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In this paper, we provide a simple method to analytically solve general problems in science and engineering,
which involve transcendetal functions. To validate the technique, we first compared our results to the exact
solutions of two well-known problems, which are written in terms of transcendental equations: (1) circuit analysis
of a resistor-diode association; (2) obtaining an analytical expression for the charge control in junctionless-
nanowire FET devices. Next, to demonstrate the versatility of the method, we address the pendulum differential
equation, to obtain an analytical expression for the period of the simple pendulum, considering any possible
initial oscillation amplitude. None of these problems has a closed-form analytical solution. Alternatively, in all
cases, simplified approximate analytical expressions were obtained, presenting low relative error when contrasted
with the respective benchmark numerical results, thereby indicating that the approach can be considered quite

accurate for most practical problems of interest.
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1. Introduction

The need for analytical models in science and engineer-
ing has been intensified in the last few years because
several large-scale practical problems do not allow the
use computer-intensive numerical techniques. A typical
example is integrated circuit design, which often involves
the simultaneous simulation of several millions of transis-
tors. The judicious approach is to employ low-complexity
transistor models, simple enough to carry out this huge
simulation task with a feasible computational effort.
The trade-off is to assure that, albeit simplified, these
models are still accurate enough to be a reliable tool in
predicting the circuit performance.

It is the crucial to equip the students with tools
to address these issues because, when building these
analytical models, one often has to deal with mathemat-
ical problems involving transcendental functions, such
as trigonometric, hyperbolic, exponential and logarith-
mic functions, and associated transcendental equations.
In order to reach an analytical solution, it is usual to
employ Taylor or Maclaurin series expansions of these
elementary functions. However, such series expansions
are only valid within strict range limits and often these
limits do not fit a particular problem under study.
In these cases, it is frequently necessary to use numerical
routines to reach a satisfactory result. As an alternative,
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in this work, we provide a new development, which
starts from the same Taylor series expansions but allow
generalized solutions of transcendental equations. The
method is simply called SAAMM (Simplified Approx-
imate Analytical Mathematical Method) to translate
the goal of obtaining simplified, yet accurate solutions
for problems involving transcendental functions, while
keeping the solutions fully analytical, without the need
to resort to numerical techniques.

In a previous work, we briefly mentioned the use of
SAAMM, when addressing the important technological
issue of calculating the energy levels of finite quantum
wells, a problem which does not have a closed-form
analytical solution [I]. By applying the method [1], we
obtained closed-form analytical expressions for every
bound energy level, E,, of finite quantum potential
wells. Using the exact numerical solution as a reference,
the model demonstrated quite good accuracy, and a very
small relative error was achieved, of around 0.3%, for
quantum well widths greater than 35 angstroms. These
results indicate that our formulation is indeed a useful
tool to help design nanoelectronic devices. The details of
the method were to be provided elsewhere and are the
focus of the present paper.

Thus here we detail the use of SAAMM. To exemplify
and validate the technique, we compared our results
to the exact solutions of two benchmark problems:
(1) solving the transcendental equation arising from
the analysis of a resistor-diode circuit association and
(2) obtaining an analytical expression for the charge
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control in junctionless-nanowire FET devices. Next, to
demonstrate the versatility of the method, we address
the pendulum differential equation, to obtain an analyt-
ical expression for the period of the simple pendulum,
considering any possible initial oscillation amplitude.
None of these problems has a closed-form analytical
solution. Alternatively, in our work simplified approx-
imate analytical expressions were obtained. In all cases,
when the analytical results are contrasted to the respec-
tive benchmark numerical solutions, the relative error
indicates that the approach can be considered quite
accurate for most practical problems of interest.

2. Simplified Approximate Analytical
Mathematical Method

We call Simplified Approximate Analytical Mathemat-
ical Method (SAAMM) the technique in which we
substitute the real variable,

x=0+U, (1)

in a real function, f(z), to alternatively write an approx-
imate expression in terms of 6, the function f(6). In
Eq. , 0 is a real variable, of very small value, and U
is a real value defined by

m

with j being a very large integer value, and
m = integer{jz}, (3)

the closest integer value obtained from the product, jx.

3. Using SAAMM

SAAMM was originally conceived to solve polynomial
and/or transcendental equations provided that an initial
guess for the solution and the validity range of the
approximations taken are properly established. In this
work, we will systematically demonstrate the use of this
tool to tackle equations of the type

f(x) =0, (4)

involving polynomial and/or transcendental terms and
no exact analytical solution. To illustrate our procedure,
one can conveniently split our approach into three steps.
Next, we discuss each of the steps for implementing
SAAMM.

3.1. First step

Goal: To determine the working range to find a rough
initial guess, xg, for the solution of interest. As usually
happens in several techniques for solving transcendental
equations, if needed, one can resort to a graphical
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method, aiming to determine the interval which contains
the desired root, T,in < o < Tmas, called here the
working range, from which we write

o = (xmin + xmax)/Qv (5)

a crude approximation to the root of the equation to
be solved, and the first step towards obtaining a more
accurate result. To determine the working range, ,in
and T,,q; can be selected on the basis of a graphical
analysis. This graphical method allows for two distinct
approaches for estimating the initial guess zy. The first,
illustrated in in Fig. a), involves directly sketching
the function f(z), and visually identifying its crossing
point with the horizontal axis, corresponding to the
root of the equation to be solved. Alternatively, the
second approach, depicted in Fig. b), leverages on
the decomposition of f(z) into two functions, fics:(x)

and frignt(x):
f(@) = fiepe(x) — frignt(z)

Then, a sketch of the curves, fier¢(x) and frignt(x),
superimposed on the same axes, provides an initial
estimate to the desired root of the equation, because
the intersection point between them, where fipi(z) =
frignt(x), corresponds to f(z) = 0, by the definition

(a)

fx)
Abscissa
axis

min

(b) ‘ fleft (x)’ fright (x) /,”'

-

////, \ﬁeft (x)

.7 | .

Xmax X

Figure 1: Schematic illustration of the graphical method:
(a) function profile, f(x), and the search for an intersection
point between the curve, f(x), with the x-axis, for an initial
determination of an interval, Zmin < 2o < ZTmaa: (b) function
profile, fiesi(x) € frignt(z), superimposed on the same scale,
for an initial determination of an interval, Zmin < 20 < Tmaz,
which contains a point of intersection between the curves,

Jiepe(x) and frighe(x).
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Figure 2: Summary of the processes composing the first step of
this method, to obtain the initial guess, zo.

above. This decomposition offers additional freedom,
allowing one to manipulate and analyze the components
of f(x) separately, which can be advantageous when f(z)
itself is complex or difficult to visualize directly. In either
case, one can chose, almost arbitrarily, the values of i,
and Tyayx, provided that the Condition below is satisfied.

Condition 1 The function, f(x), must be continuous
and and preserve the sign of the derivative within the
target interval, Tpmin < o < Tmag-

It is worth noting that, if the equation to be solved has
more than one real roots, it is enough to find a working
interval, Zpink < Tox < Tmazk, for each of the k roots
and repeat the procedure for each of them. Fig. ,
illustrates a summary of the processes involved in the
first step of the method.

3.2. Second step

Goal: To determine a first approximation for the analyt-
ical root, z1. For this, we proceed to solve, analytically,
the equation f(z1) = 0 (see Figure [3)). If transcendental
functions are present in the above equation, these func-
tions should be replaced by the polynomial approxima-
tion resulting from its Taylor series expansion around
the point x; = U;. Usually, a first order expansion is
enough (as it can be increased if desired) as long as the
condition below is satisfied.

Condition 2 If the terms in x1 are only up to the first
order, one has a first-degree equation, which can be easily
solved to calculate x1 directly. On the other hand, if there
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Figure 3: Flowchart of the sequence of operations involved in
the third step of the method presented in this work for the
analytical solution of polynomial or transcendental equations.

are terms in x1 of order equal to or greater than two, we
must replace 1 by

I1:91+U1, (6)

resulting in an equation in terms of 01, in such way that
f(61) = 0, in which we must neglect all terms of 61 of
order equal to or greater than two, to write a first-degree
equation in 01. In doing so, we can obtain x1 from 6,
considering Uy = my/j and my = integer{jzo}, with
xg, the initial guess, calculated in the first step, Eq. (@

3.3. Third step

Goal: To determine an approximate analytical root of
augmented precision, xs. The third step consists of
repeating the previous process, second step, and obtain-
ing an approximate analytical solution of augmented
precision,

To = Oy 4+ Us,
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Figure 4: Flowchart of the sequence of operations involved in
the third step of the method presented in this work for the
analytical solution of polynomial or transcendental equations.

considering Us = my/j and me = integer{jzi}, with
x1 being the approximate value calculated in the second
step, Eq. @ Needless to say that the final result is the
refined value for the variable x5, which can be renamed
as desired, considering the equation of interest. Fig.
depicts the flowchart describing the third step of the
method.

4. Some Additional Considerations

A feature of using SAAMM is that, the higher the value
of 7, the more accurate is the result obtained. This can be
easily verified from a graphical analysis of the behavior
of # in function of j, when we consider, for instance,
x =m/3, and

0=x—-U,

in the graph of Fig. , because, as # becomes pro-
gressively smaller, the value of j turns larger. This
same behavior is expected whatever the value of x.
Thus, our method, based on the Taylor series expansion
of transcendental functions, becomes more and more
precise, the smaller the value of 6, and therefore, the
greater the value of j. A similar procedure should be
performed for all roots of the equation, which are refered
to by an index, k, to indicate to which interval the
obtained result refers to. Finally, an analysis of the final
result can be carried out to verify whether the results
obtained reach the required degree of accuracy. If not, it
is always possible to add more terms to the Taylor series
expansion.
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Figure 5: Graphical representation of the dependence of 6 in
terms of j, for x = 7/3. The same behavior holds for any value
of x.

5. Some Illustrative Applications

5.1. Current-voltage characteristics in a
resistor-diode in-series association

In this section we apply SAAMM to the problem of
determining the current-voltage (I-V) relationship for
the non-linear electronic circuit composed of an in-
series association of a semiconductor diode, D, and a
resistor, R, as depicted in Fig. @-a). As well known,
under a forward bias, the diode allows the current
to flow, presenting only a small series resistance. On
the other hand, under reverse bias, it prevents the
current flow, allowing only a small reverse component
I,. The equation governing this specific resistor-diode
series combination is given by:

V—RI—k’ZTm(IISH), (7)

with, kg, the Boltzmann constant, T, the absolute
temperature, ¢, the elementary charge, and I, the satu-
ration current. This simple relationship, very common in
Electronics textbooks, does not have an exact analytical
solution to express the current in terms of the bias
voltage V', because Eq. is a transcendental equation.
Usually, to solve Eq. and write the electric current
as a function of the applied voltage, V, it is necessary
to resort to numerical routines. However, by using
SAAMM, this problem yields an interesting approximate
analytical solution, which can be obtained on the basis
of the flowcharts shown in Figs. ([2)-(4), as it will be
discussed below, in which we implement the three steps
of the method. Note that Eq. is written in such way
that fiepi(z) and frigne(x) are already naturally defined.

5.1.1. First step

The goal is to find the electric current variation as the
bias voltage, V', sweeps the range 0.6 < V' < 3.0 volts.
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Figure 6: (a) Resistor-diode in-series association. The following
physical constants and circuit parameters were considered R =
330 Q, I, = 5x10°° A4, ¢ = 1.602x 107" C, T = 300
K, kp = 1.38 x 107%* m?s72kgK~*. (b) Current-Voltage (-
V) relationship, provided by Eq. , by using SAAMM. The
symbols represent the results provided by the analytical model,
while the solid line represents the result obtained by using the
platform Maplesoft.

The first step to apply the method is to determine
the working interval I, < I < I4z, and an initial
guess, xg., to extract the root, I, of the transcendental
equation, Eq. for each value of the applied voltage V.
This task can be accomplished by inspection of a simple
graphical sketch. Fig. illustrates the technique used
to find the working range from which we arbitrarily
choose the interval defined by the current values, I, =
10712 A < T <5%x 1072 A = I,,,4,. From these values
of Iyin and I,q., one can get the initial guess, starting
from the Eq. , and writing

Imin + Imaw

To = 5 (8)

5.1.2. Second step

To maintain a uniform notation across the manuscript,
the current variable, I, is changed to zi, so that the
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equation to be solved is written as:

kT
V—RxlzBln(”;lH). 9)
q s

As mentioned in the previous section, when the
equation to be solved involves transcendental functions,
one must first replace these terms with the polynomial
approximations provided by the Taylor series expansion
around the point, xy = Uy, until first order. In the case
of Eq. @, there is the logarithmic function, which needs
to be approximated by its Taylor series expansion up to
first order, around the point, 1 = U;, which results in:

In <xl + 1) ~In(Fy) + —(x1 —Uy)  (10)

I
with F; = (Uy/Is + 1). Replacing the polynomial
approximation for the logarithm term into Eq. @, the
equation to be solved becomes:

1
LR

vfqugfummmf ;- U], (1)

1
IsFl
a first-degree equation, in x1, which can be easily solved,
taking Uy = myj, my = integer{jzo}, with 2o given by
Eq. 7 where U; and m; are constants of the problem.
Solving Eq. , one gets the following result for z;:

Uy + L) [eln(Fy) — V] — Uy
RUL +I)+ ¢

(12)

T = —
with ¢ = kgT/q.

5.1.3. Third step

The third step consists of repeating the previous
process, to obtain an approximate analytical solution
of augmented precision, xy, considering, Us = mayj,
mo = integer{jz,}, with z; given by Eq. , the
preliminary value of the analytical root, as calculated in
the second step. In practice, this is equivalent to express
the final result by an variable xo, replacing x; by s,
Uy by Us, and my by mo in the previous step, so that
we can write

(U2 + Ig) [Cln(Fg) - V} - CU2
RU;+Is)+c
with F» = (Usy/I; + 1). Finally, by identifying the

variable z, as the current I(V') we seek to calculate, one
finds:

(13)

Tog = —

(Ua+ I) [eln (Fy) = V] = cUs
R(UQ + Ig) +c

Fig. @-b) shows the I-V relationship, obtained from
Eq. by using SAAMM for the voltage range, 0.6 <
V < 3.0 volts, in contrast to the numerical results
provided by the Maplesoft software platform. The same
computational tool was used to investigate the relative
error concerning the approximate analytical results,
which was below 0.0025%.

I(V)=— (14)
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Figure 7: Technique used on the diode-resistor circuit problem, to find the current range, I, Iyin < I < Lnaz, by means estimating
approximate values of the root, I, while sweeping a voltage range from 0 < V' < 3.0 volts. (a) 0.1 volts; (b) 0.3 volts; (c) 0.5 volts

e (d) 3.0 volts.

5.2. Cylindrical semiconductor nanowire as a
voltage controlled gated-resistor

In this section, the SAAMM method is applied to a
problem studied by us in [I], namely, the current-voltage
(I-V) modeling of a cylindrical silicon semiconductor
nanowire transistor of radius Ry. The device can be seen
as a voltage-controlled resistor, often referred to as Junc-
tionless Nanowire Field Effect Transistor — JLNWFET,
widely considered a strong contender for the next gener-
ation of transistors. The devices of interest here have
cylindrical symmetry and make use of three metallic
contacts, two of them, the source and drain contacts,
located at the ends of the semiconductor nanowire, while

Revista Brasileira de Ensino de Fisica, vol. 47, €20240325, 2025

a third contact, involving the cylindrical surface of the
nanowire, acts as a gate electrode.

Also, as in any other MOS transistor, there is an
oxide layer placed in between the gate contact and the
semiconductor nanowire, as indicated in Fig. (8]). The
device is based on an active region of semiconductor
material, with ionized doping density Ny uniformly
distributed throughout the cylindrical, n-type semicon-
ductor nanostructure, forming a conduction channel of
radius 7.. Transistor action takes place because the
channel radius and, consequently, the curret flow can be
controlled when a gate-source voltage, Vi, is applied
to the gate contact. The electrostatic analysis of the
device, by solving the Poisson equation, leads to a
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Oxide

Gate

Figure 8: Schematic representation of a cylindrical semicon-
ductor nanowire resistor controlled by gate-source voltage, Vs,
showing the superficial gate electrode, an oxide layer, and
the semiconductor nanowire, composed of two regions, as a
function of the applied gate-source voltage: a depletion region,
of thickness Ro —r¢, and a conductive channel region, of radius,
Te.

transcendental equation, Eq. (5) in [2, [3], given by

K {R3/2+rZ[in(re) — In(Ro) — 1/2]}
= Vgs - Vfb + KOI[RO - TE/RO} (15)

where ¢, and g,, are the dielectric permittivity for
the semiconductor nanowire and oxide gate materials,
respectively, w,, is the oxide width, Vy; is the flat-band
voltage, Ky = —qNgy/2es and Ko = ¢NgWog/2€0,. The
Eq. is a transcendental equation expressing the so-
called charge-control relation, which describes the radius
of the conducting channel, the variable r., as a function
of the gate voltage, Vg, on the cylindrical semiconductor
nanowire depicted in the Fig. . Knowledge of this rela-
tionship, r.—Vys, allows one to obtain both the current-
voltage and the capacitance-voltage characteristics of
the device. Applying SAAMM to this problem, by means
of the three steps presented in the flowcharts shown in
Figs. 7, yields an expression to relate the channel
radius to the applied gate voltage, 7.(Vys).

5.2.1. First step

As before, the first step is to determine the working
interval and the initial guess, xo. An analysis of the
problem leads one to easily conclude that a consistent
range for the channel radius, 7., is to admit that the
channel radius of the device can vary from r.pmin = 0,
up to a maximum value, corresponding to the physical
radius of the nanowire, Ry. Then, r.max = Ro and
0 < r. < Rp. From the values of 7. pnin and 7. max, We
can write the initial guess, from the Eq. , as

1
rog = §(rcmax + Tcmin)- (16)
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5.2.2. Second step

In this step, to unify the notation used along the
manuscript, we label the variable r. as x1, so that the
equation to be solved is written as:

K {R2/2+ 22[In(z1) — In(Ry) — 1/2]}
= ths — Vfb -+ Koz[R() — x%/Ro] (17)

As before, since there are terms of transcendental
functions in the equation to be solved, it is necessary
to first replace these terms with the polynomial approx-
imations provided by the Taylor series, expanded around
a point, 1 = Uy, up to first order. In the case of Eq. ,
there is the logarithmic function, In(z;), whose Taylor
series expansion results in:

1
In(z1) ~ log(Uh) + ﬁ(ﬂﬂl -1). (18)
1
Replacing this polynomial approximation into the
logarithm term in Eq. (L7)), the equation to be solved
becomes:

K { B2 4 a3o8(00) + 1 (o1 = 1) = () ~ 1721

= Vs — Vip + Kou[Ro — 77/ Ro), (19)

a quadratic equation in x;, with U; and m; being
constants of the problem, given by U; = m;/j, and
my = integer{jzo}, with zo given by Eq. (16). Also,
since the equation to be solved, f(z1) = 0, is expressed
as an equation with terms in z; equal to or greater than
quadratic order, we must replace x1, by, 1 = 61 + Uq,
and, in this new equation, neglect all terms of 67 of
order equal to or greater than two. As a result, an
approximate polynomial equation, of the first degree, in
01, is obtained. Finally, with the result for x;, we can
write, 1 = 01 + Uy, which in this results in

1
T = X(Vgs—B1)+U1 (20)
1
with
2U;
Al = Ri [Ks ln(Ul)Ro — Ks IH(R())RO + Koa:]
0

1
By = S KR + K, Up n(Uh) — KUY In(Ro)+

1 Ko U}
— *KSU12+Vfb*KomRO+ 1 )
2 Ry

constants of the considered problem.

5.2.3. Third step

The third step consists of repeating the previous pro-
cess, to obtain an approximate analytical solution of
augmented precision, x5, considering Us = my/j, and
my = integer{jz1}, with z; given by Eq. (20), the
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Figure 9: Conduction channel radius, r., as a function of
the applied gate-source voltage, Vys. For this problem the
same values used in Ref. [I], were employed: a nanowire of
radius Ry = 100 A, ionized donor doping concentration,
Ng = 10*°em ™3, and oxide layer thickness, wo. = 20 A. Also
considered: kq = 11.8, kow = 3.9, €0 = 8.85 x 107 >Fm™! e
Viy = 1.12 volts.

preliminary approximation for the analytical root, cal-
culated in the second step. In practice, this is equivalent
to express the final result by an variable x5, recasting x;
by a2, Uy by Uy, and m; by ms in the previous step, so
that we can write

1
Ty = o~ (Vgs — B2) + Us.
2
Finally, we identify the variable zo as the variable to
be calculated, in this case the conductor radius, r., to
write

TC(Vgs) ‘/gs - BQ) + U2a (21)

1
=

2
with Al, AQ, Bi, By, Uy, Uy, my and ms, already
described, as the constants of the problem solution.
Fig. @[) show the plot r.—Vy,, contrasting the analytical
result obtained by Eq. 7 using SAAMM, with those
provided by Maplesoft numerical platform. The relative
error of the analytical results when compared to the
Maplesoft solution is lower than 0.01%.

5.3. Finding the period of a simple pendulum

In this section, as yet another exemple of using SAAMM,
to demonstrate the versatility of the method, we selected
a different kind of problem. Specifically, we addressed the
differential equation governing the problem of finding the
period of a simple pendulum for the case of an arbitrary
amplitude of the initial oscillation, .

This simple pendulum is one of the most popular
nonlinear systems covered in undergraduate and grad-
uate textbooks, with numerous practical applications in

Revista Brasileira de Ensino de Fisica, vol. 47, €20240325, 2025

On approximate analytical solutions of transcendental equations

14— 4
/
121 a /
L
104 ./
. /
S 8 au ./
6 /
/
4 <
‘/ '.
i e s
2 R L
‘/‘_‘/.'_.- | -
0-'_.._‘-5&—'—-‘—— T I
0 0.5 1 1.5
ao

Figure 10: Comparison of the relative error for P;, blue dot-
dashed line (small oscillations model) and the relative error for
P,, black dot-line (SAAMM model, with original integration
interval); red dashed line (SAAMM, integration using two
segments); black solid line (SAAMM, integration using three
segments). Top left: schematic representation of a simple
pendulum, consisting of a body of mass, M, set to oscillate
attached to a string of length, L, of negligible mass, under the
effect of the acceleration of gravity, g. Parameters considered
for this problem, L = 10 cm and g = 9.8 m/s*. The benchmark
to check the accuracy f the results takes the work by Nelson
et al. [12], as reference.

physics and engineering because many natural phenom-
ena are governed by a differential equation similar to the
pendulum problem. Then, consider a simple pendulum
like the one depicted in the top-left of Fig. 7 consist-
ing of a body of mass, M, suspended by a long wire, of
length L and of negligible mass, under the effect of the
acceleration of gravity, g. In this system the body of mass
M can be made to oscillate from an initial oscillation
amplitude, «p, which can be said to be in the range
min < &g < Qmax, With apin = 0 and amax = Qp.
The differential equation representing the motion of a
simple pendulum is then given by

d2a g .
w = 73 sin o, (22)
in which « is the angle of oscillation of the pendulum
at a given time t. The initial conditions the problem are
written as:

a(t=0)=ay and da =0.
dt |,_g
The differential equation given by Eq. does not
have a straightforward solution, because of the term
sin(«). Only in particular cases, where small angles of
oscillations are considered, it is possible to simplify the
solution by taking sin () &~ «a. In this case, the dif-
ferential equation describing the pendulum motion can
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be approximated by the more familar linear differential
equation, much easier to solve:

d’a g

— =—Zq. 23

dt? L (23)

Eq. yields an exact analytical solution in terms of

elementary functions, « (t) = «ag cos (wot), with ag << 1
and the motion angular frequency given by wo = /g/L.
From the angular frequency, one can write the period of
oscillation in the case of small angles as Py, related to
the angular frequency by wg = 27/ Py, in such way that:

Py =2n\/L/g. (24)

But, as this result can only be used for small oscilla-
tion angles, to cover the entire range of possible initial
oscillations, 0 < agy < /2, another strategy is necessary.
In fact, there are several studies in the literature on this
topic [4HIT]. In particular, Nelson et al. [12] obtained an
exact analytical solution for the problem, considering
any initial value for ap. They solved the full differential
equation, describing the motion of the pendulum, in
terms of elliptic Jacobi functions, in such way that the
period of the pendulum oscillation can be written as:

2
POZ<22n P ) sin2" (?) (25)

This exact expression will be used as a benchmark for
comparison against our analytical results.

Although the solution proposed by Nelson et al. [12]
is certainly fully analytical, it is not easy to handle
and that is why in the literature one finds a variety
of simplification schemes for this problem. Considering
the relevance of the problem [I3], we proceed to apply
SAAMM to solve Eq. , thereby showing that we
can obtain an approximate yet quite accurate analytical
result. In what follows, we will demonstrate how to use
SAAMM to find the period of the simple pendulum, for
any initial oscillation amplitude, ag. To do so, we employ
an usual integration strategy, carrying out the change of
variables u = da/dt, so that Eq. becomes

du g

o = s (26)

Integrating Eq., one obtains,

u= \/22] [cos(ar) — cos (ap)]. (27)

which, in turn, can be integrated again, keeping in mind
that u = da/dt, to arrive at the following result:

do
\/25 [cos(ar) — cos(ayp)]

At this point we can apply SAAMM to find the period
of the pendulum, which we will refer to as P». To find P,

= dt. (28)
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it suffices to consider a convenient integration interval in
Eq. (28), more precisely a quarter of the period, P /4,
which results in

h= 4\/7/ Vcos(a) — cos(ag)] (29)

The term, cos(a) in Eq. ., can be replaced by
the approximate quadratlc function, fcos, found in
Eq. (B.1)). For the algebraic manipulations to follow,
consider the representation below:

()= ! . (30)

[fcos — cos(ap)]

Using the representation shown in Eq. , the
Eq. can be written approximately as

L [
Py = 4\/;A (...)da (31)

Knowing the result of the integral,

/\/[—aoﬂdc—y—ba—f—d]

- arctan valot %) =K(a)
Va v —aa? —ba+d ’

one can write an approximate analytic expression for the
period of the pendulum, as

o 4\F Kl @)

with m = integer{j (Omin + Omax) /2}, S = cos(U),
T = sin(U), U = m/j, a = §/2, b = T — SU,

=S —8SU?/2+TU and d = ¢ — cos(ap). Taking
the work of Nelson et al. [I2] as a benchmark for
the value of the exact period, P;, it is seen that, by
inspection of Fig. , our approximate analytical result
for the period, P», represented by the dot curve arising
from the above equation, is more accurate than the
usual small-oscillation framework, represented by the
dot-dashed curve. Specifically, the conventional small-
oscillation approximation results in a relative error
that can reach up to 15.27%. In contrast, our initial
approximation provides improved accuracy, yielding a
relative error of, at most, 7.21%. Since this accuracy
may be not enough for some applications, we carried
out an additional step, by realizing that the integral in
Eq. can be conveniently split, since the approximate
function of the cosine, fcos, Eq. , can be written
as a piecewise function as follows

feosi(a), a1 <a < asg,
Feosi(a) = { feosi(a), a; <a <oy,
feosi(a), o <a<ap,
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with

feosi(a) = —a?a® — bja + ¢,

in which ¢ is an integer used as an index ¢ =1,2,3,...,1,
while [ represents the number of segments of an interval,
and the number of subintervals of this interval: «; =
ag + (i — 1)apg/l. In this particular case, a1 = amin and
Q+1 = Qmax. Lhe parameters of the SAAMM method
can be obtained as before, considering U; ; = m;;/j and
m;; = integer{jzo;}, and the initial guess, xq;, for each
interval or subinterval, given by:

(2 — 1)y
2

Toi =
For the case where the interval is split in two, then,

[ = 2, one can write:
—ala? —bia+ec;, 0<a<a/2,
Feosa(a) =

2

—a2a? —bya+co, ap/2<a<ag

From this, it is possible to rewrite the integral as
Eq. , in such way that

ag ap/2 [e ™)
/0 (...)da = /0 (...)1da—|—/ao/2(...)1da,
with
1
= V[ fcos1 — cos(ag)]’
1

(o=

V[ fcoss — cos(ag)]

In this case, the period results as

Py = 4\/5 [2;@ + K (S )+

— Ky (omin) — K (amax)} :

2

and the relative error drops significantly, as it can be seen
in the dashed line curve in the Fig. , which reaches
a maximum of 1.74%. Also, if the integration interval
is split into three segments, the relative error does not
exceed 0.68%, as it can be seen by the solid line curve,
in Fig. (L0). In this way, the technique allows increased
accuracy for the analytical results if the number of
segments is also increased.

6. Conclusions

The Simplified Approximate Analytical Method
(SAAMM) introduced in this work was successfully
demonstrated in several tasks, including to write
approximations for transcendental functions, as well as
to solve polynomial and/or transcendental equations in
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problems which, in principle, do not allow an analytical
solution. To exemplify the use of the method, we
discussed some important applications. Specifically,
we applied SAAMM to a few canonical problems in
electronic circuits analysis, nanoelectronics devices and
fundamental physics.

From the basic electronics point of view, the first
problem was to determine the current-voltage rela-
tionship, I-V, of a non-linear electronic circuit com-
bination, composed of a semiconductor diode and a
resistor, a problem which does not have a closed-
form solution. Next. the second problem addressed
was the application of SAAMM to the modeling of
cylindrical junctionless semiconductor nanowire transis-
tors (JL-NW-FETs), widely regarded as possible candi-
dates for a future generation of transistors. Specifically,
we provided approximate analytical expression for the
radius of the conduction channel within the nanowire as
a function of the applied gate voltage. When compared
to the results provided by numerical tools, such as
the Maplesoft platform, we achieved very low relative
errors, showing that this methodology can be useful to
determine the current-voltage and capacitance-voltage
characteristics of these devices, which are relationships
of fundamental importance for nanoelectronics.

From a basic physics point of view, SAAMM was also
very successfully applied to the approximate solution
of the differential equation governing the period of
the simple pendulum, encompassing the case of any
arbitrary initial oscillation amplitude. The proposed
method provided a more accurate result than the one
obtained by using the small oscillations model, which
can yield a relative error of 15.27%, when oy = /2,
against the 7.21% provided by SAAMM. In addition,
for the cases in which this relative error may still be
considered too high, an additional strategy was used to
provide greater accuracy to the results. The strategy was
to write the simplified approximate cosine function as a
convenient piecewise function. By adopting this strategy,
it was found that the relative error drops significantly,
to well below 2%.

In conclusion, the proposed method, SAAMM, offers
significant computational advantages over traditional
iterative numerical methods, such as the Newton-
Raphson method. While iterative methods require mul-
tiple evaluations of the function and its derivative at
each iteration, SAAMM obtains an approximate solution
analytically, drastically reducing the need for numerical
evaluations. This characteristic results in a smaller
number of arithmetic operations and, consequently,
lower computational cost, especially in problems with
complex functions or that require high precision. Fur-
thermore, the analytical nature of the solution obtained
with SAAMM facilitates the sensitivity analysis of the
solution with respect to the problem parameters, a
task that can be computationally expensive in iterative
numerical methods. In the Appendix we provide a series

DOI: https://doi.org/10.1590/1806-9126-RBEF-2024-0325



Pereira et al.

of useful steps and relationships, to solve several kinds
of polynomial and transcendental equations.

Appendix
A. Solving Polynomial Equations

As it is well known, the solution of polynomial equations
becomes increasingly difficult as the degree, n, of the
polynomial equation grows. SAAMM is a very useful tool
for obtaining simplified approximate analytical solutions
for different types of problems, particularly for solving
polynomial functions of the type,

™ + an_12" P+ . ezt +... =0, (A1)
in which, a; is the real coefficient pertaining the term
2%, with x a real variable and ¢ and n interger numbers.
To find the simplified approximate analytic roots of
polynomial equations, it is enough to follow the three
steps presented in the flowcharts of Figs. 7, as it
will be discussed below.

A.1. First step

Make a preliminary graphical sketch of how many roots
there are within the working interval, x,.,;, < 29 <
Tmaz- Next, provide the initial guess, xg, and verify
the continuity of the function, f(z), within the selected
interval, making sure that the sign of the derivative is
unchanged within the interval. In this way, for each
considered interval, the equation root exists and it is
unique.

A.2. Second step

Recast the variable of interest for the problem as 1, and
write f(x1) = 0. For the polynomial equation of degree,
n, equal to or greater than two, replace x1 by Eq. @,
in order to obtain an equation, in 0, given by:

an (01 +U)" + a1 (01 +U)" " 4+ a; (60, + U
+~-~+a1(01+U1)"+a0:O (AQ)

From the Eq. (A.2), and carrying out all the required
mathematical operations, one arrives at an equation
in 61, written as:

a"01—|—+a191—|—:0,

In SAAMM, as j grows, 61 becomes progressively
smaller, as it can be seen in the Fig. (§]). Thus, by taking
7 as a very large value in our approximation, it is possible
to neglect all terms of #; of power equal to or greater
than two, in order to obtain a simplified equation, of the
first degree for 61, and finally write 1 = 6, + Uy, for
each of the considered intervals.
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A.3. Third step

The third step consists of repeating the previous process,
and obtaining an approximate analytical solution of aug-
mented precision, x9 = 05 + Us, considering Us = my/j
and mg = integer{jz;}, with z;, the approximate
analytical root, calculated in the second step, Eq. @
In practice, this is equivalent to recasting the previous
result for =z, taking z; as zy, Uy as Us and my
as meo. The same procedure must be carried out for each
working interval which contains a root of the equation.

B. Approximation for Transcendental
Functions

In many scientific problems, the presence of some
elementary functions in an equation, such as, sin(x),
sinh(z), log(x), exp(x), etc., may prevent an analytical
solution.Within the SAAMM framework, we provide
approximate expressions for the various functions which
may appear in transcendental equations.

B.1. Trigonometric functions

One can write an approximate function, fsinx, for the
function sin(x), using the polynomial terms given by the
Taylor series of this function, expanded around x = U,
up to a desired order, for example, first order, resulting in

fsinz = Sz + (T — SU),

with S = cos(U), T = sin(U). Similarly, using this pro-
cedure, we can obtain an approximate function for any
trigonometric function. Following this same reasoning,
the approximate function for the cosine results,

feos = =Tz + (S+TU).

If greater precision is needed, more terms can be added
to the Taylor series to further increase the accuracy
of the results. For example, if additional terms are
considered in the Taylor series expansion of the function
cos(z), a parabolic approximation, fcos, results in:

fecos = —ax® —bx +c (B.1)

with a = $/2, b=T — SU, and c = S — SU?/2+TU.

B.2. Hyperbolic functions

A similar procedure can be used to obtain approximate
functions for the hyperbolic functions as well. Following
this same script, the approximate functions for sinh(z)
and cosh(x), result in

(B.2)

fsinh = Px+ (R — PU)
feosh = Rx + (P — RU)

with R = sinh(U) and P = cosh(U).
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B.3. Exponential functions

In the same way, one can express an approximation for
the exponential function, e”:

fexp=eY(x +1-0) (B.3)

B.4. Logarithm functions

This method of simplification can also be used for the
logarithmic function, to write

flogz = log(U) + % (x—1) (B.4)

Data Availability

Simulation data can be made available upon request
directly to the authors.
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