
Agents4Gov: Privacy-Preserving Web Agents Using Open
LLMs for Public Sector Tasks

João Victor de Castro Oliveira1, Nathan Rufino1, Silvio Levcovitz1,3,
Matheus Yasuo Ribeiro Utino1,Fábio Lobato1,4, Marcelo Turine1,2,

Solange Rezende1, Antonio Fernando Lavareda Jacob Junior5,
Ricardo Marcondes Marcacini1

1Institute of Mathematics and Computer Sciences (ICMC) – University of São Paulo (USP)

2Faculty of Computing (FACOM) - Federal University of Mato Grosso do Sul (UFMS)

3Procuradoria-Geral da Fazenda Nacional (PGFN)

4Federal University of Western Pará (UFOPA)

5State University of Maranhão (UEMA)

agents4gov@icmc.usp.br

Abstract. Effective public governance requires an organizational culture that
values transparency, technical competence, and ethical behavior, while also
addressing persistent challenges related to efficiency and compliance in pub-
lic sector institutions. The digital transformation of the public sector, partic-
ularly through the integration of Large Language Models (LLMs), represents
a strategic shift toward data-driven governance, process automation, and scal-
able innovation. These emerging technologies offer unprecedented opportuni-
ties to enhance inclusiveness, transparency, security, efficiency, accessibility,
and citizen-responsive public services. However, while closed-source LLMs can
automate digital tasks, their adoption is limited by concerns over privacy and
cost. We present Agents4Gov, a privacy-focused and cost-effective framework
for automating browser tasks using open-source LLMs. Built on Browser-Use, it
combines a powerful model for planning with a lightweight model for execution,
supports asynchronous task requests via email, and can run on scheduled inter-
vals to avoid the need for always-on infrastructure. Evaluated on MiniWoB++,
Agents4Gov with LLaMA 4 models achieves competitive results compared to
traditional Browser-Use agents powered by GPT-4o-based LLMs.

1. Introduction

The rapid advancement of digital technologies has significantly transformed public sec-
tor operations, particularly in the delivery of services to citizens. Governments world-
wide are increasingly adopting digital transformation strategies to improve administra-
tive efficiency, enhance service responsiveness, and strengthen transparency and account-
ability. This shift toward digital governance is driven by growing societal expectations
for faster, more reliable, and more accessible public services. However, the implemen-
tation of such transformation remains fragmented across regions and policy domains,
highlighting persistent structural and institutional challenges [Cordella and Bonina 2012,



Alhosani and Alhashmi 2024, Aryatama et al. 2024]. Additionally, excessive bureau-
cracy remains a persistent issue, with studies showing that over 78% of citizens perceive
it as a major source of inefficiency1.

In Brazil, public governance plays a important role as the framework of leadership,
strategic planning, and oversight mechanisms that guide the formulation and implementa-
tion of public policies. It encompasses a set of best practices, processes, and institutional
arrangements designed to ensure the effective, transparent, and accountable allocation
of public resources, as well as the delivery of services aligned with the public interest
[Brasil 2019]. According to the Organisation for Economic Co-operation and Develop-
ment (OECD) and the Brazilian Federal Court of Accounts (TCU), public governance is
a core element for ensuring that public resources are used efficiently, corruption is miti-
gated, and sustainable development is promoted. It requires the integration of ethical lead-
ership and accountability into governance structures, together with robust mechanisms for
oversight, control, and performance auditing [Nardes et al. 2018, Mergel et al. 2024].

Recent initiatives in Brazil demonstrate the potential of Artificial Intelligence (AI)
to enhance public sector efficiency. For instance, the National Institute of Social Security
(INSS) has implemented AI systems to automate the granting of social benefits2. Another
example is the initiative of the Supreme Federal Court, which adopted an AI tool named
MarIA3 to assist in legal drafting and case management. In the context of digital service
delivery, Melo [Melo 2024] proposes a methodology for integrating AI into public ser-
vices through a structured approach that combines Lean Office, Design Sprint, and Large
Language Models (LLMs). The methodology was applied to the Gov.br portal, where
a generative agent was developed to assist citizens by answering questions and routing
service requests. Regarding virtual agents, Scutella et al. [Scutella et al. 2024] explore
how citizens derive value from interacting with such systems in public sector settings, re-
inforcing the importance of designing agent-based solutions that are not only technically
competent but also socially and communicatively adaptive.

In this context, a new class of intelligent agents powered by LLMs is emerging
to automate complex yet repetitive tasks [Wang et al. 2024]. These agents can interpret
natural language instructions, plan actions, and interact with digital systems. Practical
examples include policy analysis [Cao et al. 2024], generation of official documents such
as declarations and certificates [Musumeci et al. 2024], and support in legal workflows
by drafting or reviewing legal texts [Mamalis et al. 2024]. It is important to recognize
that, despite the promise of digitalizing public services with LLM-based agents to im-
prove efficiency, several limitations still hinder their widespread adoption. First, the high
operational and licensing costs associated with proprietary LLMs pose significant chal-
lenges, especially for government agencies with limited resources. In addition, relying on
external providers for model execution raises concerns about autonomy and the long-term
sustainability of public digital infrastructure. Most critically, the use of LLMs in public
service contexts often involves handling sensitive personal data, which introduces privacy
risks. This practice can also conflict with data protection regulations such as Brazil’s Gen-

1https://www.fiesp.com.br/indices-pesquisas-e-publicacoes/pulsos/pulso burocracia versao-3/
2https://policyreview.info/articles/analysis/balancing-efficiency-and-public-interest-ai
3https://noticias.stf.jus.br/postsnoticias/stf-lanca-maria-ferramenta-de-inteligencia-artificial-que-dara-

mais-agilidade-aos-servicos-do-tribunal/



eral Data Protection Law (LGPD), which sets strict rules on how sensitive information
should be collected, stored, and processed. These challenges raise a research question:
how can we design LLM-based agents that ensure service efficiency while guaranteeing
privacy, legal compliance, and feasibility for local deployment in the public sector?

In this paper, we introduce Agents4Gov, a privacy-preserving framework for au-
tonomous browser agents powered by open-source LLMs. In the context of accelerating
digital transformation, public institutions are increasingly pressured to modernize their
internal operations and service delivery models. Thus, this work is motivated by the
growing need in public institutions to automate internal operations that are repetitive,
time-consuming, and of low to medium complexity tasks, such as consulting multiple
government systems, extracting data, downloading reports from portals, completing struc-
tured digital forms, submitting routine requests, issuing certificates or declarations, and
navigating step-by-step governmental platforms, to name just a few. These tasks often
burden administrative staff, reducing the time available for higher-level decision-making
and generating dissatisfaction with the delay in responding to the public. Our contribu-
tions are manyfold, including:

• a hybrid approach that separates the use of LLMs according to the agent’s op-
erational stages: high-capacity models are used for planning and evaluation,
while lightweight models handle browser interactions, reducing computational
cost without significantly compromising performance;

• an asynchronous execution pipeline that allows agents to process task requests via
institutional email, thereby reducing infrastructure demands and avoiding constant
GPU usage;

• a comparative analysis of our framework against commercial and open-source
LLM agents, achieving competitive results while preserving sensitive data by us-
ing open-source models deployable in local environments;

• the release of the current version of Agents4Gov as an open-source
project, publicly available at https://github.com/LABIC-ICMC-USP/
agents4gov.

We carried out an experimental evaluation of Agents4Gov using 55 tasks from the
MiniWoB++ benchmark. We compared four configurations: GPT-4o, LLaMA 4 Mav-
erick, LLaMA 4 Scout, and our hybrid approach, Agents4Gov, which uses LLaMA 4
Maverick for planning and LLaMA 4 Scout for browser execution. Task completion
success rates were: GPT-4o (0.964), Maverick (0.891), Scout (0.673), and Agents4Gov
(0.818), showing a good balance between performance and efficiency using only local,
open-source models.

2. Background and Related Work

Agents are computational entities capable of perceiving an environment, reasoning about
goals, and executing actions to accomplish tasks [Wooldridge and Jennings 1995]. In
our context, agents are systems capable of perceiving their environment through sensors,
processing information to make decisions, and acting upon the environment to achieve
specific objectives [Wooldridge 2009]. A common formulation in the literature defines an
agent as a tuple (P,E,A), where P represents the perception function that captures the



current state of the environment, E is the decision-making or planning function that maps
states and goals into actions, and A is the set of possible actions executable by the agent.

Recent advances in LLMs have greatly expanded the potential of autonomous
agents [Li et al. 2024]. These models enable agents to interpret user instructions, de-
compose them into actionable steps, and interact directly with environments that contain
textual elements, such as HTML-based pages. This paper focuses on LLM-based web-
use agents, a class of autonomous systems designed to perform complex tasks in web
browsers [Müller and Žunič 2024, OpenAI 2025, S. B. LLC 2025, Browserbase 2024].

These agents use LLMs to understand instructions, plan actions, and interact with
web content through clicks, form filling, and navigation. Unlike traditional rule-based
scripts, they can adapt to dynamic layouts and changing content, combining natural lan-
guage understanding, strategic planning, and interaction browsers [Hu et al. 2024]. Sys-
tems such as Proxy [Convergence 2025] and Operator [OpenAI 2025] have achieved high
performance on interactive web benchmarks like WebVoyager, surpassing 85% task com-
pletion in many cases [Mudryi et al. 2025]. Proxy, developed by Convergence AI, em-
phasizes action-oriented execution by enabling agents to perform real-time interactions
on web interfaces, such as clicking, scrolling, and navigating pages. The Operator, in
turn, integrates GPT-4o with a specialized model known as the Computer-Using Agent
(CUA), trained via reinforcement learning to interact directly with Graphical User Inter-
faces (GUIs) similarly to human users.

We are particularly interested in open-source alternatives, such as Browser Use
[Müller and Žunič 2024]. Its architecture integrates reasoning and planning in a unified
feedback loop that continuously refines actions based on the current browser state. The
agent operates primarily through Document Object Model (DOM) extraction, providing
structured access to page elements for the language model. Although Browser Use is
open-source, its current implementation offers limited support for local LLMs, and the
use of different LLMs across agent stages remains underexplored. In this paper, we build
on the Browser Use architecture as the foundation for Agents4Gov, extending it with
privacy-preserving adaptations tailored to public sector scenarios. Our approach explores
the use of local LLMs with a separation of agent stages, allowing using more sophisticated
models (usually, proprietary) for the planning and reasoning phase, while assigning lighter
models to handle browser tool execution and page interaction.

3. Agents4Gov Framework
We introduce the proposed Agents4Gov framework in this section. The overall process is
illustrated in Figure 1, which summarizes how user requests are received, interpreted, ex-
ecuted through planning and browser actions, and returned as structured email responses.

Following the workflow given in 1, a user request is submitted via email, which is
interpreted and decomposed into subgoals by the planner model Mp. The executor model
Me performs each subgoal in the browser environment. After completion, Mp validates
the result and generates a final response returned via email. In the next sections, we first
formally define the problem addressed by the framework (Section 3.1). Then, we describe
deployment strategies designed to ensure both privacy and cost efficiency (Section 3.2).
Finally, we detail the agent’s execution loop, explaining how the planning and execution
models interact, and present examples of the system prompts used to guide the agent’s



Sub-goals and ActionsPlanning Model
(M_p) …

Execution Model
(M_e)

Evaluation
(M_p)

E-mail Response
(Final Message)

E-mail Input
(User Request)

LLM-based Browser Agent

Figure 1. Overview of the Agents4Gov framework.

behavior (Section 3.3).

3.1. Problem Definition

We define the task of a browser-based LLM agent as the problem of mapping a natural
language instruction into a sequence of browser actions that complete a goal-oriented
interaction on a web interface.

Let T denote the set of all possible tasks expressed in natural language, and let
t ∈ T represent a specific instruction, and let E denote the observable state of the envi-
ronment, typically represented by the DOM tree of a web page. The agent must produce
a sequence of browser actions π = (a1, a2, . . . , ak), where each ai ∈ A is a low-level
interaction such as a click, text input, or navigation.

To structure this process, we decompose the agent into two components: a planner
model, Mp, and an executor model, Me. The planner Mp receives the instruction t and the
initial environment E, generating a high-level plan π̂ = (s1, s2, . . . , sk), where each si is
a natural language description of an intended sub-action. Then, for each si, the executor
Me observes the current DOM state Ei and maps the sub-action si into a concrete browser
command ai. As formalized in Equations 1 and 2, the process consists of:

π̂ = Mp(t, E) (1)
ai = Me(si, Ei), for each si ∈ π̂ (2)

The final execution trace π = (a1, . . . , ak) is applied to the environment, dynami-
cally updating the DOM state at each step. After executing all actions, the planner model
Mp re-evaluates the final environment state Ek, along with the original instruction t, to as-
sess whether the task objective has been successfully completed. The agent is considered
successful if this final evaluation indicates that the goal described in t has been achieved
in the current state of the browser.

3.2. Privacy and Cost-Efficient Deployment

Our Agents4Gov framework is designed to run entirely with local models. This approach
avoids sending sensitive data to external providers. However, due to the high cost of



running LLMs, especially given their dependence on GPU acceleration, the framework
assumes the use of models with fewer parameters, organized into two stages. A more
capable model is used for planning and evaluation, while a lighter model is used during
interaction with the browser.

In this sense, the planner Mp (the more capable model) is responsible for under-
standing the task, generating a strategy, and verifying whether the objective has been
reached. The executor Me (the lighter model) handles interactions with the browser, such
as clicking or filling forms. The model Mp requires more reasoning capacity, but it is used
only at key moments. It runs at the beginning to produce a plan and at the end to evalu-
ate the result. Me is simpler and used repeatedly. It runs at each step of the interaction,
processing one command at a time based on the current page state.

As part of the privacy-preserving and security strategy, task requests are submitted
to the Agents4Gov via email. Thus, the agent is linked to an institutional email account
created specifically for this purpose. This approach ensures that access control and iden-
tity verification remain under the institution’s domain. An additional advantage is that the
organization can schedule the agent to run at specific times of the day, processing incom-
ing emails in batches and executing the corresponding tasks. This scheduled execution
reduces the need for continuous GPUs resource usage, allowing the service scalability.
After each execution, the agent sends a reply by email with the task’s result, indicating
whether it was completed successfully or not.

3.3. Agent Execution Model

Our Agents4Gov framework is structured around an automated loop that connects to an
institutional email inbox using the IMAP protocol. This loop periodically monitors the
inbox for unread messages. For each new message, the email body is extracted and inter-
preted as a user request R, which triggers a new execution session for the agent. This exe-
cution session instantiates a browser automation agent based on the architecture proposed
by the Browser-User project [Müller and Žunič 2024], as described in Section 2. The
agent is guided by a structured system prompt that defines its behavior, internal reason-
ing loop, and output format. The prompt is loaded from a dedicated markdown template
within the framework, as illustrated in Figure 2.

You are an AI agent designed to operate in an iterative loop to automate browser tasks.
Your ultimate goal is accomplishing the task provided in user request R.

Figure 2. Excerpt of the system prompt of the browser automation agent.

At every step t, the agent receives a state St = (R,H1:t−1, Et), where R is the user
request derived from the email, H1:t−1 is the chronological history of previous actions and
memory updates, and Et is the current browser environment state. The reasoning process
is decomposed into planning and execution stages. The planning model Mp is invoked
with a dedicated planning prompt as shown in Figure 3.

Given the setup presented in Figure 3, the planning model Mp produces a plan
according Equation 1 and for each subgoal si ∈ π̂, the execution model Me selects and
performs an action ai, guided by the current browser state and execution context as defined



You are a planning agent that helps break down tasks into smaller steps and reason
about the current state.

Your role is to:
1. Analyze the current state and history
2. Evaluate progress towards the ultimate goal
3. Identify potential challenges or roadblocks
4. Suggest the next high-level steps to take

Your output format should always be a JSON object:
{

"state_analysis": "...",
"progress_evaluation": "...",
"challenges": ["..."],
"next_steps": ["...", "..."],
"reasoning": "..."

}

Figure 3. Excerpt of the planning prompt provided to model Mp to generate struc-
tured next steps based on the current state and task history.

in Equation 2. At each step, the agent receives a structured summary of its current state,
including the user request from the email, the internal task plan generated earlier, the
current step number, the visible browser elements, and a log of previous actions and
outcomes. It also includes any recently extracted data from web pages or files. This
structured input is used by the execution model Me to select the next action based on the
current context and progress.

The execution continues until the agent completes the task or reaches a stopping
condition (e.g., time limit or number of attempts). At the end, Mp is reinvoked to evaluate
final success and summarize the execution. The final message follows a structured JSON
format as illustrated in Figure 4.

{
"action": [{

"done": {
"success": true or false,
"text": "Summary of the completed task"

}
}]

}

Figure 4. Final output message summarizing task execution and success status,
as produced by the planning model Mp.

The final output is automatically formatted into a reply email, which includes a
natural language explanation, selected excerpts from the execution history, and a success
indicator. Finally, the email is marked as read in the IMAP system, completing the cycle
and freeing the loop to process the next incoming task.

4. Experimental Evaluation
We evaluate the performance of the Agents4Gov framework in solving real-world browser
automation tasks. Our focus is on assessing whether the proposed hybrid strategy which
utilizes separate models for planning Mp and execution Me can maintain high task success



rates while relying entirely on open-source models. To this end, we compare Agents4Gov
with a top-line setup that uses the proprietary GPT-4o model from OpenAI for both plan-
ning Mp and execution Me. We also include two simpler baselines to analyze the impact
of each component on the agent’s overall performance.

4.1. Dataset

We conduct our experiments using the MiniWoB++ benchmark, a suite of web-based
tasks. Each environment simulates a specific browser-based task, such as filling out a
form, selecting from a drop-down, or completing multi-step interactions. In our evalu-
ation, we selected 55 tasks from the benchmark that cover a broad range of interaction
patterns. These tasks require agents to understand user instructions, extract relevant in-
formation from the interface, and execute the correct sequence of browser actions to com-
plete the task.

Table 1. Distribution of the tasks by interaction type and task complexity.

Task Type Task Complexity

Low Medium High Total

Authentication - 1 2 3
Auto-complete Interaction 1 1 - 2
Click Interaction 5 3 - 8
Data Lookup 1 - 3 4
Email Management - - 2 2
List/Option Selection 2 - 1 3
Multi-Step Interaction - - 3 3
Random/Choice Interaction - 1 1 2
Reasoning/Computation 2 1 2 5
Simulated Transaction - - 1 1
Tab/Menu Navigation 8 3 1 12
Terminal Commands - - 1 1
Text Input & Manipulation 7 1 1 9

26 11 18 55

Table 1 shows details of the 55 tasks used in our evaluation. Each task was ana-
lyzed and categorized by interaction type and complexity level. Complexity levels were
manually assigned based on the number of required steps and the need for memory or
multi-element coordination. This categorization allows us to analyze results across sev-
eral scenarios, ranging from simple click-based actions to more complex multi-step work-
flows and reasoning challenges.

Figure 5 represents one of the tasks following the typical structure of the Mini-
WoB++ benchmark, where the task is embedded within the page content and requires
goal-oriented interactions. In this example: (1) the agent identifies the task description
highlighted in yellow; (2) it extracts the keyword and performs the corresponding search;
(3) upon realizing that the desired result is in the 9th position and only three items are
displayed per page, it handles pagination accordingly; and (4) the agent locates and clicks
the correct result, completing the task.

We highlight that, although the MiniWoB++ dataset has been widely used in prior
studies on browser automation, to the best of our knowledge, this is the first study to



(1) Reads the task description highlighted (2) Searches using the given keyword

(3) Navigates through pages to find the 9th result (4) Clicks the correct item to complete the task

Figure 5. Example of a standard MiniWoB++ task.

evaluate web automation tasks by directly comparing different LLM-based agents.

4.2. Experimental Setup
To establish a performance reference, we defined a top-line model based on OpenAI’s
proprietary GPT-4o (representing traditional Browser-Use). Ignoring constraints such as
asynchronous task submission via email, privacy concerns, or computational cost, GPT-
4o, combined with the browser-user interface, represents a strong benchmark, as it is
already integrated into a browser-use agent [Müller and Žunič 2024].

The Agents4Gov framework, in contrast, is fully based on open models. For the
planning model Mp, we use LLaMA 4 Maverick, a 17B active parameter MoE model with
128 experts. For the execution model Me, we use LLaMA 4 Scout, another 17B-parameter
model, but with 16 experts. Since both models are open and have their weights publicly
released, we can apply quantization techniques to reduce memory usage, allowing deploy-
ment on NVIDIA H100 GPUs or smaller devices, depending on the quantization level.
Additionally, for ablation purposes, we evaluate two agents, each configured with a single
model: one fully based on LLaMA 4 Maverick and the other on LLaMA 4 Scout.

Finally, as our evaluation metric, we use the task completion rate, which measures
the percentage of tasks successfully completed by each agent.

4.3. Experimental Results
We first present the overall task completion rates achieved by each evaluated agent con-
figuration. The GPT-4o agent achieves the highest success rate, completing 96.4% of the
tasks. The LLaMA 4 Maverick agent, which uses the same model for both planning and
execution, achieves a success rate of 89.1%. Our proposed Agents4Gov configuration,
which combines Maverick for planning and Scout for execution, achieves a completion
rate of 81.8% of the tasks. Finally, the agent using LLaMA 4 Scout in both stages per-
forms the worst, with a success rate of 67.3%.



To better understand the agent behaviors across different contexts, Table 2 presents
the task completion rates by task category. We observe that Agents4Gov matches the per-
formance of GPT-4o in categories such as Click Interaction, Email Management, Sim-
ulated Transaction, Tab/Menu Navigation, and Text Input & Manipulation, indicating
that its hybrid configuration is effective for direct and structured interactions. However,
Agents4Gov showed weaker results in more dynamic scenarios such as Autocomplete In-
teraction and Random/Choice Interaction, due to difficulties in how the executor module
(Me) interprets and adapts to the instructions generated by the planner module (Mp)

Table 2. Task completion rates per interaction category for GPT-4o, LLaMA 4
Maverick, LLaMA 4 Scout, and the hybrid Agents4Gov setup.

Category GPT-4o Maverick Scout Agents4Gov

Authentication 100% 67% 67% 67%
Autocomplete Interaction 100% 100% 50% 0%
Click Interaction 100% 100% 63% 100%
Data Lookup 100% 100% 0% 75%
Email Management 50% 100% 50% 100%
List/Option Selection 100% 67% 33% 67%
Multi-Step Interaction 67% 100% 67% 67%
Random/Choice Interaction 100% 100% 100% 50%
Reasoning/Computation 100% 80% 80% 80%
Simulated Transaction 100% 100% 100% 100%
Tab/Menu Navigation 100% 83% 83% 100%
Terminal Commands 100% 0% 0% 0%
Text Input & Manipulation 100% 100% 89% 89%

Table 3 presents the task completion rates grouped by complexity level. All agents
performed well on low-complexity tasks, with Agents4Gov achieving 92% accuracy,
slightly below the topline GPT-4o and the Maverick-only configuration. For medium-
complexity tasks, Agents4Gov maintained an 82% success rate, matching Maverick and
significantly outperforming Scout, which dropped to 45%. On high-complexity tasks,
performance drops across all agents, with Agents4Gov completing 67% of the tasks.

Table 3. Task completion rates grouped by task complexity level.

Complexity GPT-4o Maverick Scout Agents4Gov

Low 100% 96% 88% 92%
Medium 100% 82% 45% 82%
High 89% 83% 50% 67%

These results demonstrate that our Agents4Gov performs well in tasks of low and
medium complexity, reaching success rates close to those of the best-performing agents.
In more complex tasks, we observed that even with a high-capacity planning model, the
execution model sometimes failed to follow the subgoal instructions, particularly when
the instructions were long or referred to elements from previous interactions. This is
the main limitation identified, suggesting that improving the alignment between planning
and execution is an important next step. Despite this, we found that more detailed user
instructions can help reduce such failures. Since we kept the original MiniWoB++ task
descriptions unchanged, this strategy was not applied in this experimental evaluation.



5. Concluding Remarks

In this paper, we presented the Agents4Gov framework, designed to support language
model-based agents for automation in the public sector. The main goal was to create an
agent that does not rely on proprietary APIs, using only open LLMs to reduce privacy
risks, ensure auditability (i.e., allowing third-party inspection, which is essential in public
service contexts), and lower operational costs.

Our strategy separates the agent into two models: one for planning and another
for execution. This hybrid approach allows the selection of models suited to each task.
In Agents4Gov, we utilize cost-efficient open models for execution, while more powerful
models are reserved for planning and evaluation. The experimental results showed that
Agents4Gov performs well in tasks of low and medium complexity, remaining a viable
solution for many real-world scenarios. However, tasks with higher complexity revealed
some limitations, especially when the execution model needs to interpret long instructions
or handle multiple steps based on prior interactions.

As future work, we plan to explore the use of smaller models as they continue to
improve, aiming to reduce memory demands and expand deployment possibilities. An-
other direction is to fine-tune both the planning and execution models to improve perfor-
mance in complex workflows.

Acknowledgment: This work was supported by the National Council for Scien-
tific and Technological Development (CNPq) – PQ-316507/2023-7, DT-303031/2023-
9, POSDOC-101057/2024-5; and the São Paulo Research Foundation (FAPESP) –
2023/10100-4.

References

Alhosani, K. and Alhashmi, S. M. (2024). Opportunities, challenges, and benefits of ai
innovation in government services: a review. Discover Artificial Intelligence, 4(1):18.

Aryatama, S., Miswan, M., Fahriyah, F., Pribadi, T., and Suacana, I. (2024). Enhancing
governance efficiency through digital transformation in public services: Lessons from
global practices. Global International Journal of Innovative Research, 2(5):1019–
1027.

Brasil (2019). Decreto nº 9.901, de 8 de julho de 2019: Altera o decreto nº 9.203, de
22 de novembro de 2017, que dispõe sobre a polı́tica de governança da administração
pública federal direta, autárquica e fundacional. Diário Oficial da União.

Browserbase (2024). Open operator: A template for building web agents with stagehand
on browserbase. https://github.com/browserbase/open-operator.
Accessed: Jun 20, 2025.

Cao, C., Zhuang, J., and He, Q. (2024). Llm-assisted modeling and simulations for pub-
lic sector decision-making: Bridging climate data and policy insights. In AAAI-2024
Workshop on Public Sector LLMs: Algorithmic and Sociotechnical Design.

Convergence (2025). Convergence’s proxy ahead in top agent benchmark, beats ope-
nai and anthropic. https://convergence.ai/introducingproxy/. Ac-
cessed: Jun 20, 2025.



Cordella, A. and Bonina, C. M. (2012). A public value perspective for ict enabled
public sector reforms: A theoretical reflection. Government information quarterly,
29(4):512–520.

Hu, X., Xiong, T., Yi, B., Wei, Z., Xiao, R., Chen, Y., Ye, J., Tao, M., Zhou, X., Zhao,
Z., et al. (2024). Os agents: A survey on mllm-based agents for computer, phone and
browser use.

Li, X., Wang, S., Zeng, S., Wu, Y., and Yang, Y. (2024). A survey on llm-based multi-
agent systems: workflow, infrastructure, and challenges. Vicinagearth, 1(1):9.

Mamalis, M. E., Kalampokis, E., Fitsilis, F., and Tarabanis, K. (2024). A large language
model agent based legal assistant for governance applications. In International Con-
ference on Electronic Government, pages 286–301. Springer.

Melo, M. K. (2024). Implementing AI for enhanced public services gov.br: A method-
ology for the brazilian federal government. In Proceedings of the 20th International
Conference on Web Information Systems and Technologies, WEBIST 2024, Porto, Por-
tugal, November 17-19, 2024, pages 90–101.

Mergel, I., Dickinson, H., Stenvall, J., and Gasco, M. (2024). Implementing ai in the
public sector. Public Management Review, pages 1–14.

Mudryi, M., Chaklosh, M., and Wójcik, G. (2025). The hidden dangers of browsing ai
agents. arXiv preprint arXiv:2505.13076.

Musumeci, E., Brienza, M., Suriani, V., Nardi, D., and Bloisi, D. D. (2024). Llm based
multi-agent generation of semi-structured documents from semantic templates in the
public administration domain. In International Conference on Human-Computer In-
teraction, pages 98–117. Springer.

Müller, M. and Žunič, G. (2024). Browser use: Enable ai to control your browser.

Nardes, J. A. R., Altounian, C. S., and Vieira, L. A. G. (2018). Governança pública. O
desafio do Brasil, 3.

OpenAI (2025). Introducing operator. https://openai.com/index/
introducingoperator/. Accessed: Jun 20, 2025.

S. B. LLC (2025). Do browser: Ai browser automation agent. https://www.
dobrowser.io/. Accessed: Jun 20, 2025.

Scutella, M., Plewa, C., and Reaiche, C. (2024). Virtual agents in the public service:
examining citizens’ value-in-use. Public Management Review, 26(1):73–88.

Wang, L., Ma, C., Feng, X., Zhang, Z., Yang, H., Zhang, J., Chen, Z., Tang, J., Chen,
X., Lin, Y., et al. (2024). A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345.

Wooldridge, M. (2009). An introduction to multiagent systems. John wiley & sons.

Wooldridge, M. and Jennings, N. R. (1995). Intelligent agents: Theory and practice. The
knowledge engineering review, 10(2):115–152.


