖v − w‖β/2,∀v, w ∈ R[10Q(x)],

where the C0 norm is taken in R[10Q(x)], and by Proposition 3.10(4) we have

‖g − Id‖ < ε(ηη′)2, ‖d(g − Id)‖C0 < ε(ηη′)2, ‖dgv − dgw‖ ≤ ε(ηη′)2‖v − w‖β/2

for v, w ∈ R[r], where the C0 norm is taken in R[r].
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We first prove that f+
x,y is well-defined on R[10Q(x)]. For ε > 0 small enough we 

have f+
x (R[10Q(x)]) ⊂ B(0, 40e4ρQ(x)) ⊂ R[r] since 40e4ρQ(x) < 40e4ρε3/β < r. By 

Proposition 3.10(4), f+
x,y is well-defined.

Letting A,B as in Lemma 3.2, part (1) is clear, so we focus on part (2). We have 
‖H(0)‖ = ‖g(0)‖ < ε(ηη′)2 < εη and for ε > 0 small enough:

‖dH0‖ ≤ ‖dg0 ◦ d(f+
x )0 − d(f+

x )0‖ ≤ ‖d(g − Id)0‖‖d(f+
x )0‖ < ε(ηη′)2e4ρ < εηβ/3.

Finally, since f+
x (R[10Q(x)]) ⊂ R[r], if ε > 0 is small then for v, w ∈ R[10Q(x)] it holds:

‖dHv − dHw‖ = ‖dgf+
x (v) ◦ d(f+

x )v − dgf+
x (w) ◦ d(f+

x )w‖

≤ ‖dgf+
x (v) − dgf+

x (w)‖‖d(f+
x )v‖+ ‖dgf+

x (w)‖‖d(f+
x )v − d(f+

x )w‖

≤ ε(ηη′)2‖f+
x (v)− f+

x (w)‖β/2‖d(f+
x )‖C0 + ε‖dg‖C0‖v − w‖β/2

≤
[
ε(ηη′)2‖d(f+

x )‖1+β/2
C0 + 40ε‖dg‖C0Q(x)β/6

]
‖v − w‖β/3

≤
[
η2η′ 2(2e4ρ)1+β/2 + 80Q(x)β/6

]
ε‖v − w‖β/3

≤
[
ε12/β(2e4ρ)1+β/2 + 80ε1/2

]
ε‖v − w‖β/3 < ε‖v − w‖β/3.

The proof is now complete. □

4. Invariant manifolds and shadowing

Up to now, we have fixed ϕ, χ, ρ,Λ, Λ̂, θ and ε, where ρ, ε are small parameters. In 
this section, we:

(1) Define ε--double charts Ψps,pu

x , which are double versions of Pesin charts whose stable 
and unstable sizes ps, pu may differ. The parameters ps/pu control separately the 
local stable/unstable hyperbolicity at x.

(2) Define generalized pseudo-orbit, which is a sequence v of ε--double charts satisfying 
edge conditions, which are nearest neighbor conditions relating the parameters of 
consecutive ε--double charts.

(3) Associate to each generalized pseudo-orbit its local stable and unstable manifolds 
V s[v] and V u[v]. As a consequence, we obtain a shadowing lemma.

4.1. Pseudo-orbits

ε--double chart: An ε--double chart is a pair of Pesin charts Ψps,pu

x = (Ψps

x ,Ψpu

x ) where 
0 < ps, pu ≤ εQ(x).

The parameters ps/pu are local quantifications of the hyperbolicity at x. One can 
think of them as a definite size for the stable and unstable manifolds at x.
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Transition time: For two ε--double charts v = Ψps,pu

x , w = Ψqs,qu

y we define T (v, w)
by

min
{
min{T+(z) : z ∈ Ψx(R[ 1 

20 (ps ∧ pu)])}, min{−T−(z) : z ∈ Ψy(R[ 1 
20 (qs ∧ qu)])}

}
,

where T+ : Bx → R and T− : By → R are the C1+β functions satisfying g+
x = ϕT+ , 

g−f−1(y) = ϕT− with T+(x) = rΛ(x) and T−(y) = −rΛ(f−1(y)).

Edge v ε → w: Given two ε--double charts v = Ψps,pu

x , w = Ψqs,qu

y , we draw an edge from 
v to w if the two following conditions are satisfied:

(GPO1) Ψqs∧qu

f(x)
ε ≈ Ψqs∧qu

y and Ψps∧pu

f−1(y)
ε ≈ Ψps∧pu

x . 
(GPO2) The following estimates hold:

e−εps

min{eεT (v,w)qs, e−εεQ(x)} ≤ ps ≤ min{eεT (v,w)qs, εQ(x)} (4.1)

e−εqu min{eεT (v,w)pu, e−εεQ(y)} ≤ qu ≤ min{eεT (v,w)pu, εQ(y)}. (4.2)

Remark 4.1. In the above notation, if v ε → w then by Theorem 3.8’ we have

g−y (Ψy(R[ 1 
20 (qs ∧ qu)])) ⊂ Ψx(R[ 1 

15 (ps ∧ pu)])

and so T (v, w) = T+(z) for some z ∈ Ψx(R[ 1 
15 (ps ∧ pu)]). In particular, T (v, w) ≤ ρ.

ε--generalized pseudo-orbit (ε--gpo): An ε--generalized pseudo-orbit (ε--gpo) is a 
sequence v = {vn}n∈Z of ε--double charts such that vn

ε → vn+1 for all n ∈ Z. We say 
that v is regular if there are v, w such that vn = v for infinitely many n > 0 and vn = w

for infinitely many n < 0.

Positive and negative ε--gpo: A positive ε--gpo is a sequence v+ = {vn}n≥0 of 
ε--double charts such that vn

ε → vn+1 for all n ≥ 0. A negative ε--gpo is a sequence 
v− = {vn}n≤0 of ε--double charts such that vn

ε → vn+1 for all n ≤ −1.

Condition (GPO1) allows to pass from an ε--double chart at x to an ε--double chart 
at y and vice-versa. Condition (GPO2) is a greedy recursion that implies that the local 
quantifications of hyperbolicity are ``as large as possible''. The need of (GPO2) will be 
clear in the proof of Theorem 5.1 (coarse graining) and Theorem 6.1 (inverse theorem).

Lemma 4.2. If v = Ψps,pu

x , w = Ψqs,qu

y are ε--double charts satisfying (GPO2) then 
ps∧pu

qs∧qu = e±2ε.

Proof. We have e−εps min{eεT (v,w)qs, e−εεQ(x)} ≤ ps ≤ min{eεT (v,w)qs, εQ(x)}, there
fore e−εps min{eεT (v,w)qs, e−εpu} ≤ ps ∧ pu ≤ min{eεT (v,w)qs, pu} and so

e−ε−εps

min{eεT (v,w)qs, pu} ≤ ps ∧ pu ≤ min{eεT (v,w)qs, pu}.
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By the same reason, e−ε−εqu min{eεT (v,w)pu, qs} ≤ qs ∧ qu ≤ min{eεT (v,w)pu, qs} hence

e−ε−εqu−εT (v,w) min{eεT (v,w)qs, pu} ≤ qs ∧ qu ≤ eεT (v,w) min{eεT (v,w)qs, pu}.

Together, these inequalities imply that

e−ε[1+ps+T (v,w)] ≤ ps∧pu

qs∧qu ≤ eε[1+qu+T (v,w)].

Since ps, qu < ε < 0.25 and T (v, w) ≤ ρ < 0.25, it follows that p
s∧pu

qs∧qu = e±2ε. □

Remark 4.3. There is a big difference between (GPO2) above and all previous definitions 
used in [36,27,3,28,29,2]. The first is that we only require inequalities, while previous 
work required equalities. One reason is the following: while for diffeomorphisms the 
hyperbolicity acquired in an edge v ε → w is at least eε, for flows it is at least eεT (v,w). Since 
T (v, w) usually does not belong to a countable set, neither does min{eεT (v,w)qs, εQ(x)}. 
Therefore, instead of requiring ps to be equal to this minimum we relax the assumption 
to an ``approximate equality''. This approximate equality implies that either ps is of 
the order of eεT (v,w)qs and/or it is essentially maximal (of the order of εQ(x)). The 
conditions we consider are weak enough to code all relevant orbits (Theorem 5.1(2)) but 
still strong enough for the coding to be ``unique up to bounded error'' (Theorem 6.1).

4.2. Graph transforms and invariant manifolds

Let v = Ψps,pu

x be an ε--double chart.

Admissible manifolds: An s--admissible manifold at v is a set of the form

V = Ψx{(t, F (t)) : |t| ≤ ps}

where F : [−ps, ps]→ R is a C1+β/3 function such that:

(AM1) |F (0)| ≤ 10−3(ps ∧ pu).
(AM2) |F ′(0)| ≤ 1

2 (ps ∧ pu)β/3.
(AM3) ‖F ′‖C0 + Hölβ/3(F ′) ≤ 1

2 where the norms are taken in [−ps, ps].

The function F is called the representing function of V . Similarly, a u--admissible mani
fold at v is a set of the form Ψx{(G(t), t) : |t| ≤ pu} where G : [−pu, pu]→ R is a C1+β/3

function satisfying (AM1)--(AM3), with norms taken in [−pu, pu].

If V1, V2 are two s--admissible manifolds at v, with representing functions F1, F2, for 
i ≥ 0 define dCi(V1, V2) := ‖F1 − F2‖Ci where the norm is taken in [−ps, ps]. The same 
applies to u--admissible manifolds.

In the sequel, we introduce graph transforms, which is the tool used to construct 
invariant manifolds. Since the proofs are adaptations of [36], we restrict the discussion 
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to stable manifolds. The main result of this section, Theorem 4.5, collects the basic 
properties of invariant manifolds. Given a ε--double chart v = Ψps,pu

x , we denote by 
M s(v) the set of its s--admissible manifolds.

The graph transform F s
v,w: To any edge v ε → w between ε--double charts v = Ψps,pu

x

and w = Ψqs,qu

y , we associate the graph transform F s
v,w : M s(w)→M s(v) as being the 

map that sends an s--admissible manifold at w with representing function F : [−qs, qs]→
R to the unique s--admissible manifold at v with representing function G : [−ps, ps]→ R

such that {(t, G(t)) : |t| ≤ ps} ⊂ f−
x,y{(t, F (t)) : |t| ≤ qs}.

Lemma 4.4. If ε > 0 is small enough, then F s
v,w is well-defined for any edge v ε → w. 

Furthermore, if V1, V2 ∈M s(w) then:

(1) dC0(F s
v,w(V1),F s

v,w(V2)) ≤ e−χ inf(rΛ)/2dC0(V1, V2).
(2) dC1(F s

v,w(V1),F s
v,w(V2)) ≤ e−χ inf(rΛ)/2(dC1(V1, V2) + dC0(V1, V2)β/3).

When M is compact and f is a C1+β diffeomorphism, this is [36, Prop. 4.12 and 4.14]. 
The same proofs work by changing Cf and χ in [36] to e4ρ and χ inf(rΛ) in our case, and 
observing that by Lemma 3.2(2) and Theorem 3.8’(1) we have e−4ρ < |A| < e−χ inf(rΛ)

and eχ inf(rΛ) < |B| < e4ρ.

The stable manifold of positive ε--gpo: The stable manifold of a positive ε--gpo 
v+ = {vn}n≥0 is

V s[v+] := lim 
n→+∞

(F s
v0,v1

◦ · · · ◦F s
vn−2,vn−1

◦F s
vn−1,vn)(Vn)

for some (any) choice (Vn)n≥0 with Vn ∈ M s(vn). The convergence occurs in the C1

topology.

The proof of the good definition and C1 convergence is done as in [36, Prop. 4.15, 
part (1)]. Similarly, we introduce the unstable manifold V u[v−] of a negative ε--gpo. We 
then arrive at the basic properties of V s[v+] and V u[v−].

Theorem 4.5 (Stable manifold theorem). The following holds for all ε > 0 small enough. 
Let v+ = {vn}n≥0 = {Ψps

n,p
u
n

xn }n≥0 be a positive ε--gpo.

(1) Admissibility. The set V s[v+] is an s--admissible manifold at v0, equal to

V s[v+] = {x ∈ Ψx0(R[ps0]) : (g+
xn−1

◦ · · · ◦ g+
x0

)(x) ∈ Ψxn
(R[10Q(xn)]), ∀n ≥ 0}.

(2) Invariance. g+
x0

(V s[{vn}n≥0]) ⊂ V s[{vn}n≥1]. 
(3) Hyperbolicity. For all y, y′ in V s[v+] and all n ≥ 0:

d(g+
xn−1

◦ · · · ◦ g+
x0

(y), g+
xn−1

◦ · · · ◦ g+
x0

(y′)) ≤ d(Ψ−1
x0

(y),Ψ−1
x0

(y′)) e−
χ inf(rΛ)

2 n.
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For any unit vector w tangent to V s[v+] at a point y and all n ≥ 0:

‖d(g+
xn−1

◦ · · · ◦ g+
x0

)yw‖ ≤ 8‖C(x0)−1‖ e−
χ inf(rΛ)

2 n and

‖d(g−x−n+1
◦ · · · ◦ g−x0

)yw‖ ≥ 1
8 (ps0 ∧ pu0 )

β
12 e

(
χ inf(rΛ)

2 −βε
6 
)
n
.

(4) Bounded distortion. For all y, y′ in V s[v+], unit vectors w,w′ tangent to V s[v+]
at y, y′ respectively and all n ≥ 0,∣∣∣log ‖d(g+

xn−1
◦ · · · ◦ g+

x0
)yw‖ − log ‖d(g+

xn−1
◦ · · · ◦ g+

x0
)y′w′‖

∣∣∣ ≤ Q(x0)β/4.

(5) Hölder property. The map v+ �→ V s[v+] is Hölder continuous: 
There are K > 0 and θ ∈ (0, 1) such that for all N ≥ 0, if v+, w+ are positive 
ε--gpo’s with vn = wn for n = 0, . . . , N then dC1(V s[v+], V s[w+]) ≤ KθN .

The curve V s[v+] is called local stable manifold of v+. A similar statement holds for 
unstable manifold V u[v−] of a negative ε-gpo v−.

The above theorem is a strengthening of the Pesin stable manifold theorem [32]. Its 
statement is similar to [36], and its proof is perfomed exactly as in [36, Prop. 4.15 
and 6.3], noting that in Pesin charts the composition g+

xn−1
◦ · · · ◦ g+

x0
is represented by 

f+
xn−1,xn

◦ · · · ◦ f+
x0,x1

. Since each f+
xi,xi+1

is hyperbolic (Theorem 3.8’) and each F s
vi,vi+1

is contracting (Lemma 4.4), the proof follows. We note that the second estimate of part 
(3) is proved as in [36, Prop. 6.5], see also the proof of [2, Prop. 4.11].

4.3. Shadowing

We say that an ε--gpo {Ψps
n,p

u
n

xn }n∈Z shadows a point x ∈ Λ̂ if:

(g+
xn−1

◦ · · · ◦ g+
x0

)(x) ∈ Ψxn
(R[psn ∧ pun]) for all n ≥ 0,

(g−xn+1
◦ · · · ◦ g−x0

)(x) ∈ Ψxn
(R[psn ∧ pun]) for all n ≤ 0.

An important property is the following.

Proposition 4.6. If ε is small enough, then every ε--gpo v shadows a unique point {x} =
V s[v] ∩ V u[v].

The proof uses the following property of admissible manifolds.

Lemma 4.7. The following holds for all ε > 0 small enough. If v = Ψps,pu

x is an ε--double 
chart, then for every V s/u ∈M s/u(v) it holds:
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(1) V s and V u intersect at a single point P ∈ Ψx(R[10−2(ps ∧ pu)]).
(2) sin∠(V s,V u)

sinα(x) = e±(ps∧pu)β/4 and | cos∠(V s, V u) − cosα(x)| < 2(ps ∧ pu)β/4, where 
∠(V s, V u) is the angle of intersection of V s and V u at P .

When M is compact and f is a C1+β diffeomorphism, the above lemma is [36, Prop. 
4.11]. The same proof works in our case, since inside Ψx(R[10Q(x)]) the estimates 
(Exp1)--(Exp4) hold.

Proof of Proposition 4.6. Let v = {vn}n∈Z = {Ψps
n,p

u
n

xn }n∈Z be an ε--gpo. The proof is 
the same as that of [36, Theorem 4.2], and follows the steps below:

◦ By Theorem 4.5(1), any point shadowed by v must lie in V s[{vn}n≥0]∩V u[{vn}n≤0]. 
By Lemma 4.7(1), this intersection is a single point {x}. We claim that v shadows 
x.
◦ The definition of shadowing is equivalent to the following weaker definition: v shad

ows x if and only if

(g+
xn−1

◦ · · · ◦ g+
x0

)(x) ∈ Ψxn
(R[10Q(xn)]) for all n ≥ 0,

(g−xn+1
◦ · · · ◦ g−x0

)(x) ∈ Ψxn
(R[10Q(xn)]) for all n ≤ 0.

◦ By Theorem 4.5(2), if n ≥ 0 then g+
xn−1

◦ · · · ◦ g+
x0

(x) ∈ V s[{vn+k}k≥0] ⊂
Ψxn

(R[10Q(xn)]), and if n ≥ 0 then (g−xn+1
◦ · · · ◦ g−x0

)(x) ∈ V u[{vn+k}k≤0] ⊂
Ψxn

(R[10Q(xn)]), and so the weaker definition of shadowing holds.

This concludes the proof. □

4.4. Additional properties

Now, we relate stable/unstable manifolds of ε--gpo’s with stable/unstable manifolds 
of the flow ϕ.

Proposition 4.8. The following holds for all ε > 0 small enough. Let v = {vn}n≥0 be a 
positive ε--gpo with v0 = Ψps,pu

x , and let F : [−ps, ps] → R be the representing function 
of V s = V s[v+]. Then there exists a function Δ : [−ps, ps]→ R with Δ(0) = 0 such that 
the curve Ṽ s := {ϕΔ(t)[Ψx(t, F (t))] : |t| ≤ ps} satisfies d(ϕt(ỹ), ϕt(z̃)) ≤ e

− χ inf(rΛ) 
2 sup(rΛ) t for 

all ỹ, z̃ ∈ Ṽ s and t ≥ 0. An analogous statement holds for negative ε--gpo’s.

In other words, Ṽ s is a lift of V s to a curve that contracts in the future under the 
flow (we are not claiming Ṽ s is the local stable manifold of ϕ at x).

Proof. Write vn = Ψps
n,p

u
n

xn with Ψps
0,p

u
0

x0 = Ψps,pu

x . The idea is simple: Δ is the cumulative 
shear of a point of V s under iterations of the maps g+

xn
. Write g+

xn
= ϕTn where Tn :
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Bxn
→ R is a C1+β function with Tn(xn) = rΛ(xn). Let G0 = Id and Gn := g+

xn−1
◦ · · · ◦

g+
x0

, n ≥ 1. For n ≥ 0, define τn : [−ps, ps]→ R by

τn(t) :=
n−1∑
k=0 

Tk(Gk[Ψx(t, F (t))]),

equal to the flow displacement of the point Ψx(t, F (t)) under the maps g+
x0
, g+

x1
,. . . , g+

xn−1
. 

Define Δn : [−ps, ps] → R by Δn(t) := τn(t) − τn(0) for n ≥ 0, and Δ : [−ps, ps] → R

by Δ(t) := lim 
n→+∞

Δn(t). We have:

◦ Lip(Tn) < 1, by Lemma 2.1(3).
◦ ‖Δ−Δn‖C0 < εe−

χ
2 n for all n ≥ 0, since

‖Δ−Δn‖C0 ≤
∞ ∑

k=n

‖Tk(Gk[Ψx(·, F (·))])− Tk(Gk[Ψx(0, F (0))])‖C0

! 
≤

∞ ∑
k=n

Lip(Tk)6pse−
χ inf(rΛ)

2 k ≤ 6ps

1− e−
χ inf(rΛ)

2 
e−

χ inf(rΛ)
2 n !! 

< εe−
χ inf(rΛ)

2 n,

where in 
! 
≤ we used Theorem 4.5(3) and in 

!! 
< we used that 6ps

1−e−
χ inf(rΛ)

2 
<

6ε3/β

1−e−
χ inf(rΛ)

2 
< ε when ε > 0 is small enough.

Let Ṽ s := {ϕΔ(t)[Ψx(t, F (t))] : |t| ≤ ps}. Fix ỹ, z̃ ∈ Ṽ s, say ỹ = ϕΔ(t0)[Ψx(t0, F (t0))] 
= ϕΔ(t0)(y) and z̃ = ϕΔ(t1)[Ψx(t1, F (t1))] = ϕΔ(t1)(z) with t0, t1 ∈ [−ps, ps]. By defini
tion, y, z ∈ V s. Fix t ≥ 0, and take the unique n ≥ 0 such that τn−1(0) < t ≤ τn(0). For 
such n, write Δ = Δn + E, with ‖E‖C0 < εe−

χ inf(rΛ)
2 n. Therefore

ϕt(ỹ) = ϕt+Δ(t0)(y) = ϕt+Δn(t0)+E(t0)(y) = ϕt−τn(0)+E(t0)[Gn(y)],

and similarly ϕt(z̃) = ϕt−τn(0)+E(t1)[Gn(z)], hence

d(ϕt(ỹ), ϕt(z̃)) ≤ d(ϕt−τn(0)+E(t0)[Gn(y)], ϕt−τn(0)+E(t0)[Gn(z)])+

d(ϕt−τn(0)+E(t0)[Gn(z)], ϕt−τn(0)+E(t1)[Gn(z)])

≤ sup 
|ζ|≤1

Lip(ϕζ)d(Gn(y), Gn(z)) + ‖X‖C0 |E(t0)− E(t1)|

≤
[
6ps sup 

|ζ|≤1
Lip(ϕζ) + 2ε‖X‖C0

]
e−

χ inf(rΛ)
2 n ≤ e−

χ inf(rΛ)
2 n

for ε > 0 small. Since t ≤ τn(0) ≤ n sup(rΛ), we get that d(ϕt(ỹ), ϕt(z̃)) ≤
e
− χ inf(rΛ) 

2 sup(rΛ) t. □
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We note two important facts. Firstly, the choice of Δ(0) = 0 is arbitrary: given 
y = Ψx(t, F (t)) ∈ V s, we can choose Δ so that Δ(t) = 0. The resulting smooth curve 
Ṽ s � y also satisfies Proposition 4.8.

The second is more relevant. Given y ∈ V s = V s[v], lift V s to Ṽ s � y, and let ẽsy
be a unitary vector tangent to Ṽ s at y (it is defined up to a sign). By construction, the 
projection of ẽsy in the flow direction is a multiple of ñs

y. Taking the angle ∠(Ny, X(y))
into account, we can prove that dϕtẽsy contracts exponentially fast as t → +∞, i.e. 
lim sup
t→+∞ 

1
t log ‖dϕtẽsy‖ < 0 (just a lim sup, not necessarily a lim). The same holds for 

u--admissible manifolds V u[v]. Therefore, given an ε--gpo v = {Ψps
n,p

u
n

xn }n∈Z, if V s[v] ∩
V u[v] = {x}, there are two smooth curves Ṽ s, Ṽ u passing through x satisfying the 
following:

◦ If ẽsx is a unitary vector tangent to Ṽ s at x, then lim sup
t→+∞ 

1
t log ‖dϕtẽsx‖ < 0.

◦ If ẽux is a unitary vector tangent to Ṽ u at x, then proceeding as in [36, Prop. 6.5] we 
show that lim sup

t→+∞ 
1
t log ‖dϕtẽux‖ > 0.2

These two properties above uniquely define the directions ẽsx, ẽux (up to a sign). Therefore 
we can consider α(x), s(x), u(x), although we do not know that s(x), u(x) are finite. 
Remember that ñs

x, ñ
u
x ∈ Nx, the tangent vectors to V s, V u at x, are the projections of 

ẽsx, ẽ
u
x in the flow direction.

We finish this section proving another property about invariant manifolds.

Proposition 4.9. The following holds for ε > 0 small enough. Let v+ = {vn}n≥0 and 
w = {wn}n≥0 be positive ε--gpo’s, with v0 = Ψps,pu

x and w0 = Ψqs,qu

x . Then either 
V s[v+], V s[w+] are disjoint or one contains the other.

Proof. For C1+β surface diffeomorphism, this is [36, Prop. 6.4]. We apply a similar idea, 
using Proposition 4.8. Write V s = V s[v+] and Us = V s[w+]. If V s ∩ Us = ∅, we are 
done, so assume there is z ∈ V s ∩Us. Assuming without loss of generality that qs ≤ ps, 
we will prove that Us ⊂ V s. The proof will follow from three claims as in [36, Prop. 
6.4]. Write v+ = {Ψps

n,p
u
n

xn }n≥0. We continue using the same terminology of the previous 
proposition, with g+

xn
= ϕTn for n ≥ 0, G0 = Id, and Gn = g+

xn−1
◦ · · · ◦ g+

x0
for n ≥ 1.

Claim 1: If n is large enough then Gn(V s) ⊂ Ψxn
(R[ 12Q(xn)]).

Proof of Claim 1. Same as [36, Prop. 6.4], using that the representation of g+
xn

in Pesin 
charts satisfies Theorem 3.8’. □

Claim 2: If n is large enough then Gn(Us) ⊂ Ψxn
(R[Q(xn)]).

2 One important ingredient in the proof of [36, Prop. 6.5] is the estimate ps
n+1 ∧ pu

n+1 ≤ eε(ps
n ∧ pu

n). We 
have a similar result, by Lemma 4.2.
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Proof of Claim 2. Lift Us to a curve Ũs passing through z and satisfying Proposition 4.8. 
Fix n ≥ 0, and let tn =

∑n−1
k=0 Tk(Gk(z)) be the total flow time of z under Gn. Let 

zn = Gn(z) = ϕtn(z). If D ⊂ Λ̂ is the disc containing xn then

Gn(Us) = qD[ϕtn(Ũs)].

Let c := inf(rΛ)2/2 sup(rΛ). Since qD is 2--Lipschitz (Lemma 2.1(2)), Lemma 2.4 and 
Proposition 4.8 imply that

diam(Gn(Us)) = diam(qD[ϕtn(Ũs)]) ≤ 2diam(ϕtn(Ũs)) ≤ 2e−
χ inf(rΛ) 
2 sup(rΛ) tn ≤ 2e−χcn,

since tn ≥ inf(rΛ)n. Hence Ψ−1
xn

[Gn(Us)] is contained in the ball with center Ψ−1
xn

(zn) and 
radius 4‖C(xn)−1‖e−χcn. Since by Claim 1 we have Ψ−1

xn
(zn) ∈ R[ 12Q(xn)], it is enough 

to prove that 4‖C(xn)−1‖e−χcn < 1
2Q(xn). Using that Q(xn) < ‖C(xn)−1‖−1, we just 

need to prove that 8Q(xn)−2e−χcn < 1. We claim that Q(xn)−2e−χcn converges to zero 
exponentially fast as n increases. Indeed, by Lemma 4.2 we have Q(xn) ≥ psn ∧ pun ≥
e−2εn(ps0 ∧ pu0 ) and so

Q(xn)−2e−χcn ≤ e4εn(ps0 ∧ pu0 )−2e−χcn = (ps0 ∧ pu0 )−2e−(χc−4ε)n

which converges to zero if ε > 0 is small enough. □

By Theorem 4.5(1), we conclude that Gn(Us) ⊂ V s[{Ψps
k,p

u
k

xk }k≥n] for every n large 
enough.

Claim 3: Us ⊂ V s.

Proof of Claim 3. Fix n large enough so that Gn(Us) ⊂ V s[{Ψps
k,p

u
k

xk }k≥n], and proceed 
as in Claim 3 of [36, Prop. 6.4]. □

The proof of the proposition is complete. □

5. First coding

Up to now, we have fixed ϕ, χ, ρ,Λ, Λ̂, θ, ε such that ε � ρ � 1, and we have con
structed invariant manifolds for ε--gpo’s. We also defined shadowing. In this section, 
we:

◦ Construct a countable family of ε--double charts whose ε--gpo’s they define shadow 
the whole set Λ ∩NUH#.
◦ Define a first coding, that is usually infinite-to-one.
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5.1. Coarse graining

This self-contained section comprises an important part of this work that cannot be 
obtained using the methods of [36,28,27]. Indeed, condition (GPO2) in our definition 
of edge between ε--double charts is a set of inequalities, so we need to show it is loose 
enough to shadow all points of Λ∩NUH#. The proof of this fact requires an analysis of 
orbits at hyperbolic times, where parameters are essentially uniquely defined.

Theorem 5.1 (Coarse graining). For all 0 < ε � ρ � 1, there exists a countable family 
A of ε--double charts with the following properties:

(1) Discreteness: For all t > 0, the set {Ψps,pu

x ∈ A : ps, pu > t} is finite.
(2) Sufficiency: If x ∈ Λ∩NUH# then there is a regular ε--gpo v ∈ A Z that shadows 

x.
(3) Relevance: For each v ∈ A , ∃v ∈ A Z an ε--gpo with v0 = v that shadows a point 

in Λ ∩NUH#.

Recall that v = {vn}n∈Z is regular if there are v, w such that vn = v for infinitely many 
n > 0 and vn = w for infinitely many n < 0. According to Proposition 3.5 and part (2) 
above, the ε--gpo’s in A shadow almost every point with respect to every χ--hyperbolic 
measure.

Proof. When M is a closed surface and f is a diffeomorphism, the above statement is 
consequence of Propositions 3.5, 4.5 and Lemmas 4.6, 4.7 of [36]. When M is a compact 
surface with boundary and f is a local diffeomorphism with bounded derivatives, this 
is Proposition 4.3 of [28]. When M is a surface and f is a local diffeomorphism with 
unbounded derivatives, this is Theorem 5.1 of [27]. Our proof follows a similar strategy 
of [36,28] but the implementation is significantly harder, since the definition of edge is 
more complicated. In particular, we need to control the cumulative shear between an 
orbit and an ε--gpo.

Let N0 = N ∪ {0}, and let X := Λ3 × GL(2,R)3 × (0, 1]. For x ∈ Λ ∩ NUH#, let 
Γ(x) = (x,C,Q) ∈ X with

x = (f−1(x), x, f(x)), C = (C(f−1(x)), C(x), C(f(x))), Q = (Q(x), q(x)).

Let Y = {Γ(x) : x ∈ Λ ∩ NUH#}. We want to construct a countable dense subset 
of Y . Since the maps x �→ C(x), Q(x), q(x) are usually just measurable, we apply a 
precompactness argument. For each 
 = (
−1, 
0, 
1) ∈ N3

0 and m, j ∈ N0, define

Y�,m,j :=

⎧⎪⎨⎪⎩Γ(x) ∈ Y :
e�i ≤ ‖C(f i(x))−1‖ < e�i+1, −1 ≤ i ≤ 1

e−m−1 ≤ Q(x) < e−m

e−j−1 ≤ q(x) < e−j

⎫⎪⎬⎪⎭ .
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Claim 1: Y =
⋃

�∈N3
0

m,j∈N0

Y�,m,j , and each Y�,m,j is precompact in X.

Proof of Claim 1. The first statement is clear. We focus on precompactness. Fix 
 ∈ N3
0 , 

m, j ∈ N0, and take Γ(x) ∈ Y�,m,j . Then x ∈ Λ3, a precompact subset of M3. For |i| ≤ 1, 
C(f i(x)) is an element of GL(2,R) with norm ≤ 1 and inverse norm ≤ e�i+1, hence it 
belongs to a compact subset of GL(2,R). This guarantees that C belongs to a compact 
subset of GL(2,R)3. Also, Q ∈ [e−m−1, 1] × [e−j−1, 1], a compact subinterval of (0, 1]. 
Since the product of precompact sets is precompact, the claim is proved. □

By Claim 1, there exists a finite set Z�,m,j ⊂ Y�,m,j such that for every Γ(x) ∈ Y�,m,j

there exists Γ(y) ∈ Z�,m,j with:

(a) d(f i(x), f i(y)) + ‖ ˜︂C(f i(x))− ˜︂C(f i(y))‖ < 1
2q(x)8, |i| ≤ 1.

(b) Q(x)
Q(y) = e±ε/3 and q(x)

q(y) = e±ε/3.

A fortiori, (a) implies that f i(x), f i(y) belong to the same disc of Λ, for |i| ≤ 1. For 
η > 0, let Iε,η := {e−ε2ηk : k ≥ 0}, a countable discrete set whose ``thickness'' depends 
on η.

The alphabet A : Let A be the countable family of Ψps,pu

x such that:

(CG1) Γ(x) ∈ Z�,m,j for some (
,m, j) ∈ N3
0 ×N0 ×N0.

(CG2) 0 < ps, pu ≤ εQ(x) and ps, pu ∈ Iε,q(x).
(CG3) e−H−1 ≤ ps∧pu

q(x) ≤ eH+1, where H is given by Proposition 3.6(1).

Proof of discreteness. Fix t > 0, and let Ψps,pu

x ∈ A with ps, pu > t. If Γ(x) ∈ Z�,m,j

then:

◦ Finiteness of 
: we have e�0 ≤ ‖C(x)−1‖ < Q(x)−1 < t−1, hence 
0 < | log t|. By 
Lemma 3.2(3), for i = ±1 we have

e�i ≤ ‖C(f i(x))−1‖ ≤ ‖C(f i(x))−1‖Frob ≤ e18ρ‖C(x)−1‖Frob < e18ρt−1,

hence 
−1, 
1 < 18ρ + | log t| =: Tt, which is bigger than | log t|.
◦ Finiteness of m: e−m > Q(x) > t, hence m < | log t|.
◦ Finiteness of j: e−j > q(x) ≥ e−H−1(ps ∧ pu) > e−H−1t, hence j ≤ | log t|+ H + 1.

Therefore

#
{

Γ(x) : Ψps,pu

x ∈ A s.t. ps, pu > t
}
≤

�| log t|+H�+1∑
j=0 

�| log t|�∑
m=0 

Tt∑
−1≤i≤1
�i=0 

#Z�,m,j
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is the finite sum of finite terms, hence finite. For each such Γ(x),

#{(ps, pu) : Ψps,pu

x ∈ A s.t. ps, pu > t} ≤ (#Iε,q(x) ∩ (t, 1))2

is finite, hence

#
{

Ψps,pu

x ∈ A : ps, pu > t
}
≤

�| log t|+H�+1∑
j=0 

�| log t|�∑
m=0 

Tt∑
−1≤i≤1
�i=0 

∑
Γ(x)∈Z�,m,j

(#Iε,q(x) ∩ (t, 1))2

is the finite sum of finite terms, hence finite. This proves the discreteness of A .

Proof of sufficiency. Let x ∈ Λ ∩NUH#. Take (
i)i∈Z, (mi)i∈Z, (ji)i∈Z such that:

‖C(f i(x))−1‖ ∈ [e�i , e�i+1), Q(f i(x)) ∈ [e−mi−1, e−mi),

q(f i(x)) ∈ [e−ji−1, e−ji).

For n ∈ Z, let 
(n) = (
n−1, 
n, 
n+1). Then Γ(fn(x)) ∈ Y�(n),mn,jn
. Take Γ(xn) ∈

Z�(n),mn,jn
such that:

(an) d(f i(fn(x)), f i(xn)) + ‖ ˜︂C(f i(fn(x)))− ˜︂C(f i(xn))‖ < 1
2q(f

n(x))8, |i| ≤ 1.
(bn) Q(fn(x))

Q(xn) = e±ε/3 and q(f
n(x))

q(xn) = e±ε/3.

From now on the proof differs from [36,28,27]. Take {tn}n∈Z such that fn(x) = ϕtn(x), 
with t0 = 0 and g+

xn
[fn(x)] = ϕtn+1−tn [fn(x)]. Define

P s
n := ε inf{eε|tn+k−tn|Q(xn+k) : k ≥ 0},

Pu
n := ε inf{eε|tn+k−tn|Q(xn+k) : k ≤ 0}.

There is no reason for ΨP s
n,P

u
n

xn belonging to A nor for {ΨP s
n,P

u
n

xn }n∈Z being an ε--gpo. 
Indeed, with the above definitions one of the inequalities in (GPO2) holds in the reverse 
direction. To satisfy (GPO2), we will slightly decrease each P s

n, P
u
n . Below we show how 

to make this ``surgery'' for P s
n (the method for Pu

n is symmetric).
Start noting the greedy recursion P s

n = min{eε(tn+1−tn)P s
n+1, εQ(xn)} and that

P s
n = e±

ε 
3 ε inf{eε|tn+k−tn|Q(fn+k(x)) : k ≥ 0} = e±

ε 
3 ps(x, T , n) = e±

(
H+ ε 

3
)
qs(fn(x)),

by (bn) above and Proposition 3.6(1), where T = {tn}n∈Z. We fix λ := exp[ε1.5] and 
divide the indices n ∈ Z into two groups:

n is growing if P s
n ≥ λP s

n+1 and it is maximal otherwise.
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Note that λ has an exponent with order smaller than ε. The definition of growing/max
imal indices is motivated by the following: the parameter P s

n gives a choice on the size 
of the stable manifold at xn, therefore we expect P s

n to be larger than P s
n+1 at least by 

a multiplicative factor bigger than λ, unless it reaches the maximal size εQ(xn). In the 
first case the index is growing, and in the second it is maximal. Assuming that ε > 0 is 
sufficiently small, we note two properties of this notion:

◦ If n is maximal then P s
n = εQ(xn): otherwise P s

n = eε(tn+1−tn)P s
n+1 ≥ eε inf(rΛ)P s

n+1 >

λP s
n+1, which contradicts the assumption that n is maximal.

◦ There are infinitely many maximal indices n > 0, and infinitely many maximal 
indices n < 0: the first claim follows exactly as in the proof of Proposition 3.6(3) 
(remember we are assuming that x ∈ NUH# and so lim sup

n→+∞ 
P s
n > 0). The second 

claim follows from direct computation: if there is n0 such that every n < n0 is 
growing then P s

n ≥ λn0−nP s
n0

for all n < n0, which cannot hold since λn0−n →∞ as 
n→ −∞.

We define psn = anP
s
n where e−ε < an ≤ 1 are appropriately chosen. We first define 

an for the maximal indices n ∈ Z as the largest value in (0, 1] with anP s
n ∈ Iε,q(xn). In 

particular, e−ε2q(xn) ≤ an ≤ 1. Then we define an for the growing indices. Fix two con
secutive maximal indices n < m and define an+1, . . . , am−1 with a backwards induction 
as follows. If n < k < m and ak+1 is well-defined then we choose ak largest as possible 
satisfying:

(i) e−
ε 
4P

s
k ak+1 ≤ e

ε 
4P

s
k ak ≤ ak+1;

(ii) akP
s
k ∈ Iε,q(xk).

This choice is possible because the interval (e− ε 
4P

s
k ak+1, ak+1] intersects Iε,q(xk), since 

ε 
4P

s
k ≥ ε 

4e
−
(
H+ ε 

3
)
qs(fk(x)) ≥ ε 

4e
−
(
H+ ε 

3
)
q(fk(x)) ≥ ε 

4e
−
(
H+ 2ε

3 
)
q(xk) > ε2q(xk). The first 

condition implies that 0 < an+1 ≤ · · · ≤ am−1 ≤ am ≤ 1. The maximality on the choice 
of ak indeed implies the inequality e−ε2q(xk)ak+1 ≤ e

ε 
4P

s
k ak ≤ ak+1 for every growing k

(this is stronger than (i)).
Before continuing, we collect some estimates relating q(xk), P s

k , p
s
k. Fix two consecutive 

maximal indices n < m. Then the following holds for all ε > 0 small enough:

◦
m ∑

k=n+1

P s
k < ε

3 
β−1: every k = n+ 1, . . . ,m− 1 is growing, thus P s

k ≤ λn+1−kP s
n+1 for 

k = n + 1, . . . ,m. This implies that

m ∑
k=n+1

P s
k ≤ P s

n+1

m−n−1∑
i=0 

λ−i < ε
3 
β +1 1 

1− λ−1 < 2ε
3 
β−0.5 < ε

3 
β−1,
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since lim 
ε→0

ε1.5

1−λ−1 = 1.

◦
m ∑

k=n+1

q(xk) < ε
3 
β−1: by the previous item,

m ∑
k=n+1

q(xk) ≤ eH+ 2ε
3 

m ∑
k=n+1

P s
k < 2eH+ 2ε

3 ε
3 
β−0.5 < ε

3 
β−1.

◦ an+1 > λ−1: using that am ≥ e−ε2q(xm) > e−εP s
m and that e−εP s

k ak+1 ≤ ak for every 
growing k, we have

an+1 ≥ exp
[
−ε

m−1 ∑
k=n+1

P s
k

]
am ≥ exp

[
−ε

m ∑
k=n+1

P s
k

]
> exp

[
−ε 3 

β

]
> λ−1,

since ε
3 
β < ε1.5.

In particular, ak > λ−1 > e−ε for all k ∈ Z.

Claim 2: Ψps
n,p

u
n

xn ∈ A for all n ∈ Z.

Proof of Claim 2. We have to check (CG1)--(CG3).

(CG1) By definition, Γ(xn) ∈ Z�(n),mn,jn
.

(CG2) We have psn ≤ P s
n ≤ εQ(xn), and the same holds for pun. By definition, psn, pun ∈

Iε,q(xn).

(CG3) Since e−ε < an ≤ 1 and P s
n = e±

(
H+ 2ε

3 
)
qs(xn), we have e−H−2ε ≤ ps

n

qs(xn) ≤ eH+ε. 
By the same reason, −H−2ε ≤ pu

n

qu(xn) ≤ eH+ε. These inequalities imply that e−H−2ε ≤
ps
n∧pu

n

q(xn) ≤ eH+ε and so e−H−1 ≤ ps
n∧pu

n

q(xn) ≤ eH+1. □

Claim 3: Ψps
n,p

u
n

xn

ε → Ψps
n+1,p

u
n+1

xn+1 for all n ∈ Z.

Proof of Claim 3. We have to check (GPO1)--(GPO2).

(GPO1) By (an) with i = 1 and (an+1) with i = 0, we have

d(f(xn), xn+1) + ‖ ˜︂C(f(xn))− ˜︂C(xn+1)‖

≤ d(fn+1(x), f(xn)) + ‖ ˜︂C(fn+1(x))− ˜︂C(f(xn))‖

+ d(fn+1(x), xn+1) + ‖ ˜︂C(fn+1(x))− ˜︂C(xn+1)‖

< 1
2q(f

n(x))8 + 1
2q(f

n+1(x))8
! 
≤ 1

2 (1 + e8ε)q(fn+1(x))8

!! 
≤ 1

2e
8H+ 56ε

3 (1 + e8ε)(psn+1 ∧ pun+1)8
!!! 
< (psn+1 ∧ pun+1)8,
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where in 
! 
≤ we used Lemma 3.4, in 

!! 
≤ we used (bn) and the estimate used to prove (CG3) 

in the previous paragraph, and in 
!!! 
< we used that 1

2e
8H+ 56ε

3 (1 + e8ε) < 1 when ε, ρ > 0
are sufficiently small. This proves that Ψps

n+1∧pu
n+1

f(xn)
ε ≈ Ψps

n+1∧pu
n+1

xn+1 . Similarly, we prove 

that Ψps
n∧pu

n

f−1(xn+1)
ε ≈ Ψps

n∧pu
n

xn .

(GPO2) We show that relation (4.1) holds for all k ∈ Z:

e−εps
k min{eεT (vk,vk+1)psk+1, e

−εεQ(xk)} ≤ psk ≤ min{eεT (vk,vk+1)psk+1, εQ(xk)}.

Relation (4.2) is proved similarly. For ease of notation, write Tk = T (vk, vk+1) and 
Δk = (tk+1−tk)−Tk. Since Tk is the minimal time, we have Δk ≥ 0. Using Lemma 2.1(3), 
condition (an) and Remark 4.1, we also have the following upper bound for Δk:

Δk ≤ diam(R[ 1 
15 (psk ∧ puk)]) =

√
2

15 (p
s
k ∧ puk) < ps

k

4 ·

We fix two consecutive maximal indices n < m and establish the above inequality for 
k = n, . . . ,m − 1. We divide the proof into two cases: k = n and k �= n. Assume first 
that k = n. For ε > 0 small enough (remember an+1 > λ−1),

eεTnpsn+1 = eεTnan+1P
s
n+1 > exp

[
inf(rΛ)ε− ε1.5]P s

n+1 > λP s
n+1 > P s

n = εQ(xn).

Therefore

e−εps
n min{eεTnpsn+1, e

−εεQ(xn)} = e−εps
ne−εεQ(xn) < e−εεQ(xn) < anP

s
n = psn

and

min{eεTnpsn+1, εQ(xn)} = εQ(xn) = P s
n ≥ psn.

This proves (4.1) for k = n.
Now let k �= n, and call I = min{eεTkpsk+1, e

−εεQ(xk)}, II = min{eεTkpsk+1, εQ(xk)}. 
We wish to show that e−εps

kI ≤ psk ≤ II. Since ak+1 ≥ e−εΔkak+1 > exp
[
−εps

k

4 − ε1.5
]
>

exp[−ε], we have

I = min{e−εΔkak+1e
ε(tk+1−tk)P s

k+1, e
−εεQ(xk)}

≤ ak+1 min{eε(tk+1−tk)P s
k+1, εQ(xk)} = ak+1P

s
k .

Therefore e−εps
kI ≤ e−

ε 
2P

s
k ak+1P

s
k ≤ akP

s
k = psk, where in the second inequality we used 

property (i) in the definition of ak.
For the other inequality, start observing that

psk = akP
s
k = ak min{eε(tk+1−tk)P s

k+1, εQ(xk)} = min{eε(tk+1−tk)akP
s
k+1, akεQ(xk)}.
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Clearly akεQ(xk) ≤ εQ(xk). Using that Δk ≤ P s
k

4 , we have eεΔkak ≤ e
ε 
4P

s
k ak ≤ ak+1, 

where in the last passage we used property (i) in the definition of ak. Hence

eε(tk+1−tk)akP
s
k+1 = eεTkeεΔkakP

s
k+1 ≤ eεTkak+1P

s
k+1 = eεTkpsk+1.

The conclusion is that psk ≤ II. The proof of Claim 3 is now complete. □

Claim 4: {Ψps
n,p

u
n

xn }n∈Z is regular.

Proof of Claim 4. Since x ∈ NUH# and ps
n∧pu

n

q(fn(x)) = e±(H+1), we have lim sup
n→+∞ 

psn ∧ pun > 0

and lim sup
n→−∞ 

psn∧pun > 0. By the discreteness of A , it follows that Ψps
n,p

u
n

xn repeats infinitely 

often in the future and infinitely often in the past. □

Claim 5: {Ψps
n,p

u
n

xn }n∈Z shadows x.

Proof of Claim 5. By (an) with i = 0, we have Ψps
n∧pu

n

fn(x)
ε ≈ Ψps

n∧pu
n

xn , hence by Proposi
tion 3.10(3) we have fn(x) = Ψfn(x)(0) ∈ Ψxn

(R[psn ∧ pun]), thus {Ψps
n,p

u
n

xn }n∈Z shadows 
x. This concludes the proof of sufficiency. □

Proof of relevance. The alphabet A might not a priori satisfy the relevance condition, 
but we can easily reduce it to a sub-alphabet A ′ satisfying (1)--(3). Call v ∈ A relevant 
if there is v ∈ A Z with v0 = v such that v shadows a point in Λ∩NUH#. Since NUH# is 
ϕ--invariant, every vi is relevant. Hence A ′ = {v ∈ A : v is relevant} is discrete because 
A ′ ⊂ A , it is sufficient and relevant by definition. □

5.2. First coding

Let Σ be the TMS associated to the graph with vertex set A given by Theorem 5.1
and edges v ε → w. An element v ∈ Σ is an ε--gpo, so let π : Σ→ Λ̂ by

{π(v)} := V s[v] ∩ V u[v].

Here are the main properties of the triple (Σ, σ, π).

Proposition 5.2. The following holds for all 0 < ε� ρ� 1.

(1) Each v ∈ A has finite ingoing and outgoing degree, hence Σ is locally compact.
(2) π : Σ→ Λ̂ is Hölder continuous.
(3) π[Σ#] ⊃ Λ ∩NUH#.

Part (1) follows from Lemma 4.2 and Theorem 5.1(1), part (2) follows from The
orem 4.5(5), and part (3) follows from Theorem 5.1(2). It is important noting that 
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(Σ, σ, π) is not the TMS that satisfies the Main Theorem, since π might be (and usually 
is) infinite-to-one. We use π to induce a locally finite cover of Λ∩NUH#, which will then 
be refined to generate a new TMS whose TMF is the one satisfying the Main Theorem.

We finish this section introducing the TMF generated by (Σ, σ, π). Remember that 
rΛ : Λ→ (0, ρ/2] is the first return time to Λ.

The roof function r : Σ → (0, ρ): Given v = {Ψps
n,p

u
n

xn }n∈Z ∈ Σ, let x = π(v) and 
assume that x1 belongs to the disc D ⊂ Λ̂. Define r(v) := rΛ(x0)− tD[ϕrΛ(x0)(x)].

Since g+
x0

= qD ◦ ϕrΛ(x0), r(v) is the time increment for ϕ between the points π(v)
and g+

x0
[π(v)]. In particular, ϕr(v)[π(v)] = π[σ(v)] belongs to Λ̂ but not necessarily to Λ. 

(Note: even if π(v), ϕr(v)[π(v)] ∈ Λ, the values of r(v) and rΛ[π(v)] may be different.)

The triple (Σr, σr, πr): We take (Σr, σr) to be the TMF associated to the TMS (Σ, σ)
and roof function r, and πr : Σr →M to be the map defined by πr[(v, t)] = ϕt[π(v)].

The next proposition collects the main properties of (Σr, σr, πr).

Proposition 5.3. The following holds for all 0 < ε� ρ� 1.

(1) πr ◦ σt
r = ϕt ◦ πr, for all t ∈ R.

(2) πr is Hölder continuous with respect to the Bowen-Walters distance.
(3) πr[Σ#

r ] ⊃ NUH#.

Proof. Part (1) is direct from the definition of πr. The proof of Part (2) uses Proposi
tion 5.2(2), and follows by the same methods used in the proof of [28, Lemma 5.9]. To 
prove part (3), let S := Σ# × {0} ⊂ Σ#

r . By Proposition 5.2(3), πr[S] ⊃ Λ ∩ NUH#. 
Since πr[Σ#

r ] =
⋃
t∈R

ϕt[πr(S)] and NUH# =
⋃
t∈R

ϕt[Λ ∩ NUH#], we get that πr[Σ#
r ] ⊃

NUH#. □

6. Inverse theorem

In the previous section, we have constructed a first coding π : Σ→ Λ̂. As mentioned, 
it is usually infinite-to-one. In this section, we investigate how π loses injectivity: if 
v ∈ Σ and x = π(v), what is the relation between the parameters defining v and those 
associated to the orbit of x? Our goal is to analyze this as an inverse problem: fixed 
x ∈ Λ̂, the parameters of v are defined ``up to bounded error''. The answer to this inverse 
problem is what we call an inverse theorem. From now on, we require that v ∈ Σ#, where 
Σ# is the regular set of Σ:

Σ# :=
{
v ∈ Σ : ∃v, w ∈ V s.t. vn = v for infinitely many n > 0

vn = w for infinitely many n < 0

}
.
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Recall r : Σ→ (0, ρ), the roof function defined before Proposition 5.3. Let rn denote 
its n--th Birkhoff sum with respect to the shift map σ : Σ→ Σ. Let v = {Ψps

n,p
u
n

xn }n∈Z ∈ Σ, 
and let x = π(v). Then:

◦ ϕrn(v)(x) = π[σn(v)], a point in Λ̂ that is close to xn.
◦ g+

xn
[ϕrn(v)(x)] = ϕrn+1(v)(x).

Let ps/u(ϕrn(v)(x)) be the Z--indexed version of the parameter qs/u with respect to the 
sequence of times {rn(v)}n∈Z (see Section 3.5 for the definition).

Theorem 6.1 (Inverse theorem). The following holds for all 0 < ε � ρ � 1. If v =
{Ψps

n,p
u
n

xn }n∈Z ∈ Σ# and x = π(v), then x ∈ NUH# and the following are true.

(1) d(ϕrn(v)(x), xn) < 50−1(psn ∧ pun).
(2) sinα(xn) 

sinα(ϕrn(v)(x)) = e±(ps
n∧pu

n)β/4 , | cosα(xn)− cosα(ϕrn(v)(x))| < 2(psn ∧ pun)β/4.
(3) s(xn) 

s(ϕrn(v)(x)) = e±
√
ε and u(xn) 

u(ϕrn(v)(x)) = e±
√
ε.

(4) Q(xn) 
Q(ϕrn(v)(x)) = e±

3√ε.
(5) ps

n

ps(ϕrn(v)(x)) = e±
3√ε and pu

n

pu(ϕrn(v)(x)) = e±
3√ε.

(6) Ψ−1
xn
◦Ψϕrn(v)(x) and Ψ−1

ϕrn(v)(x) ◦Ψxn
can be written in the form (−1)σv + δ + Δ(v)

for v ∈ R[10Q(ϕrn(v)(x))], where σ ∈ {0, 1}, δ is a vector with ‖δ‖ < 50−1(ps0 ∧ pu0 )
and Δ is a vector field such that Δ(0) = 0 and ‖dΔ‖C0 < 3

√
ε on R[10Q(ϕrn(v)(x))].

Part (1) is a direct consequence of Lemma 4.7. Indeed, since ϕrn(v)(x) = π[σn(v)], 
this point is the intersection of a s--admissible and a u--admissible manifold at Ψps

n,p
u
n

xn . 
By Lemma 4.7(1) and since Pesin charts are 2--Lipschitz, we get that d(ϕrn(v)(x), xn) <
50−1(psn ∧ pun).

6.1. An improvement lemma

This section comprises the core of the proof that x ∈ NUH and of part (3) above. It 
states that the graph transforms F s/Fu improve the ratios of s/u--parameters, therefore 
we call it an improvement lemma.

Lemma 6.2 (Improvement lemma). The following holds for all 0 < ε � ρ � 1. Let 
v

ε → w with v = Ψps,pu

x , w = Ψqs,qu

y , let W s ∈M s[w] be the stable manifold of a positive 
ε--gpo, and let V s = F s

v,w(W s), then:

(1) If s(z) <∞ for some (every) z ∈W s, then s(z′) <∞ for every z′ ∈ V s.
(2) Let z ∈ W s with g−y (z) ∈ V s. For ξ ≥ √ε, if s(z) 

s(y) = e±ξ then 
s(g−

y (z))
s(x) =

e±(ξ−Q(y)β/4).
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We note that the ratio improves.

Proof. When M is a closed surface and f is a C1+β diffeomorphism, this is [36, Lemma 
7.2]. When M is a surface (possibly with boundary) and f is a local diffeomorphism with 
unbounded derivatives, this is [27, Lemma 6.3]. The main difference from these results 
to what we will do below is that our parameters s, u involve integrals instead of sums. 
So we need to be careful on how to split the integrals in a way that we can control each 
part reasonably. In the sequel, we will use the parallel transports Pz,y and the maps Ã
defined in the beginning of Section 1.2.3. We will also use estimate (2.1), which states 
that ‖Φt‖ = e±4ρ for |t| ≤ 2ρ.

Claim 1: ∃C = C(M,ϕ, θ) > 0 such that if z ∈ By and v ∈ TyΛ, w ∈ TzΛ with 
‖v‖ = ‖w‖ = 1 then for all |t| ≤ 2ρ:

|‖Φt(v)‖ − ‖Φt(w)‖| ≤ C[d(y, z)β + ‖v − Pz,yw‖] and∣∣∣∣ ‖Φt(v)‖ 
‖Φt(w)‖ − 1

∣∣∣∣ ≤ C[d(y, z)β + ‖v − Pz,yw‖].

In particular |log ‖Φt(v)‖ − log ‖Φt(w)‖| ≤ C[d(y, z)β + ‖v − Pz,yw‖].

Proof of Claim 1. The inequalities are direct consequences of the Hölder continuity of 
Φ, as follows: if C0 = C0(M,ϕ, θ) > 0 is a constant such that

|‖Φt(v)‖ − ‖Φt(w)‖| ≤ C0[d(y, z)β + ‖v − Pz,yw‖]

for all y, z, v, w as above, then the claim holds with C := e4ρC0. □

Now we start the proof of the lemma. We have g−y (y) = f−1(y), therefore 
s(g−

y (z))
s(x) =

s(g−
y (z)) 

s(g−
y (y)) ·

s(f−1(y))
s(x) . Since (ps ∧ pu)3(qs ∧ qu)3 � Q(y)β/4, Proposition 3.10(1) implies 

s(f−1(y))
s(x) = e±Q(y)β/4 . Thus it is enough to show that s(g

−
y (z)) 

s(g−
y (y)) = e±(ξ−2Q(y)β/4). We show 

one side of the inequality (the other is similar). Note that this is the term that gives the 
improvement.

Write g−y = ϕT− where T− is a C1+β function with T−(y) = −rΛ(f−1(y)). Then 

g−y (y) = ϕT−(y)(y) and g−y (z) = ϕT−(z)(z). For simplicity of notation, let t0 = −T−(y)
and t1 = −T−(z), then g−y (y) = ϕ−t0(y) and g−y (z) = ϕ−t1(z). In the proof of Lemma 3.2
(see Appendix A), we saw that

s(x)2 = 4e4ρ
t ∫

0 

e2χt′‖Φt′ns
x‖2dt′ + e2χt‖Φtns

x‖2s(ϕt(x))2

for x ∈ NUH and t ∈ R. Therefore we can decompose s(g−y (y))2 and s(g−y (z))2 as follows:
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s(g−y (y))2 = 4e4ρ
t0∫

0 

e2χt‖Φtns
g−
y (y)‖

2dt

︸ ︷︷ ︸
=:I1

+ e2χt0‖Φt0ns
g−
y (y)‖

2︸ ︷︷ ︸
=:I2

s(y)2 =: I1 + I2s(y)2

s(g−y (z))2 = 4e4ρ
t1∫

0 

e2χt‖Φtns
g−
y (z)‖

2dt

︸ ︷︷ ︸
=:I3

+ e2χt1‖Φt1ns
g−
y (z)‖

2︸ ︷︷ ︸
=:I4

s(z)2 =: I3 + I4s(z)2.

Using that ‖Φt0ns
g−
y (y)‖ = ‖Φ−t0ns

y‖−1 and an analogous equation for z, we have

I1 = 4e4ρ
t0∫

0 

e2χt‖Φ−tns
y‖−2dt , I2 = e2χt0‖Φ−t0ns

y‖−2,

I3 = 4e4ρ
t1∫

0 

e2χt‖Φ−tns
z‖−2dt , I4 = e2χt1‖Φ−t1ns

z‖−2.

Before continuing, we need to make some estimates.

Claim 2: d(y, z) < Q(y) and ‖ns
y − Pz,yn

s
z‖ < 4ε1/4Q(y)β/4.

Proof of Claim 2. We proceed as in [27, Lemma 6.3]. Let F,G be the representing func
tions of V s,W s respectively, and let z = Ψy(t, G(t)). Since Lip(G) < ε, we have 
‖
[

t
G(t)

]
‖ ≤ |t| + |G(t)| ≤ |t|(1 + Lip(G)) + |G(0)| ≤ (1 + ε)qs + 10−3(qs ∧ qu) < 2qs, 

therefore d(y, z) < 4qs ≤ 4εQ(y) < Q(y) for small ε > 0.
To bound the second term, we first estimate sin∠(ns

y, Pz,yn
s
z). Since ns

y is the unitary 

vector in the direction of d(Ψy)0
[
1
0

]
= d(expy)0 ◦ C(y)

[
1
0

]
and ns

z is the unitary vector 

in the direction of d(Ψy)(t,G(t))

[
1

G′(t)

]
= d(expy)C(y)

[
t

G(t)

] ◦ C(y)
[

1
G′(t)

]
, the angles they 

define are the same. In other words, if

A = ˜︂d(expy)0 ◦ C(y), B = ˜︂d(expy)C(y)
[

t
G(t)

] ◦ C(y), v1 =
[
1
0

]
, v2 =

[
1

G′(t)

]

then sin∠(ns
y, Pz,yn

s
z) = sin∠(Av1, Bv2). Using (A.3) with L = A, v = v1, w = A−1Bv2, 

we get

| sin∠(Av1, Bv2)| ≤ ‖A‖‖A−1‖| sin∠(v1, A
−1Bv2)|

≤ ‖C(y)−1‖
[
| sin∠(v1, v2)|+ | sin∠(v2, A

−1Bv2)|
]
.

We have | sin∠(v1, v2)| ≤ |G′(t)| ≤ (qs ∧ qu)β/3 ≤ Q(y)β/3. Also, by (Exp3):
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‖A−1B − Id‖ ≤ ‖A−1‖‖A−B‖ ≤ ‖C(y)−1‖
∥∥∥∥∥ ˜︂d(expy)0 − ˜︂d(expy)C(y)

[
t

G(t)

]
∥∥∥∥∥

≤ 2Kqs‖C(y)−1‖ ≤ 2Kε1/4Q(y)1−β/12 < 1
4Q(y)β/3 � 1.

This implies that v2, A
−1Bv2 are almost unitary vectors, therefore

| sin∠(v2, A
−1Bv2)| ≤ 2‖v2 −A−1Bv2‖ ≤ 4‖A−1B − Id‖ < Q(y)β/3,

and so | sin∠(ns
y, Pz,yn

s
z)| < 2‖C(y)−1‖Q(y)β/3. Since ‖ns

y‖ = ‖Pz,yn
s
z‖ = 1 and the 

angle between them is small, we conclude that for small ε > 0:

‖ns
y − Pz,yn

s
z‖ ≤ 2| sin∠(ns

y, Pz,yn
s
z)| < 4‖C(y)−1‖Q(y)β/3 ≤ 4ε1/4Q(y)β/4. □

Claim 3: I1
I3

= exp[±Q(y)β/4] and I2I4 = exp[±Q(y)β/4].

Proof of Claim 3. We first bound I1I3 . Since t0, t1 ≥ inf(rΛ)
2 , we have I1, I3 ≥ 4e4ρ inf(rΛ)

2 
e−8ρ = 2e−4ρ inf(rΛ) are uniformly bounded away from zero. We have

I1 − I3 = 4e4ρ
t0∫

0 

e2χt(‖Φ−tns
y‖−2 − ‖Φ−tns

z‖−2)dt− 4e4ρ
t1∫

t0

e2χt‖Φ−tns
z‖−2dt

We estimate each integral separately.

◦ By Claims 1 and 2:

4e4ρ
t0∫

0 

e2χt (‖Φ−tns
y‖−2 − ‖Φ−tns

z‖−2) dt ≤ 4e4ρ
t0∫

0 

e2ρ2e12ρ ∣∣‖Φ−tns
y‖ − ‖Φ−tns

z‖
∣∣ dt

≤ 8ρe18ρC[d(y, z)β + ‖ns
y − Pz,yn

s
z‖] ≤ 16ρe18ρCQ(y)β/3 < ε1/8Q(y)β/4.

◦ By Lemma 2.1(3) and the proof of Claim 2:

4e4ρ
t1∫

t0

e2χt‖Φ−tns
z‖−2dt ≤ 4e14ρ|t1 − t0| ≤ 4e14ρd(y, z) < 16e14ρεQ(y) < Q(y).

Therefore |I1 − I3| < ε1/8Q(y)β/4 + Q(y) < 2ε1/8Q(y)β/4, and so∣∣∣ I1I3 − 1
∣∣∣ < [2e−4ρ inf(rΛ)]−12ε1/8Q(y)β/4 < 1

2Q(y)β/4.

Since e−2t < 1 − t < 1 + t < e2t for small t > 0, the above inequality implies that 
I1
I3

= exp[±Q(y)β/4].
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The estimate of I2I4 is easier. We have I4I2 = e2χ(t1−t0) ‖Φ
−t0ns

y‖2

‖Φ−t1ns
z‖2 , and:

◦ 2χ(t1 − t0) = ±4χd(y, z) = ±4χQ(y) = ±1
4Q(y)β/4, hence e2χ(t1−t0) = 

exp[±1
4Q(y)β/4].

◦ By Claim 1,∣∣∣‖Φ−t0ns
y‖

‖Φ−t0ns
z‖ − 1

∣∣∣ ≤ C[d(y, z)β + ‖ns
y − Pz,yn

s
z‖] < 2CQ(y)β/3 < 1

8Q(y)β/4,

therefore 
‖Φ−t0ns

y‖
‖Φ−t0ns

z‖ = exp[±1
4Q(y)β/4] and so 

‖Φ−t0ns
y‖2

‖Φ−t0ns
z‖2 = exp[±1

2Q(y)β/4].

These two items together imply that I2I4 = exp[±Q(y)β/4]. □

Now we complete the proof of the lemma. By Claim 3, we can write 
s(g−

y (z))2

s(g−
y (y))2 =

I3+I4s(z)2
I1+I2s(y)2 = exp[±Q(y)β/4] I1+I2s(z)2

I1+I2s(y)2 . Since we want to show that s(g
−
y (z))2

s(g−
y (y))2 = exp[±(2ξ−

4Q(y)β/4)], it remains to prove that I1+I2s(z)2
I1+I2s(y)2 = exp[±(2ξ − 5Q(y)β/4)]. We show one 

side of the inequality and leave the other to the reader. By assumption, s(z) ≤ eξs(y), 
hence

I1+I2s(z)2
I1+I2s(y)2 ≤

I1+e2ξI2s(y)2
I1+I2s(y)2 = e2ξ − I1(e2ξ−1) 

I1+I2s(y)2 = e2ξ
[
1− I1(1−e−2ξ)

I1+I2s(y)2

]
.

It is enough to show that I1(1−e−2ξ)
I1+I2s(y)2 > 5Q(y)β/4, since this implies

e2ξ
[
1− I1(1−e−2ξ)

I1+I2s(y)2

]
< e2ξ(1− 5Q(y)β/4) < e2ξ−5Q(y)β/4

.

Note that:

◦ I1 ≥ 2e−4ρ inf(rΛ), as established in the proof of Claim 3.
◦ 1− e−2ξ ≥ 1− e−2ε1/2

> ε1/2 when ε > 0 is small enough.
◦ Since sup(rΛ) < 1, we have I1 < 4e14ρ and I2 ≤ e10ρ. Since s(y) ≥

√
2, it follows 

that I1 + I2s(y)2 < 5e14ρs(y)2.

Altogether, we get that

I1(1−e−2ξ)
I1+I2s(y)2 > 2

5e
−18ρ inf(rΛ)ε1/2s(y)−2 ≥ 2

5e
−18ρ inf(rΛ)ε1/2‖C(y)−1‖−2

≥ 2
5e

−18ρ inf(rΛ)Q(y)β/6 = 2
5e

−18ρ inf(rΛ)Q(y)−β/12Q(y)β/4

≥ 2
5e

−18ρ inf(rΛ)ε−1/4Q(y)β/4 > 5Q(y)β/4,

since 2
5e

−18ρ inf(rΛ)ε−1/4 > 5 for ε > 0 small enough. □
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Now we can prove that x ∈ NUH.

Proposition 6.3. If 0 < ε� ρ� 1, then π[Σ#] ⊂ NUH.

Proof. Let v = {Ψps
n,p

u
n

xn }n∈Z ∈ Σ#, and let x = π(v). We need to prove properties 
(NUH1) and (NUH2) for x. We prove the first property (the second is symmetric). The 
proof that s(x) < +∞ for surface diffeomorphisms is contained in Claims 1 and 2 in [36, 
Prop. 7.3], and uses four facts, which we also have here:

◦ The derivative of the diffeomorphism is continuous: in our context, the induced linear 
Poincaré flow Φ is continuous.
◦ Every vertex of the alphabet A is relevant: in our context, this is Theorem 5.1(3).
◦ Bounded distortion along invariant manifolds: in our context, this is Theorem 4.5(4).
◦ Improvement lemma: in our context, this is Lemma 6.2.

Let us give the details. Let nk → +∞ such that (vnk
)k≥0 is constant. Since π[Σ#] and 

NUH are invariant, we can assume that n0 = 0. Since v0 is relevant, there is w = {wn}n∈Z
with w0 = v0 such that y = π(w) ∈ NUH#. In particular, s(y) < +∞. Let V := V s[w]. 
We claim that supy′∈V s(y′) < +∞. To prove this, fix y′ ∈ V . Using the same notation 
of Proposition 4.9, let

tn =
n−1∑
k=0 

Tk[(g+
xk−1

◦ · · · ◦ g+
x0

)(y)] and t′n =
n−1∑
k=0 

Tk[(g+
xk−1

◦ · · · ◦ g+
x0

)(y′)].

In particular, (g+
xn−1

◦ · · · ◦ g+
x0

)(y) = ϕtn(y) and (g+
xn−1

◦ · · · ◦ g+
x0

)(y′) = ϕt′n(y′). By 
Lemma 2.1(3) and Theorem 4.5(3), we have

|tn − t′n| ≤
n−1∑
k=0 

Lip(Tk)d((g+
xk−1

◦ · · · ◦ g+
x0

)(y), (g+
xk−1

◦ · · · ◦ g+
x0

)(y′))

≤ d(Ψ−1
x0

(y),Ψ−1
x0

(y′))
n−1∑
k=0 

e−
χ inf(rΛ)

2 k <
4ps0

1− e−
χ inf(rΛ)

2 
� ε� ρ.

Since ‖d(g+
xn−1

◦ · · · ◦ g+
x0

)yw‖ = ‖Φtnns
y‖ and ‖d(g+

xn−1
◦ · · · ◦ g+

x0
)y′w′‖ = ‖Φt′nns

y′‖, it 

follows from Theorem 4.5(4) and estimate (2.1) that ‖Φtnns
y‖ 

‖Φtnns
y′‖ = ‖Φtnns

y‖ 
‖Φt′nns

y′‖
· ‖Φ

t′nns
y′‖

‖Φtnns
y′‖ =

e±(Q(x0)β/4+4ρ) = e±6ρ. Now we interpolate this estimate. Given t ≥ 0, let n such that 
tn ≤ t ≤ tn+1. Since |tn+1 − tn| ≤ ρ, using estimate (2.1) again gives that

‖Φtns
y‖ 

‖Φtns
y′‖ = ‖Φtns

y‖ 
‖Φtnns

y‖
· ‖Φtnns

y‖ 
‖Φtnns

y′‖ ·
‖Φtnns

y′‖
‖Φtns

y′‖ = e±14ρ.

This implies that s(y) 
s(y′) = e±14ρ. Since y′ ∈ V is arbitrary, L0 := supy′∈V s(y′) < +∞.
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The next step is to prove that s(x) < +∞. Recalling that V ∈ M s(v0) = M s(vnk
), 

define Vk := (F s
v0,v1

◦F s
v1,v2

◦ · · · ◦F s
vnk−1,vnk

)[V ]. By Section 4.2, (Vk)k≥0 converges in 
the C1 topology to V s[v]. In other words, if G is the representing function of V s[v] and 
Gk is the representing function of Vk, then (Gk)k≥0 converges to G in the C1 topology. 
Writing x = Ψx0(t, G(t)), let zk = Ψx0(t, Gk(t)) ∈ Vk and yk = (g+

xnk−1
◦ · · · ◦ g+

x0
)(zk). 

By Theorem 4.5(2), we have yk ∈ V and so s(yk) ≤ L0. Consider the ratio s(yk) 
s(x0) , which is 

bounded by L0
s(x0) . Since x0 = xnk

by our choice of nk, we can apply Lemma 6.2 along the 

sequence of edges v0 → v1 → · · · → vnk
. We obtain that s(zk) 

s(x0) ≤ max
{
e
√
ε, L0

s(x0)

}
=: L1. 

Since Φ is continuous and ns
zk
→ ns

x as k → +∞, for every T ≥ 0 we have

4e4ρ
T∫

0 

e2χt‖Φtns
x‖2dt ≤ lim sup

k→+∞ 
4e4ρ

T∫
0 

e2χt‖Φtns
zk
‖2 ≤ s(zk)2 ≤ L2

1s(x0)2.

Taking T → +∞, we conclude that s(x) ≤ L1s(x0).
Now we prove that lim inf

t→+∞ 
1
t log ‖Φ−tns

x‖ > 0. Let tn = rn(v) (see before the statement 
of Theorem 6.1 for the definition of rn(v)). For n ≥ 0, we have 0 ≤ −t−n ≤ n sup(rΛ), 
hence it is enough to prove that lim inf

n→+∞ 
1 
n log ‖Φt−nns

x‖ > 0. This can also be done as 
in the case of diffeomorphisms, as follows. The second estimate of Theorem 4.5(3) gives 
that ‖Φrn(v)ns

x‖ ≤ 8‖C(x0)−1‖e−
χ inf(rΛ)

2 n for every n ≥ 0. Applying this to σ−n(v) and 
G−n(x) = π[σ−n(v)], we get that

‖Φt−nns
x‖ = ‖Φ−t−nns

G−n(x)‖−1 ≥ 1
8‖C(x−n)−1‖−1e

χ inf(rΛ)
2 n.

Since ‖C(x−n)−1‖−1 ≥ Q(x−n) β
12 ≥ (ps−n ∧ pu−n) β

12 ≥ (e−2εnps0 ∧ pu0 ) β
12 , we have that

lim inf
n→+∞ 

1 
n log ‖Φt−nns

x‖ ≥ χ inf(rΛ)
2 − βε

6 ,

which is positive if ε > 0 is small enough. □

6.2. Control of α(xn), s(xn), u(xn), Q(xn)

We now prove parts (2)--(4) of Theorem 6.1. Part (2) follows directly from 4.7(2), 
as follows: since ϕrn(v)(x) = π[σn(v)] is the intersection point of a s--admissible and a 
u--admissible manifold at Ψps

n,p
u
n

xn , we have

sinα(xn) 
sinα(ϕrn(v)(x)) = e±(ps

n∧pu
n)β/4

and | cosα(xn)− cosα(ϕrn(v)(x))| < 2(psn ∧ pun)β/4.

Now we proceed to control s(xn) and u(xn).

Proposition 6.4. The following holds for all 0 < ε � ρ � 1. If v = {Ψps
n,p

u
n

xn }n∈Z ∈ Σ#

and x = π(v) then for all n ∈ Z:



48 J. Buzzi et al. / Advances in Mathematics 479 (2025) 110410 

s(xn) 
s(ϕrn(v)(x)) = e±

√
ε and u(xn) 

u(ϕrn(v)(x)) = e±
√
ε.

Proof. When M is a compact surface and f is a C1+β diffeomorphism, this is [36, Prop. 
7.3], and our proof follows the same methods. To ease notation, write zn = ϕrn(v)(x), 
n ∈ Z. We sketch the proof for the first estimate:

◦ By Proposition 6.3, π[Σ#] ⊂ NUH hence s(x) <∞.
◦ As in Claim 1 of [36, Prop. 7.3], there is ξ ≥ √ε and a sequence nk → +∞ such that 

s(xnk
)

s(znk
) = e±ξ.

◦ Since g−xn
(zn) = zn−1, we can apply Lemma 6.2 along v and the points zn: if vn = v

for infinitely many n > 0, then the ratio improves at each of these indices.

The conclusion is that s(xn)
s(zn) = e±

√
ε for all n ∈ Z. □

Part (4) is consequence of parts (2) and (3). Remind that

Q(x) := ε3/β‖C(x)−1‖−12/β
Frob = ε3/β

(√
s(x)2+u(x)2
| sinα(x)| 

)−12/β
.

By part (2), sinα(xn)
sinα(zn) = e±

√
ε. By part (3), 

√
s(xn)2+u(xn)2√
s(zn)2+u(zn)2 = e±

√
ε. Therefore 

‖C(xn)−1‖Frob
‖C(zn)−1‖Frob

= e±2
√
ε, and so Q(xn)

Q(zn) =
‖C(xn)−1‖−12/β

Frob

‖C(zn)−1‖−12/β
Frob

= exp[±24
β

√
ε] = exp[± 3

√
ε] when 

ε > 0 is small enough.

6.3. Control of psn, pun

Up to now, we have proved that x ∈ NUH and Parts (1)--(4) of Theorem 6.1. Now 
we prove Part (5). In particular, it follows that x ∈ NUH#. We continue to write 
zn = ϕrn(v)(x), as in the previous section. The control of ps/un consists on proving 
that it is comparable to ps/u(zn). To have the control from below, we will use that 
{Ψps

n,p
u
n

xn }n∈Z ∈ Σ# implies that the parameters ps/un are almost maximal infinitely often. 
Proposition 3.6(3) is the statement of maximality for ps/u(zn). The statement for ps/un

is in the next lemma. For simplicity of notation, write Tk = T (vk, vk+1).

Lemma 6.5. If {Ψps
n,p

u
n

xn }n∈Z ∈ Σ# then min{eεTnpsn+1, e
−εεQ(xn)} = e−εεQ(xn) for 

infinitely many n > 0, and min{eεTnpun, e
−εεQ(xn+1)} = e−εεQ(xn+1) for infinitely 

many n < 0.

Proof. The strategy is the same used in the proof of Proposition 3.6(3). We prove the first 
statement (the second is identical). By contradiction, assume that there exists n ∈ Z such 
that min{eεTN psN+1, e

−εεQ(xN )} = eεTN psN+1 for all N ≥ n. By (GPO2), it follows that 
psN ≥ eε(TN−ps

N )psN+1 for all N ≥ n. Let λ = exp[ε1.5], then ε(TN−psN ) ≥ ε(inf(rΛ)−ε) >
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λ when ε > 0 is sufficiently small. Hence psN > λpsN+1 for all N ≥ n, and so psn ≥ λN−npsN
for all N ≥ n. This is a contradiction, since psn < ε and lim sup

N→+∞ 
psN > 0. □

Now we prove Theorem 6.1(5). We will prove the statement for psn and ps(zn) (the 
proof for pun and pu(zn) is identical).

Step 1. psn ≥ e−
3√εps(zn) for all n ∈ Z.

We divide the proof into two cases, according to whether n satisfies Lemma 6.5 or not. 
Assume first that it does, i.e. min{eεTnpsn+1, e

−εεQ(xn)} = e−εεQ(xn). By (GPO2), we 
have psn ≥ e−εps

ne−εεQ(xn) ≥ e−2εεQ(xn). By Theorem 6.1(4), we get that

psn ≥ e−2εεQ(xn) ≥ e−2ε−O(
√
ε)εQ(zn) ≥ e−2ε−O(

√
ε)ps(zn) ≥ e−

3√εps(zn).

Now assume that n does not satisfy Lemma 6.5. Take the smallest m > n that 
satisfies Lemma 6.5. Hence min{eεTkpsk+1, e

−εεQ(xk)} = eεTkpsk+1 for k = n, . . . ,m− 1. 
By (GPO2), we get that psk ≥ eε(Tk−ps

k)psk+1 > λpsk+1 for k = n, . . . ,m − 1. Therefore 
psk ≤ λn−kpsn for k = n, . . . ,m−1. Writing Δk = (tk+1−tk)−Tk ≥ 0, this latter estimate 
gives two consequences:

◦
m−1∑
k=n 

psk < ε: indeed,

m−1∑
k=n 

psk ≤ psn

m−1∑
k=n 

λn−k ≤ ε
3 
β

1 
1− λ−1 < 2ε

3 
β−1.5 < ε,

since lim 
ε→0

ε1.5

1−λ−1 = 1.

◦
m−1∑
k=n 

Δk < ε: since the transition time from xk to xk+1 is 2--Lipschitz (Lemma 2.1(3)), 

we have

m−1∑
k=n 

Δk ≤ 4
m−1∑
k=n 

psk < 8ε
3 
β−1.5 < ε.

Using that psk ≥ eε(Tk−ps
k)psk+1 = e−ε(ps

k+Δk)eε(tk+1−tk)psk+1 for k = n, . . . ,m − 1, we 
conclude that

psn ≥ exp
[
−ε

m−1∑
k=n 

psk − ε

m−1∑
k=n 

Δk

]
eε(tm−tn)psm

≥ exp
[
−2ε2 − 2ε−O(

√
ε)
]
eε(tm−tn)ps(zm) ≥ e−

3√εps(zn),

where in the last inequality we used Proposition 3.6(2).
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Step 2. ps(zn) ≥ e−
3√εpsn for all n ∈ Z.

The motivation for this inequality is that ps(zn) grows at least as much as psn, since 
ps(zn) satisfies the recursive equality ps(zn) = min{eε(tn+1−tn)ps(zn+1), εQ(zn)} while 
by (GPO2) we have the recursive inequality psn ≤ min{eεTnpsn+1, εQ(xn)} and tn+1−tn ≥
Tn. For ease of notation, let n = 0 (the general case is identical). By the above recurve 
equality and inequality, we have

ps(z0) = ε inf{eεtnQ(zn) : n ≥ 0} and ps0 ≤ ε inf{eε(T0+···+Tn−1)Q(xn) : n ≥ 0}.

Using Part (4) and that tn =
n−1∑
k=0 

(tk+1 − tk) ≥
n−1∑
k=0 

Tk, we conclude that

ps(z0) = ε inf{eεtnQ(zn) : n ≥ 0} ≥ e−
3√εε inf{eε(T0+···+Tn−1)Q(xn) : n ≥ 0} = e−

3√εps0.

Steps 1 and 2 conclude the proof of Part (5). In particular, since {Ψps
n,p

u
n

xn }n∈Z ∈ Σ#, it 
follows that x ∈ NUH#.

6.4. Control of Ψ−1
x0
◦Ψx

In the case of diffeomorphisms, this is [36, Thm. 5.2], whose idea of proof is the 
following: if v = {Ψps

n,p
u
n

xn }n∈Z, w = {Ψqsn,q
u
n

yn }n∈Z ∈ Σ# with π(v) = π(w) = x, then 
the parameters of Ψps

n,p
u
n

xn and Ψqsn,q
u
n

yn are comparable, hence Ψ−1
yn
◦ Ψxn

is close to ±Id. 
In our case, we know that x ∈ NUH#, hence the Pesin charts along the orbit of x are 
well-defined. By parts (1)--(5), the parameters of Ψps

0,p
u
0

x0 and Ψqs(x),qu(x)
x are comparable, 

therefore we can apply the same proof of [36, Thm 5.2] to conclude that both Ψ−1
x0
◦Ψx

and Ψ−1
x ◦Ψx0 can be written in the form (−1)σv + δ + Δ(v) for v ∈ R[10Q(x)], where 

σ ∈ {0, 1} and Δ is a vector field such that Δ(0) = 0 and ‖dΔ‖C0 < 3
√
ε on R[10Q(x)]. 

The proof will be complete once we estimate ‖δ‖.
Assume that (Ψ−1

x0
◦Ψx)(v) = (−1)σv + δ + Δ(v) as above, and write p = ps0 ∧ pu0 . By 

Lemma 4.7(1), x = Ψx0(η) for some η ∈ R[10−2p]. In particular ‖η‖ ≤ 10−2√2p < 50−1p. 
Since Ψx(0) = x, taking v = 0 we conclude that η = δ, hence ‖δ‖ < 50−1p. Similarly, if 
Ψ−1

x ◦Ψx0 = (−1)σv + δ + Δ(v) then v = η gives 0 = (−1)ση + δ + Δ(η) and so

‖δ‖ ≤ ‖η‖+ ‖Δ(η)‖ ≤ (1 + ‖dΔ‖C0)‖η‖ ≤ (1 + 3
√
ε)10−2√2p < 50−1p.

7. A countable locally finite section

Up to now, we have:

◦ Constructed a countable family A of ε--double charts, see Theorem 5.1.
◦ Letting Σ be the TMS defined by A with the edge condition defined in Section 4.1, 

we constructed a Hölder continuous map π : Σ → Λ̂ that ``captures'' all orbits in 
NUH#, see Propositions 5.2 and 5.3. The map π is defined as {π(v)} := V s[v]∩V u[v].
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◦ Although π is not finite-to-one, we solved the inverse problem by analyzing when π
loses injectivity, see Theorem 6.1.

We now use these information to construct a countable family Z of subsets of Λ̂ with 
the following properties:

◦ The union of elements of Z , from now on also denoted by Z , is a section that 
contains Λ ∩NUH#.
◦ Z is locally finite: each point x ∈ Z belongs to at most finitely many rectangles 
Z ∈ Z .
◦ Every element Z ∈ Z is a rectangle: each point x ∈ Z has invariant fibers W s(x, Z), 
Wu(x, Z) in Z, and these fibers induce a local product structure on Z.
◦ Z satisfies a symbolic Markov property.

In this section, all statements assume that 0 < ε� ρ� 1, so we will omit this informa
tion.

7.1. The Markov cover Z

Let Z := {Z(v) : v ∈ A }, where

Z(v) := {π(v) : v ∈ Σ# and v0 = v}.

In other words, Z is the family of sets induced by π under the natural partition of Σ#

into cylinders at the zeroth position. Using admissible manifolds, we define invariant 
fibers inside each Z ∈ Z . Let Z = Z(v).

s/u--fibres in Z : Given x ∈ Z, let W s(x, Z) := V s[{vn}n≥0] ∩ Z be the s--fiber of x
in Z for some (any) v = {vn}n∈Z ∈ Σ# such that π(v) = x and v0 = v. Similarly, let 
Wu(x, Z) := V u[{vn}n≤0] ∩ Z be the u--fiber of x in Z.

By Proposition 4.9, the above definitions do not depend on the choice of v, and any two 
s--fibers (u--fibers) either coincide or are disjoint. We also define V s(x, Z) := V s[{vn}n≥0]
and V u(x, Z) := V u[{vn}n≤0]. We can make two distinctions between V s/u(x, Z) and 
W s/u(x, Z):

◦ V s/u(x, Z) are smooth curves, while W s/u(x, Z) are usually fractal sets.
◦ V s/u(x, Z) are not subsets of Z, while W s/u(x, Z) are.

7.2. Fundamental properties of Z

Although Z is usually a fractal set (and hence not a proper section), we can still 
define its Poincaré return map. Indeed, if x = π(v) ∈ Z with v ∈ Σ# then ϕrn(v)(x) =
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π[σn(v)] ∈ Z for all n ∈ N. Define rZ : Z → (0, ρ) by rZ (x) := min{t > 0 : ϕt(x) ∈
Z }.

The return map H: It is the map H : Z → Z defined by H(x) := ϕrZ (x).

Below we collect the main properties of Z .

Proposition 7.1. The following are true.

(1) Covering property: Z is a cover of Λ ∩NUH#.
(2) Local finiteness: For every Z ∈ Z ,

#

⎧⎨⎩Z ′ ∈ Z :

⎛⎝ ⋃
|n|≤1

Hn[Z]

⎞⎠ ∩ Z ′ �= ∅

⎫⎬⎭ <∞.

(3) Local product structure: For every Z ∈ Z and every x, y ∈ Z, the intersection 
W s(x, Z) ∩Wu(y, Z) consists of a single point, and this point belongs to Z.

(4) Symbolic Markov property: If x = π(v) ∈ Z with v = {vn}n∈Z =
{Ψps

n,p
u
n

xn }n∈Z ∈ Σ#, then

g+
x0

(W s(x, Z(v0))) ⊂W s(g+
x0

(x), Z(v1)) and 

g−x1
(Wu(g+

x0
(x), Z(v1))) ⊂Wu(x, Z(v0)).

Before proceeding to the proof, we use part (3) to give the following definition: for 
x, y ∈ Z, let [x, y]Z := intersection point of W s(x, Z) and Wu(y, Z), and call it the 
Smale bracket of x, y in Z.

Proof. We have Z = π[Σ#]. Since π[Σ#] ⊃ Λ ∩NUH# by Proposition 5.2(3), it follows 
that Z contains Λ ∩NUH#. This proves (1).

(2) Write Z = Z[Ψps,pu

x ], and take Z ′ = Z[Ψqs,qu

y ] such that⎛⎝ ⋃
|n|≤1

Hn[Z]

⎞⎠ ∩ Z ′ �= ∅.

We will estimate the ratio p
s∧pu

qs∧qu . By assumption, there is x ∈ Z such that x′ = Hn(x) ∈
Z ′ for some |n| ≤ 1. Let v ∈ Σ# with v0 = Ψps,pu

x such that x = π(v). Recalling that 
ps/u(x) = ps/u(x, T , 0) for T = {Rn(v)}n∈Z, the following holds:

◦ x ∈ Z, hence by Theorem 6.1(5) we have ps

ps(x) = e±
3√ε and pu

pu(x) = e±
3√ε, and so 

ps∧pu

ps(x)∧pu(x) = e±
3√ε. By Proposition 3.6(1), we have p

s(x)∧pu(x)
q(x) = e±H. The conclu

sion is that p
s∧pu

q(x) = e±( 3√ε+H).
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◦ x′ ∈ Z ′, hence by the same reason q
s∧qu

q(x′) = e±( 3√ε+H).
◦ x′ = ϕt(x) with |t| ≤ 2ρ, hence by Lemma 3.4 we have q(x) 

q(x′) = e±2ε.

Altogether, we conclude that p
s∧pu

qs∧qu = e±2( 3√ε+ε+H), and so

⎧⎨⎩Z ′ ∈ Z :

⎛⎝ ⋃
|n|≤1

Hn[Z]

⎞⎠ ∩ Z ′ �= ∅

⎫⎬⎭ ⊂ {Ψqs,qu

y ∈ A : (qs∧qu) ≥ e−2( 3√ε+ε+H)(ps∧pu)}.

By Theorem 5.1(1), this latter set is finite.

(3) We proceed as in [36, Prop. 10.5]. Let Z = Z(v), and take x, y ∈ Z, say x =
π(v), y = π(w) with v, w ∈ Σ#, where v = {vn}n∈Z = {Ψps

n,p
u
n

xn }n∈Z and w = {wn}n∈Z =
{Ψqsn,q

u
n

yn }n∈Z with v0 = w0 = v. We let z = π(u) where u = {un}n∈Z is defined by

un =
{

vn , n ≥ 0
wn , n ≤ 0.

We claim that {z} = W s(x, Z) ∩ Wu(y, Z). To prove this, first remember that 
V s[{un}n≥0] ∩ V u[{un}n≤0] intersects at a single point (Lemma 4.7(1)), and that z
belongs to such intersection. Therefore, it is enough to show that z ∈ π[Σ#], which is 
clear since u ∈ Σ#.

(4) Proceed exactly as in [36, Prop. 10.9]. □

Let Z = Z(v), Z ′ = Z(w) where v = Ψps,pu

x , w = Ψqs,qu

y ∈ A , and assume that 
Z ∩ ϕ[−2ρ,2ρ]Z ′ �= ∅. Let D,D′ be the connected components of Λ̂ such that Z ⊂ D and 
Z ′ ⊂ D′. We wish to compare s--fibers of Z with u--fibers of Z ′ and vice-versa. To do 
that, we apply the holonomy maps qD and qD′ . Given z ∈ Z, z′ ∈ Z ′, define

{[z, z′]Z} := V s(z, Z) ∩ qD[V u(z′, Z ′)]

{[z, z′]Z′} := qD′ [V s(z, Z)] ∩ V u(z′, Z ′).

The next proposition proves that [z, z′]Z and [z, z′]Z′ consist of single points, and some 
compatibility properties that will be used in the next section.

Proposition 7.2. Let Z = Z(v), Z ′ = Z(w) where v = Ψps,pu

x , w = Ψqs,qu

y ∈ A , and 

assume that Z ∩ ϕ[−2ρ,2ρ]Z ′ �= ∅. Let D,D′ be the connected components of Λ̂ such that 
Z ⊂ D and Z ′ ⊂ D′. The following are true.

(1) qD′ ◦Ψx(R[ 12 (ps ∧ pu)]) ⊂ Ψy(R[qs ∧ qu]).
(2) If z ∈ Z with z′ = qD′(z) ∈ Z ′, then qD′ [W s/u(z, Z)] ⊂ V s/u(z′, Z ′).
(3) If z ∈ Z, z′ ∈ Z ′ then [z, z′]Z , [z, z′]Z′ are points with [z, z′]Z = qD([z, z′]Z′).
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When M is a compact surface and f is a diffeomorphism, this is [36, Lemmas 10.8 
and 10.10]. A very similar method of proof works in our case: Theorem 3.8 also works 
when we change g+

x to qD′ , so we can control the composition Ψ−1
y ◦qD′ ◦Ψx. The details 

are in Appendix A. We will also need more information regarding the Smale product of 
nearby charts.

Proposition 7.3. Let Z,Z ′, Z ′′ such that Z ∩ ϕ[−2ρ,2ρ]Z ′ �= ∅, Z ∩ ϕ[−2ρ,2ρ]Z ′′ �= ∅, and 
let D be the connected components of Λ̂ such that Z ⊂ D. Assume that z′ ∈ Z ′ such that 
ϕt(z′) ∈ Z ′′ for some |t| ≤ 2ρ. For every z ∈ Z, it holds

[z, z′]Z = [z, ϕt(z′)]Z .

Note that [z, z′]Z is defined by Z,Z ′ while [z, ϕt(z′)]Z is defined by Z,Z ′′. The equality 
shows a compatibility of the Smale product along small flow displacements. It holds 
because such displacements barely change the sizes of invariant fibers, hence the unique 
intersection is preserved.

8. A refinement procedure

Up to now, we have constructed a countable family Z of subsets of Λ̂ with the 
following properties:

◦ The union of elements of Z , from now on also denoted by Z , is a section that 
contains Λ ∩NUH#.
◦ Z is locally finite: each point x ∈ Z belongs to at most finitely many rectangles 
Z ∈ Z .
◦ Every element Z ∈ Z is a rectangle: each point x ∈ Z has invariant fibers W s(x, Z), 
Wu(x, Z) in Z, and these fibers induce a local product structure on Z.
◦ Z satisfies a symbolic Markov property.

In this section, we will refine Z to generate a countable family of disjoint sets R that 
satisfy a geometrical Markov property. We stress the difference from a symbolic to a geo
metrical Markov property: by Proposition 7.1(4), g±x0

satisfy a symbolic Markov property; 
our goal is to obtain a Markov property for the first return map H. In general the orbit of 
x can intersect Z between x and g+

x0
(x), in which case we will have that g+

x0
(x) �= H(x). 

Therefore the symbolic Markov property of Proposition 7.1(4) does not directly translate 
into a geometrical Markov property for H. To accomplish this latter property, we will use 
a refinement procedure developed by Bowen [7], motivated by the work of Sinăı [37,38]. 
The difference from our setup to Bowen’s is that, while in Bowen’s case all families are 
finite, in ours it is usually countable. Fortunately, as implemented in [36], the refinement 
procedure works well for countable covers with the local finiteness property, which we 
have by Proposition 7.1(2).
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8.1. The partition R

We first see that the map g+
x0

can be deduced from H by a bounded time change.

Lemma 8.1. There exists N ≥ 1 such that for any x = π(v) ∈ Z there exists 0 < n < N

such that g+
x0

(x) = Hn(x).

Proof. We have g+
x0

(x) ∈ Z , so g+
x0

(x) = Hn(x) for some n > 0. Remember that 
Λ̂ =

⋃n

i=1 Di is a proper section of size ρ/2 (see Section 2 for the definitions). In particular 
inf(rΛ̂) > 0. Since Z ⊂ Λ̂, every hit of x to Z is also a hit to Λ̂. Writing g+

x0
(x) = ϕt(x)

for some t ≤ ρ, we conclude that n inf(rΛ̂) ≤ t ≤ ρ, therefore n ≤
⌈

ρ 
inf(rΛ̂)

⌉
. We thus 

define N :=
⌈

ρ 
inf(rΛ̂)

⌉
+ 1. □

Therefore Proposition 7.1(4) implies that for every x ∈ Z there are 0 < k, 
 < N

such that Hk(x) satisfies a Markov property in the stable direction and H−�(x) satisfies 
a Markov property in the unstable direction.

At this point, it is worth mentioning the method that Bowen used to construct Markov 
partitions for Axiom A flows [7]:

(1) Fix a global section for the flow; inside this section, construct a finite family of 
rectangles (sets that are closed under the Smale bracket operation). Let H be the 
Poincaré return map of this family.

(2) Apply the method of Sinăı of successive approximations to get a new family of 
rectangles Z with the following property: if H is the Poincaré return map of Z , then 
for every x ∈ Z there are k, 
 > 0 such that Hk(x) satisfies a Markov property in the 
stable direction and H−�(x) satisfies a Markov property in the unstable direction. 
In addition, there is a global constant N > 0 such that k, 
 < N .

(3) Apply a refinement procedure to Z such that the resulting partition R is a disjoint 
family of rectangles satisfying the Markov property for H.

The attentive reader might have note that, so far, we did implement steps (1) and (2) 
above, with the difference that while Bowen used the method of successive approxima
tions, we used the method of ε--gpo’s. It remains to establish step (3), and we will do 
this closely following Bowen [7].

For each Z ∈ Z , let

IZ :=
{
Z ′ ∈ Z : ϕ[−ρ,ρ]Z ∩ Z ′ �= ∅

}
.

By Theorem 6.1, IZ is finite. Let D be the connected component of Λ̂ such that Z ⊂ D. 
By continuity, having chosen the discs Di small enough the following property holds:

If Z ′ ∈ IZ then Z ′ ⊂ ϕ[−2ρ,2ρ]D. (8.1)
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Therefore qD(Z ′) is a well-defined subset of D. For each Z ′ ∈ IZ we consider the 
partition of Z into four subsets as follows:

Esu
Z,Z′ = {x ∈ Z : W s(x, Z) ∩ qD(Z ′) �= ∅,Wu(x, Z) ∩ qD(Z ′) �= ∅}

Es∅
Z,Z′ = {x ∈ Z : W s(x, Z) ∩ qD(Z ′) �= ∅,Wu(x, Z) ∩ qD(Z ′) = ∅}

E∅u
Z,Z′ = {x ∈ Z : W s(x, Z) ∩ qD(Z ′) = ∅,Wu(x, Z) ∩ qD(Z ′) �= ∅}

E∅∅
Z,Z′ = {x ∈ Z : W s(x, Z) ∩ qD(Z ′) = ∅,Wu(x, Z) ∩ qD(Z ′) = ∅}.

Call this partition PZ,Z′ := {Esu
Z,Z′ , Es∅

Z,Z′ , E∅u
Z,Z′ , E∅∅

Z,Z′}. Clearly, Esu
Z,Z′ = Z ∩ qD(Z ′).

The partition EZ : It is the coarser partition of Z that refines all of PZ,Z′ , Z ′ ∈ IZ .

To define a partition of Z , we define an equivalence relation on Z .

Equivalence relation N∼ on Z : For x, y ∈ Z , we write x N∼ y if for any |k| ≤ N :

(i) For all Z ∈ Z : Hk(x) ∈ Z ⇔ Hk(y) ∈ Z.
(ii) For all Z ∈ Z such that Hk(x), Hk(y) ∈ Z, the points Hk(x), Hk(y) belong to the 

same element of EZ .

Clearly N∼ is an equivalence relation in Z , hence it defines a partition of Z . Before 
proceeding, let us state a fact that will be used in the sequel: if x N∼ y with x ∈ Z =
Z(Ψps

0,p
u
0

x0 ) ∈ Z , then there exists |k| ≤ N such that g+
x0

(x) = Hk(x) and g+
x0

(y) = Hk(y). 
To see this, write x = π(v) with v0 = Ψps

0,p
u
0

x0 , and let D′ be the connected component of 
Λ̂ with Z(v1) ⊂ D′. On one hand, g+

x0
(y) = qD′(y). On the other hand, since Hk(x) ∈

Z(v1) ⊂ D′ for some |k| ≤ N , the definition of N∼ implies that Hk(y) ∈ Z(v1) ⊂ D′, 
hence Hk(y) = qD′(y). A similar result holds for g−x0

.

The Markov partition R: It is the partition of Z whose elements are the equivalence 
classes of N∼.

By definition, R is a refinement of Z .

Lemma 8.2. The partition R satisfies the following properties.

(1) For every Z ∈ Z , #{R ∈ R : R ⊂ ϕ[−ρ,ρ]Z} <∞.
(2) For every R ∈ R, #{Z ∈ Z : R ⊂ ϕ[−ρ,ρ]Z} <∞.

Proof. (1) Start noting that, for every Z ∈ Z , #{R ∈ R : R ⊂ Z} ≤ 4#IZ . Hence

#{R ∈ R : R ⊂ ϕ[−ρ,ρ]Z} ≤
∑

Z′∈IZ

#{R ∈ R : R ⊂ Z ′} ≤
∑

Z′∈IZ

4#IZ′ < +∞

since the last summand is the finite sum of finite numbers.



J. Buzzi et al. / Advances in Mathematics 479 (2025) 110410 57

(2) For any Z ′ ∈ Z such that Z ′ ⊃ R, we have {Z ∈ Z : R ⊂ ϕ[−ρ,ρ]Z} ⊂ IZ′ . Since 
each IZ′ is finite, the result follows. □

8.2. The Markov property

The final step in the refinement procedure is to show that R is a Markov partition 
for the map H, in the sense of Sinăı [38].

s/u--fibres in R: Given x in R ∈ R, we define the s--fiber and u--fiber of x by:

W s(x,R) :=
⋂

Z∈Z :Z⊃R

V s(x, Z) ∩R , Wu(x,R) :=
⋂

Z∈Z :Z⊃R

V u(x, Z) ∩R.

By Proposition 4.9, any two s--fibers (u--fibers) either coincide or are disjoint.

Proposition 8.3. The following are true.

(1) Product structure: For every R ∈ R and every x, y ∈ R, the intersection 
W s(x,R) ∩Wu(y,R) is a single point, and this point is in R. Denote it by [x, y].

(2) Hyperbolicity: If z, w ∈ W s(x,R) then d(Hn(z), Hn(w)) −−−−→
n→∞ 

0, and if z, w ∈
Wu(x,R) then d(Hn(z), Hn(w)) −−−−−→

n→−∞ 
0. The rates are exponential.

(3) Geometrical Markov property: Let R0, R1 ∈ R. If x ∈ R0 ∩H−1(R1) then

H(W s(x,R0)) ⊂W s(H(x), R1) and H−1(Wu(H(x), R1)) ⊂Wu(x,R0).

Proof. The sets R ∈ R are defined from the sets Z ∈ Z and the partitions EZ . By 
Proposition 7.1 and by the definition of the partitions PZ,Z′ , each Z and each ele
ment of EZ is a rectangle. Note that rectangles are preserved under the holonomy maps 
qDi

and that rectangles contained in a same disc Di are preserved under intersections. 
Consequently the sets R ∈ R are also rectangles and so part (1) follows. Part (2) is a 
direct consequence of the properties of the stable and unstable manifolds obtained in 
Theorem 4.5(3). It remains to prove part (3).

Fix R0, R1 ∈ R and x ∈ R0∩H−1(R1). We check that H(W s(x,R0)) ⊂W s(H(x), R1)
(the other inclusion is proved similarly). Let y ∈ W s(x,R0). By Proposition 7.2(2) and 

the definition of W s(H(x), R1), it is enough to check that H(x) N∼ H(y). Since x N∼ y, we 
already know that Hk(x), Hk(y) satisfy the properties (i) and (ii) defining the relation 
N∼ when −N ≤ k ≤ N , hence it is enough to prove that this is also true for k = N + 1. 
The property (ii) for k = N says that HN (x), HN (y) belong to the same elements of the 
partitions EZ . We claim that this implies that HN+1(x), HN+1(y) belong to the same sets 
Z ∈ Z , which gives (i) for k = N + 1. To see this, let Z ′ ∈ Z such that HN+1(x) ∈ Z ′, 
and let D′ be the connected component of Λ̂ that contains Z ′. Let Z ∈ Z containing 
HN (x), HN (y). Noting that HN (x) ∈ Esu

Z,Z′ , it follows from property (ii) for k = N that 
HN (y) ∈ Esu

Z,Z′ , hence qD′(HN (y)) ∈ Z ′. If qD′(HN (y)) = HN+1(y), the claim is proved. 
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If not, there is Z ′′ ∈ Z such that HN+1(y) ∈ Z ′′, and so repeating the same argument 
with the roles of x, y interchanged gives that qD′′(HN (x)) ∈ Z ′′, a contradiction since 
the time transition from Z to Z ′′ is smaller than time transitions from Z to Z ′. Hence 
property (i) for k = N +1 is proved, and it remains to prove property (ii) for k = N +1.

Let Z ∈ Z be a rectangle which contains HN+1(x), HN+1(y) and let D be the con
nected component of Λ̂ that contains Z. We need to show that HN+1(x), HN+1(y) belong 
to the same element of EZ . We first note that W s(HN+1(x), Z) = W s(HN+1(y), Z): since 
x, y belong to the same s--fiber of a rectangle in Z , this can be checked by applying 
Proposition 7.2(2) inductively. In particular, we have the following property:

∀Z ′ ∈ IZ , W s(HN+1(x), Z)∩qD(Z ′) �= ∅ ⇐⇒ W s(HN+1(y), Z)∩qD(Z ′) �= ∅. (8.2)

We then prove the analogous property for the sets Wu(HN+1(x), Z), Wu(HN+1(y), Z). 
In Fig. 2 we draw the points we will define below.

Let us consider Z ′ ∈ IZ and assume for instance that Wu(HN+1(x), Z) ∩ qD(Z ′)
contains a point z (the case when Wu(HN+1(y), Z) ∩ qD(Z ′) �= ∅ is treated analo
gously). Write HN+1(x) = π(v) with v = {vn}n∈Z = {Ψps

n,p
u
n

xn }n∈Z ∈ Σ# and Z = Z(v0). 
By Lemma 8.1, there exists 0 ≤ k ≤ N such that the point x̃ := Hk(x) coincides 
with π[σ−1(v)]. The rectangle Z̃ := Z(v−1) contains x̃. The symbolic Markov prop
erty in Proposition 7.1(4) implies that the image of Wu(x̃, Z̃) under g+

x−1
contains 

Wu(HN+1(x), Z), hence the point z. In particular, the backward orbit of z under the 
flow intersects Wu(x̃, Z̃) at some point z̃.

By the definition of z and Property 8.1, we have ϕs(z) ∈ Z ′ for some |s| ≤ 2ρ, 
thus we can write ϕs(z) = π(w) with w = {wn}n∈Z ∈ Σ# and Z ′ = Z(w0). Since 
all transition times of holonomy maps are bounded by ρ, necessarily the piece of orbit 
ϕ[0,ρ](z̃) contains some π[σ−b(w)] with b ≥ 1. Let b ≥ 1 and 0 ≤ s̃ ≤ ρ with π[σ−b(w)] =
ϕs̃(z̃). Consequently the rectangle Z̃ ′ := Z(w−b) belongs to IZ̃ . Moreover, z̃ belongs to 
the intersection between Wu(x̃, Z̃) and qD̃(Z̃ ′), where D̃ is the connected component of 
Λ̂ containing Z̃.

By the induction assumption, the point ỹ := Hk(y) also belongs to Z̃ and to the 
same element of the partition PZ̃,Z̃′ as x̃. Since Wu(x̃, Z̃) intersects qD̃(Z̃ ′), the u--fiber 
Wu(ỹ, Z̃) intersects it as well at some point t̃. Note that [z̃, t̃]Z̃ = [z̃, ỹ]Z̃ also belongs 
to Wu(ỹ, Z̃) and to qD̃(Z̃ ′) (this latter property follows from Proposition 7.2(3), noting 
that z̃, t̃ ∈ Z̃ ∩ qD̃(Z̃ ′)), hence we can replace t̃ by any point in Wu(ỹ, Z̃)∩ qD̃(Z̃ ′). Take 
t̃ := [z̃, ỹ]Z̃ .

Let 0 < r ≤ 2ρ such that ϕr(t̃) ∈ W s(ϕs̃(z̃), Z̃ ′). The symbolic Markov property 
in Proposition 7.1(4) then implies that its forward orbit under the flow will meet the 
rectangles Z(w−b),. . . , Z(w0).

Note that z̃ ∈ Z̃ = Z(v−1) and z = g+
x−1

(z̃) ∈ Z = Z(v0). The same property holds 
for ỹ and HN+1(y) = g+

x−1
(ỹ) since the points Hi(x) and Hi(y) belong to the same 

rectangles in Z for each i = k, . . . , N + 1. Using Proposition 7.2(3), it follows that 
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Fig. 2. Proof of the Markov property. 

the image of t̃ = [z̃, ỹ]Z̃ by g+
x−1

belongs to Z and coincides with the Smale product 
[z,HN+1(y)]Z .

The properties found in the two previous paragraphs imply that Wu(HN+1(y), Z)
intersects qD(Z ′) at a point of the orbit of t̃, contained in W s(z, Z). In particular, the 
intersection Wu(HN+1(y), Z) ∩ qD(Z ′) is non-empty. We have thus shown:

∀Z ′ ∈ IZ , Wu(HN+1(x), Z)∩qD(Z ′) �= ∅ ⇐⇒ Wu(HN+1(y), Z)∩qD(Z ′) �= ∅. (8.3)

Properties (8.2) and (8.3) mean that HN+1(x) and HN+1(y) belong to the same element 
of EZ for any rectangle Z ∈ Z containing HN+1(x), HN+1(y). This concludes the proof 
that H(x) N∼ H(y), and of part (3) of the proposition. □
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9. A finite-to-one extension

In this section, we construct a finite-to-one extension and deduce the Main Theorem. 
We rely on the family of disjoint sets R satisfying a geometrical Markov property. This 
family was obtained in the previous section as a refinement of the family Z constructed 
in Section 7, which was itself induced by the coding π introduced in Section 5.2. One 
important property of Z is that, due to the inverse theorem (Theorem 6.1), it satisfies a 
local finiteness property, see Proposition 7.1(2). Having these facts in mind, we construct 
a symbolic coding of the return map H.

9.1. A detailed statement

The theorem below implies the Main Theorem and includes additional properties that 
will be useful for some applications, including the one we will obtain in Section 10. We 
begin defining a Bowen relation for flows. This notion was formalized for diffeomorphisms 
in [10], and the following is an adaptation for flows. We refer to [15] for a discussion on 
the notion, and in particular on the non-uniqueness of such a relation.

Let Tr : Sr → Sr be a suspension flow over a symbolic system S that is an extension 
of some flow U : X → X by a semiconjugacy map π : Sr → X, i.e. U t ◦ π = π ◦ T t

r for 
all t ∈ R.

Bowen relation: A Bowen relation ∼ for (Tr, π, U) is a symmetric binary relation on 
the alphabet of S satisfying the following two properties:

(i) ∀ω, ω′ ∈ Sr, π(ω) = π(ω′) =⇒ v(ω) ∼ v(ω′), where v(x, t) := x0 for x ∈ S;
(ii) ∃γ > 0 with the following property:

∀ω, ω′ ∈ Sr, 
[
∀t ∈ R, v(T t

rω) ∼ v(T t
rω

′)
]

=⇒ 
[
∃|t| < γ, π(ω) = U t(π(ω′))

]
.

Theorem 9.1. Let X be a non-singular C1+β vector field (β > 0) on a closed 3-manifold 
M . Given χ > 0, there exist a locally compact topological Markov flow (Σ̂r̂, σ̂r̂) with graph 
Ĝ = (V̂ , Ê) and roof function r̂ and a map π̂r̂ : Σ̂r̂ →M such that π̂r̂ ◦ σ̂t

r̂ = ϕt ◦ π̂r̂, for 
all t ∈ R, and satisfying:

(1) r̂ and π̂r̂ are Hölder continuous.
(2) π̂r̂[Σ̂#

r̂ ] = NUH# has full measure for every χ--hyperbolic measure; for every ergodic 
χ--hyperbolic measure μ, there is an ergodic σ̂r̂--invariant measure μ on Σ̂r̂ such that 
μ ◦ π̂−1

r̂ = μ and hμ(σ̂r̂) = hμ(ϕ). 
(3) If (R, t) ∈ Σ̂#

r̂ satisfies Rn = R and Rm = S for infinitely many n < 0 and m > 0, 
then Card{z ∈ Σ̂#

r̂ : π̂r̂(z) = π̂r̂(R, t)} is bounded by a number C(R,S), depending 
only on R,S.

(4) There is λ > 0 and for x ∈ π̂r̂(Σ̂r̂) there is a unique splitting Nx = Ns
x ⊕Nu

x such 
that:
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lim sup
t→+∞ 

1
t log ‖Φt|Ns

x
‖ ≤ −λ and lim inf

t→+∞ 
1
t log ‖Φ−t|Ns

x
‖ ≥ λ

lim sup
t→+∞ 

1
t log ‖Φ−t|Nu

x
‖ ≤ −λ and lim inf

t→+∞ 
1
t log ‖Φt|Nu

x
‖ ≥ λ.

The splitting is Φ--equivariant, and the maps z �→ N
s/u
π̂r̂(z) are Hölder continuous on 

Σ̂r̂. 

(5) For every z ∈ Σ̂r̂, there are C1 submanifolds V cs(z), V cu(z) passing through x :=
π̂r̂(z) such that:
(a) TxV

cs(z) = Ns
x + R ·X(x) and TxV

cu(z) = Nu
x + R ·X(x).

(b) For all y ∈ V cs(z), there is τ ∈ R such that d(ϕt(x), ϕt+τ (y)) ≤ e−λt, ∀t ≥ 0.
(c) For all y ∈ V cu(z), there is τ ∈ R such that d(ϕ−t(x), ϕ−t+τ (y)) ≤ e−λt, ∀t ≥ 0.

(6) There is a symmetric binary relation ∼ on the alphabet V̂ satisfying:
(a) For any R ∈ V̂ , the set {S ∈ V̂ : R ∼ S} is finite.
(b) The relation ∼ is a Bowen relation for (σ̂r̂, π̂r̂|Σ̂#

r̂
, ϕ).

(7) There exists a measurable set R with a measurable partition indexed by V̂ , which we 
denote by {R : R ∈ V̂ }, such that:
(a) The orbit of any point x ∈ NUH# intersects R.
(b) The first return map H : R → R induced by ϕ is a well-defined bijection.
(c) For any x ∈ R, if R = {Rn}n∈Z satisfies Hn(x) ∈ Rn for all n ∈ Z, then 

(R, 0) ∈ Σ̂#
r̂ and π̂r̂(R, 0) = x.

(8) For any compact transitive invariant hyperbolic set K ⊂ M whose ergodic 
ϕ--invariant measures are all χ--hyperbolic, there is a transitive invariant compact 
set X ⊂ Σ̂r̂ such that π̂r̂(X) = K.

Part (6) provides a combinatorial characterization of the noninjectivity of the coding. 
It is an adaptation for flows of the Bowen property, which was introduced in [10] for 
diffeomorphisms and motivated by the work of Bowen [9]. Note that, in contrast to [9], 
we do not claim that the flow restricted to π̂r̂[Σ̂#

r̂ ] is topologically equivalent to the 
corresponding quotient dynamics.

The relation ∼ will be the affiliation, which will be introduced in Section 9.3, following 
a similar notion introduced in [36]. Note that the assumption 

[
v(σ̂t

r̂(z)) ∼ v(σ̂t
r̂(z′)) for 

all t ∈ R
]

consists of countably many affiliation conditions: if z = (R, s) and z′ = (S, s′), 
then varying t in the interval [r̂n(R), r̂n+1(R)) provides i ≤ sup(r̂)

inf(r̂) affiliations of the form 
Rn ∼ Sm+1, . . . , Rn ∼ Sm+i.

Part (7) provides for any x ∈ NUH# a particular pair (R, t) ∈ Σ̂#
r̂ such that π̂r̂(R, t) =

x (here t is the smallest non-negative number such that ϕ−t(x) ∈ R). We call the pair 
(R, t) the canonical lift of x. This is a measurable embedding of NUH# into Σ̂r̂.

Part (8) is a version of [17, Proposition 3.9] in our context, and the proof is very 
similar, see Section 9.4.
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9.2. Second coding

Let Ĝ = (V̂ , Ê) be the oriented graph with vertex set V̂ = R and edge set Ê = {R→
S : R,S ∈ R s.t. H(R) ∩ S �= ∅}, and let (Σ̂, σ̂) be the TMS induced by Ĝ . We note 
that the ingoing and outgoing degree of every vertex in Σ̂ is finite. We show this for the 
outgoing edges, since the proof for the ingoing edges is symmetric. Fix R ∈ R, and fix 
Z ∈ Z such that Z ⊃ R. If (R,S) ∈ Ê then ϕ[0,ρ](R) ∩ S �= ∅, hence for any Z ′ ∈ Z

with S ⊂ Z ′, we have Z ′ ∈ IZ . In particular,

#{(R,S) ∈ Ê} ≤
∑

Z′∈IZ

#{S ∈ R : S ⊂ Z ′} < +∞,

since both IZ and each {S ∈ R : S ⊂ Z ′} are finite sets (see Lemma 8.2(1)).
For 
 ∈ Z and a path Rm → · · · → Rn on Ĝ define

�[Rm, . . . , Rn] := H−�(Rm) ∩ · · · ∩H−�−(n−m)(Rn),

the set of points whose itinerary under H from 
 to 
 + (n − m) visits the rectan
gles Rm, . . . , Rn respectively. The crucial property that gives the new coding is that 
�[Rm, . . . , Rn] �= ∅. This follows by induction, using the Markov property of R (Propo
sition 8.3(3)).

The map π defines similar sets: for 
 ∈ Z and a path vm
ε → · · · ε → vn on Σ, let

Z�[vm, . . . , vn] := {π(w) : w ∈ Σ# and w� = vm, . . . , w�+(n−m) = vn}.

There is a relation between these sets we just defined. Before stating such a relation, we 
will define the coding of H, and then collect some of its properties.

The map π̂ : Σ̂→M : Given R = {Rn}n∈Z ∈ Σ̂, π̂(R) is defined by the identity

{π̂(R)} :=
⋂
n≥0

−n[R−n, . . . , Rn].

Note that π̂ is well-defined, because the right hand side is an intersection of nested 
compact sets with diameters going to zero. The proposition below states relations be
tween Σ and Σ̂, and between π and π̂. For v = {Ψps

n,p
u
n

xn }n∈Z ∈ Σ, define

Gn
v =

{
g+
xn−1

◦ · · · ◦ g+
x0

, n ≥ 0
g−xn+1

◦ · · · ◦ g−x0
, n < 0.

Recall the integer N introduced in Lemma 8.1.

Proposition 9.2. For each R = (Rn)n∈Z ∈ Σ̂ and Z ∈ Z with Z ⊃ R0, there are an 
ε--gpo v = {vk}k∈Z ∈ Σ with Z(v0) = Z and a sequence (nk)k∈Z of integers with n0 = 0
and 1 ≤ nk − nk−1 ≤ N for all k ∈ Z such that:
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(1) For each k ≥ 1,

n−k
[Rn−k

, . . . , Rnk
] ⊂ Z−k[v−k, . . . , vk].

In particular, π̂(R) = π(v). Moreover, Rnk
⊂ Z(vk) for all k ∈ Z.

(2) The map π̂ is Hölder continuous over Σ̂. In fact, {vi}|i|≤k depends only on 
{Rj}|j|≤kN for each k ≥ 1.

(3) If R ∈ Σ̂#, then v ∈ Σ#.
(4) The two codings have the same regular image: π[Σ#] = π̂[Σ̂#].

For diffeomorphisms, the above lemma is [36, Lemma 12.2]. The difference from the 
case of diffeomorphisms relies on our definitions of G and Ĝ . While the edges of Ĝ
correspond to possible time evolutions of H, the edges of G correspond to ε--overlaps. In 
particular, not every edge of Ĝ corresponds to an edge of G , and this is the reason we 
have to introduce the sequence (nk)k∈Z. In fact, each edge vk → vk+1 of G corresponds 
to a sequence of edges Rnk

→ · · · → Rnk+1 of Ĝ .

Proof. We begin proving part (1). Fix {Rn}n∈Z ∈ Σ̂. The proof consists of successive 
uses of the following fact.

Claim: For all i ∈ Z and v ∈ A such that Ri ⊂ Z(v), there are 1 ≤ k ≤ N and w ∈ A

such that 0[Ri, . . . , Ri+k] ⊂ Z0[v, w] and Ri+k ⊂ Z(w). Similarly, there are 1 ≤ 
 ≤ N

and u ∈ A such that 0[Ri−�, . . . , Ri] ⊂ Z0[u, v] and Ri−� ⊂ Z(u).

Proof of the claim. We prove the first statement (the second is proved similarly). Let 
v = Ψps,pu

x ∈ A such that Ri ⊂ Z(v). Since R ∈ Σ̂, there is y∗ ∈ 0[Ri, . . . , Ri+N ]. 
Moreover, there is v∗ ∈ Σ# such that π(v∗) = y∗ and v∗0 = v. We set w := v∗1 so that 
v → w. By construction, g+

x (π(v∗)) = π(σ(v∗)) so Z(w) contains g+
x (y∗). Also, there is 

1 ≤ k ≤ N such that g+
x (y∗) = Hk(y∗).

We claim that 0[Ri, . . . , Ri+k] ⊂ Z0[v, w]. To see that, let y ∈ 0[Ri, . . . , Ri+k]. We 

have y N∼ y∗, thus the following occur:

◦ y ∈ 0[Ri, . . . , Ri+k] ⊂ Ri ⊂ Z(v), hence y = π(v) for some v ∈ Σ# with v0 = v.
◦ g+

x (y∗) = Hk(y∗) ∈ Z(w)⇒ g+
x (y) = Hk(y) ∈ Z(w), hence π(σ(v)) = g+

x (y) = π(w)
for some w ∈ Σ# with w0 = w.

Define u = {un}n∈Z by

un =
{

vn , n ≤ 0
wn−1 , n ≥ 1.

Note that u belongs to Σ̂# since v, w ∈ Σ̂# and v → w on G . To prove that y = π(u), 
note that:



64 J. Buzzi et al. / Advances in Mathematics 479 (2025) 110410 

◦ If n ≤ 0, then Gn
u(y) = Gn

v (y) ∈ Z(vn).
◦ If n ≥ 1, then Gn

u(y) = Gn−1
w [g+

x (y)] ∈ Z(wn−1).

By Proposition 4.6, it follows that y = π(u) ∈ Z0[v, w], proving the inclusion.
The rest of the claim follows by symmetry, replacing g+

x , H, σ by g−x , H
−1, σ−1 and 

noting that N∼ considers Hk for all |k| ≤ N . □

Now we prove part (1). Fix n0 = 0 and v0 ∈ A such that R0 ⊂ Z(v0). Applying the 
claim for i = 0 and v0, we get 0 < n1 ≤ N and v1 ∈ A such that 0[R0, . . . , Rn1 ] ⊂
Z0[v0, v1] and Rn1 ⊂ Z(v1). By induction, we obtain an increasing sequence n0 = 0 <

n1 < n2 < · · · such that nk < nk+1 ≤ nk + N , 0[Rnk
, . . . , Rnk+1 ] ⊂ Z0[vk, vk+1], and 

Rnk
⊂ Z(vk) for all k ≥ 0. Doing the same for negative iterates, we get a decreasing 

sequence n0 = 0 > n−1 > n−2 > · · · such that nk−N ≤ nk−1 < nk, 0[Rnk
, . . . , Rnk+1 ] ⊂

Z0[vk, vk+1], and Rnk
⊂ Z(vk) for all k < 0. We claim that the sequence v = {vk}k∈Z

satisfies the proposition.
Fix k ≥ 0. We wish to show that n−k

[Rn−k
, . . . , Rnk

] ⊂ Z−k[v−k, . . . , vk], i.e. given 
y ∈ n−k

[Rn−k
, . . . , Rnk

] we want to find u ∈ Σ# such that (u−k, . . . , uk) = (v−k, . . . , vk)
and π(u) = y. Since Hn−k(y) ∈ Rn−k

⊂ Z(v−k), there is w− ∈ Σ# with w−
0 = v−k

and Hn−k(y) = π(w−). Similarly, since Hnk(y) ∈ Rnk
⊂ Z(vk), there is w+ ∈ Σ# with 

w+
0 = vk and Hnk(y) = π(w+). Define u = {ui}i∈Z by:

ui =

⎧⎪⎨⎪⎩
w−

i+k , i ≤ −k
vi , i = −k, . . . , k
w+

i−k , i ≥ k.

Clearly u ∈ Σ#. We claim that π(u) = y. Indeed:

◦ −k ≤ i ≤ k: we have Gi
u(y) = Hni(y) ∈ Rni

⊂ Z(vi).
◦ i ≤ −k: since G−k

u (y) = Hn−k(y) and Gi+k
σ−k(u) = Gi+k

w− (the sequences σ−k(u) and 

w− coincide in the past), we have Gi
u(y) = Gi+k

σ−k(u)[G
−k
u (y)] = Gi+k

w− [Hn−k(y)] ∈
Z(w−

i+k) = Z(ui).
◦ i ≥ k: as in the previous case, Gi

u(y) ∈ Z(ui).

Therefore Gi
u(y) ∈ Z(ui) for all i ∈ Z, hence by Proposition 4.6 it follows that π(u) = y.

Now we show that π̂(R) = π(v). Indeed, since nk → ±∞ as k → ±∞, we have

{π̂(R)} =
⋂
k≥0

n−k
[Rn−k

, . . . , Rnk
] ⊂

⋂
k≥0

Z−k[v−k, . . . , vk].

On one hand, this latter set is, by Theorem 4.5(3), the intersection of a descending chain 
of closed sets with diameter going to zero, hence it is a singleton. On the other hand, it 
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contains 
⋂
k≥0

Z−k[v−k, . . . , vk] = {π(v)}. Thus π̂(R) = π(v), which concludes the proof 

of part (1).
To check part (2), note that its second statement is immediate from the above argu

ment. It implies the rest, since π is Hölder-continuous.
We turn to part (3). Assume that R ∈ Σ̂#. Let R ∈ R and mj → +∞ such that 

Rmj
= R for all j. Since Σ̂ is locally compact (the degrees of Ĝ are all finite), the set

P = {S ∈ R : ∃ path S0 = R→ S1 → · · · → Si = S with i ≤ N}

is finite. Given j, let k = k(j) be the unique integer such that nk−1 < mj ≤ nk. Since 
nk−nk−1 ≤ N , it follows that Rnk

∈P. By Lemma 8.2(2), it follows that vk belongs to 
the finite set {Z ∈ Z : ∃S ∈P such that S ⊂ Z}, and so there is a sequence ki → +∞
such that {vki

}i≥0 is a constant sequence. Proceeding similarly for the negative indices, 
we conclude that v ∈ Σ#. This proves part (3).

Now we prove part (4). By part (3), we have π̂[Σ̂#] ⊂ π[Σ#]. To prove the converse 
inclusion, let v = {vn}n∈Z ∈ Σ# and write x = π(v). Let Rn ∈ R such that Hn(x) ∈ Rn. 
Clearly, R = {Rn} ∈ Σ̂ and x = π̂(R). It remains to prove that R ∈ Σ̂#. Let v ∈ A and 
ki → +∞ such that vki

= v for all i ≥ 0. Letting mi := nki
→ +∞ so that Hmi(x) =

π[σki(v)], we have Hmi(x) ∈ Rmi
∩ Z(v) and so Rmi

⊂ Z(v). By Lemma 8.2(1), there 
is a subsequence m�j such that (Rm�j

) is constant. Proceeding similarly for negative 

indices, it follows that R ∈ Σ̂# and so π[Σ#] ⊂ π̂[Σ̂#]. This concludes the proof of part 
(4), and of the proposition. □

We now define the topological Markov flow (TMF) and coding that satisfy the Main 
Theorem. For that, recall the definition of TMF in Section 1.2.

The triple (Σ̂r̂, σ̂r̂, π̂r̂): The topological Markov flow (Σ̂r̂, σ̂r̂) is the suspension of (Σ̂, σ̂)
by the roof function r̂ : Σ̂→ (0, ρ) defined by

r̂(R) := min{t > 0 : ϕt(π̂(R)) = π̂(σ̂(R))},

and the factor map π̂r̂ : Σ̂r̂ →M is given by π̂r̂(R, s) := ϕs(π̂(R)).

As claimed above, we have sup r̂ < ρ. Indeed, by Proposition 9.2 there is v =
{vn}n∈Z ∈ Σ such that π̂(R) = π(v), and there are integers n−1 < 0 < n1 such that 
n−1 [Rn−1 , . . . , Rn1 ] ⊂ Z−1[v−1, v0, v1], hence r̂(R) ≤ r̂n1(R) = r(v) < ρ. The rest of this 
section is devoted to proving that (Σ̂r̂, σ̂r̂, π̂r̂) satisfies Theorem 9.1. We start with some 
fundamental properties.

Proposition 9.3. The following holds for all ε > 0 small enough.

(1) r̂ : Σ̂→ (0,∞) is well-defined and Hölder continuous.
(2) π̂r̂ ◦ σ̂t

r̂ = ϕt ◦ π̂r̂, for all t ∈ R.
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(3) π̂r̂ is Hölder continuous with respect to the Bowen-Walters distance.
(4) π̂r̂[Σ̂#

r̂ ] = NUH#.

Proof. To prove part (1), note that, by construction of σ̂ and of the sections Λ ⊂ Λ̂, r̂ is 
well-defined over Σ̂. Now, let R ∈ Σ̂ and notice that U := {S ∈ Σ̂ : (S0, S1) = (R0, R1)}
is a neighborhood of R. Moreover, there are v, w ∈ A and discs Di, Dj from Λ̂ such that 
π̂(U) ⊂ Z(v) ⊂ Di and π̂(σ̂(U)) ⊂ Z(w) ⊂ Dj . Setting τ(x) = inf{t > 0 : ϕt(x) ∈ Dj}
for x on a neighborhood of Z(v), we have r̂ = τ ◦ π̂ on U . Since τ is a continuous passage 
time between the two smooth disks, transverse to the flow, it is well-defined and smooth, 
see Lemma 2.1(3). To finish the proof of part (1), recall that π̂ is Hölder continuous by 
Proposition 9.2(2).

Part (2) follows from the definition of r̂ by a routine argument, which we quickly 
recall. For n ∈ Z, let r̂n be the n--th Birkhoff sum of r̂ (see Section 1.2). Let (R, s) ∈ Σ̂r̂. 
Given t ∈ R, let n ∈ Z be defined by r̂n(R) ≤ t + s < r̂n+1(R) so that σ̂t

r̂(R, s) =
(σ̂n(R), t + s− r̂n(R)). We have

(π̂r̂ ◦ σ̂t
r̂)(R, s) = π̂r̂ (σ̂n(R), t + s− r̂n(R)) = ϕt+s−r̂n(R)(π̂(σ̂n(R)))

= ϕt+s−r̂n(R)(ϕr̂n(R)(π̂(R))) = ϕt+s(π̂(R)) = (ϕt ◦ π̂r̂)(R, s),

and so part (2) is established.
Now we prove part (3). By Proposition 9.2(2), π̂ is Hölder continuous. Applying the 

same arguments of [28, Lemma 5.9], we conclude that π̂r̂ is Hölder continuous with 
respect to the Bowen-Walters distance.

We finally arrive at part (4). Recall from Proposition 9.2(4) that π̂[Σ̂#] = π[Σ#], 
hence Proposition 5.2(3) rewrites as π̂[Σ̂#] ⊃ Λ∩NUH#. The flow saturation of π̂[Σ̂#] is 
π̂r̂[Σ̂#

r̂ ] by definition, and the flow saturation of Λ∩NUH# is NUH# since Λ is a global 
section and NUH# is ϕ--invariant. Therefore π̂r̂[Σ̂#

r̂ ] ⊃ NUH#. Reversely, π̂[Σ̂#] = π[Σ#]
is contained in NUH# by Theorem 6.1. Saturating this inclusion under the flow, we obtain 
that π̂r̂[Σ̂#

r̂ ] ⊂ NUH#. This concludes the proof of part (4). □

By Proposition 3.5, the above proposition establishes Parts (1) and (2) of the Main 
Theorem. In the next sections, we focus on proving part (3) and the other properties 
stated in Theorem 9.1.

9.3. The map π̂r is finite-to-one

Given Z ∈ Z , remember that IZ = {Z ′ ∈ Z : ϕ[−ρ,ρ]Z ∩ Z ′ �= ∅}. The loss of 
injectivity of π̂r̂ is related to the following notion.

Affiliation: We say that two rectangles R,S ∈ R are affiliated, and write R ∼ S, if 
there are Z,Z ′ ∈ Z such that R ⊂ Z, S ⊂ Z ′ and Z ′ ∈ IZ . This is a symmetric relation.
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Lemma 9.4. If π̂(R) = ϕt[π̂(S)] with R,S ∈ Σ̂# and |t| ≤ ρ, then R0 ∼ S0. More 
precisely, if v, w ∈ Σ# are such that π(v) = π̂(R) and π(w) = π̂(S), then R0 ⊂ Z(v0)
and S0 ⊂ Z(w0) with Z(w0) ∈ IZ(v0).

Proof. Let y = π̂(R) and z = π̂(S), so that y = ϕt(z). Applying Proposition 9.2 to R
and S, we find two ε--gpo’s v, w ∈ Σ# such that:

◦ π(v) = y and R0 ⊂ Z(v0),
◦ π(w) = z and S0 ⊂ Z(w0).

The lemma thus follows with Z = Z(v0) and Z ′ = Z(w0), since ϕt(z) ∈ Z(v0). □

Remark 9.5. We observe that the condition π̂(R) = ϕt[π̂(S)] in the above lemma actually 
implies more than just R0 ∼ S0. It implies a strong affiliation: for any Z,Z ′ ∈ Z such 
that Z ⊃ R0 and Z ′ ⊃ S0, we have Z ′ ∈ IZ . Indeed, if R,S ∈ Σ̂# and |t| ≤ ρ satisfy 
π̂(R) = ϕt[π̂(S)] and Z,Z ′ ∈ Z satisfy Z ⊃ R0 and Z ′ ⊃ S0, Proposition 9.2 gives the 
existence of v, w ∈ Σ# such that π(v) = π̂(R) and π(w) = π̂(S) with Z(v0) = Z and 
Z(w0) = Z ′, and so Z ′ ∈ IZ .

For each R ∈ R, define

A(R) := {(S,Z ′) ∈ R ×Z : R ∼ S and S ⊂ Z ′} and N(R) := #A(R).

We can use Lemma 8.2 and proceed as in the proof of [36, Lemma 12.7] to show that 
N(R) < ∞, ∀R ∈ R. Having this in mind, we now prove the finiteness-to-one property 
of π̂r̂, i.e. part (3) of the Main Theorem and of Theorem 9.1.

Theorem 9.6. Every x ∈ π̂r̂[Σ̂#
r̂ ] has finitely many π̂r̂--preimages inside Σ̂#

r̂ . More pre
cisely, if x = π̂r̂(R, t) with Rn = R for infinitely many n > 0 and Rn = S for infinitely 
many n < 0, then #{(S, t′) ∈ Σ̂#

r̂ : π̂r̂(S, t′) = x} ≤ N(R)N(S).

Proof. The proof is by contradiction. Assuming that #{(S, t′) ∈ Σ̂#
r̂ : π̂r̂(S, t′) = x}

contains N(R)N(S) + 1 distinct elements (R(i), ti), we are going to show that, up to 
permutation of these preimages, there are arbitrarily large integers k < 0 < 
 such that

(R(1)
k , . . . , R

(1)
� ) = (R(2)

k , . . . , R
(2)
� ), (9.1)

i.e. R(1) and R(2) agree between positions k → −∞ and 
 → +∞. This implies that 
R(1) = R(2) and so t1 �= t2. But then x is periodic with period |t2 − t1| < r̂(R(1)) < ρ, a 
contradiction to the choice of ρ (see Section 2.1).

The proof of equality (9.1) uses, as in [36, Theorem 12.8], an idea of Bowen [9, pp. 
13--14]: it exploits the (non-uniform) expansiveness of ϕ, expressed in terms of the unique
ness of shadowing (Proposition 4.6). For simplicity of notation, we assume without loss 
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Fig. 3. The objects in the proof of Theorem 9.6. The line above depicts the points associated to x = π̂(R)
and the line below to x = ϕti π̂(R(i)). Vertical segments represent visits to the section (long segments 
correspond to the symbols from R or R(i)). The origins π̂(R) and π̂(R(i)) are marked by a zero.

of generality that t = 0. Recall that rn and r̂n denote Birkhoff sums for n ∈ Z, see 
Section 1.2.

Let xn := ϕr̂n(R)(x) = π̂[σ̂n(R)], a point in the trajectory of x. Fix two integers 
k < 0 < 
 such that Rk = S and R� = R. (See Fig. 3.)

For each i = 1, . . . , N(R)N(S) + 1, consider the following objects:

◦ Let κi ∈ Z be the unique integer such that r̂κi
(R(i)) ≤ r̂k(R) + ti < r̂κi+1(R(i)), 

so that (ϕti ◦ π̂ ◦ σ̂k)(R) belongs to the orbit segment between (π̂ ◦ σ̂κi)(R(i)) and 
(π̂ ◦ σ̂κi+1)(R(i)).
◦ Let θ(i)

k := r̂k(R) + ti − r̂κi
(R(i)), then 0 ≤ θ

(i)
k < ρ.

◦ Let x(i)
k := ϕr̂κi

(R(i))−ti(x) = π̂[σ̂κi(R(i))], a point in the trajectory of x. Note that 
ϕθ

(i)
k (x(i)

k ) = ϕr̂k(R)(x) = xk and ϕθ
(i)
k +r̂�(R)−r̂k(R)(x(i)

k ) = x�.
◦ By Proposition 9.2, there is an ε--gpo v(i) ∈ Σ# such that π[v(i)] = x

(i)
k and R(i)

κi ⊂
Z(v(i)

0 ).
◦ Let ni be the unique integer such that rni

(v(i)) ≤ θ
(i)
k + r̂�(R)− r̂k(R) < rni+1(v(i)). 

Hence x� belongs to the orbit segment between (π ◦ σni)(v(i)) and (π ◦ σni+1)(v(i)).
◦ Let τi > κi be the unique integer such that r̂τi−κi

[σ̂κi(R(i))] = rni
(v(i)). The exis

tence of such an integer is ensured by Proposition 9.2 which also gives R(i)
τi ⊂ Z(v(i)

ni ).
◦ Let x(i)

k,� := ϕrni
(v(i))(x(i)

k ) = π̂[σ̂τi(R(i))], a point in the trajectory of x.
◦ Let γ(i)

k,� := θ
(i)
k + r̂�(R)− r̂k(R)− rni

(v(i)), then |γ(i)
k,�| < ρ. This is the time displace

ment between x(i)
k,� and x�, i.e. x� = ϕγ

(i)
k,�(x(i)

k,�).

Therefore, for each i, we have:

◦ (R(i)
κi , Z(v(i)

0 )) ∈ A(S): this follows from Lemma 9.4, since x(i)
k = π̂[σ̂κi(R(i))], xk =

π̂[σ̂k(R)] and xk = ϕθ
(i)
k (x(i)

k ).
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◦ (R(i)
τi , Z(v(i)

ni )) ∈ A(R): this also follows from Lemma 9.4, since x(i)
k,� = π̂[σ̂τi(R(i))], 

x� = π̂[σ̂�(R)] and x� = ϕγ
(i)
k,�(x(i)

k,�).

The previous paragraph implies that every quadruple (R(i)
κi , Z(v(i)

0 );R(i)
τi , Z(v(i)

ni )) we 
constructed belongs to the cartesian product A(R)×A(S). This latter set has cardinality 
N(R)N(S), hence by the pigeonhole principle there are distinct i, j such that

(R(i)
κi
, Z(v(i)

0 );R(i)
τi , Z(v(i)

ni
)) = (R(j)

κj
, Z(v(j)

0 );R(j)
τj , Z(v(j)

nj
)).

For simplicity of notation, we assume i = 1 and j = 2 and write R(1)
κ1 = R

(2)
κ2 =: B and 

R
(1)
τ1 = R

(2)
τ2 =: A.

Set αi := r̂κi
(R) − ti and βi := r̂τi(R) − ti for i = 1, 2. By definition, we have 

αi ∈ [r̂k(R)− ρ, r̂k(R)], and so |α1−α2| ≤ ρ. Since ϕα1(x) = π̂[σ̂κ1(R(1))] and ϕα2(x) =
π̂[σ̂κ2(R(2))] both belong to B, we must have α1 = α2. An analogous argument shows 
that β1 = β2. We denote these common values by α, β.

Since R(1)
κ1 → · · · → R

(1)
τ1 and R(2)

κ2 → · · · → R
(2)
τ2 are admissible paths on Σ̂, we can 

find non-periodic points

y ∈ 0[R(1)
κ1

, . . . , R(1)
τ1 ] and z ∈ 0[R(2)

κ2
, . . . , R(2)

τ2 ].

Let y′ = Hτ1−κ1(y) and z′ = Hτ2−κ2(z). We have y, z ∈ B and y′, z′ ∈ A. By Proposi
tion 8.3(1), we can define two points w,w′ by the equalities

{w} := {[y, z]} = W s(y,B) ∩Wu(z,B)

{w′} := {[y′, z′]} = W s(y′, A) ∩Wu(z′, A).

Note that neither w nor w′ can be periodic.

Claim: w,w′ belong to the same trajectory of ϕ. More precisely, w′ = Hτ1−κ1(w).

Proof of the claim. This is a consequence of Proposition 7.3: we can obtain w′ from w
by applying small flow displacements of Smale products of points at nearby rectangles.

To implement this idea, we first divide the interval [α, β] by visits to the rectangles {
R

(1)
k

}
κ1≤k≤τ1

and 
{
R

(2)
k

}
κ2≤k≤τ2

. Since these visits are ρ--dense in this interval, we 

can select times:

δ0 = α < ε0 < δ1 < ε1 < · · · < δT ≤ εT = β such that 0 < εs − δs, δs+1 − εs ≤ ρ (9.2)

where each δt = r̂m(R(1)) for some m = m(t) ∈ [κ1, τ1] and each εt = r̂n(R(2)) for some 
n = n(t) ∈ [κ2, τ2].

By Lemma 9.4, this implies that the successive rectangles implied by eq. (9.2) are 
affiliated: R(1)

m(t) ∼ R
(2)
n(t) and R(2)

n(t) ∼ R
(1)
m(t+1). Applying Proposition 9.2, find rectangles 
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Z,Z ′, Z ′′ of Z that contain R(1)
m(t), R

(2)
n(t), R

(1)
m(t+1) and satisfy the conditions of Proposi

tion 7.3. The same applies to the three rectangles R(2)
n(t), R

(1)
m(t+1), R

(2)
n(t+1).

Now let yk = Hk−κ1(y) for κ1 ≤ k ≤ τ1 and z� = H�−κ2(z) for κ2 ≤ 
 ≤ τ2. For each 
t = 0, 1, . . . , T , note that ym(t) ∈ R

(1)
m(t) and zn(t) ∈ R

(2)
n(t). We let D(1)

t and D(2)
t be the 

connected components of Λ̂ containing R(1)
m(t) and R(2)

n(t) respectively.
On the one hand, since ym(t+1) = ϕu(ym(t)) with 0 ≤ u ≤ ρ, Proposition 7.3 implies 

that

[ym(t), zn(t)]D(2)
t

= [ym(t+1), zn(t)]D(2)
t

.

On the other hand, Proposition 7.2(3) yields:

[ym(t+1), zn(t)]D(1)
t+1

= q
D

(1)
t+1

([ym(t+1), zn(t)]D(2)
t

)

= q
D

(1)
t+1

([ym(t), zn(t)]D(2)
t

) = (q
D

(1)
t+1
◦ q

D
(2)
t

)([ym(t), zn(t)]D(1)
t

).

Finally, applying Proposition 7.3 again, we conclude that

[ym(t+1), zn(t+1)]D(1)
t+1

= [ym(t+1), zn(t)]D(1)
t+1

= (q
D

(1)
t+1
◦ q

D
(2)
t

)([ym(t), zn(t)]D(1)
t

).

Proceeding inductively,

w′ = [y′, z′] = q
D

(2)
T

([ym(T ), zn(T )]D(1)
T

)

= (q
D

(2)
T
◦ q

D
(1)
T
◦ q

D
(2)
T−1

)([ym(T−1), zn(T−1)]D(1)
T−1

)

= · · ·

= (q
D

(2)
T
◦ q

D
(1)
T
◦ · · · ◦ q

D
(1)
1
◦ q

D
(2)
0

)([ym(0), zn(0)]D(1)
0

)

= (q
D

(2)
T
◦ q

D
(1)
T
◦ · · · ◦ q

D
(1)
1
◦ q

D
(2)
0

)([y, z]
D

(1)
0

)

= (q
D

(2)
T
◦ q

D
(1)
T
◦ · · · ◦ q

D
(1)
1
◦ q

D
(2)
0

)(w),

which proves that w and w′ belong to the same trajectory. Repeating the argument 
using the holonomy maps corresponding to the sequence (R(1)

κ1 , . . . , R
(1)
τ1 ), we get that 

their composition sends w to w′. By the Markov property in the stable direction, these 
holonomy maps correspond to first returns. This proves that w′ = Hτ1−κ1(w). □

Now it is easy to conclude the proof of the theorem. A symmetric version of the claim 
implies that w = H−(τ2−κ2)(w′). Since w is not periodic, we obtain τ1 − κ1 = τ2 − κ2. It 
follows that (R(1)

κ1 , . . . , R
(1)
τ1 ) = (R(2)

κ2 , . . . , R
(2)
τ2 ), since both correspond to the rectangles 

in R that contain Hκ1(w), . . . , Hτ1(w). This concludes the proof. □
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9.4. Conclusion of the proof of Theorem 9.1

We already proved parts (1) and the first half of part (2). Also, Theorem 9.6 establishes 
part (3). For the second half of part (2), we note that every point of NUH# has a finite 
and nonzero number of lifts to Σ̂#

r̂ , hence every ergodic χ--hyperbolic measure on M , 
which is supported in NUH#, can be lifted to an ergodic σ̂r̂--invariant measure μ, exactly 
as in the argument performed in [36, Section 13]. This concludes the proof of part (2) of 
Theorem 9.1.

We now prove the remaining parts (4)--(8) stated in Theorem 9.1.

Part (4) Using Theorem 4.5, we define Ns/u
z as follows:

◦ For z = (R, 0) ∈ Σ̂r̂, define first V s/u(z) = W s/u(π̂(R), R0) and Ns/u
z =

Tπ̂(R)V
s/u(z). By definition, V s(z) and V u(z) are transverse.

◦ For z = (R, t) ∈ Σ̂r̂, define Ns/u
z = Φt

(
N

s/u
(R,0)

)
. Since Φ is an isomorphism, 

Nπ̂r̂(R,t) = Ns
z ⊕Nu

z .

The geometrical Markov property of Proposition 8.3(3) implies that the families {Ns/u
z }

are invariant under Φ. The convergence rates along Ns/u
z follow from Theorem 4.5(3), 

taking λ := 1 
sup(rΛ)

(
χ inf(rΛ)

2 − βε
6 

)
. These estimates show, in particular, that these 

spaces only depend on x := π̂r̂(z), hence one can set Ns/u
x := N

s/u
z . Finally, the Hölder 

continuity follows from Theorem 4.5(5). This concludes the proof of part (4).

Part (5) For any z = (R, 0) ∈ Σ̂, Theorem 4.5 associates curves V s/u(z) tangent to Λ̂, 
hence transverse to the flow direction. For general z = (R, t) ∈ Σ̂r̂, one then defines the 
manifolds V cs/cu(z) := ϕ[t−1,t+1](V s/u(R, 0)). By construction, V cs/cu(z) is tangent to 
N

s/u
z +R ·X(π̂r̂(z)). Moreover, by Proposition 4.8, for any y ∈ V cs(z) there exists τ ∈ R

such that d(ϕt(π̂r̂(z)), ϕt+τ (y)) ≤ exp(−λt) for all t ≥ 0. The same holds for V cu(z), 
thus concluding the proof of Part (5).

Part (7) The proof of this part is almost automatic. The measurable set Z = R

contains Λ∩NUH#, hence the orbit of any point x ∈ NUH# intersects R, which proves 
item (a). Item (b) was proved in the beginning of Section 7.2. Finally, any x ∈ R defines 
{Rn}n∈Z such that Hn(x) ∈ Rn for all n ∈ Z. In particular, H(Rn) ∩ Rn+1 �= ∅ for 
all n ∈ Z and so R = {Rn} ∈ Σ̂. Since R = π[Σ#], we also have x = π(v) for some 
v = {vn}n∈Z ∈ Σ#. For each k ∈ Z, the point π[σk(v)] is a return of x to R, hence there 
is an increasing sequence such that π[σk(v)] = Hnk(x). Therefore Rnk

⊂ Z(vk). Using 
that v ∈ Σ# and Lemma 8.2(1), it follows that R ∈ Σ̂#.

Part (8) Assume K ⊂ M is a compact, transitive, invariant, hyperbolic set such that 
all ϕ--invariant measures supported by it are χ--hyperbolic. Let TK = Es ⊕ X ⊕ Eu
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be the continuous hyperbolic splitting. Proceeding as in [17, Proposition 2.8], there are 
constants C > 0 and κ > χ such that

‖dϕtvs‖ ≤ Ce−κt‖vs‖ and ‖dϕ−tvu‖ ≤ Ce−κt‖vu‖, for all vs ∈ Es, vu ∈ Eu and t ≥ 0.

Now we proceed as in the proof of Proposition 3.1. Using the notation of equation (3.1), 
the functions x ∈ K �→ γs/u(x) are continuous. Therefore there is a constant C1 = C1(K)
such that s(x), u(x) < C1 and α(x) = ∠(ns

x, n
u
x) > C−1

1 for all x ∈ K. This implies that 
infx∈K Q(x) > 0, which in turn implies that infx∈K q(x) > 0. In particular, K ⊂ NUH#. 
This is enough to reproduce the method of proof of [17, Prop. 3.9], as follows. We recall 
that X ⊂ Σ̂r̂ is σ̂r̂--invariant if σ̂t

r̂(X) = X for all t ∈ R.

Step 1: There is a σ̂r̂--invariant compact set X0 ⊂ Σ̂r̂ such that π̂r̂(X0) ⊃ K.

Proof of Step 1. For each x ∈ K∩R, consider its canonical coding R(x) = {Rn(x)}n∈Z. 
Since infx∈K q(x) > 0, K intersects finitely many rectangles of R. Hence there is a finite 
set V0 ⊂ R such that R0(x) ∈ V0 for all x ∈ K ∩R. By invariance, the same happens 
for all n ∈ Z, i.e. Rn(x) ∈ V0 for all x ∈ K ∩R. Therefore the subshift Σ0 induced by 
V0, which is compact since V0 is finite, satisfies π̂(Σ0) ⊃ K ∩ R. Let X0 be the TMF 
defined by (Σ0, σ) with roof function r̂ ↾Σ0 . Saturating the latter inclusion under ϕ and 
using part (7)(a), we conclude that π̂r̂(X0) ⊃ K. □

Step 2: There is a transitive σ̂r̂--invariant compact subset X ⊂ X0 such that π̂r̂(X) = K.

Proof of Step 2. Among all compact σ̂r̂--invariant sets X ⊂ X0 with π̂r̂(X) ⊃ K, con
sider one which is minimal for the inclusion (it exists by Zorn’s lemma). We claim that 
such an X satisfies Step 2. To see that, let z ∈ K whose forward orbit is dense in K, let 
x ∈ X be a lift of z, and let Y be the ω--limit set of the forward orbit of x,

Y = {y ∈ Σ̂r̂ : ∃tn → +∞ s.t. σ̂tn
r̂ (x)→ y}.

For any n ≥ 1, the set Yn := {σt
r̂(x), t ≥ n} ∪ Y ⊂ X is compact and forward invariant. 

Hence the projection π̂r̂(Yn) is compact and contains {ϕt(z), t ≥ n}. Since the forward 
orbit of z is dense in K, we have π̂r̂(Yn) ⊃ K. Taking the intersection over n, one deduces 
that the projection of the σt

r̂--invariant compact set Y contains K. By the minimality of 
X, it follows that X = Y . □

This concludes the proof of Part (8).

Part (6), items (a) and (b)-(i) Item (a) of Part (6), the local finiteness of the affiliation, 
was proved at the beginning of Section 9.3. Item (b) claims that the affiliation ∼ is a 
Bowen relation. This splits into two properties (i) and (ii).

To prove item (i) of the Bowen relation, let (R, t), (S, s) ∈ Σ̂#
r̂ with π̂r̂(R, t) = π̂r̂(S, s), 

i.e. π̂(R) = ϕs−tπ̂(S). Since |s− t| ≤ sup(r̂) ≤ ρ, Lemma 9.4 implies that R0 ∼ S0.
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Part (6), item (b)-(ii) We turn to property (ii) of a Bowen relation. Fig. 4 contains the 
involved objects in the proof. We take γ = 3ρ. Let z, z′ ∈ Σ̂#

r̂ such that v(σ̂t
r̂z) ∼ v(σ̂t

r̂z
′)

for all t ∈ R. By flowing the two orbits, we can assume that z = (R, 0) and z′ = (S, s). 
Let x = π̂(R) and y = π̂(S). We wish to show that x = ϕt+s(y) for some |t| < γ. We will 
deduce from the affiliation condition that the orbit of y must be shadowed by an ε--gpo 
that shadows x. By Proposition 4.6, the two orbits are equal and the time shift between 
x and ϕs(y) will be easily bounded.

To do this, we first apply Proposition 9.2(1) and get ε--gpo’s v, w ∈ Σ# such that 
x = π̂(R) = π(v) and y = π̂(S) = π(w) with R0 ⊂ Z(v0) and S0 ⊂ Z(w0). Moreover, 
there are increasing integer sequences (ni)i∈Z, (m̃i)i∈Z such that Rni

⊂ Z(vi) and Sm̃i
⊂

Z(wi). For each i ∈ Z, we locate affiliated symbols in the codings of x and y as follows.
We start with ϕt(x) ∈ Z(vi) for t = ri(v) = r̂ni

(R). We have σ̂t
r̂(R, 0) = (σ̂ni(R), 0), 

hence v(σ̂t
r̂(z)) = Rni

. We also have σ̂t
r̂(S, s) = (σ̂�i(S), t + s − r̂�i(S)), where 
i is 

the unique integer such that r̂�i(S) ≤ t + s < r̂�i+1(S). Thus v(σ̂t
r̂(z′)) = S�i and, by 

assumption, Rni
∼ S�i .

Let ai ∈ Z be the largest integer such that mi := m̃ai
≤ 
i. Hence, Smi

⊂ Z(wai
). 

We have Rni
⊂ Z(vi) ⊂ Di and likewise Smi

⊂ Z(wai
) ⊂ Ei for some unique connected 

components Di, Ei of the section Λ̂.
We write ΨP s

i ,P
u
i

Xi
for vi and ΨQs

i ,Q
u
i

Yi
for wai

for all i ∈ Z. Finally, we set ỹi :=
π(σaiw) ∈ Z(wai

) and yi := qDi
(ỹi). We are going to show that, for all i ∈ Z:

(1) yi is well-defined, and for i = 0 we have y0 = ϕu(ỹ0) with |u| ≤ 2ρ;
(2) yi+1 = g+

Xi
(yi).

Proposition 4.6 will then imply that x = y0 = ϕu(ỹ0) = ϕu(y) = ϕu−s(π̂r̂(S, s)), where 
|u−s| ≤ 2ρ+sup r̂ < 3ρ. Property (ii) and therefore the Bowen relation claimed by Part 
(6)(b) will be established.

It remains to prove the above identities. They require checking that some holonomies 
along the flow are compatible. We will prove this using that affiliation implies that charts 
have comparable parameters and their images fall inside Λ̂ far from its boundary. The 
claims below are not sharp but enough for our purposes. We begin by proving some 
variants of Proposition 7.2(1).

Claim 1: Let Z1, Z2 ∈ Z such that Z1 ∩ ϕ[−ρ,ρ]Z2 �= ∅. Write Zi = Z(Ψps
i ,p

u
i

xi ) and let 
Di be the connected component of Λ̂ containing Zi. Then p

s
1∧pu

1
ps
2∧pu

2
= e±(O( 3√ε)+O(ρ)) and

qD1(Ψx2(R[c(ps2 ∧ pu2 )])) ⊂ Ψx1(R[2c(ps1 ∧ pu1 )])

for all 1 ≤ c ≤ 64.

Proof of Claim 1. Same of Proposition 7.2(1). □
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Fig. 4. The objects in the proof of Theorem 9.1, part (6)(b). The time ti is ri(v) = r̂ni
(R) for an arbitrary 

i ∈ Z. The line above depicts the coding of x = π̂(R) = π(v): large vertical lines correspond to Rnj
⊂ Z(vj), 

shorter ones to other Rn’s. The line below is related to the coding of y = π̂(S) = π(w) with Smi
⊂ Z(wai

), 
the symbol that our proof relates to Rni

⊂ Z(vi). By construction Rni
∼ S�i

and S�i
∼ Smi

. The point yi

is the trace of the orbit of y on Di, the connected component of the section containing Z(vi), figured by a 
dotted line.

Claim 2: Let R1, R2 ∈ R such that R1 ∼ R2. For i = 1, 2, let Di be the connected 
component of Λ̂ containing Ri, and let Zi = Z(Ψps

i ,p
u
i

xi ) ∈ Z such that Zi ⊃ Ri. Then 
ps
1∧pu

1
ps
2∧pu

2
= e±(O( 3√ε)+O(ρ)) and

qD1(Ψx2(R[c(ps2 ∧ pu2 )])) ⊂ Ψx1(R[8c(ps1 ∧ pu1 )]),

for all 1 ≤ c ≤ 16.

Proof of Claim 2. Since R1 ∼ R2, there are W1,W2 ∈ Z such that Wi ⊃ Ri and W1 ∩
ϕ[−ρ,ρ]W2 �= ∅. Write Wi = Z(Ψqsi ,q

u
i

yi ). We apply Claim 1 three times:

◦ Since W2, Z2 ⊃ R2, we have W2 ∩ Z2 �= ∅, hence p
s
2∧pu

2
qs2∧qu2

= e±(O( 3√ε)+O(ρ)) and

Ψx2(R[c(ps2 ∧ pu2 )]) ⊂ Ψy2(R[2c(qs2 ∧ qu2 )]).

◦ Since W1 ∩ ϕ[−ρ,ρ]W2 �= ∅, we have q
s
2∧qu2

qs1∧qu1
= e±(O( 3√ε)+O(ρ)) and

qD1(Ψy2(R[2c(qs2 ∧ qu2 )])) ⊂ Ψy1(R[4c(qs1 ∧ qu1 )]).
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◦ Since W1, Z1 ⊃ R1, we have W1 ∩ Z1 �= ∅, hence q
s
1∧qu1

ps
1∧pu

1
= e±(O( 3√ε)+O(ρ)) and

Ψy1(R[4c(qs1 ∧ qu1 )]) ⊂ Ψx1(R[8c(ps1 ∧ pu1 )]).

Plugging these inclusions together, Claim 2 is proved. □

Claim 3: Let R1, R2, R3 ∈ R such that R1 ∼ R2 and R2 ∼ R3. For i = 1, 2, 3, let Di

be the connected component of Λ̂ containing Ri, and let Zi = Z(Ψps
i ,p

u
i

xi ) ∈ Z such that 
Zi ⊃ Ri. Then p

s
3∧pu

3
ps
1∧pu

1
= e±(O( 3√ε)+O(ρ)) and

(qD1 ◦ qD2)(Ψx3(R[c(ps3 ∧ pu3 )])) = qD1(Ψx3(R[c(ps3 ∧ pu3 )])) ⊂ Ψx1(R[64c(ps1 ∧ pu1 )])

for all 1 ≤ c ≤ 2.

Proof of Claim 3. The estimate ps
3∧pu

3
ps
1∧pu

1
= e±(O( 3√ε)+O(ρ)) follows directly from Claim 

2. Also by Claim 2, we have the inclusions qD2(Ψx3(R[c(ps3 ∧ pu3 )])) ⊂ Ψx2(R[8c(ps2 ∧
pu2 )]) and qD1(Ψx2(R[8c(ps2 ∧ pu2 )])) ⊂ Ψx1(R[64c(ps1 ∧ pu1 )]). This implies that (qD1 ◦
qD2)(Ψx3(R[c(ps3 ∧ pu3 )])) ⊂ Ψx1(R[64c(ps1 ∧ pu1 )]). In particular, it proves that we can 
project Ψx3(R[c(ps3 ∧ pu3 )]) to D1, and so the equality follows. □

Now we apply the above claims to our particular situation. Write vi = Ψps
i ,p

u
i

xi and 
wi = Ψqsi ,q

u
i

zi , so that Qs/u
i = q

s/u
ai .

Claim 4: Let i ∈ Z. We have

qEi+1(ΨYi
(R[Qs

i ∧Qu
i ])) ⊂ ΨYi+1(R[2(Qs

i+1 ∧Qu
i+1)]).

Proof of Claim 4. By Lemma 4.2 and Claim 3, we have

qsai+1
∧quai+1

qsai
∧quai

=
qsai+1

∧quai+1
ps
i+1∧pu

i+1
· p

s
i+1∧pu

i+1
ps
i∧pu

i
· ps

i∧pu
i

qsai
∧quai

= e±(O( 3√ε)+O(ρ)).

This estimate allows to apply the same proof of Proposition 7.2(1), and so we can obtain 
the claimed inclusion in the same manner. □

Claim 5: Let i ∈ Z. Restricted to the set ΨYi
(R[Qs

i ∧ Qu
i ]), we have the equality 

qDi+1 ◦ qEi+1 = qDi+1 = g+
Xi
◦ qDi

. A similar statement holds for i ≤ 0.

Proof of Claim 5. It is enough to prove the equality for i = 0, i.e. that qD1 ◦qE1 = qD1 =
g+
X0
◦ qD0 when restricted to ΨY0(R[Qs

0 ∧ Qu
0 ]). By Claim 4, qE1 [ΨY0(R[Qs

0 ∧ Qu
0 ])] ⊂

ΨY1(R[2(Qs
1 ∧ Qu

1 )]). Applying Claim 3 with c = 2 to the triple (Rn1 , S�1 , Sm1), we get 
that qD1 [ΨY1(R[2(Qs

1 ∧ Qu
1 )])] is well-defined, hence qD1 ◦ qE1 = qD1 when restricted 

to ΨY0(R[Qs
0 ∧ Qu

0 ]). On the other hand, applying Claim 3 with c = 1 to the triple 
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(Rn0 , S�0 , Sm0), we have that qD0 [ΨY0(R[Qs
0 ∧Qu

0 ])] ⊂ ΨX0(R[64(P s
0 ∧ Pu

0 )]). By defini
tion, g+

X0
= qD1 when restricted to R[64(P s

0 ∧ Pu
0 )]. Therefore, g+

X0
◦ qD0 = qD1 when 

restricted to ΨY0(R[Qs
0 ∧Qu

0 ]). This proves Claim 5. □

We now complete the proof of identities (1) and (2) of page 73, which in turn will 
complete the proof of part (6) of Theorem 9.1. For that, we use the claims we just proved.

Firstly we check that yi := qDi
(ỹi) is well-defined. By assumption Rni

∼ S�i , and by 
construction the orbit of y between Smi

and S�i flows for a time at most sup(r) < ρ, 
hence S�i ∼ Smi

. This allows us to apply Claim 3 for c = 1 and get that yi := qDi
(ỹi)

is well-defined. To calculate the time displacement for i = 0, recall that m0 = 
0 = 0. 
Since R0 ∼ S0, inclusion (8.1) implies that y0 = ϕu(ŷ0) with |u| ≤ 2ρ.

Finally, Claim 5 implies that

g+
Xi

(yi) = g+
Xi
◦ qDi

(ỹi) = qDi+1 ◦ qEi+1(ỹi) = qDi+1(ỹi+1) = yi+1,

finishing the proof of Theorem 9.1.

10. Homoclinic classes of measures

In this final section, we prove Theorem 1.1 stated in the introduction, as well as 
Corollary 1.2.

10.1. The homoclinic relation

For any hyperbolic measure μ and μ--a.e. x, the stable set W s(x) of the orbit of x is the 
set of points y such that there exists an increasing homeomorphism h : R→ R satisfying 
d(ϕt(x), ϕh(t)(y)) → 0 as t → +∞. This is an injectively immersed submanifold which 
is tangent to Es

x ⊕X(x) and invariant under the flow. We define similarly the unstable 
manifold Wu(x) by considering past orbits.

Homoclinic relation of measures: We say that two ergodic hyperbolic measures μ, ν
are homoclinically related if for μ--a.e. x and ν--a.e. y there exist transverse intersections 
W s(x) ⋔ Wu(y) �= ∅ and Wu(x) ⋔ W s(y) �= ∅, i.e., points z1 ∈ W s(x) ∩Wu(y) and 
z2 ∈Wu(x)∩W s(y) satisfying Tz1M = Tz1W

s(x)+Tz1W
u(y) and Tz2M = Tz2W

u(x)+
Tz2W

s(y).

Note that the invariance of the stable and unstable manifolds makes this notion 
slightly simpler than it is for diffeomorphisms. Since any hyperbolic periodic orbit sup
ports a (unique) ergodic measure, the above homoclinic relation is also defined between 
hyperbolic periodic orbits, in which case it coincides with the classical notion, see, e.g., 
[30].

Proposition 10.1. The homoclinic relation is an equivalence relation among ergodic hy
perbolic measures.



J. Buzzi et al. / Advances in Mathematics 479 (2025) 110410 77

Fig. 5. The objects in the proof of the inclination lemma. 

Proof. The only property that is not obvious is the transitivity of the relation. Its proof 
uses the following standard lemma.

Inclination lemma. For any hyperbolic measure μ, there is a set Y ⊂M of full μ--measure 
satisfying the following: if x ∈ Y , D ⊂Wu(x) is a two-dimensional disc and Δ is a two
dimensional disc tangent to X having a transverse intersection point with W s(x), then 
there are discs Δk ⊂ ϕ(k,+∞)(Δ) which converge to D in the C1 topology.

Sketch of the proof. Taking χ > 0 small, the measure μ is χ--hyperbolic and the con
structions done in the other sections apply. Consequently one may replace x by an iterate 
in the section Λ and assume that it is the projection under π of a regular sequence v ∈ Σ#. 
We denote Z = Z(v0) and let nk → +∞ such that σnk(v)→ v.

We let xk := π(σnk(v)). We consider the curves V s(xk, Z)→ V s(x, Z), V u(xk, Z)→
V u(x, Z) as in Section 4.2 and especially Theorem 4.5(5). The intersections W s(x) ∩ Λ
and Wu(x)∩Λ contain the stable and unstable curves V s(x, Z) and V u(x, Z). See Fig. 5
for the various objects.

Now, the orbit of Δ contains a disk Δ′ transversally intersecting V s(x, Z) ⊂ Λ. Thus 
Δ′ transversally intersects Λ along some curve V ′. This curve V ′ intersects the stable 
curve V s(x, Z) transversally inside the section Λ.

Hence, if k is large enough, then the curve V s(xk, Z) also intersects Δ′ transversally 
inside Λ along the curve V ′. Now, the graph transform argument in Section 4.2 shows 
that the images of V ′ (by suitable holonomies of the flow mapping xk to xk′ for k′ # k) 
contain curves V ′

k that C1--approximate V u(xk′ , Z).
It follows that the orbit of Δ contains a curve which is arbitrarily C1--close to V u(x, Z). 

By invariance, this orbit contains discs which are arbitrarily C1--close to the arbitrary 
subset D ⊂Wu(x). □
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In order to prove the proposition, let us consider three measures μ1, μ2, μ3 such that 
μ1, μ2 are homoclinically related and μ2, μ3 are homoclinically related. For each measure 
μi, let xi be a point in the full measure set implied by the homoclinic relation. In 
particular, there exist a disc Δ ⊂ Wu(x1) which intersects transversally W s(x2) and 
a disc D ⊂ Wu(y2) which intersects transversally W s(x3). By the inclination lemma, 
the orbit of Δ contains discs that converge to D for the C1--topology. This proves that 
Wu(x1) has a transverse intersection point with W s(x3). The same argument shows that 
Wu(x3) has a transverse intersection with W s(x1). Hence μ1 and μ3 are homoclinically 
related. □

Homoclinic classes of measures: The equivalence classes for the homoclinic relation 
on the set of hyperbolic measures are called homoclinic classes of measures.

10.2. Proof of Theorem 1.1

The proof follows closely the argument in [17, Section 3]. We consider the setting 
of the Main Theorem and especially a topological Markov flow (Σ̂r̂, σ̂r̂) satisfying the 
properties stated in Theorem 9.1.

We begin by some preliminary lemmas. The first two correspond to properties (C6), 
(C7) in [17].

Lemma 10.2. For any two ergodic measures supported on a common irreducible compo
nent of Σ̂r̂, their projections under π̂r̂ are hyperbolic ergodic measures that are homo
clinically related.

Proof. Let us consider two ergodic measures μ and ν on a same irreducible component of 
Σ̂r̂ and their projections μ = μ ◦ π̂−1

r̂ and ν = ν ◦ π̂−1
r̂ . These two measures are obviously 

ergodic. They are hyperbolic by Theorem 9.1(4).
Let x, y be points in full measure sets for μ and ν respectively: they are the projections 

of points x, y which are in the irreducible component supporting the measures μ, ν. Note 
that one can replace x, y, x, y by iterates and assume that x = (R, 0), y = (S, 0). Since 
x, y belong to the same irreducible component, there exists a finite word w = w0w1 · · ·w�

such that w0 = R0 and w� = S0. One can thus consider the point z = (T , 0) such that 
T−n = R−n and T�+n = Sn for any n ≥ 0 and Tn = wn for 1 ≤ n ≤ 
. One deduces 
from the Hölder-continuity of π̂r̂ that the projection z = π̂r̂(z) = π̂(T ) belongs to the 
intersection between W s(x) and Wu(y). In particular W s(z) = W s(x), hence using 
Theorem 9.1(4)(5) we have

lim sup
t→+∞ 

1
t log ‖Φt|Tz(W s(x)∩Λ)‖ ≤ −λ < 0.

Therefore Ns
z = Tz(W s(x)∩Λ), and similarly Nu

z = Tz(Wu(x)∩Λ). Since Ns
z⊕Nu

z = Nz, 
one deduces that the intersection between W s(x) and Wu(y) at z is transverse. By the 
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same argument, one finds a transverse intersection between Wu(x) and W s(y). Since the 
points x and y can be taken in full measure sets for μ and ν respectively, this proves 
that μ and ν are homoclinically related. □

Lemma 10.3. For any χ′ > 0, the set of ergodic measures on Σ̂r̂ whose projection is 
χ′--hyperbolic is open for the weak–* topology.

Proof. The two Lyapunov exponents of the projection of any measure μ on Σ̂r̂ are 
obtained by integration of the bounded continuous functions x �→ log ‖Φt|Ns

x
‖ and x �→

log ‖Φt|Nu
x
‖ (x = π̂r̂(x)). Hence they vary continuously with the measure μ in the weak–* 

topology. □

The next lemma finds an irreducible component that lifts periodic orbits.

Lemma 10.4. There exists an irreducible component Σ̂′
r̂ ⊂ Σ̂r̂ to which one can lift all 

χ--hyperbolic periodic orbits that are homoclinically related to μ.

Proof. Periodic orbits that are homoclinically related to μ are homoclinically related 
together. Hence, given any finite set of such periodic orbits, there exists a transitive 
χ--hyperbolic set K which contains all of them. By Theorem 9.1(8), there is a transitive 
invariant compact set X ⊂ Σ̂r̂ such that π̂r̂(X) = K. In particular, X is contained in an 
irreducible component of Σ̂r̂.

Note that X ⊂ Σ̂#
r̂ , the regular set of Σ̂r̂, since X sees only finitely many vertices. In 

particular, π̂r̂ : X → K is not only onto but finite-to-one and all periodic orbits of K
lift to periodic orbits of X (though with perhaps larger periods).

Let us enumerate all the χ--hyperbolic periodic orbits Oi ∼ μ, i = 1, 2, . . . . For each n, 
the set of irreducible components which contains periodic lifts of all the periodic orbits 
Oi with 1 ≤ i ≤ n is non-empty (by the previous paragraph), finite (by the finiteness
to-one property of the coding) and is non-increasing with n. Hence their intersection is 
nonempty, and any irreducible component which belongs to it satisfies the claim. □

Let ν be a χ--hyperbolic ergodic measure that is homoclinically related to μ. By 
Theorem 9.1(2), there exists an ergodic lift ν of ν to Σ̂r̂. Consider a point q ∈ Σ̂r̂ that is 
recurrent (such that there exists a sequence of forward iterates σ̂ki(q) which converges 
to q) and generic for ν, and let x = π̂r̂(q).

The recurrence of q gives rise to a sequence of periodic points qi in Σ̂r̂ which converge 
to q (hence are in a same irreducible component) and whose orbits weak–* converge 
to ν. By Lemma 10.3 the projections of these periodic orbits are χ--hyperbolic and by 
Lemma 10.2 they are homoclinically related to μ. Therefore there are periodic orbits pi
in the irreducible component Σ̂′

r̂ which have the same projections as the periodic orbits 
qi.

Let us write qi = (Ri, ti) and pi = (Si, si). Since (qi) is converging and Σ̂ is locally 
compact, the sequence (Ri) is relatively compact. The Bowen property of Theorem 9.1(6) 
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implies that v(σ̂t
r̂(qi)) ∼ v(σ̂t

r̂(pi)) for all t ∈ R so, by the local finiteness of the affiliation, 
the sequence (Si) is relatively compact. This implies that (pi) is relatively compact and 
(up to taking a subsequence) converges to some p ∈ Σ̂′

r̂. By continuity of the projection, 
π̂r̂(p) = π̂r̂(q) = x.

We claim that p ∈ Σ̂′#
r̂ . This follows from the fact that q is recurrent and that 

the Bowen relation is locally finite. More precisely, there are some vertex A ∈ V̂ and 
integers mk, nk → ∞ such that qmk

= q−nk
= A. In particular, for each k ≥ 1 we have 

qimk
= qi−nk

= A for all large i. Hence pimk
, pi−nk

are related to A, and so they belong 
to the set {B ∈ V̂ : B ∼ A}. Since this latter set is finite, some symbol must repeat as 
required and this passes to the limit p, proving the claim.

We have proved that ν--almost every point has a lift in Σ̂′#
r̂ . The finiteness-to-one 

property of Theorem 9.1(3) and the same averaging argument used in the proof of The
orem 9.1(2) imply that ν has a lift in Σ̂′

r̂. Considering the ergodic decomposition, we can 
choose an ergodic lift, as claimed. Theorem 1.1 is now proved. □

10.3. Proof of Corollary 1.2

Let H be some homoclinic class of hyperbolic ergodic measures. Let us deduce from 
Theorem 1.1 that there is at most one ν ∈ H such that h(ϕ, ν) = sup{h(ϕ, μ) : μ ∈ H}. 
Let ν, ν′ ∈ H be two measures with this property. They are both hyperbolic, hence 
χ--hyperbolic for some χ > 0. For one such fixed parameter χ, let πr : Σr → M be the 
coding given by the Main Theorem.

By Theorem 1.1, there is an irreducible component Σ′
r of Σr to which both ν and 

ν′ lift. Since the factor map πr preserves the entropy and since the projection of any 
ergodic measure on Σ′

r is homoclinically related to ν and ν′ by Lemma 10.2, the two 
lifts are measures of maximal entropy for Σ′

r. But the measure of maximal entropy of 
an irreducible component of a topological Markov flow with a Hölder continuous roof 
function r is unique (see e.g. [28, Proof of Theorem 6.2]). Hence ν = ν′, which proves 
Corollary 1.2.

Appendix A. Standard proofs

Remind we are assuming that ‖∇X‖ ≤ 1, and that this implies two facts:

◦ Every Lyapunov exponent of ϕ has absolute value ≤ 1, hence we consider χ ∈ (0, 1).
◦ ‖Φt‖ ≤ e2ρ+|t|, ∀t ∈ R, see Section 2.4.

Proof of Lemma 3.2. We begin with some preliminary calculations. Fix t ∈ R. We 
prove that e1 is an eigenvector of C(ϕt(x))−1 ◦ Φt ◦ C(x), and calculate its eigenvalue. 
By the proof of Proposition 3.1, Φtns

x = ±‖Φtns
x‖ns

ϕt(x), therefore [Φt ◦ C(x)](e1) =
±‖Φtns

x‖
s(x) ns

ϕt(x). This implies that [C(ϕt(x))−1 ◦ Φt ◦ C(x)](e1) = ±‖Φtns
x‖

s(ϕt(x))
s(x) e1, 
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hence e1 is an eigenvector with eigenvalue At(x) = ±‖Φtns
x‖ s(ϕ

t(x))
s(x) . Similarly, e2 is an 

eigenvector with eigenvalue Bt(x) = ±‖Φtnu
x‖

u(ϕt(x))
u(x) . Note that

s(x)2 = 4e4ρ
t ∫

0 

e2χt′‖Φt′ns
x‖2dt′ + 4e4ρ

∞ ∫
t 

e2χt′‖Φt′ns
x‖2dt′

= 4e4ρ
t ∫

0 

e2χt′‖Φt′ns
x‖2dt′ + e2χt‖Φtns

x‖2s(ϕt(x))2

and so

e2χt‖Φtns
x‖2

s(ϕt(x))2
s(x)2 = 1− 4e4ρ

s(x)2

t ∫
0 

e2χt′‖Φt′ns
x‖2dt′.

When 0 < t ≤ 2ρ, we have 4e4ρ
s(x)2

∫ t

0 e2χt′‖Φt′ns
x‖2dt′ ≤ 4ρe16ρ < 5ρ for ρ > 0 small 

enough, therefore

e−4ρ < eχt‖Φtns
x‖

s(ϕt(x))
s(x) < 1. (A.1)

Similarly,

u(ϕt(x))2 = 4e4ρ
t ∫

0 

e2χt′‖Φ−t′nu
ϕt(x)‖2dt′ + 4e4ρ

∞ ∫
t 

e2χt′‖Φ−t′nu
ϕt(x)‖2dt′

= 4e4ρ
t ∫

0 

e2χt′‖Φ−t′nu
ϕt(x)‖2dt′ + e2χt‖Φtnu

x‖−2u(x)2

since 1 = ‖Φ−tΦtnu
x‖ = ‖Φtnu

x‖ · ‖Φ−tnu
ϕt(x)‖, and so

e−4ρ < eχt‖Φtnu
x‖−1 u(x) 

u(ϕt(x)) < 1. (A.2)

We will use (A.1) and (A.2) to prove (2)--(3).

(1) In the basis {e1, e2} of R2 and the basis {ns
x, (ns

x)⊥} of Nx, C(x) takes the form [
1 

s(x)
cosα(x)
u(x) 

0 sinα(x)
u(x) 

]
, hence ‖C(x)‖2Frob = 1 

s(x)2 + 1 
u(x)2 ≤ 1. Now observe that the inverse of 

C(x) is 
[
s(x) − s(x) cosα(x)

sinα(x) 
0 u(x) 

sinα(x)

]
, hence ‖C(x)−1‖Frob =

√
s(x)2+u(x)2
| sinα(x)| .

(2) The first part was already proved, so we concentrate on the second part. Fix 0 <

t ≤ 2ρ. By (A.1), e−4ρ < eχt|At(x)| < 1 and so e−8ρ < |At(x)| < e−χt. Similarly, (A.2) 
implies that e−4ρ < eχt|Bt(x)|−1 < 1, and so eχt < |Bt(x)| < e8ρ.
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(3) For |t| ≤ 2ρ, we have eχt‖Φtnx
s‖ = e±6ρ, therefore by (A.1) it follows that 

e−10ρ < s(ϕt(x))
s(x) < e6ρ, so that s(ϕt(x))

s(x) = e±10ρ. Similarly, u(ϕt(x))
u(x) = e±10ρ. To esti

mate | sinα(ϕt(x))|
| sinα(x)| , we use the general inequality for an invertible linear transformation 

L:

1 
‖L‖‖L−1‖ ≤

| sin∠(Lv, Lw)|
| sin∠(v, w)| ≤ ‖L‖‖L

−1‖. (A.3)

Apply this to L = Φt, v = ns
x, w = nu

x to get that | sinα(ϕt(x))|
| sinα(x)| = e±8ρ. Finally, the above 

estimates and part (1) imply that ‖C(ϕt(x))‖Frob
‖C(x)‖Frob

= e±18ρ. □

For the proof of the next theorem we will need some estimates on Q(x). By 
Lemma 3.2(3) proved above, Q(ϕt(x))

Q(x) = e±
200ρ
β for all x ∈ NUH and |t| ≤ 2ρ. Therefore, 

if x ∈ Λ ∩NUH then Q(f(x))
Q(x) = e±

200ρ
β . Hence the following bounds hold for Q(x):

Q(x) ≤ ε3/β and ‖C(x)−1‖Q(x)β/12 ≤ ε1/4 for all x ∈ NUH,

Q(x)β/2 ≤ e100ρQ(f(x))β/2 for all x ∈ Λ ∩NUH.

Proof of Theorem 3.8. Recall that Bx = B(x, 2r). If ε > 0 is small enough then 
Lemma 3.7(1) implies

Ψx(R[10Q(x)]) ⊂ B(x, 40Q(x)) ⊂ Bx,

and in this ball (Exp1)--(Exp4) are valid. We first show that f+
x : R[10Q(x)] → R2 is 

well-defined. Since C(x) is a contraction, we have C(x)R[10Q(x)] ⊂ Bx[20Q(x)]. Since 
C(f(x))−1 is globally defined, it is enough to show that

(g+
x ◦ expx)(Bx[20Q(x)]) ⊂ expf(x)(Bf(x)[2r]).

For small ε > 0 we have:

◦ 20Q(x) < 2r, hence expx is well-defined on Bx[20Q(x)]. By (Exp2), expx maps 
Bx[20Q(x)] diffeomorphically into B(x, 40Q(x)).
◦ 40Q(x) < 2r⇒ B(x, 40Q(x)) ⊂ Bx, hence Lemma 2.4 implies that g+

x maps the ball 
B(x, 40Q(x)) diffeomorphically into B(f(x), 80Q(x)).
◦ 80Q(x) < 2r ⇒ B(f(x), 80Q(x)) ⊂ Bf(x). By condition (Exp2), exp−1

f(x) maps 
B(f(x), 80Q(x)) diffeomorphically onto its image.

The conclusion is that f+
x : R[10Q(x)]→ R2 is a diffeomorphism onto its image.

Now we check (1)--(2). Using the equalities d(Ψx)0 = C(x), d(Ψf(x))0 = C(f(x))
and Lemma 2.4, we get that d(f+

x )0 = C(f(x))−1 ◦ ΦrΛ(x) ◦ C(x). By Lemma 3.2(2), 
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d(f+
x )0 =

[
A 0
0 B

]
with e−4ρ < |A| < e−χrΛ(x) and eχrΛ(x) < |B| < e4ρ. This proves 

part (1). Items (a)--(b) of part (2) are automatic, hence we focus on (c).

Claim: ‖d(f+
x )v1 − d(f+

x )v2‖ ≤ ε 
3‖v1 − v2‖β/2 for all v1, v2 ∈ R[10Q(x)].

Before proving the claim, we show how to conclude (c). If ε > 0 is small enough then 
R[10Q(x)] ⊂ Bx[1]. Applying the claim with v2 = 0, we get ‖dHv‖ ≤ ε 

3‖v‖β/2 < ε 
3 . By 

the mean value inequality, ‖H(v)‖ ≤ ε 
3‖v‖ <

ε 
3 , hence ‖H‖

C1+ β
2 < ε.

Proof of the claim. Let us choose L > Hölβ(dg+
x ). For i = 1, 2, write wi = C(x)vi and 

let

Ai = ˜︂d(exp−1
f(x))(g+

x ◦expx)(wi) , Bi = ˜︂d(g+
x )expx(wi) , Ci = ˜︂d(expx)wi

.

We first estimate ‖A1B1C1 −A2B2C2‖.

◦ By (Exp2), ‖Ai‖ ≤ 2. By (Exp2), (Exp3) and Lemma 2.4:

‖A1 −A2‖ ≤ Kd((g+
x ◦ expx)(w1), (g+

x ◦ expx)(w2)) ≤ 4K‖w1 − w2‖.

◦ By Lemma 2.4, ‖Bi‖ ≤ 2. By (Exp2) and Lemma 2.4:

‖B1 −B2‖ ≤ Ld(expx(w1), expx(w2))β ≤ 2L‖w1 − w2‖β .

◦ By (Exp2), ‖Ci‖ ≤ 2. By (Exp3), ‖C1 − C2‖ ≤ K‖w1 − w2‖.

Applying some triangle inequalities, we get that

‖A1B1C1 −A2B2C2‖ ≤ 24KL‖w1 − w2‖β ≤ 24KL‖v1 − v2‖β .

Now we estimate ‖d(f+
x )v1 − d(f+

x )v2‖:

‖d(f+
x )v1 − d(f+

x )v2‖ ≤ ‖C(f(x))−1‖‖A1B1C1 −A2B2C2‖‖C(x)‖
≤ 24KL‖C(f(x))−1‖‖v1 − v2‖β .

Using estimate (3.2) and that ‖v1 − v2‖ < 40Q(x), we conclude that for ε > 0 small:

24KL‖C(f(x))−1‖‖v1 − v2‖β/2 ≤ 200KL‖C(f(x))−1‖Q(x)β/2

≤ 200KLe125ρ‖C(f(x))−1‖Q(f(x))β/2 ≤ 200KLe125ρε3/2‖C(f(x))−1‖−5

≤ 200KLe125ρε3/2 < ε.

Hence the claim is proved. □



84 J. Buzzi et al. / Advances in Mathematics 479 (2025) 110410 

This completes the proof of the theorem. □

Remark A.1. The sole property of g+
x used in the above proof is Lemma 2.4. Since any 

holonomy map qDj
also satisfies this lemma, we conclude that qDj

satisfies a statement 
analogous to Theorem 3.8. We will use this fact in the proof of Proposition 7.2.

Proof of Proposition 3.10. Write Ci = ˜︂C(xi) : R2 → Tx1Λ. By assumption, d(x1, x2) +
‖C1 − C2‖ < (η1η2)4. Note that Ψxi

= expxi
◦ Px1,xi

◦ Ci.

(1) We prove the estimate for s (the calculation for u is similar). Since ε > 0 is small, 
it is enough to prove that 

∣∣∣s(x1)
s(x2) − 1

∣∣∣ < ε3/β(η1η2)3. We have s(xi)−1 = ‖C(xi)e1‖ =
‖Cie1‖, hence |s(x1)−1 − s(x2)−1| = |‖C1e1‖ − ‖C2e1‖| ≤ ‖C1 − C2‖ < (η1η2)4. Also 
s(x1) = ‖C(x1)e1‖−1 ≤ ‖C(x1)−1‖ ≤ ε3/β

Q(x1) < ε3/β

η1η2
, therefore

∣∣∣ s(x1)
s(x2) − 1

∣∣∣ = s(x1)|s(x1)−1 − s(x2)−1| < ε3/β(η1η2)3.

(2) Apply (A.3) to L = C1C
−1
2 , v = C2e1, w = C2e2 to get that

1 

‖C1C
−1
2 ‖‖C2C

−1
1 ‖

≤ sinα(x1)
sinα(x2)

≤ ‖C1C
−1
2 ‖‖C2C

−1
1 ‖.

We have ‖C1C
−1
2 − Id‖ ≤ ‖C1 −C2‖‖C−1

2 ‖ < ε3/β(η1η2)3, and by symmetry ‖C2C
−1
1 −

Id‖ < ε3/β(η1η2)3, therefore ‖C1C
−1
2 ‖‖C2C

−1
1 ‖ < [1 + ε3/β(η1η2)3]2 < e2ε3/β(η1η2)3 <

e(η1η2)3 . The left hand side estimate is proved similarly.

(3) We prove that Ψx1(R[e−2εη1]) ⊂ Ψx2(R[η2]). If v ∈ R[e−2εη1] then ‖C(x1)v‖ ≤√
2e−2εη1 < 2r, hence by (Exp1):

dSas(C(x1)v, C(x2)v) ≤ 2(d(x1, x2) + ‖C1v − C2v‖) ≤ 2(η1η2)4.

By (Exp2), d(Ψx1(v),Ψx2(v)) ≤ 4(η1η2)4 ⇒ Ψx1(v) ∈ B(Ψx2(v), 4(η1η2)4). By 
Lemma 3.7(1), B(Ψx2(v), 4(η1η2)4) ⊂ Ψx2(B) where B ⊂ R2 is the ball with center 
v and radius 8‖C−1

2 ‖(η1η2)4, hence it is enough to show that B ⊂ R[η2]. If w ∈ B then 
‖w‖∞ ≤ ‖v‖∞ + 8‖C−1

2 ‖(η1η2)4 ≤ (e−ε + 8ε3/β)η2 < η2 for ε > 0 small enough.

(4) The proof that Ψ−1
x2
◦ Ψx1 is well-defined in R[r] is similar to the proof of (3). The 

only difference is in the last calculation: if ε > 0 is small enough then for w ∈ B it holds

‖w‖ ≤ ‖v‖+ 8‖C−1
2 ‖(η1η2)4 ≤

√
2r + 8(η1η2)3 ≤ [

√
2 + 8ε3/β ]r < 2r,

therefore B is contained in the ball of R2 with center 0 and radius 2r, and in this latter 
ball Ψx2 is a diffeomorphism onto its image. Now:
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Ψ−1
x2
◦Ψx1 − Id = C(x2)−1 ◦ exp−1

x2
◦ expx1

◦ C(x1)− Id

= [C−1
2 ◦ Px2,x1 ] ◦ [exp−1

x2
◦ expx1

− Px1,x2 ] ◦ [Px1,x1 ◦ C1] + C−1
2 (C1 − C2)

= [C−1
2 ◦ Px2,x1 ] ◦ [exp−1

x2
− Px1,x2 ◦ exp−1

x1
] ◦Ψx1 + C−1

2 (C1 − C2).

We calculate the C2 norm of [exp−1
x2
− Px1,x2 ◦ exp−1

x1
] ◦ Ψx1 in the domain R[r]. By 

Lemma 3.7, ‖dΨx1‖C0 ≤ 2 and Lip(dΨx1) ≤ K. Call Θ := exp−1
x2
− Px1,x2 ◦ exp−1

x1
. For 

ε > 0 small enough, inside Bx1 we have:

◦ By (Exp2), ‖Θ(y)‖ ≤ dSas(exp−1
x2

(y), exp−1
x1

(y)) ≤ 2d(x1, x2) ≤ 2ε6/β(η1η2)3 thus 
‖Θ ◦Ψx1‖C0 < ε2/β(η1η2)3.
◦ By (Exp3), ‖dΘy‖ = ‖τ(x2, y) − τ(x1, y)‖ ≤ Kd(x1, x2) < ε3/β(η1η2)3. Hence 
‖dΘ‖C0 < ε3/β(η1η2)3 and ‖d(Θ ◦Ψx1)‖C0 ≤ 2ε3/β(η1η2)3 < ε2/β(η1η2)3.
◦ By (Exp4),

‖d̃Θy − d̃Θz‖ = ‖[τ(x2, y)− τ(x1, y)]− [τ(x2, z)− τ(x1, z)]‖
≤ Kd(x1, x2)d(y, z)

hence Lip(dΘ) ≤ Kd(x1, x2).
◦ Using that Lip(d(Θ1 ◦Θ2)) ≤ ‖dΘ1‖C0Lip(dΘ2) + Lip(dΘ1)‖dΘ2‖2C0 , we get that

Lip[d(Θ ◦Ψx1)] ≤ ‖dΘ‖C0Lip(dΨx1) + Lip(dΘ)‖dΨx1‖2C0

< Kε3/β(η1η2)3 + 4K(η1η2)4 < 5Kε3/β(η1η2)3 < ε2/β(η1η2)3.

This implies that ‖Θ ◦Ψx1‖C2 < 3ε2/β(η1η2)3, hence

‖C−1
2 ◦ Px2,x ◦Θ ◦Ψx1‖C2 ≤ ‖C−1

2 ‖3ε2/β(η1η2)3 ≤ 3ε2/β(η1η2)2.

Thus ‖Ψ−1
x2
◦ Ψx1 − Id‖2 ≤ 3ε2/β(η1η2)2 + ‖C−1

2 ‖(η1η2)4 < 3ε2/β(η1η2)2 + ε3/β(η1η2)3
< 4ε2/β(η1η2)2 < ε(η1η2)2. □

Proof of Proposition 7.2. Let z ∈ Z, z′ = ϕt(z) ∈ Z ′ with |t| ≤ 2ρ, and assume that 
Z ′ ⊂ D′. Define Υ := Ψ−1

y ◦qD′ ◦Ψx. We will write Υ as a small perturbation of ±Id. For 
ease of notation, write p := ps ∧ pu and q := qs ∧ qu. Start noting that, by Lemma 3.4, 
Proposition 3.6(1), and Theorem 6.1(5),

p
q = p 

ps(z)∧pu(z) ·
ps(z)∧pu(z)

q(z) · q(z) 
q(z′) ·

q(z′) 
ps(z′)∧pu(z′) ·

ps(z′)∧pu(z′)
q = e±[O( 3√ε)+O(ρ)].

We have Υ = (Ψ−1
y ◦Ψz′) ◦ (Ψ−1

z′ ◦ qD′ ◦Ψz) ◦ (Ψ−1
z ◦Ψx). By Theorem 6.1(6), we have:

◦ (Ψ−1
y ◦Ψz′) = (−1)σ1Id+Δ1(v) where σ1 ∈ {0, 1}, ‖Δ1(0)‖ < 50−1q, and ‖dΔ1‖C0 <

3
√
ε on R[10Q(z′)].
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◦ (Ψ−1
z ◦Ψx) = (−1)σ2Id+Δ2(v) where σ2 ∈ {0, 1}, ‖Δ2(0)‖ < 50−1p, and ‖dΔ2‖C0 <

3
√
ε on R[10Q(z)].

Assume, for simplicity, that σ1 = σ2 = 0. Applying Remark A.1, we conclude that 

Ψ−1
z′ ◦ qD′ ◦ Ψz can be written in the form (v1, v2) �→

[
A 0
0 B

]
+ H, where A,B,H

satisfy Theorem 3.8(2) with ρ changed to 2ρ. Assuming for simplicity that ϕ preserves 
orientation,3 we have AB > 0, hence we can rewrite Ψ−1

z′ ◦ qD′ ◦Ψz = ±[Id + Δ3(v)] on 
R[10Q(z)], where ± is the sign of A,B. Clearly Δ3(0) = 0. If A,B > 0 then d(Δ3)0 =[
A− 1 0

0 B − 1

]
and so we have ‖d(Δ3)0‖ = max{|A − 1|, |B − 1|} < e8ρ − 1. The 

same estimate holds if A,B < 0. Using Theorem 3.8(2)(c), we get that ‖dΔ3‖C0 <

e8ρ − 1 + O(ε). Therefore Υ = ±(Id + Δ1)(Id + Δ3)(Id + Δ2) where:

◦ ‖Δ1(0)‖ < 50−1q and ‖dΔ1‖C0 = O(ε1/3).
◦ Δ3(0) = 0 and ‖dΔ3‖C0 < e8ρ − 1 + O(ε) = O(ρ) + O(ε).
◦ ‖Δ2(0)‖ < 50−1p and ‖dΔ2‖C0 = O(ε1/3).

So Υ = ±(Id + Δ), where Δ = Δ2 + Δ3(Id + Δ2) + Δ1(Id + Δ3)(Id + Δ2). We have:

◦ ‖dΔ‖C0 ≤ ‖dΔ2‖C0 + 2‖dΔ3‖C0 + 4‖dΔ1‖C0 = O(ρ) + O(ε1/3), which implies that 
‖dΥ‖C0 ≤ 1 + O(ρ) + O(ε1/3).
◦ Δ(0) = Δ2(0) + Δ3(Δ2(0)) + Δ1(Δ2(0) + Δ3(Δ2(0))) = δ + Δ1(δ), where δ =

Δ2(0) + Δ3(Δ2(0)). Letting ai := ‖Δi(0)‖, bi := Lip(Δi), by direct calculation

‖δ‖ ≤ ‖Δ2(0)‖+ ‖Δ3(Δ2(0))‖ ≤ ‖Δ2(0)‖+ ‖Δ3(0)‖+ Lip(Δ3)‖Δ2(0)‖ = a2(1 + b3)

and so ‖Δ(0)‖ ≤ ‖δ‖ + ‖Δ1(0)‖ + Lip(Δ1)‖δ‖ ≤ a1 + a2(1 + b1)(1 + b3). Since 
p ≤ e±[O( 3√ε)+O(ρ)]q = [1 + O(ρ) + O(ε1/3)]q, it follows that

‖Δ(0)‖ ≤ 50−1q + [1 + O(ε1/3)][1 + O(ρ) + O(ε)]50−1p

= [1 + O(ρ) + O(ε1/3)]25−1q.

Hence ‖Υ(0)‖ ≤ [1 + O(ρ) + O(ε1/3)]25−1q.

We now proceed to prove the proposition.

(1) We have Υ(R[ 12p]) ⊂ Υ(B0[ 1 √
2p]) ⊂ BΥ(0)[ 1 √

2Lip(Υ)p] ⊂ B, where B ⊂ R2 is the 

ball with center 0 and radius ‖Υ(0)‖+ 1 √
2Lip(Υ)p. By the estimates obtained above,

‖Υ(0)‖+ 1 √
2Lip(Υ)p ≤ [1 + O(ρ) + O(ε1/3)] 1 

25q + 1 √
2 [1 + O(ρ) + O(ε1/3)]p

3 If not, we can apply an argument similar to [3].
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≤ [1 + O(ρ) + O(ε1/3)] 1 
25q + 1 √

2 [1 + O(ρ) + O(ε1/3)]q

=
[

1 
25 + 1 √

2

]
[1 + O(ρ) + O(ε1/3)]q.

Since 1 
25 + 1 √

2 < 1, for 0 < ε� ρ� 1 we get that B ⊂ B0[q] ⊂ R[q].

(2) Fix z ∈ Z such that z′ = qD′(z) ∈ Z ′. We will show that qD′ [W s(z, Z)] ⊂ V s(z′, Z ′)
(the other case is identical). Write W = qD′ [W s(z, Z)] and V = V s(z′, Z ′). Our goal 
is to show that W ⊂ V . Let v = {Ψps

n,p
u
n

xn }n∈Z, w = {Ψqsn,q
u
n

yn }n∈Z such that z = π(v)
and z′ = π(w). For n ≥ 0, let Gn

v = g+
xn−1

◦ · · · ◦ g+
x0

and Gn
w = g+

yn−1
◦ · · · ◦ g+

y0
. By 

Theorem 4.5(1), we need to show that Gn
w[W ] ⊂ Ψyn

(R[10Q(yn)]) for all n ≥ 0.
Fix n ≥ 0. If z′ = ϕt(z), |t| ≤ 2ρ, then there is a unique m ≥ 0 such that rm(v) <

rn(w)+t ≤ rm+1(v). Let Dk be the disc containing ϕrn(w)(z′). We claim that Gn
w ◦qD′ =

qDk
◦ Gm

v wherever these maps are well-defined. To see this, firstly note that these 
maps are both of the form ϕτ for some continuous function τ . Secondly, we claim that 
they coincide at z. Indeed, (Gn

w ◦ qD′)(z) = Gn
w(z′) = ϕrn(w)(z′) and (qDk

◦ Gm
v )(z) =

qDk
[ϕrm(v)(z)]. Writing ϕrn(w)(z′) = z′n and ϕrm(v)(z) = zm, we have z′n = ϕt′(zm)

for t′ = rn(w) + t − rm(v) ∈ (0, ρ], therefore qDk
(zm) = z′n. Hence Gn

w[W ] = (Gn
w ◦

qD′)[W s(z, Z)] = (qDk
◦ Gm

v )[W s(z, Z)] ⊂ qDk
[W s(ϕrm(v)(z), Z(vm))], where we used 

Proposition 7.1(4) in the last inclusion. Since W s(ϕrm(v)(z), Z(vm)) ⊂ Ψxm
(R[10−2(psm∧

pum)]), part (1) gives that qDk
[W s(ϕrm(v)(z), Z(vm))] ⊂ Ψyn

(R[qsn ∧ qun]), and this last 
set is contained in Ψyn

(R[10Q(yn)]).

(3) When M is compact and f is a C1+β surface diffeomorphism, the proof that [z, z′]Z′ is 
well-defined is [36, Lemma 10.8], and the proof uses that the change of coordinates from 
one Pesin chart to the other is so close to the identity that the representing function of an 
s--admissible manifold satisfies properties similar to (AM1)--(AM3), with the constants 
10−3, 1

2 slightly increased. We can apply the same method, since we showed above that 
our change of coordinates Υ is a small perturbation of the identity. The details can be 
easily carried out with the estimates we already obtained above. Similarly, [z, z′]Z is 
well-defined. It remains to prove that [z, z′]Z = qD([z, z′]Z′). To see this, observe that 
the composition qD ◦ qD′ is the identity where it is defined, hence

qD([z, z′]Z′) = qD(qD′ [V s(z, Z)] ∩ V u(z′, Z ′)) = V s(z, Z) ∩ qD[V u(z′, Z ′)] = [z, z′]Z .

This completes the proof of the proposition. □

Proof of Proposition 7.3. Let Z,Z ′, Z ′′ such that Z ∩ϕ[−2ρ,2ρ]Z ′ �= ∅, Z ∩ϕ[−2ρ,2ρ]Z ′′ �=
∅, and assume that z′ ∈ Z ′ such that ϕt(z′) ∈ Z ′′ for some |t| ≤ 2ρ. We are asked to 
show that for every z ∈ Z it holds

[z, z′]Z = [z, ϕt(z′)]Z .

The idea is the following:
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◦ V u(z′, Z ′) and V u(ϕt(z′), Z ′′) coincide in a small window.
◦ If Z = Z(Ψps,pu

x ) and G is the representing function of V s(z, Z), then [z, z′]Z =
Ψx(s,G(s)) for some |s| ≤ 1

3 (ps ∧ pu).

The precise statements are in the next claims. Write Z ′ = Z(Ψqs,qu

y ), p = ps ∧ pu and 

q = qs ∧ qu, and let D be the connected components of Λ̂ with Z ⊂ D.

Claim 1: qD[V u(z′, Z ′)∩Ψy(R[ 12q])] contains Ψx{(H(t), t) : |t| ≤ 1
3p} for some function 

H : [−1
3p,

1
3p] → R such that H(0) < 4 

25p and ‖H ′‖C0 < 1
2 . Furthermore, [z, z′]Z =

Ψx(s,G(s)) for some |s| ≤ 1
3p.

Claim 2: If D′′ is the connected components of Λ̂ such that Z ′′ ⊂ D′′, then

qD′′ [V s/u(z′, Z ′) ∩Ψy(R[ 12q])] ⊂ V s/u(z′′, Z ′′).

Once we prove these claims, the proposition follows: Claim 2 implies that qD[V u(z′, Z ′) 
∩Ψy(R[ 12q])] ⊂ qD[V u(z′′, Z ′′)] and so by Claim 1

{[z, z′]Z} = V s(z, Z) ∩ qD[V u(z′, Z ′) ∩Ψy(R[ 12q])]

⊂ V s(z, Z) ∩ qD[V u(z′′, Z ′′)] = {[z, z′′]Z}.

Proof of Claim 1. With the estimates obtained in the beginning of the proof of Proposi
tion 7.2, we just need to proceed as in the proof of [36, Lemma 10.8]. We will include the 
calculations for completeness. By the proof of Proposition 7.2, Υ := Ψ−1

x ◦qD◦Ψy = Id+Δ
where:

◦ ‖dΔ‖C0 ≤ e8ρ − 1 + O(ε1/3) = O(ε1/3) + O(ρ).
◦ ‖Δ(0)‖ ≤ 3 

25
[
1 + O(ε1/3) + O(ρ)

]
p.

In particular, ‖Δ‖C0 ≤ 3 
25
[
1 + O(ε1/3) + O(ρ)

]
p. Write Δ = (Δ1,Δ2), and let F be 

the representing function of V u(z′, Z ′), i.e. V u(z′, Z ′) = Ψy{(F (t), t) : |t| ≤ qu}. Hence 
V u(z′, Z ′) ∩Ψy(R[ 12q]) = Ψy{(F (t), t) : |t| ≤ 1

2q}, and since qD ◦Ψy = Ψx ◦Υ we have

qD[V u(z′, Z ′) ∩Ψy(R[ 12q])] = (Ψx ◦Υ){(F (t), t) : |t| ≤ 1
2q}

= Ψx{(F (t) + Δ1(F (t), t), t + Δ2(F (t), t)) : |t| ≤ 1
2q}}.

We represent the pair inside Ψx above as a graph on the second coordinate. Call τ(t) :=
t + Δ2(F (t), t)). We have:

◦ |τ(0)| = |Δ2(F (0), 0)| ≤ ‖Δ(F (0), 0)‖ ≤ ‖Δ(0)‖+ ‖dΔ‖C0 |F (0)| ≤ 3 
25 [1 +O(ε1/3) +

O(ρ)]p + [O(ε1/3) + O(ρ)]10−3q ≤ 3 
25 [1 + O(ε1/3) + O(ρ)]p.

◦ |τ ′(t)| = 1±‖dΔ‖C0(1+ ‖F ′‖C0) = 1+ [O(ε1/3)+O(ρ)](1+ ε) = 1+O(ε1/3)+O(ρ)
for every |t| ≤ 1

2q.



J. Buzzi et al. / Advances in Mathematics 479 (2025) 110410 89

In particular,

τ(1
2q) ≥

1
2q − |Δ2(F (0), 0)| ≥ 1

2q −
3 
25 [1 + O(ε1/3) + O(ρ)]p

≥
(

1
2e

−[O(ε1/3)+O(ρ)] − 3 
25 [1 + O(ε1/3) + O(ρ)]

)
p > 1

3p,

for ρ, ε > 0 small, since 1
2 −

3 
25 > 1

3 . Therefore, the image of τ : [−1
2q,

1
2q]→ R contains 

[−1
3p,

1
3p].

Now, we write the first coordinate F (t) + Δ1(F (t), t) as a function of τ . Start noting 
that, since the derivative of τ is positive, it has an inverse θ : τ [−1

2q,
1
2q] → [−1

2q,
1
2q]

such that |θ′(τ(t))| = |τ ′(t)|−1 = 1 + O(ε1/3) + O(ρ) for every τ(t) ∈ τ [−1
2q,

1
2q]. In 

particular,

|θ(0)| = |θ(0)− θ(τ(0))| ≤ ‖θ′‖C0 |τ(0)| ≤ 3 
25 [1 + O(ε1/3) + O(ρ)]p < 1

5p.

Defining H : [−1
3p,

1
3p]→ R by

H(τ) = F (t) + Δ1(F (t), t) = F (θ(τ)) + Δ1(F (θ(τ)), θ(τ)),

we have:

◦ |H(0)| ≤ |F (θ(0))|+ |Δ1(F (θ(0), θ(0))| ≤ |F (0)|+ ‖F ′‖C0 |θ(0)|+ ‖Δ‖C0 ≤ 10−3q +
ε1

5p + 3 
25
[
1 + O(ε1/3) + O(ρ)

]
p < 4 

25p.
◦ ‖H ′‖C0 ≤ ‖F ′‖C0‖θ′‖C0+‖dΔ‖C0(1+‖F ′‖C0)‖θ′‖C0 ≤ 2ε+2[O(ε1/3)+O(ρ)][1+ε] =
O(ε1/3) + O(ρ) which is smaller than 1

2 for ρ, ε > 0 small.

This proves the first part of Claim 1. For the second part, note that |H(τ)| ≤ |H(0)|+
‖H ′‖C0 |τ | ≤ 4 

25p+ 1
2 ·

1
3p < 1

3p, thus H : [−1
3p,

1
3p]→ [−1

3p,
1
3p] is a contraction. We have 

[z, z′]Z = Ψx(t, G(t)), where t is the unique t ∈ [−ps, ps] such that (t, G(t)) = (H(τ), τ). 
Necessarily H(G(t)) = t, i.e. t is a fixed point of H ◦G. Using the admissibility of G and 
the above estimates, the restriction of H ◦G to [−1

3p,
1
3p] is a contraction into [−1

3p,
1
3p], 

and so it has a unique fixed point in this interval, proving that |t| ≤ 1
3p. □

Proof of Claim 2. The proof is very similar to the proof of Proposition 4.9. Let us prove 
the inclusion for V s. Let V s = V s(z′′, Z ′′) = V s[v+] with v+ = {Ψqsn,q

u
n

yn }, and let 
Gn = g+

yn−1
◦ · · · ◦ g+

y0
. Let Us = qD′′ [V s(z′, Z ′) ∩ Ψy(R[ 12q])]. By Proposition 7.2(1), 

Us ⊂ Ψy0(R[qs0 ∧ qu0 ]). Now we proceed as in the proof of Proposition 4.9 to get that:

◦ If n is large enough then Gn(Us) ⊂ Ψyn
(R[Q(yn)]): this is exactly Claim 2 in the 

proof of Proposition 4.9.
◦ Us ⊂ V s: this is exactly Claim 3 in the proof of Proposition 4.9.

Hence Claim 2 is proved. □
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The proof of the proposition is complete. □
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[37] J.G. Sinăı, Construction of Markov partitionings, Funkc. Anal. Prilozh. 3 (1968) 70--80.
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