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Abstract. Intransitive dice DU, ... D® are dice such that DM has advantage when played
against D@ dice D@ has advantage when played against D®) and so on, up to DY, which
has advantage over DY), This work has two main goals: to present (deterministic) results on the
existence of general intransitive dice, and to derive a central limit theorem for the vector of normal-
ized victories of a die against the next one in the list. As assumptions of this CLT, we assume that
faces of a die are i.i.d. random variables and all dice are independent, but different dice may have
distinct distributions associated with them, as well as they may have distinct numbers of faces. Ex-
ploiting this central limit theorem, we derive two major consequences. First, we are able to obtain
first order exponential asymptotics for the number of /-tuples of intransitive dice, when the number
of faces of the dice grows. Second, we obtain a criterion to ensure that the asymptotic probability
of observing intransitive dice is null. The criterion applies to many concrete situations, including
all continuous distributions and many discrete ones.
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1. Introduction

Intransitivity is an inherent facet of nature, since total order relations are not universal. For
example, it is part of the equilibrium in evolutionary dynamics, where different relations between
predators and prey create the balance for common existence and the role of prey/predator may
not be transitive. This phenomenon is also noted in the eighteenth-century Condorcet’s paradox, in
which three candidates are intransitive in the sense that the candidate A wins when running against
B, the candidate B wins when running against candidate C' and the candidate C' wins when running
against candidate A. It is worth mentioning that Condorcet’s paradox is intrinsically related to the
classical Arrow’s Theorem. Intransitivity also manifests itself in sports leagues, network relations,
interactions between different medications, and an ever-expanding array of scenarios.

While being a fundamental mathematical concept, intransitivity can lead to intriguing outcomes
even in simple models. Consider a basic dice game as an example: there are two players, each tosses
a (possibly different) die and the one with the highest outcome wins. It is possible to construct
three dice, A, B and C, for which A is better than B (in the sense that the player with die A has a
higher chance of winning against the player with die B), B is better than C and C is better than
A? What about constructing an intransitive chain of more than three dice? And dice with a very
large number of faces?

To the best of our knowledge, the first examples of intransitive chains of dice appeared in the
literature in Martin Gadner’s column (Gardner, 1970), where the author mentions a previous con-
struction from the sixties by Bradley Effron, consisting of the dice

A:(O7074?4’4’4)7 B:(37373737373)7
C=(227226,6), D=(1,1,1,55,5).

For those dice, it holds that the probability of A beats B, B beats C, C beats D and D beats A are all
equal to 2/3. Intransitive dice are also natural examples of the Steinhaus and Trybuta’s paradox (see
Steinhaus and Trybuta, 1959; Lebedev, 2019), consisting on the existence of independent random
variables X, Y, and Z such that P(X > Y) > 1/2, P(Y > Z) > 1/2, and P(Z > X) > 1/2.
The property of intransitivity can be found in various domains, such as Statistics (Brown and
Hettmansperger, 2002) and voting systems (Hazta et al.; 2020), to mention only a few.

From a probabilistic point of view, there has been a recent surge of interest in intransitive dice
phenomena. In part, such a recent trend started with a discussion by Conrey et al. (2016). Therein,
the authors considered a model of random dice where the n faces of a given random die are given by
uniformly choosing n entries among positive integers conditioned to sum to n(n + 1)/2, which they
called a balanced model. For instance, for n = 4, the faces of a die are chosen by picking uniformly
one of the multisets below:

(1,1,4,4), (1,2,3,4), (1,3,3,3), (2,2,2,4), (2,2,3,3).

Following Conrey et al. (2016), choose a set of three random independent dice from the balanced
model. With a strong support by computational evidence, in Conrey et al. (2016) they also propose
two conjectures: first, that the asymptotic probability of ties between any two of the three dice is
zero, and second, that the asymptotic probability that these three dice form an intransitive chain
is 1/4 (see also Morrison, 2023, which evaluates some exact probabilities for three and four dice).
These two conjectures were later proved by a Polymath project (Polymath, 2025), and several other
results on the balanced model and other related models of random dice with constrained sum faces
were further explored in various recent works (Sah and Sawhney, 2024). Intransitive dice may also
be interpreted through tournament graphs, see Akin (2021); Akin and Saccamano (2021) for further
results in such direction.
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In the present work, we ask ourselves about the existence of intransitive chains of dice both from
deterministic and probabilistic perspectives. We consider an arbitrary number of dice, each of them
with an arbitrary number of faces, without any constraints regarding the sum of the faces.

The first part of this paper is devoted to studying the existence of intransitive dice: in a determin-
istic setup that does not allow for ties among different dice faces, we rediscover a characterization
from Schaefer (2017), describing when an ordered collection of intransitive dice exists, in terms of
the size of the dice and the number of different entries used for the faces. In short terms, such
a result says that there are always intransitive collections with arbitrarily large number of faces,
provided each die has at least 3 faces. Naturally, one is faced with the question of how many of these
collections there are. As a first novel result, we are able to show that the proportion of ordered
collections of intransitive dice among all possible collections (not necessarily intransitive) decays
with the number of faces of the dice, and we compute the leading term in the exponential decay
rate asymptotics explicitly.

For both the previously mentioned existence results and decay of the proportion of intransitive
dice, the key observation is a bijection between collections of dice, not necessarily intransitive, and
words with appropriate number of letters. We explore this connection to construct, from a given
collection of intransitive dice, a new collection with a larger number of faces of each die or with a
larger number of dice, while preserving the intransitivity. This construction is algorithmic, and as
we mentioned it is based on the connection between intransitive dice and words with a particular
combinatorial property which may be of independent interest.

The second part of this paper deals with models of random dice, where the entries on the faces
of a given die are independent random variables with the same distribution, but the distributions
generating different dice may vary. Our main interest lies in determining the probability that a
finite collection of random dice is intransitive, when the number of faces of each die grows large.
To do so, we prove a central limit theorem for the vector of number of victories of the faces of die
against the faces of the next die in the list (whose entries are strongly correlated). The proof of this
CLT is based on the moment method, where the crucial steps consist of a combinatorial bijection
between moments and an appropriate subclass of graphs, and a careful estimate of the number of
such graphs.

The vector of victories is actually connected to intransitivity, which is simple to illustrate when
each die has n faces with no ties: in this particular case, intransitity of the list of dice is equivalent
to the fact that each entry of the vector of victories is larger than n?/2. This can be properly
generalized to account for possible ties among entries, and when combined with the CLT obtained,
we are able to deduce a criterion to compute the probability of intransitivity in terms of a Gaussian
probability.

Such result is obtained under appropriate but natural conditions on the distribution of the ran-
dom variables determining the faces. Grosso modo, the conditions are bounds on the number of
ties and on the variance of victories of a die against another one in the list, avoiding degeneracy
in the central limit setting, with appropriate first order asymptotics for their means. These mild
conditions cover many situations. For instance, it includes the scenarios where all dice have same
distribution (including all continuous distributions and many discrete ones), and also situations
where the underlying distributions of faces depend on scaling parameters. And also the case where
dice have different distributions in some cases. We also provide a way of constructing asymptotic in-
transitive dice (not satisfying the previous conditions, of course), which is argued via a concentration
inequality.

We now move forward to the discussion of our main findings.
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2. Statement of results

We split the discussion of these major results into two subsections, first for deterministic dice and
then for random dice. As we hope to convey with this text, simple models of dice display rather
interesting and rich aspects worth investigating deeper. However, many interesting phenomena
may depend on somewhat subtle specific features of the model considered. Nevertheless, questions
surrounding intransitive dice phenomena are rather simple to state. For the latter reason, we mostly
introduce new terminology and notation along the text, reserving formal definitions solely for more
technical assumptions needed. For convenience, such definitions along the text are highlighted in

bold.

2.1. Main results for deterministic models of dice. An n-sided die is a pair (D, X), where D =
(D1,...,Dy,) is a real-valued vector where each Dy, represents the number on the k-th face, and X
is a random variable taking values on [n] := {1,2,...,n} that represents the label of the face in the
outcome of a toss. The number n is the number of faces, or simply size, of the die D. The die is
said to roll the face k with probability P(X = k) and results Dy. If this probability equals 1/n for
every k, the die is honest or fair. Otherwise the die is unfair or biased. If there is no ambiguity,
the die will be denoted as D, and in that case, it is useful to denote the random result of D in a
roll by Dx. Thus, in general, the entries of D need not be integer-valued, nor even positive. We
reserve capital letters A, B, C etc. to represent dice, and lower indices A;, B; etc. to represent a
entries of the dice A, B. It is also useful to distinguish different dice with an upper index, writing
for instance DM, D@ ete, and the corresponding entries by DZO), DZ@) etc.

A die A is said to be better than a die B, and it is denoted by A > B if the probability of A
rolling a higher value than B is greater than the probability of B rolling a higher value than A. To
the same extent, the die B is said to be worse than A, and it is denoted by B < A.

In mathematical terms, one way to verify whether a fair die A is better than a fair die B is by
counting against how many faces of B a given face of A wins, summing the result over all possible
faces of A, and comparing with the count we obtain when we do the same interchanging the roles
of A and B. In other words, A B if, and only if, the inequality

o> Yo

A¢>Bj B]‘>A¢

is satisfied. With n4 and np being the number of faces of A and B, respectively, there are in total
nanp pairs of faces from A and B to compare, and A > B if, and only if,

1 1
1> SnAnB = o > 1. (2.1)
Ai:Bj

Ai>Bj

An ordered collection of dice D = (DM, ..., D®) is said to be intransitive if DM ... DO
DM Note that while > is an asymmetric relation, it is not necessarily transitive, so it does not
define an order relation. When computing whether a given collection D = (D(l), . ,D(E)) of dice
is intransitive, the ordering of the entries does matter, and it is possible that D is not intransitive,
but for some permutation ¢ of length ¢ a reordering (D) ... D)) is intransitive. We will be
interested in existence results for deterministic collections D, and in asymptotic results when the
distributions of the entries of each die are rather arbitrary, so this ordering will not be relevant in
any essential way.

By a no-tie collection of dice we mean that no pair of faces, either from the same die or from
different dice, shares the same number.

Our first two results concern intransitive families of deterministic dice. The first one deals with
the existence of intransitive, fair dice.
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Theorem 2.1. Consider dice whose face entries are positive integers. For every £ > 3 and n > 3
there exists a mo-tie collection of £ honest n-sided dice which is intransitive. Furthermore, for any
£ > 3 there does not exist a no-tie family of £ honest 2-sided dice which is intransitive.

This result was already proved in Schaefer (2017, Theorem 2.1), with a direct construction. We
provide a different proof, with an approach using a bijection between dice and words, which we
explain in Section 4.1. This approach also lies at the core of many of our novel results, so we
decided to also present Theorem 2.1 here, to illustrate our techniques.

The notion of a die A being better than B is not a relation on the specific numbers on their faces,
but rather between the relative ordering of these numbers. For instance, the die A = (2,4,9,10,11)
is better than the die B = (1,5,7,9,10). Now, increase, say, the first entry of A to a new die
A= (x,4,9,10,11) with any choice x = 3,4. Then when we choose and roll either one of dice A
or ;L the chance of winning against a roll of die B is the same. So, in terms of chance of winning
against B, dice A and A are indistinguishable.

In that sense, when we talk about comparison of £ non-tie dice with n faces each, it suffices to
distribute the numbers in the set [¢n] among the faces of the dice, without repetition. In fact, the
proof of the existence claim in Theorem 2.1 is inductive/constructive, and shows that such ¢ honest
n-sided dice can always be chosen with distinct entries in [¢n].

For a given choice of positive integers nq, ..., ng, let D(nq,...,ny) be the set of collections of dice
D = (DW, ..., D®) for which DU) has exactly n; faces, and where each number in [nq + - - + nyJ
appears exactly once in the faces in D. In other words, the dice are filled with numbers in [ng+- -+
ng], without repetition. Observe that with this definition, in D(n4,...,ny) we do not distinguish
between the ordering of faces in each die. Or, alternatively, dice in D(n1,...,ny) are always viewed
in increasing order, so that for instance the dice (1,2,3) and (2,1, 3) are the same and are always
represented by (1,2,3). But we do distinguish between orderings within a collection, so that the

~

collections D = ((1,2,4),(3,5,6)),D = ((3,5,6), (1,2,4)) are distinct elements of D(3,3). In other
words,

D(ni,...,ng) = {D = (0W,...,p¥): D) = (DY),...DY)) € 2",
0< ng) << D%) forj=1,...,¢, Dz(fl) #* DZ(ZQ) for j; #jg,{DZ(j)}i7j = [m + -+ ng]}
We denote by Dy (n1,...,ny) the subset of D(ny,...,ny) that consists of intransitive dice, that
is,
D.(ni,...,ng) = {D € D(ni,...,ng): DWp ... DO DD(I)},

and additionally also set

D¢(n) = D(n,...,n), Dsyy(n) = Ds(n,...,n). (2.2)
£ times £ times

We stress that the definition of the sets Dy(n) and D; ¢(n) as above do not account for possible
permutations of dice when checking intransitivity, that is, the list of dice has a fixed order. We will
later on deal with random dice, and because they will have arbitrary distributions the difference
between considering or not considering possible permutations will not be important in a relevant
way.

Exploring a connection between non-tie dice with integer entries and the set of words in a given
alphabet, briefly outlined below and explained in detail in Section 4.1, we will be able to estimate
the size of Dy 4(n).

Theorem 2.2. For each { > 3, there exists a constant L(¢) > 0 for which

Dy y(n)] = LB g5 5 0o,
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Naturally, we are asked about the value of L(¢). For any n > 1, a simple combinatorial argument
shows that [Dy(n)| = (¢n)!/(n))¢, and by combing Theorem 2.2 with Stirling’s approximation we
see that

Doe(n)] o—n(tlog (~L(0)+o(n) (2.3)
[Dy(n)]
Since Dy ¢(n) C Dy(n), we obviously have L(¢) < £logf. Equipping D,(n) with the uniform dis-

tribution, one may view the quantity ‘%ﬁ%f' as the probability of selecting an /-uple of intransitive

dice from this distribution. As a consequence of Theorem 2.8 to be seen in a moment, applied to
random dice with uniform law on [0, 1] we can infer that

. |D> é(n)‘
lim ———*%
w3 D, ()|

It is thus natural to ask whether the decay (2.3) is exponential or sub-exponential in n, and our
next main result in fact shows that it is sub-exponential.

Theorem 2.3. For any { > 3, L({) = £log¥.

= 0.

In fact, in a first draft version of this paper, Theorem 2.3 was stated as a conjecture, based on
strong numerical evidence performed for the case ¢ = 3. For completeness, in Subsection 4.5 we
discuss such numerical experiments, including an exact calculation of |D;, 3(n)| for low values of n.
It remains a rather puzzling question to determine the true rate of decay in (2.3).

The proof of Theorem 2.2 relies on two main ingredients. The first ingredient is a natural and
explicit bijection between Dy(n) and the set Wy(n) consisting of words of length n¢ in an alphabet
of ¢ letters, where each letter appears n times. Even though this bijection is rather simple, it turns
out that properties on intransitive words become more transparent when we move to Wy(n). In
particular, exploring this connection we establish a certain convexity property on |D; ,(n)|, from
which Theorem 2.2 will then follow from standard arguments.

However, the convexity argument we just mentioned does not provide any direct information on
the value L(¢). Nevertheless, once again invoking the bijection with W;(n), we establish a procedure
to obtain a subset of D, ¢(n) from a large family Q of, in a very precise sense to be specified later,
“almost intransitive” dice. Each die in Q can be concatenated to a fixed die that is, again in a
precise sense, “highly intransitive” to generate a new intransitive die. This way, we are able to infer
that [Dy ¢(n)| > [Q].

To complete the proof of Theorem 2.3, it will remain to find a set Q of low intransitivity for
which log|Q| ~ nflog¢. The proof of the existence of such a set is probabilistic and based on our
second main ingredient, namely a Central Limit Theorem for random dice, which we discuss next.

2.2. Main results for random models of dice. When each D; is a random variable, we say that the
corresponding die D = (Dq, ..., D,,) is a random die. Whenever we say that the law of a die D is
LP | we mean that the entries D; are all i.i.d. random variables with law £P. We say that the dice
in a collection D = (DM, ... D®) are independent if the family of random variables {ngk)} is
mutually independent. We stress that for independent dice the laws £ := £P (1), o L0 = b @
need not coincide, but entries within the same die are i.i.d. random variables.

Our main goal is to determine whether a sequence of random dice may be intransitive when
they grow in size. Fix an integer ¢ > 3 and consider a sequence {D,,},, of collections D,, =
(DM, ... DW) of random independent dice. Each die D®*) = D®*)(m) depends on the index m of
the sequence {D;, }r,, but to lighten notation we mostly omit this dependence. We assume each die
D®) = DW)(m) has nj, = ni(m) < m faces, which may vary with m, and we set

fr = fr(m) = % so that D) has size nj, = fym, k=1,...,¢. (2.4)
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The assumption ny = ng(m) < m is made solely for convenience as in this case fx < 1 for every
k. Although there are no further relations imposed between the sizes ni and m, it is instructive to
think about m as essentially giving the size of the die with largest number of faces. As we already
mentioned before, we always assume that different entries of the same die D®) are independent
random variables with the same law £ = £P" which may now vary with m, and we write [,gf)
when we want to emphasize this dependence.

The main question we investigate in this second part is on how to estimate the probability of
intransitivity, namely

P(DW > D@ ..o DO » DI, (2.5)

as the number of faces of our dice go to infinity, which we measure by sending m — oco. The
intransitivity event in (2.5) is the intersection of D) DE+1) for 1 < k </, where we convention
for the rest of the paper that D(© = D® and DY = D) Such events are intimately connected
to the values of the random variables

ng Nk4+1
Nk = ZZ ]lD(k)>D(-k+1)’ kle,...,f (26)
i=1 j=1 ' J
and
ng MNk+1
Ek = Z Z ]lD(k):D(k+1), k= 1, e ,f. (27)
i=1 j=1 ' ’
From the inequality (2.1) we learn that D®) . DEFD) it and only if, the inequality
1 1
Ny > DI EEk
is satisfied, and therefore
1 1
P (D<1> > DO >D<1>) — P(Nk > Snumian — 5B, k=1, ,g), (2.8)

which will be at the core of our method to analyze (2.5), and shows the relevance of Ny and Fj.
One should view the Nj, as the relative strength of the die D*) against D**1)_ Observe that for
dice coming from a sequence {D,,},,, the random variables Ny = Ni(m) and E; = Ex(m) also
depend on m, and Ni, Niy1, By and Egyq are all pairwise strongly correlated.

We will analyze (2.8) in the limit m — oo via a Central Limit Theorem (CLT) for the vector
(N1,...,Ny). For this CLT some probabilities associated to the underlying laws of the dice are of
utmost importance. By

k E+1
pe = p(L®, £ED) = P (DI > DY) = E (1,00 00 (2.9)

we denote the probability that a given face of the k-th die beats a given face of the (k 4 1)-th die.
By

Qs = q(ﬁ(k),ﬁ(kJrl)) — P (ng) > D§k+1),D§k) = ngJrl)) (210)
we denote the probability that two given faces of the k-th die beat a given face of the (k + 1)-th
die. By

re = r(£® k) — p (DY“) > DD pk) 5 plkt 1)) (2.11)
we denote the probability that a given face of the k-th die beats two given faces of the (k 4 1)-th
die. Finally, also set

sp = s(CED L0 £y o P(Dg’“‘“ > pW > ngH)), (2.12)

which is the probability that a given face of D*~1) beats a given face of D) at the same time that
the latter beats a given face of D1 As we will see in a moment, these quantities will play a role
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in understanding the covariance between different dice. We use cyclic notation for these quantities,
so that pyy1 == p1, qes1 = q1 and so forth.
As said, our main tool to analyze the probability (2.5), and also to prove Theorem 2.3, is a CLT

for the correlated random variables N1, ..., Ny, so it is natural to introduce their normalized version
~ N — E(N
Ny = N — E(N). (2.13)
VvV Var (Nk)
Let
N oy 11/2
ok = 0k(Pk, Ak, Tk, SK) = [fkkarl (fr(ae — PE) + frgr(rr — Pk))} (2.14)
and )
V= fre—1frefrr1(sk — Pe-1Pk) - (2.15)
Ok—10k

A straightforward calculation (see Lemma 5.1) shows that, as m — oo,

E(Ny) = fifram’pr,
Var (N},) = oim?® +o(m?®), and (2.16)
Corr (Ng—1,Ng) = v +0(1).
We stress that the values o = o (m) and v = vx(m) depend explicitly on probabilities associated

to the laws L’gf_l), ng) and E%H). Moreover, they are O(1) as m — oo regardless of the regularity

features of these laws, such as whether they have finite moments or how their tails behave.

Since we are considering a sequence {D, },, of collections of independent dice, all the quantities
we just introduced depend on m, and when needed to stress such dependence, we write pp =
pr(m),or = ox(m), y = Yk(m) etc. Our main working assumptions are the following.

Assumption 2.4. Fiz ¢ > 3. We assume that the sequence {Dy, }r, is a collection of £ independent
random dice, each with number of faces ny, = frym asin (2.4), and satisfying the following conditions:

(i) For k=1,...,4, the relative sizes fi, = fr(m) satisfy
fr(m) = fr(oo) € (0,1], asm — oo.

(ii) For k = 1,...,¢, the rate of growth of the mean and variance of Ny, and covariance between
Ni_1 and N satisfy

Px(m) — pr(c0) € (0,1],
ox(m) — ox(o0) € (0,00),
Y(m) — k(o) € [-1,1],

as m — 0o.
When, for a given m, all the laws Egm), e Eém), are given by a law £ without mass points, the
values
1 1 d 1
= — =T, = — n S — —
Pk 9’ qk k 3 a k 6

are computed somewhat easily, see Lemma 5.2 below.

We insist that the values pi(m) and o, = ox(m) depend only on probabilities associated with
the underlying laws rather than on qualitative features of them. In particular, Assumption 2.4—
(i) is solely a non-degeneracy condition, which ensures that the number of faces of the dice are
all growing, with the same speed m but possibly different rates. With (2.9) in mind, condition
(ii) on py essentially says that the limiting laws do not reduce to a deterministic situation where
intransitivity does not occur by degeneration. Also, as we said earlier, under Assumption 2.4—(i)
the values oy, = o,(m) are bounded functions of m. Thus, with (2.16) in mind, the second condition
in (ii) says that the variance in the relative strength of consecutive dice is growing at true speed m3
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and not slower. The quantities v;(m) are correlation coefficients, so they are always bounded, and
the third convergence condition in (ii) can always be achieved with a replacement of the original
sequence of dice {D,, }, by a subsequence of it.

Theorem 2.5. Fiz { > 3 and for each m let D,, = (DW(m),..., DY (m)) be a collection of
random independent dice, for which {Dy,}n satisfies Assumption 2./, and let (N1(m),..., Ng(m))
be the corresponding variables from (2.13).

Then, as m — oo, the random vector (Ni(m), ..., Ny(m)) converges in distribution to a centered
Gaussian vector (X1, ..., Xy) whose covariance matriz is given by
1 () 0 oo 0 7i(00)
() 1 ys(e0) -0 0
0 Y3(00 1 0 0
SR 2.17)
0 0 0 e 1 ~e(00)
M) 0 0 - o) 1

where the coefficients yi(c0) are the ones in Assumption 2./—(ii).

Theorem 2.5 is an analogue for unconstrained dice of Sah and Sawhney (2024, Theorem 1.4)
which considers two uniform models of dice with constrained sum of faces.

As explained in (2.3) et seq., we will use Theorem 2.5 to construct a particular set Q consisting
of collections of dice which are almost intransitive but not necessarily intransitive, and exploring
such set we will be able to prove Theorem 2.3.

As a second application, we now discuss how Theorem 2.5 may be applied to show that a collection
of random dice is not intransitive, asymptotically almost surely, as m — oo.

In general, the very definition of p in (2.9) would say that

1 = P(ng) > D§k+1)) -|-]P’(D§k) < ngﬂ)) —l—P(ng) _ D§k+1))
= p(£®), LDy 4 (et £y 4 P(ng‘) _ D§k+1)) . (2.18)

In order for the die D® to be sufficiently stronger than the die D* D we would expect that
p(£®), £E+D) > p(£EHD £K)) and in such a case we would expect D®) > D+ with high
probability. Likewise, if p(£*+D), £H0)) < p(£®) £K*+1) then we would instead expect D*+1) >
D®) with high probability. Hence, intransitivity becomes a nontrivial question precisely when
p(L®), LEFD) ~ p(LEHD, £K)) asymptotically as m — oo, in which case the equality above
becomes

1 1 1
p(ﬁ(k+1)’£(k)) 4 §P(D§k) _ ngﬂ)) — pp + §P(D§k) _ D§k+1)) ~ 5
and our next result gives a rate of decay of such approximation under which we can use the CLT
to estimate the probability of intransitivity in the large-dice limit m — oo.

Theorem 2.6. Fiz { > 3 and for each m let D,,, = (DM (m), ..., DO (m)) be a collection of random
independent dice, for which {Dy,}n satisfies Assumption 2./, and let (X1,...,Xy) be a Gaussian
vector with covariance matriz (2.17). Suppose that

lim P(Dg’“(m) :D§k+l>(m)) =0 forkell (2.19)
holds for every sufficiently large m, and that the estimate

1 1
5 " Pr— §P(D§k) = ngﬂ)) =o(m™Y?), m — +o0, (2.20)



1218 L. Coelho, T. Franco, L. Lima, J. de Paula, J. Pimenta, G. Silva and D. Ungaretti

holds for k € []. Then, it holds
P(X; >0, j €[f]) < liminf P (D(1> 5. .p DO D(1)>

m—0o0
< limsup P (D(l) 5. p DO D<1>) <P(X;>0, €. (2.21)
m—0o0
In particular, when the Gaussian vector (Xi,...,Xy) is non-degenerate we have
Tim P (D<1> > DO D<1>) =P(X; >0, j€]). (2.22)

Remark 2.7. When working with no-tie collections of dice, condition (2.19) is immediate. Another
simple situation is when all the laws are the same £ = ... = £ since (2.18) implies

r 1 (k) _ R+ _ _
>~ P 2P<D1 =Dl )_o, k=1,....4,

so condition (2.20) holds. In order to evaluate the Gaussian probability in (2.22) we need to
understand better the covariance matrix ¥ in (2.17), see for instance Proposition 5.9. Applications
are given in Section 3.

Note that (2.19) says that there are no ties between different dice in the asymptotic limit. Simi-
larly as for N, the mean and variance of the Fj’s are given in terms of probabilities associated to
the underlying laws. For arbitrary underlying laws of the entries of the dice, they satisfy the rough
bound

E(Ey) = O(m?) and Var(Ej) = O(m?®) asm — oo, (2.23)
see Lemma 5.3 below. These quantities have the same order as the corresponding quantities for Ny
(compare (2.16) with (2.23)). Lemma 5.4 below shows that (2.19) implies

E(Ey) = o(m?), Var(Ey) =o(m?) asm — oo, fork=1,... /. (2.24)

Thus, condition (2.19) in Theorem 2.6 may also be interpreted as saying that whenever the Ej’s
grow slightly slower than Nj’s, either in their mean or in their variance, then the intransitive dice
problem can be bounded from above by the Gaussian probabilities (6.2) and (6.4).

Even though the covariance matrix (2.17) is structured, computing the probability on Equa-
tion (2.22) for general vy;(c0)’s explicitly is a challenge. Nevertheless, when pg, i, rr and si are
asymptotically the same as for i.i.d. continuous dice, we are able to show that this probability is
zero, obtaining the next result.

Theorem 2.8. Let {D,,}.m be a sequence of random independent dice satisfying the conditions of
Theorem 2.6. In addition, suppose that

1 1 1 1
pkﬁi, qk—>§, rk—>§ and sk—>6 as m — 0o, (2.25)

for everyk =1,...,£. Then
lim P(DWe D05 DM) = 0.

m—0o0

In words, under the assumptions of Theorem 2.8 above, the proportion of intransitive random
independent dice becomes negligible as the number of faces grows. In Section 3 we also give an
example of 3 dice with different laws for which such proportion converges to a value in (0, 1).

For i.i.d. dice with the same number of faces, Theorem 2.8 was obtained first by Hazta, Mossel,
Ross and Zheng (Hazta et al., 2020, Theorem 6). We decided to present it here as it is another
application of Theorem 2.5, and it applies to a larger setup.

Both Theorem 2.3 and Theorem 2.8 rely on Theorem 2.5, but on its own the proof of Theorem 2.5

is the most involved proof in this paper. We approach it via the moment method. The quantities
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Nk’s are correlated Bernoulli random variables, and to control their moments we rely on combina-
torial arguments. We expand such moments in powers of m, and relate each such coefficient to the
number of graphs with some particular properties. By a careful estimation of the number of such
graphs, we are then able to match the large m limit of such moments with the claimed Gaussian.

The proof of Theorem 2.6 is based on Theorem 2.5. We look at the probability of (D(l), - D(e))
forming an intransitive cycle, and with the help of Chebyshev’s inequality we condition on the event
of no ties, reducing the right-hand side of (2.8) to a probability that involves only the N’s plus an
additional term which is small in virtue of the variance control (2.24). The right-hand side then
naturally arises when taking the large m limit. In virtue of a particular structure of the coefficients
vk(00) in the covariance matrix (2.17), we are able to show that the probability on the right-hand
side of (2.22) vanishes, and Theorem 2.8 follows.

2.3. Organization of the remainder of the paper. The remainder of the paper is structured as follows.
In Section 3 we discuss examples of random dice, in particular when our core Assumption 2.4 and the
variance control (2.24) are satisfied, allowing to apply our main result. We also provide a sequence
of random independent dice that do not satisfy these conditions and for which intransitivity survives
in the limit. In Section 4 we discuss intransitivity in deterministic contexts, and in particular we
explore a connection between intransitive dice and combinatorics of words in order to construct
intransitive dice. We then turn to the context of random dice. In Section 5 we briefly discuss the
counting functions Ny and Ej from (2.6)—(2.7), which correspond to victories and ties, respectively,
and which play a central role in the connection between our CLT and intransitivity. In our CLT,
Gaussian vectors with a covariance matrix of a particular structure appear (see (2.17)), and in
Section 5 we also collect several properties of them in a form suitable for our needs. In Section 6,
we assume Theorem 2.5, which is our central limit theorem, and we use it to prove Theorems 2.6
and 2.8, which are tests of asymptotic intransitivity. Finally, in Section 7, we prove Theorem 2.5,
and in Section 8 we use several outputs obtained in previous sections to conclude the proof of
Theorem 2.3.

3. Examples

In this section we describe examples of random dice such that the probability of observing in-
transitivity is asymptotically null by applying the Theorem 2.8 and we also illustrate some cases of
asymptotically intransitive random dice.

3.1. Dice with same laws. We start by recalling that when all laws are the same, £ = ... = £0),
then condition (2.20) always holds, see Remark 2.7. The first example has been already commented
below Theorem 2.5: assuming that each die has the same number of faces, and those faces are
i.i.d. random variables with the same continuous (but not necessarily absolutely continuous) law
L, the probability that the random dice (D(l)7 e 7D(E)) are intransitive goes to zero as m — oc.
Theorem 2.8 straightforwardly extends this to a more general situation, as we explain in the next
paragraph.

If the law of any die is given by a same continuous law £, there will be no ties, so (2.19) holds
trivially. Moreover, px(m), ox(m) and ~x(m) do not depend on m and neither on k, hence it is
trivial to check Assumption 2.4-(ii). Assuming that the quantity of faces in the k-th die is given
by ni = fxm, where each f is a positive constant, we verify Assumption 2.4-(i). These conditions
together lead to the conclusion, by Theorem 2.8, that the sequence of dice constructed in this way has
asymptotically null probability of being intransitive. That is, under a continuous law, intransitivity
is not achievable regardless of the quantities of faces in each die, provided these quantities are
proportional to the scaling parameter m.
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Let us see now a discrete example. Assume that all ¢ dice have same law L,,, the law of a
geometric random variable of parameter p. Since

P (D (m) = D" V(m)) = S - piE = P

i=1 2-p

in order to ensure condition (2.19) on ties, it is necessary to impose that p = p(m) — 0 as m — co.
In this case, a long but elementary calculation yields

1-—p 1
= —_— _— —

Pi(m) = 5— ’ 5
1—p)? 1

q(m) = 2P N
3—3p+p 3
(1-p)2—-2p+p? 1

e e

) = e G =5+ ) 3
1—-p)3 1

su(m) = 2P L
(2-p)B—3p+p?) 6

Recalling the formulas (2.14) and (2.15) for oy, and -, respectively, the previous computations give

us that, as m — oo,

or(m) —

\/fkfk—i—l Jr + fr+1) € (0,00)

Jro—1fefre1
V=16 (fo—1 + SV Frfrrr (fe + fre1)

so all assumptions of Theorem 2.8 have been checked, hence the probability of observing a sequence
of intransitive dice is asymptotically null.

€ (—1,0), (see Proposition 5.6)

W(m) — 7(o0) = —

3.2. Dice with different laws. Another interesting application of Theorems 2.5, 2.6 and 2.8 is the
possibility of allowing different laws for each die. It is not straightforward to make a thorough
exploration of such possibility, since we have much freedom of choice. However, a setup that allows
for general results comes from the idea of building random dice from a known initial collection of
deterministic dice, as follows:

Definition 3.1. Given a deterministic set of dice A®*) with k € [(] and m faces each, define its
blow up sequence as the sequence of random dice B*¥)(n) with n faces and k € [¢] such that the
law L, is uniform over the faces of A%

An advantage of working with blow up sequences is that parameters pg, rg, qx, Si are constants
depending only on the original set of dice {A(k)}. Indeed, if the faces of die A®) are given by

Alk) = (agk), e ,a(k)) we have:

pr = P(B{" > B{*"") =m™2 {0, j);af" > VY,
a :P(B““) BV B > BIY) = m {2y > ol o > ol

— p(B® > BMY BW 5 gy 8 0 2): ) >a<’““),a§’“) Y| (3.1)
s = (B > b 5 plktl)y =m=% [{(i,5,2);a D > ol > aFHDY).

k+1)

For instance, the property A®) Al is equivalent to

pr = P(B" > By — P(Unit{ AR} > Unit{ A*TD}) > P(Unit{ A*TD} > Unif{A®)})
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and when there are no ties, this simplifies to
p = P(Unif{ A"} > Unif{A®D}) > 1/2.

The next proposition shows that starting from a deterministic set of intransitive dice leads to the
probability of intransitivity converging to 1 exponentially fast.

Proposition 3.2. Let A®) for k € [(] be a set of £ deterministic dice with m faces that is known
to be intransitive: A®) > AFTY for every k. Consider its blow up sequence (B®)(n) : k € [{]) as in
Definition 3.1. Then, there is a constant ¢ > 0, depending only on the set of dice A®), such that

]P’(B(l) > B@s... BO B(l)) = 1+o0(e™), asn — . (3.2)

Proof: The deterministic dice A®) | k ¢ [¢] form an intransitive cycle. This can be translated into
the following collection of inequalities:

Z 1> Z 1, forevery k € [{]. (3.3)
i i
al(-k>>a§-k+1) aik)<a‘§-k+l)
Let Nj; be the random variable that counts the number of appearances of face agk) at dice B%).

As discussed in Section 4, the quantity Nj; represents the weight of face agk) in die B®*). Hence,
we can write event B(*) > B:+1) a5 a function of Nii and Npqq 5

Z Nk,iNk+1,j > Z Nk,iNk—i-l,j y for every ke [5] (34)
ivj: i,j:
a£k>>a;k+1) agk)<a§-k+1)

It is clear that IVp; has a binomial distribution with parameters n and %, and by Hoeffding’s
inequality

P(‘Nk,i - %) > En) < e (3.5)

Define the event G := ﬂm{‘Nk,z‘ — %’ < en}. By union bound,
P(G°) = IP’(U{‘N;“ - %‘ > z-:n}) < Ume "
ki

Notice that on event G we have that
1 2 1 2
n2<% — 8) < Nk,iNk+1,j < n? <E + 6) . (36)
From (3.3) it is clear that

Z 1 — Z 1 > 1, foreveryk € [/].
i i
aF)>alt+D) a®) <alt+D

By continuity, one can choose € > 0 such that

1 2 1 2 1
<E - 6) ;] 1 - (E —i—e) ;] 1> oz > 0, forevery k € [(].
a(-k)>’ai-k+1> a<-k)<’ai-k+1)
3 7 3 J
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Apply the upper estimate of (3.6) for pairs i, j with agk) < ang) and the lower estimate for pairs
with agk) > aF Y, Then, on the event G we have
ZNkZNk-H,J < n2( +€> Zl < n2(——£> Zl < ZNk’Nk'H’J’
alk ><Z(k+1) L) ) W) Gk ) <k) Y )
7 j 2 J J
implying that on G we have B®) » B+1) for every k € [/]. O

As an application of above, take for instance the Effron’s dice, which are given by
A=1(0,0,4,4,4,4), B=(3,3,3,3,3,3)
C=(22226,6), D=(1,1,1,5,5,5),

as mentioned in the Introduction. In this case, the laws associated to each die would be:
1 2 2 1 1 1
= 8o+ =6 =4 = 0y + =4 d =—0+ =05.
La 300 T 504, Lp=9d3, Lc 302+ 30, an Lp 501+ 50

Of course, since the corresponding sequence of dice with the above laws is asymptotically intran-
sitive, it cannot fulfill the assumptions of Theorem 2.8. Note that there are no ties in Effron’s dice
example, so condition (2.19) is trivially satisfied. The assumptions of Theorem 2.8 are not satisfied
because pg > %, which tells us that the quantity of victories of a die against another die becomes
deterministic (in view of the law of large numbers) as the number of faces in each die increases.

The examples covered by Proposition 3.2 are in some way straightforward. For instance, if py > %
for every k € [¢] then we have asymptotic intransitivity with probability 1. If the starting collection
of dice {A®} is ‘more balanced’, then intransitivity is not as immediate.

Ezxample 3.3. Consider the collection of 3 six-sided dice:
A=(18,13,11,7,6,2), B = (17,15,10,8,4,3) and C = (16,14,12,9,5,1).

The choice of such a sequence was based on it having a ‘very symmetrical’ string representation

= ABCBCACABCBAACBBAC, see Section 4.1 for more details. Although the blow up
sequence has different laws for each dice, straighforward counting (using the representation as W,
for instance) shows that parameters py, ri, qx, sy do not depend on k and are given by

I
pk_27 qk_2167 k_2167 k_67
implying that o} = (%)1/ 2 and vy, = —1%. Finally, computing the determinant of matrix >, we

obtain det ¥ = % > 0 which implies asymptotic intransitivity with probability bounded away
from zero and one.

Notice that in Example 3.3 we are quite close to the coefficients p; = %, qr =T = %,sk =
which are obtained for iid continuous distributions (indeed, notice that ;7= = 0.32407 and ;&

=

Z

0.35185). A natural follow up question is if it is possible to find a starting collection of dice Alk
such that the above coefficients are achieved for the blow up sequence. We show that this is actually
impossible.

Proposition 3.4. Let (A®) : k € [0]) be a collection of m sided no-tie dice and py, Qx, T, Sk be the
coefficients of its blow up sequence. If pr = %, then qi + rp > % In particular, one of q or ry is
strictly greater than %

Proof: Fix k such that py = % The coefficient ry, is given by

rp = m=3. |{(Z,j, Z), ( ) > a(k'H) ( ) > a(k+1)}’
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Let us assume that (agk), e ,ani)) and (agkﬂ), e ,ag,’»fﬂ)), the faces of A®) and A®*Y  are both
in decreasing order, without loss of generality. Take this collection of 2m values and sort it in
decreasing order (using that we have no ties) to form a word W with length 2m made of two
letters, A if the face value comes from A®*) and B if the face value comes from A**Y . For instance,
if A®) = (6,4,3) and A**tD = (5,2,1) then W = ABAABB. For more details on these string
representations, see Section 4.1.

Let us define «; as the number of As before the i-th B (for W = ABAABB, we have a; =
1,09 = ag = 3). Then, by (3.1) and the hypotheses on py we have

—_ = = — « an = — ..

2 pk m2 k Clk m3 k
k=1 k=1

Moreover, if Uy, Us, Us are iid. uniform random variables on [m] then

. (k) (k+1)  (k+1)y\ _ (k) (k+1)
Ty = P(aUl > max{a, » Ay }) = IP)(aUl > amin{UQ,Ug})

and we can also interpret this probability in terms of positioning of As and Bs in W. Noticing that
P(min{Us, Us} = k) = %, it follows that

1 & 2m + 1 — 2 -
rkzﬁzm(m—k)—i-l)ak: Zak—ka;ak
k=1

m3
k=1 k=1

om+1 2 &
= o 2k
k=1

Hence,

2m+1 1 s 1 &,
= — Y (k- -— > k
a + T ——+ H( o) = — 2

2 1 1 & 5
=5 G o 2P’
k=1

Invoking once again the hypothesis over pi and the QM-AM inequality,
2
1 & s 1 (1 & 1
s 2 =) 2 <m 2k ‘O‘k>> T
k=1 k=1
and the result follows. O

As a final example, we notice that although we cannot recover the coefficients px = %, qr =T =

%,sk = % using blow up sequences, they are still able to provide examples with probability of an

intransitive cycle going to zero, when we have different laws.
Ezxample 3.5. Consider the collection of 3 six-sided dice:
A= (15,14,13,6,5,4), B = (18,17,16,3,2,1) and C = (12,11,10,9,8,7),

whose string representation is W = BBBAAACCCCCCAAABBB. Parameters pg, 'y, qi, Sg are
given by

b1 %, P2 % pszé
Oh—%, Q2:% Q3=%
rlzi, I‘QI% rgzi
51:%, so =0 S3Zi'
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For every k € {1,2,3} we have q; + ry = % + i, implying that o = (qx + rp — Qp%)l/2 = % and

also that v; = v3 = 0, while v = —1. Finally, matrix ¥ is given by

1 -1 0
S=1|-1 1 o,
0 0 1
and has zero as an eigenvalue, whose eigenspace is generated by (1,1,0). This means that
(X1, X9, X3) is supported on the plane generated by (0,0,1) and (1,—1,0), and this plane intersects
[0,00)% on the set {(0,0,2) : z > 0}. It follows that for this blow up sequence the probability of
intransitivity is asymptotically zero.

4. On deterministic intransitive dice

The main goal of this section is to prove Theorems 2.1 and 2.2. We keep using the notation
introduced in Section 2.1, but in this section every die considered is deterministic, that is, the
entries DEJ ) of the die DY) in a collection D = (D(l), el D(Z)) are always prescribed deterministic
numbers rather than nontrivial random variables.

As explained after Theorem 2.1, when investigating existence of no-tie intransitive dice, only
the relative ordering of the faces of the dice matters, but not their particular values. Thus, in this
section we also restrict to dice whose faces’ entries are positive integer numbers, and always pairwise
distinct.

4.1. A bijection between dice and words. We look at the set of dice labels A = {D(l), ... ,D(f)} as
an alphabet, and now explain how to map dice to words. Let W(nq,...,ny) be the set of strings
(or words) with ny + - -+ 4+ ny letters in the alphabet A, such that each letter D) appears exactly
ny times. There is a natural bijection’ D(ny, ..., ny) oy W(ni,...,ng): a collection of dice D is
mapped to the word W = W --- W, determined uniquely by the rule that the letter W; is equal
to D) if the number n — i + 1 appears in a face of the die D). This bijection for D(4,4,4) is
represented in Figure 4.1.

8 7 9
4 A 12 6 B 11 ) C 10
3 2 1
A |l 12 8 413
B 11 7|6 2
C 10| 9 ) 1

Wi|lA B ¢ ¢C A B B C A A B C

FIGURE 4.1. An example of a triple of dice D = (DM, D® DB)) =
(A,B,C) € D(4,4,4) and its representation as a 12-letter word 7(D) = W =
ABCCABBCAABC € W(4,4,4) in the alphabet A = {A, B,C}.

L The idea of translating the dice as strings was inspired by a video on the YouTube channel Polylog: “We designed
special dice using math, but there’s a catch”, available at https://youtu.be/-64UT8yikng.
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Recall that Dy (nq,...,ny) is the subset of D(ny,...,n,) that consists of intransitive words, and
denote by Wi (n1,...,ny) the corresponding image of Dy (ny,...,ny) by the bijection m. Given the
word representation W of a collection of dice D, it is also possible to compare which one of two
dice D™ and DY) in D is stronger: one sums how many letters D@ are to the right of every
letter DU). The result is how many possible victories DY) has over D™, and if this result is larger
than half the total number of combinations n;n;, then DWW > DO In particular, repeating this
process over consecutive letters in a given word W, it is possible to determine whether it belongs
to We(ni1, ..., ne).

To illustrate this process in the dice from Figure 4.1, introduce some auxiliary labels in the letters
A from W as

W = ABCCABBCAABC = A1BCCA3BBCA3A4BC. (4.1)
There are 4 B’s to the right of Ay, 3 B’s to the right of As, and 1 B to the right of each of Aj
and A4. Thus, the number of victories of the die A over B is 4+ 341+ 1 =9. By symmetry, the
number of victories of B over A is 16 — 9 = 7, and in this case A B.

Also, to compare which of two given dice D and DU of a collection D is better, it suffices to
know the sub-word in 7(D) obtained when we remove all letters different from D® and DU). For
instance, in the example just explained we could have compared the dice A and B by looking solely
at the sub-word ABABBAAB obtained when we remove the C’s from W in (4.1).

It is convenient to introduce the quantities

N;;(D) = Z 1, and its induced version on W, namely N; ;(W) = N, ;(7~*(W)). (4.2)
kika
p)>pl)
In general, for W € W(ny,...,ng) the numbers N; ;(W) satisfy
Nij(W) + Nji(W) = niny;, (4.3)

and the statement D@ > D) is equivalent to saying that
nin;

NZ’,]'(W) > 5

(4.4)

Furthermore, if W is any sub-word of W obtained without removing two given letters DU) and
D®) then

Nij(W) = Nij(W), (4.5)

which follows from the interpretation of N; ;(-) as the number of D®’s to the left of DU)’s in the
given letter.

4.2. Proof of Theorem 2.1. We now focus on dice with the same number of faces n, that is, we fix
¢ and look at Dy(n) and D; ¢(n) from (2.2), and their corresponding images

Wi(n) = m(De(n)) and W e(n) = m(Dse(n)).
The proof of Theorem 2.1 is based on the next result.

Proposition 4.1. The following properties hold.

(i) For € > 3, the sets W ¢(2) is empty.
(ii) The sets Wy 3(3) and W, 3(4) are both non-empty.
(iii) If the set Wi ¢(n) is non-empty, then both sets W, y(n+2) and Wy ¢11(n) are also non-empty.

Proof: To prove (i), let W € W;(2) for which DWW D@ > DO, In this case, we have that
Nj (W) + Ni;(W) =4 for any j # k,
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so in this case N > 3 whenever DWW D®) | We learned the following: any sub-word of W in two
different letters DY) and D®) for which D@ > D(*¥) has to be either one of the following two words

DO DGO pE pE) o pUpkE pl) pk) (4.6)

Thus, in W there is always a D) to the left of the two occurrences of D), there is always a D)

to the left of the two ocurrences of D®) etc. Consequently, there is always a D) to the left of the
two occurrences of D®)_ for any k > 1. Hence, the sub-word of W in DM and D® cannot be of
the form (4.6) with j = £ and k = 1, so the relation D > D) is not verified in W.

For (ii), examples of words in W, 3(3) and W, 3(4), and their corresponding dice, are displayed

in Figure 4.2. The proof of part (iii) is postponed to Section 4.3. O
) 9 4 8 6 7
A B C
1 3 2
6 9 8
) A 12 4 B 11 7 C 10
3 2 1

FIGURE 4.2. On top: a collection of three 3-sided dice corresponding to the word
W = ABCCABBCA € W, 3(3). On bottom: a collection of three 4-sided dice
corresponding to the word W = ABCBCCAABABC € W, 3(4)

With Proposition 4.1 at hand, we are ready to prove Theorem 2.1.

Proof of Theorem 2.1: From the definition of D, ¢(n) it immediately follows that Theorem 2.1 is
equivalent to the following two claims:
(1) For any ¢ > 3, the set D ¢(2) is empty.
(2) For any n > 3 and ¢ > 3, the set D, ¢(n) is non-empty.

The first one follows from the definition of the bijection = and Proposition 4.1—(i). In turn, claim
(2) follows by applying Proposition 4.1-(iii) inductively, having in mind that D, 3(3) and D; 4(3)
are both non-empty by Proposition 4.1—(ii). O

4.3. Proof of Proposition J.1—(iii). To prove Proposition 4.1 we need some additional notions and
lemmas. For what comes next, we recall that the numbers N; ;(W) were introduced in (4.2).

The dual word W* € W(n1,...,ny) is obtaining reversing the ordering of the letters in a given
word W € W(ny,...,ny); in the Example (4.1) the result is

W* = CBAACBBACCBA.

Lemma 4.2. Let W € Wy(n) and W* its dual word. Then
N;j(W) = N;;(W").
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Proof: The number N; j(W) counts the number of times the letter D) appears to the left of each
DU in W. The dual letter W* is obtained from W by reading the letters from W in the backwards
manner, interpretation from which the lemma follows. O

We say a collection of dice D € D(nq,...,ny), or its corresponding letter W = 7(D), is neutral
if any given die in D beats any other given die in D the same amount of times. In terms of N; ;(W)
this is equivalent to verifying that

Nij(W) = Nji(W). (4.7)
From this relation and (4.3) it follows that if W € Wjy(n) is neutral, then n must be even.

We also talk about the concatenation of two words W1 and Wy into a new word W = W;Wy;
in the example (4.1), for instance, we can write W = W; Wy with W; = ABCCA and Wy =
BBCAABC.

When dealing with concatenations, the involved words need not be in the same letters, neither
need they have the same size. However, when Wi € Wy(ny) and Wa € Wy(nsy), then obviously
W1Wjy € Wy(nq + ng) and the identity

NZ‘J‘(W1W2) = Ni,j(wl) +ning + N@j(Wg) (4.8)
holds true.
Lemma 4.3. Given any word W € Wy(n), the concatenation W = WW* € W,(2n) is neutral.

Proof: Applying Lemma 4.2 to (4.8), we obtain that N; j;(W) = N;;(W?*) for any i # j. The proof
is then completed using (4.7). O

We are ready to start applying recursive arguments that preserve intransitive words, starting
with adding a new letter to a word known to be transitive.

Lemma 4.4. If W, ¢(n) is non-empty, then W; ¢11(n) is non-empty.

Proof: From a given W € Wy(n), create a new word W € Wyi1(n) obtained by replacing every

occurrence of D by DO DD In the example W € Ws(4) from (4.1), the new word W € W;(4)
is

W = ABCDCDABBCDAABCD.
In virtue of (4.5), we see that the relation D®) DG for k= 1,...,n—1 is preserved when going

from a letter W € W, ¢(n) to the corresponding letter W € Wet1(n). Still by construction, the
relations

Nepr1i(W) > Npp1 (W) and Nei(W) = Nepp1(W)
are of straightforward verification, since each letter D) appears immediately to the right of a letter
D® in W. When W € Ws ¢(n), the inequality above shows that DO » DU+ iy W, and the
equality above shows that the relation DWW DM in W transfers to the relation D¢+ » D) in
W. O

Adding new faces whilst preserving intransitivity is a little bit more involved, and will be based
on the next two lemmas.

Lemma 4.5. Fix k > 1, and suppose that I € Wy(2k) is a neutral word. Let W € Wy(n). Then
W € W, o(n) if, and only if, IW € W, ¢(n + 2k).

Proof: From (4.8) we learn that for any i # j,
N;j(IW) = N, ;(I)+ 2kn+ N; j;(W).
Using the symmetry (4.7) for the neutral word I, we obtain
Nkt (TW) = N1 n(IW) = Nigr1(W) = Ny o (W), k=1,....0—1.
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The result then follows from (4.4). O
Lemma 4.6. If W, ¢(n) is non-empty, then W ¢(n + 2) is non-empty.
Proof: By Lemma 4.3, the word I = SS* € W(2) constructed from the choice
S — pWp®...p®

is neutral. The result now follows from Lemma 4.5. g

We finally complete the proof of Proposition 4.1.
Proof of Proposition /J.1-(iii): Proposition 4.1—(iii) is now simply a combination of Lemmas 4.4
and 4.6. O
4.4. On the number of intransitive words. The proof of Theorem 2.2 is now a consequence of some
of the results already established.
Proof of Theorem 2.2: For given integers ni,ng, let W; € W, ¢(n;), j = 1,2, so that by (4.4),

32
) A
2
where we recall that Ny 1 = Ny by convention. Using these inequalities and (4.8), it follows that
W1Wjy € Wy(ng + ng) satisfies

Nk7k+1(Wj) > yonesky

(n1 + 712)2
2
Using again (4.4) we conclude that Wi Wy € W, ¢(n1 + n2). Hence,

(Wee(n1 +n2)| = [Wee(n1)| [We e(n2)],
so the sequence (log|W; ¢(n)|)n is superadditive, and thus by Fekete’s Lemma,

1
li sup 2, A1 ’WD’Z(n”
n

n—00 n n

Nigr1(W1W2) > s k=1,...,L

o B = 10

for some constant L(¢) > 0. Since W, y(n) = m(Dy ¢(n)) and 7 is a bijection, the result follows. [

4.5. Some numerical aspects on the number of intransitive words. Through a numerical study, we
are able to estimate the number L(3) from Theorem 2.2 as follows.

A simple algorithm computes |D; 3(n)| in a straightforward way: we iterate through every word
in the set Ws(n) and check whether each word is intransitive, a task that can be accomplished in
©(n) operations. A drawback of this approach is that the number of words that need checking
grows exponentially with respect to n. In fact, by Stirling’s approximation, we have that |Ds(n)| =
©(27"/n), resulting in a total time complexity of ©(27"). We optimize this algorithm by partitioning
the set Ws(n) into words with the same “prefixes” (that is, the same sequence of letters for the first
n positions in the word). We then avoid prefixes which are already known to not yield intransitive
words, thus performing early exits while checking for intransitivity. The algorithm was implemented
in C++ and executed on the Euler cluster maintained by the Center for Mathematical Sciences
Applied to Industry (CeMEAI). Using this method, we were able to compute |D, 3(n)| for n < 11
(see Table 4.1).

The algorithm just described yields exact values of |D, 3(n)|, producing the values shown in
Table 4.1. However, its performance is very slow in n, and even computing |D; 3(n)| for, say,
n = 13 already becomes out of reach. With this issue in mind, we also performed a stochastic
simulation to estimate |D, 3(n)|/|D3(n)| for a sample of values of n up to 1000, an arbitrary cut
where fluctuations in the estimation should still be controlled. We sample uniformly from D3(n),
and then estimate AL3(n) = —log(|Dy 3(n)|/|D3(n))|/n. The results are displayed in Figure 4.3,
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n Ds 3(n)] Ds(n)] D ,3(n)/D3(n)]

3 15 1680 0.008928...

4 39 34650 0.001125...

5 5196 756 756 0.006 866 . . .

6 32115 17153136 0.001872...

7 2093 199 399 072 960 0.005245 . ..

8 19618 353 9465511770 0.002072...

9 960 165 789 227873431 500 0.004213. ..

10 11272949151 5550 996 791 340 0.002030. ..

11 479538890271 136 526 995 463 040 0.003512...

50 | (1.47£0.01) x 10 | 2.030807...x 109 | (7.23 +£0.05) x 1074
100 | (1.4540.01) x 10137 | 3.765234... x 10140 | (3.87 £0.03) x 1074
500 | (2.1540.03) x 1079 | 2.649108... x 1072 | (8.1£0.1) x 107°
1000 | (2.6 £0.1) x 10M2% | 6.368665... x 10127 | (4.1+£0.2) x 107°

TABLE 4.1. Exact values of |D; 3(n)|, |D3(n)| and |Ds 3(n)|/|Ds(n)| for 3 <n < 11,
along with estimated values obtained by simulation for n = 50, 100, 500 and 1000.
In the values in the table, the ratios |D, 3(n)|/|D3(n)| are lower for even n. The
decrease in ratios for even n may be due to neutral strings only being possible for
even n, leading to fewer intransitive strings proportionally.

showing good agreement with the values computed in Table 4.1. Observe how the values seem to
tend to 0.

Since limy, ALz(n) = 3log3 — L(3), one would expect that L(3) = 3log3, so that the fraction
|Dy 3(n)|/|P3(n)| should decay sub-exponentially with n. In fact, in the next section we prove that
L(¢) = tlog¥, for every £ > 3.

Compare it with (2.3). All the algorithms and data presented here are publicly available in a
GitHub? repository.

5. Some generalities on the counting functions and Gaussian vectors

The goal here is to prove Theorem 2.5. In this section D,,, = (D(l), cees D(E)) will always denote a
collection of ¢ > 3 independent random dice, where each face of D = D(® (m) has law £ = [Z,(fl),
and such that the sequence {D,, },, satisfies Assumption 2.4.

5.1. Properties of the counting functions. Recall the counting variables N;, their normalized versions
]\7]-, and E;, which were defined in (2.6), (2.13) and (2.7), respectively, and the quantities pg, qi, I
and sy, which depend only on the collection of laws £, ..., £®) were introduced in (2.9)—(2.12).
Note that qi and ri are not necessarily equal because each die has its law. As said before, these
quantities also depend on m but we will not write down this dependence explicitly.

The next lemma establishes (2.16).

Zhttps://github.com /NonTransitiveDices/NonTransitiveDices.git
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100 + . -Simulated Values
* Exact Values

ALs(n) N
1071 | -

1072 {

109 101 102 103
n

FIGURE 4.3. Plot of AL3(n) for various values of n on a log-log scale. The blue
data points were calculated using Table 4.1, and the red data points were generated
through a stochastic simulation. Note the linear trend of the plot in this case.

Lemma 5.1. We have
EN, = ngng41pk
Var (Ni) = ngngs1 [ne(ar — PR) + nis1(ts — PR) + Pr +Pr — Qi — k),  and
Cov (Ng—1, Ni) = ng—1mnp11 (S — Pr—1Pk) -
Consequently, under Assumption 2./ we have that as m — oo,
ENj, = fi(00) fer1(00)pr(o0)m? + o(m?),
Var (Ng) = op(00)’m? + O(m?)
Corr (Ni—1, Ng) = x(c0) + O(1/m).
Proof: The calculation of EN, is immediate from the definition. For the variance, we begin noticing

that

NnE Nk4+1 N Nk+1

B[N = >3 3 SRt > Dty n ol > D).

i1=1j1=112=1 jo=1

The probability of such intersections is always in {pi7 Pk, Tk, dr }, depending on whether indices i1
and i or j; and jo coincide. Decomposing into all possibilities, we have

ENZ = pi+ > m+ > art > Pk

iz;ﬁil 7,2211 jg:jl i.zzil
Jo#I1 JeFj1 ipFi1 J2=J1

= ng (g — D)nggr (g — 1)Pg + i1 (g — 1)1y
+ ng(ng — D)ngr1de + nkng 1Pk
Hence, the variance of Ny is given by
Var (N) = E [N?] —E[N]* = E[N?] — (ngng+1pk)?
= nynyi1 [ng(ar — P) + 1 (Tk — PR) + Pj + Pr — Qk — Tk
The calculation of Cov (Nj_1, Nj) is similar, and the asymptotic expressions follow immediately. [

A case of particular interest is when all the underlying laws are the same, and given by a contin-
uous distribution.
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Lemma 5.2. Assume that D = (D(l), . ,D(e)) is a collection of dice for which LV = ... = £©)
with LY being a law with no mass points. Then
1 1 1
Pk:§7 kagzrkz and Skzé
for every k. In particular, if ny = --- = ny = n, then
2 3 3
E [Ny = %, Var (Ng) = % <1 + 21n> ,  Cov (Ng_1,N) = —% and v = —%.

Proof: Let X1, X, X3 be three independent random variables with distribution £(!). Because £1)
has no mass points, we have
P(X1 = X3) =P(X2 = X3) =P(X3 = X;) =0, (5.1)

which we use extensively in what follows.
Because X and Y have the same distribution, we obtain
1 1

Pr = P(Xl > Xg) = P(XQ > Xl) = 5 (P(Xl > XQ) +]P)(XQ > Xl)) = 5

In a similar spirit,
qr = ]P)(XQ > X17X3 > Xl) = P(Xl > XQ,Xg > Xg) = P(Xl > Xg,XQ > Xg).

Summing up and using (5.1) we obtain the claimed value q; = 1/3. The values of ry and s are
computed in a similar manner, and the claimed values of the mean, variance, covariance and ; are
then a consequence of Lemma 5.1 and (2.14)—(2.15). O

The quantities Fj, from (2.7) admit a result similar to Lemma 5.1. In order to state and prove
it, we need to introduce certain quantities analogous to pg, q.,rg,Sg. We introduce

pr = P (DY“) - D§’“+”) —E (ILD(k):D(Hl)) (5.2)
1 1

which is the that probability a given face of the k-th die coincide with a given face of the (k+ 1)-th
die;

it = P (0 = D DY - ) 5

which is the probability that two given faces of the k-th die coincide with a given face of the (k+1)-th
die;

rp = P (D = D", P = DY) (5.4)

which is the probability that two given faces of the (k + 1)-th die coincide with a given face of the

k-th die; and
si = P(D{) = p{ = p+h), (5.5)
which is the probability that three given faces, one from each of the dice D* =1 D®) and Dk+1)

coincide.
The next result is the analogue of Lemma 5.1 for the variables Ey’s.

Lemma 5.3. The random variables Ey, k= 1,...,¢, satisfy
E (Ey) = ngng1Pg (5.6)
Var (By) = mgngg [ne(de — (Pr)?) + e (v — (9)%) + (p)° +pe —ai — 1] (5.7)
In particular, the estimates (2.23) hold true.

Proof: The proof of (5.6)—(5.7) is done following the same steps used in the proof of Lemma 5.1,
we skip the details. The estimates (2.23) then follow, having in mind (2.4) and the fact that each
Py, 4q; T ,S; is a probability, and thus bounded as functions of m. O



1232 L. Coelho, T. Franco, L. Lima, J. de Paula, J. Pimenta, G. Silva and D. Ungaretti

Using the previous result, we are able to compare (2.19) with (2.23).
Lemma 5.4. If condition (2.19) holds, then for every k =1,...,¢, it is valid
E(Ey) = o(m?) and Var(Ey) =o(m?®) as m — oo.

Proof: Condition (2.19) is the same as saying that p;- — 0 for every k. Thus, the claim on E(E})
is immediate from (5.6). From (5.7) and the fact that p,,q; and r;; remain bounded as m — oo,
we see that

Var (By) = m® fi(00) fur1(00) [fu(00)(ak — (Pk)?) + frsr(00)(ri — (Pk)?)] + O(m?).
2.1

A comparison of (5.2) and (5.3) shows that 0 < max{q; ,r; } < pj, so that (2.19) implies also that
q,,r; — 0 and the claim on Var (E}) follows. O

Next, we turn our attention to the structure of the covariance matrix (2.17). It turns out that in
the case of particular interest to our problem, the coefficients 7;(c0) have a special structure that
we now compute.

Proposition 5.5. Let {D,,}m be a sequence satisfying (2.25). Then the coefficients (yi(c0)) and
(fr(00)) from Assumption 2./ are related by

fk 1(00) 1 (00) fr+1(c0)

) A T (30 + Ao o) T (T (9] T T ()
fork=1,...,¢.
Proof: These are simple calculations using (2.15). O

5.2. Gaussian vectors associated to the structured covariance matriz. Under the condition (2.25),
Proposition 5.5 ensures that the nontrivial entries 7x(0c0) of the covariance matrix (2.17) have a
particular structure, which ultimately yields that the probability in the right-hand side of (2.21)
vanishes, and proving this last claim is the main goal of this subsection.

To avoid cumbersome notation, for the calculations that come next we denote

fk: = fk<OO), k:17"'7£7 ff+1 = fl(OO)
Thanks to Proposition 5.5,

) = — fr—1Fxfr+1 (5.8)
V1T (i1 + 51/ Fefrrr (Fe + Fer)

and now we study the covariance matrix ¥ from (2.17) with coefficients given as in (5.8). We start
by collecting some properties of these v (00)’s.

Yk (00

Proposition 5.6. The coefficients v, = yx(00), k =1,..., 4, in (5.8) satisfy the following proper-
ties.
. fr—1 frt1
(V% fi—1 + & i+ foar
(11) v € (—1,0) for every k.
(iii) As functions of the f;’s, the coefficients vy = Y (f1, . .., fe) are scale-invariant: for every k € [/]
and r > 0 we have

Ve (rf1y 7)) = (F1s - -5 Fe)-
(iv) Theve = (=D I s

(v) [T vl < 2L, with equality being valid if, and only if, f1 = --- = .
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Proof: Ttems (i), (iii) and (iv) are immediate from (5.8). It is obvious that 7 < 0, so to prove (i)
it suffices to show that ’yz < 1 which, in turn, by (i) is equivalent to the inequality

fr1fie1r < (o1 + &) (Fk + fes1),  thatis, 0 < fr_1fk -+ + frfes1.

Since fr > 0 for every k, part (ii) follows. Finally, for item (v) we apply the inequality between
arithmetic and geometric means to obtain

% >/ fifirr for every k € [0,

Multiplying all inequalities above, the result follows using item (7v). O

With the aforementioned properties of v = yi(oc0) from (5.8) at hand, we now need to collect
some important information on the associated covariance matrix ¥ from (2.17). From a linear
algebra perspective, this is an example of a periodic Jacobi matrix (see for instance van Moerbeke,
19765 Molinari, 2008; Ferguson, 1980). However, we could not explore these interpretations for the
results needed later. Instead, in our case, we use the additional structure (5.8) in a fundamental
way to obtain the next results.

Lemma 5.7. Let ¥ be as in (2.17) with coefficients vy, = yi(00) as in (5.8). Then

l
detY = 14+2(=1D) 1y ...y + Z (=™ Z V2.2 (5.9)
m=1  i1<ia<-<im:
1; nmon-consecutive

where in the sum above, the indices 1 and £ are considered as consecutive.

Proof: We start from the expression of det ¥ as a sum over all permutations o € Sy, the symmetric

group of degree ¢,
detd¥ = Z sgno - H Vi (i) -
oES, i€[/]
To prove (5.9) we will now show that many terms do not contribute to the sum.

From the explicit form of ¥, we can see that the permutations o such that o (i) ¢ {i — 1,4, + 1}
for some ¢ have ¥;;(;) = 0, recalling that we consider indices modulo £.

For the remaining terms, consider the cyclic decomposition of o = 71 - - - 7,,, where 7; are disjoint
cycles. Using the disjointness, we can compute the product of 3;,(;) by evaluating it for each cycle.

The contribution of cycles of order 1 is always 1, since when 7 = (i) we have that ;. ;) = Xi; = 1.

The contribution of a cycle of order 2, say 7 = (i j), is non-zero if, and only if, i and j are
consecutive. If ¢ = j — 1 then ¥;_1 ;3,1 = fyjz.

By a similar reasoning, for a cycle 7 = (i1 ig - - i,) of order o > 3 to have a non-zero contribution
one must have o = ¢. Indeed, we have iy € {i; — 1,41 + 1}. If iy = 43 + 1, since all indices must be
consecutive we have ¢; = i;_1 + 1 for every j. After i, the cycle returns to 71, implying that it has
length ¢. The case i9 = i; — 1 is analogous.

Hence, apart from cycles of order 1 and cycles of the form (i ¢+ 1), the only cycles whose product
is non-zero are (12 --- ) and (1 £ £ —1 --- 2). Both have the same product:

H Yiitl = H Yi -

€[] i€[(]
Finally, if o is a permutation different from the identity and the two cycles of order ¢, in order for
its product to be non-zero one must have a cyclic decomposition o = 71 ... 7 with every 7; being
a cycle of order 1 or 2. As cycles of order 1 contribute with 1 to the product, we can focus on the
cycles of order 2. Suppose there are m cycles of order 2 and reorder if necessary so that they are
given by 7i,..., 7, with 7; = (i; — 1 i;) and i1 < iy < -+ < iy,. The formula in (5.9) follows, since
the 7; are non-consecutive by construction. Il
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Using Lemma 5.7 we are able to verify that det X is always zero.

Lemma 5.8. Let ¥ be as in (2.17) with coefficients vy, = v, (00) as in (5.8). Then det ¥ = 0.

Proof: We have to prove that the right-hand side of (5.9) is zero. We will replace the expressions for
Yk = Yk(00) given by Proposition 5.6—(%), (iv) and verify that the right-hand side of (5.9) vanishes.
In order to make the computation more streamlined, it is convenient to reinterpret it as an estimate
of probabilities, as we describe below.

Let us define a = fkf_’fljrl 7 € (0,1), which satisfies 1 — ag11 = fkf'i;;cl—{—l' Consider a collection
(Uj : j € [4]) of i.i.d. uniform random variables in (0,1) and set
Ay = {U < ap}. (5.10)

The collection (A : k € [¢]) consists of mutually independent events such that P(Ax) = ag. Defining
By == Ay N Aj,, it holds that

P(By) = ap(l —agy1) = 2. (5.11)
Let us compute the probability of the event Uy By, in two different ways. By the inclusion-exclusion
principle, we have

V4 V4
P(UBy) = > ()™ 'Y P(B,N---NB;,) = Y (-1)™'> P(B,N...NB;,)
m=1 11 <t2<-<im m=1 11 <t <-<im
i; non-consecutive

y4
= D DY A (5.12)

m=1 C1<i2<...<im
15 non-consecutive

where the second equality is due to By N Bry1 = (Ag N Af ) N (Aks1 NASL,) = F, and the last
equality follows from (5.11) and independence. On the other hand, from the identity

NB; = (NMrepgAr) U (Nrepg Ak)
we compute
P(UB;) = 1 -P(NB;) = 1—-P(NAj) — P(NAg)
= l—ara— (1—ar)-(1—a)

fr ¢
=1-2||+——=1-2(-1 k- 5.13
H fr 4 Frr1 =1 H7 (5.13)
Equating (5.12) and (5.13) the result follows. O

Lemma 5.8 ensures that zero is an eigenvalue of 3, and we now collect some info about the
associated eigenspace.

Proposition 5.9. Let ¥ be as in (2.17) with coefficients v = vi(00) as in (5.8). Then 0 is an
eigenvalue of 3, its eigenspace has dimension 1 and is generated by a vector x € (0, 00)".

Proof: Let x = (x1,...,x¢) be a non-zero vector satisfying ¥ = 0. Then, for every k € [¢] we have

VeTk-1 + Tk + Yer1Zk41 = 0. (L)

It is possible to solve the system of equations above explicitly, but the formulas obtained this way

are cumbersome. Instead, we show that if some coordinate x; is positive then x4 is positive as

well. Since we can always choose the sign of one entry of x, by the cyclic symmetry of the problem

we then conclude that there is x € (0, oo)e with Yo = 0, as wanted. Therefore, assume without loss
of generality that xy_; > 0. From (L1) — v1(L¢), we obtain

—nyewe—1 + (1= 1)1 +y2m2 = 0.
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Defining Py := 1 and Py := 1 — 42, the equation above becomes
—Y1Yexe—1 + Prxy +v2FPoxre = 0. (LY)
Equation (L)) relates zy_1 to x1 and x9. By successive applications of the same reasoning we can
relate xy_1 to xp and xy4q for any k. Indeed, suppose that it holds
(=1)Fy1 .o ykveme—t + Pexk + Vi1 Pe—12p41 = 0, (L)
for some already defined Py_; and Pj. Then, from Py(Ljy1) — Ye4+1(L},), we obtain
(Pevks12k + Prtrgr + PreviroTrso)
— (Y1 (D)1 veYeme—1 + Vi1 Prore + Vo Peo1%k41)
= (1) oveveme— + (Pe — Yoy Poe1) Tt + Yer2 Peige = 0.
Defining Py11 = Py — fngPk_l for k < ¢ — 2, we conclude that (Lj_ ;) also holds. Since we know
that (L)) holds, it follows by induction that (Lj_,) holds, implying that
0 = (=11 ..oyemo—1 + Proyao—1 + veProawe,
that is,
YeProaze = (=1 y1...7v — Pro1)zer -

To finish the proof, we need to control the sign of the coefficients appearing above. Once again, the
strategy of expressing relevant quantities using the independent events A plays a role.

Lemma 5.10. Define
Py=1, Pii=1-7, Py=Pe1— %P2 2<k<0-1,
and
Pg = 2(—1)£’yl e
Then
1l =P >P >P > - >P_1>P =217 >0. (5.14)

Proof: Recall Ay, as defined in (5.10) and By, = Ay N Af, +1- We simply notice that the sequence Py
in the statement can be alternatively described by the equation

k
P = 1—]P’(UB]~), k<01 (5.15)
j=1
Indeed, it is straightforward to check (5.15) for k = 0,1. Now, suppose that (5.15) holds for k£ — 1.
Then

k k—1 k—1
1 IP’(le Bj) = 1- P(]Ul B;) —B(By) +P(Bi0 | B;).

j=1
Since By N Bi_1 = J, the intersection above is given by
k—1 k—2 k—2
P(Bk nU Bj) - IP’(Bk n Y Bj) - IP(Bk)IP(U Bj) = 21— Ps),
j=1 j=1

where in the second identity we used that By = Ax N Af_ | and Uj<p1B; = Uj<gp2(A; N A§+1) are
mutually independent, because the A;’s are. Putting together the equations above, we obtain

K
1—P<UBJ) = P =%+ 71— Pa) = P — ;P = B,
j=1
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completing the induction step. The inequalities in (5.14) are now evident from the fact that
the sequence of events U;?:lBj is increasing in k and that we already know P, = P(NBf) =

2(—1)y1 ...y > 0, see (5.13). O
With Lemma 5.10, we can finish the proof by noticing that
1
YePy_o < 0 and (—1)4’)/1 v — Py = §Pg —-P_1 <0,

which imply that x,_; and x, have the same sign. The reasoning above actually shows that any
eigenvector of zero with some positive entry is in (0, 00)¢. Finally, we argue that the eigenspace of
zero has dimension 1. The Spectral Theorem ensures that 3 has an orthonormal basis of eigen-
vectors. Now, suppose that vy, vs are two orthogonal eigenvectors of zero. Replacing v; by —v; if
needed, we can assume v; € (0, o0)! for j = 1,2. But then their inner product is positive, leading
to a contradiction. 0

The final result of this section is a consequence of the previous proposition, and it is the essential
outcome of this section which will be used later.

Theorem 5.11. For ¢ > 3, suppose that X = (Xy,...,Xy) is a centered Gaussian vector with
covariance matrix ¥ as in (2.17), whose coefficients v = vyi(o0) are of the form (5.8). Then
P(X;>0,j=1,...,0)=0.

Proof: Recall that the support of a Gaussian vector Z is given by E(Z) + Ker(Cov (Z))*. Thus,
in our case the support of X is Ker(X)*, and by Proposition 5.9, Ker(X) is spanned by a vector
v = (v1,...,v7) with v; > 0 for every j. If y = (y1,...,ye) is such that y; > 0 for every j, then we
must have (y,v) > 0, so y ¢ Ker(X)+. Thus,

supp(X)ﬂ{yERd:yj >0,j=1,...,0} = &,
and the result follows. O

6. Proofs of Theorems 2.6 and 2.8

Theorem 2.5 will be proved in the next section. In this section we assume its validity in order to
prove Theorems 2.6 and 2.8.

Proof of Theorem 2.6: We will prove the following two properties

(1) If condition (2.19) holds true, and in addition there is a function (m) with lim,,—. 7(m) = +o0,

for which
1 Lo k) (k+1) 1
——pr— =P(Dy”" =D > —, k=1,... 1
9 Pk 2 ( 1 1 ) = m1/2r(m) ’ s 7& (6 )
then
lim sup P (D(l) > DO >D<1>> <P(X;>05=1,...,0). (6.2)
m—r0o0
(2) If condition (2.19) holds true, and in addition there is a function r(m) with lim,, . 7(m) = +o0,
for which
1 Lo (k) (k+1) 1
- —=-P(D;”" =D < — =1,... .
2 Pk 2 ( 1 1 ) = ml/gr(m) ) k ) 767 (6 3)
then
liminf P(DW ..o DO DWY > P(X;>0,j=1,...,0). (6.4)

m—r0o0
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When we combine (6.1) and (6.3), we obtain that condition (2.20) holds true, and then a combi-
nation of (6.2) and (6.4) yield (2.21).

Recall that the mean and variance of the N.’s were computed in Lemma 5.1, the quantities
fx = fr(m) and pg = pr(m) are as in (2.4) and (2.9), and for k =1,...,¢ denote

1
32

v = vp(m) = Var (Np)/? = o4(c0)(1+0(1)), m — oo,

so that N from (2.13) reads as

~ N — m?2
N, = N mfkfk—i-lpk’ k=1.....10

m3/ 2y,

In an analogous way, and with Lemma 5.3 in mind, introduce the normalized version Ek of Ej, from
(2.7), namely

~ by —E(E)
Ep = W’ k=1,...,¢,
with )
v = vk (m) = o Var (B = o(1), (6.5)

where the last identity is valid thanks to Lemma 5.4. Finally, introduce the events

Ay = {Nk>w<1_pk> lEk}

m3/2v, \ 2 2m3/ 2y,
S mY2fifin (1 1 Vg &
= AN > ke (2 Sps) — S L
{ 3 " <2 Pk 2pk> Sup

These notations were introduced so that the identity (2.8) writes simply as
14
P(DWp...> DO D) = P(A), where A = (] 4.
k=1

If we were to set Ek = 0, then the probability P(A) would be already suited for a direct application
of Theorem 2.5. However, in the general case that we are considering here, we need to estimate the
possible contributions from the Ej’s in a more careful manner.

To that end, let us fix € > 0 and consider the events

_ Y4
/Ui ~
By (e) = {qujklEk\ > 5}, k=1,...,¢, B(e):= U By(e),
k=1

- ¢
Ci(e) == Bg(e)¢ = {;ZJEM Ss}, kE=1,...,¢, C(e) = ka(s) = B(e)°,
k=1

and write
P(A) = P(ANB(e))+P(ANC(e)). (6.6)
Given any € > 0, a simple union bound combined with Chebyshev’s inequality gives
1 & (vr)2
P(ANB(e)) < P(B(e)) < — LA I .
(AnBe) < 206D < 13- () (6.7

Thanks to (6.5), we thus conclude that

m— 00

P(ANB()) — 0, for any ¢ > 0 fixed. (6.8)
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To handle the second term in the right-hand side of (6.6), for t € R we introduce yet another event
Dy(t), namely

._ fk;fk+1m1/ 1 _
Dy(t) = {N > ” 5~ Pk~ 5P; L k=1,. ﬂDk
From the definition of Ay, Di(¢) and C(g), we obtain that
ApNCr(e) C Di(e)NCi(e), k=1,...,¢. (6.9)

We now estimate the probability of the events on the right-hand side above. Conditioning, we
compute

P(D(e)NC(e)) = P(D(e) | C(e))P(C(e)) = P(D(e)) — P(D(e) | C(e))P(C(e) ),
and using that C(e)¢ = B(e) and (6.7), we obtain
P(D(e)NC(e)) = P(D(e))+o(1), asm — oo, for any e > 0 fixed.
.6

Finally, a combination of (6.6), (6.8), the inclusion (6.9) and this last estimate, we obtain that for
any € > 0 fixed,
P(A) < P(D(e)) +o(1), asm — oo.

Thus,
limsupP(A) < limsupP(D(e)), for any ¢ > 0.

mM—r00 m—00

But from condition (6.1) and Theorem 2.5, for any ¢ > 0, the inequality

limsupP(D(e)) < limrlsupIE”<]\~f/r€ > _ Jufi

m—00 m—00 Uk’l“(m)

< P(Xp>—e k=1,...,0)

holds true, and the lim sup estimate follows. The liminf estimate is derived by a similar reasoning,
since for every ¢ > 0 it holds

P(A) > P(ANC(e)) > P(D(—e)NC(e)) =P(D(—¢)) + o(1), asm — occ.

Hence, for every € > 0 we have

e, k:l,...,€>

Jrfe1

liminf P(A) > liminf P(D(—¢)) > lim ianP’(]v > (m)
vgr(m

m—o0 m— 00 m—0o0

te, k:zl,...,€>

2P(Xk >e k= 1,...,@),
using condition (6.3). Taking € | 0, the result follows. O
The proof of Theorem 2.8 is now a simple consequence of a combination of our results.

Proof of Theorem 2.5: Under the conditions of Theorem 2.8, we apply Theorem 5.11 to conclude
that the right-hand side of (6.2) vanishes, and the proof is complete. ]

7. Proof of Theorem 2.5

We now move to the proof of the last standing Theorem 2.5. So during this section, {D,,}m
is a collection of ¢ independent random dice, each with number of faces ny = fym satisfying As-
sumption 2.4. Recall also that the random variables Ni(m),..., Ny(m) were introduced in (2.6)
and (2.13), they depend on the index m of the sequence but we keep omitting this dependence
and write Ny = ka(m) Likewise, the associated quantities py = pr(m),qr = qr(m),ry =
rp(m),sy = sg(m),or = ox(m), v = w(m), k = 1,...,¢, were all defined by (2.9)-(2.15); we
also omit their dependence on m, and recall that they are instrumental in computing the leading
terms in E(Ny), Var (Ng) and Corr (Ng—1, Ng) as in (2.16).
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Thanks to Assumption 2.4 and Lemma 5.1, we see that

-~ N — Nj, —m?
N, = Ne =P N mfkfkﬂp’f’ k=1,....,¢, (7.1)

m3/2y;, m3/2yy,

with
1
Pr = Pr(00) +0o(1), v = anr (Ne)? = o3(00) + 0(1), m — 00, op(00) > 0.

Our proof of the Central Limit Theorem will be based on the moment method, so for completeness
we record here the moments of a general Gaussian random vector. For its statement, recall that

[5—1]
nll = H (n — 2k)
k=0
is the double factorial of a positive integer n, which is given by the product of all the positive
integers up to n that have the same parity as n.

Proposition 7.1. Let X = (X1,...,X,)T ~ Ny(0,%) be a centered Gaussian vector of size £ and
covariance matriz 3 with rank v > 1. Fiz a column vector o = (ay,...,0q)T € R for which
a’Sa #0. Then

: s 0, if s is odd,
£](Ler)] - { " s 72

if s is even.

Proof: The proof follows standard textbook arguments, we include it here for sake of completeness.
The matrix 3 is positive semi-definite, so it admits a Cholesky decomposition of the form

> = LL",

where L is a real matrix of size ¢ x r and r is the rank of 3. At the level of the random variable
X, it induces the identity

X = LZ,
where Z ~ N;.(0, I,) is a normalized Gaussian vector of size r. Now, set
1 T

Observe that a’Ya > 0 so G as above is well defined. In fact, G is a linear combination of
independent centered scalar Gaussian random variables, so G is a centered Gaussian itself. Its
variance is

1

E(G?) = E(GGT) = —=—a'LE[ZZ"]LTa = 1.
(@) = B(GG") = —pe—a"LE[ZZ]L
Hence G is actually a standard Gaussian, so
E(G) = 0, %f S %s odd,
(s— 1!, if sis even.

The proof is now completed by observing that the term inside the expectation on the left-hand side
of (7.2) is (aXaT)’ = (aTSa)¥/2G". O

From the Cramér—Wold Criterion, in order to prove Theorem 2.5 it suffices to show that for any
a=(a1,...,ap) € R we have

1 L
> d
g apN, — E apXp asm — 00,
k=1 k=1

where X = (X1,...,X,)T ~ N(0,%) with ¥ as in Theorem 2.5.
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To prove this, the method of moments will be used (see Durrett, 2010, Theorem 3.12, page 109),
as the normal is a random variable uniquely determined by its moments. Thus, by Proposition 7.1,
we need to show that for each s € N,

¢ NS 0, if s is odd,
E[(; aka> } — {(aTZ]a)S/Q(s — DI, if s is even, (7.3)
as m — oo.

The overall strategy we take is the following. The sum inside the expectation can be seen as a
weighted sum over all pairs of dice faces that are being compared. We identify each term in this
weighted sum with a sum over graphs with appropriate properties. This is done in Section 7.1
below.

Depending on certain properties of these graphs, they can either give an asymptotic negligible
contribution or contribute to the leading order. In fact, we will show that at the end only graphs
with a very particular structure contribute to the leading order of the sum. The second step of the
proof consists in pinpointing the negligible contributions, and also identifying the structure of the
graphs that give the leading contribution. This part is done in Section 7.2

The last part of the proof then consists in counting exactly the graphs that give the leading
contributions, and this will be done in Section 7.3, which completes the proof of Theorem 2.5

7.1. From moments to combinatorics of graphs. We now show how to identify the terms in the sum
on the left-hand side of (7.3) with a graph representation.
Using Lemma 5.1 and the definition of Ny in (2.6), we write

Nng Nk+1
~ Q. _
apN, = 73/2(1"’0 1/2 Z Z D(k) D(k-‘rl) pk)7
Im =1 j=1
and therefore

¢ np Mk+1

Oék

Zaka =m 3/2(1+O 1/2 Z Z p D(k)>D(k+1) Pk) - (7.4)
k=1 k=1i=1 j=1 _k

Raising equation (7.4) to the power s can be seen combinatorially as choosing s indexes (k, i, j)
from the triple sum above, multiplying their terms together and finally summing over all possible
choices. We now introduce a graph representation of this procedure.

Define
Vo= {(k i)k e [d,ie [}

E = {e=((ki), (k+1,5) : k€ [f],i € [ng],j € [npsa]}-
The graph G = (V, E) has vertices representing all faces of all dice and edges e that represent the
triples (k,,7) that appear in equation (7.4). Graph G already has some structure inherited from
the situation it encodes: it is clearly f-partite, with parts Vi, := {(k,7) : i € [ni]} and edges exist
only between Vi, and Vi11.

Any choice H = {(ki, it,j¢) : t € [s]} of s indices can be seen as an ordered collection of s (possibly
repeated) edges of G, and we refer to the set of all possible H as Gs;. Any fixed H € G, can be
interpreted as a weighted subgraph of G: for each edge e € G, we assign the weight w(e) = #{t €
[s] : (K¢, i¢, Je) = €}, i.e., its multiplicity. For a graph H € G, introduce ¢(H) by

(7.5)

1873
w(H) = H J(HD(kt)>D('kt+1) — pkt). (7.6)
tels] Ok, it gt

When we raise (7.4) to the power s, we re-index the resulting sum on the right-hand side by
H € G, and the factor ¢(H) is precisely the term in this sum that corresponds to a given graph



A CLT for Intransitive Dice 1241

H € G,. Taking expectation, we thus obtain

0
~ S _ 3s 1
E[(Zaka) } = m 5 (1+0(m %)) Y Elp(H)]. (7.7)
k=1 Hegs
Equation (7.7) expresses the expectation we want to compute in terms of a weighted sum over
graphs, and the next step is to identify which structure on these graphs leads to leading and
negligible asymptotic contributions as m — oo.

7.2. Estimating the contributions from each class of graphs. The next step is to estimate the terms
inside the sum in (7.7). The following claims emphasize some of the main properties that will play
a role in our computations.

Claim 7.2. Quantity p(H) is uniformly bounded for all H € Gs.

Proof: Since oy, is bounded away from zero as m tends to infinity (see Assumption 2.4-(ii)) we have

(07 AN
lo(H)| < <2max—> . O
ke] ok
Let H € G;. We say that edges eg and € in H are in the same connected component if there is a
sequence of edges (e; € H;j € [t]) such that ej_; and e; have a vertex in common for every j € [t]
and e; = €. This forms an equivalence relation and we partition the edges of H into connected
components. This is helpful to take advantage of independence when evaluating expected values.

Claim 7.3. Suppose H € G5 has t connected components Hy, ..., H;. Then

Elp(H)] = [ ] Ele(H:))-

i€(t]

Proof: Tt is immediate from the definitions, since for ¢ # j the random variables p(H;) and ¢(H;)
depend on disjoint sets of dice faces. O

Claims 7.2 and 7.3 allow us to disregard the contribution of some classes graphs. In the next two
3s
claims, we take advantage of the factor m™ 2 to conclude that the contribution of graphs with too
few or too many connected components is negligible.

Claim 7.4. There are at most Kim®s=V/2 graphs in Gy with less than s/2 connected components,
where K1 does not depend on m.

Proof: We give an upper bound on the number of graphs in Gs with ¢ connected components. Define
Jmax = maxge[g f- The total number of edges in G is

Bl = > (fim)(feam) = m* > fifirn < Uhma)m®. (7.8)
ke[l keld]

To count the number of graphs in G, we begin by building such graphs H € G in a specific ordering.
Let H; with j € [t] denote the ¢ connected components of a given H. First, we choose one edge e;
from E for each H;, without any restriction. For these initial choices, we have at most ((£f2,,)m?)’
possibilities. Since H has s edges, we still have to choose s — ¢ edges. For the remaining choices e;
with j € [s]\ [t] we will always choose e; so that it has some vertex in common with some previously
chosen e; with ¢ € [j — 1], to ensure that we do not create any new connected components. Hence,
on the second round of choices, for choosing e; we have at most (2(j — 1)) options for the common
vertex and at most 2 fmaxm options for the other vertex. Hence, we have at most

(L2 0m*)" (2(s — 1)2fmaxm)*™" = Km!™*

possibilities, where K = K(¢,s,t, fmax) 1S a positive constant. Finally, observe that any graph
H € G, with exactly t connected components can have its edges reordered to a graph H' € G4 so
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that the edges of H' were chosen according to the procedure above. It follows that the number of

graphs in G, with ¢ connected components is at most s!Km!**. Therefore, there are at most
s!K(ms+1 +mSt2 mS'H) < sIKtm®Tt < Klm”%

graphs in Gs with less than s/2 connected components (as t < s/2, then ¢ < (s — 1)/2, because

t and s are integer numbers). The positive constant K7 does not depend on m, and the claim is

proved. O

Claim 7.5. If H € G5 has more than s/2 connected components, then E [p(H)] = 0.

Proof: As there are more than s/2 connected components and only s edges, at least one of the
components must be an isolated edge, say H; is just the edge ((k,4), (k+ 1,7)). Then, we have

- k|2 _ % _ _
Elp(H1)] = E ?k(lDEk)>D§k+1) —Pk)} = akE[]lDEk)>D§k“) pr] = 0,

where the expectation vanishes because of the definition of py in (2.9), and the result follows by
Claim 7.3. O

As a consequence of the claims above, we are able to pinpoint the leading order of the s moment
in (7.7) by focusing on a very specific class of graphs in Gs. We say that a connected component
H; of a graph H € G, is a cherry if it is composed by two distinct edges, and we say that a graph
H € G, is a cherry graph if all its connected components are cherries. In particular, if H € G, is
a cherry graph then s must be even and H must have exactly s/2 components.

The vertex of degree 2 in a cherry will be called joint and the other two will be called tips. Let
us denote by Cs the set of all graphs H € Gos that are cherry graphs. In words, if H € C4 then it
has s connected components of size two with no repeating edges.

It turns out that the leading contribution to the right-hand side of (7.7) comes precisely from
cherry graphs, as claimed by our next result.

Proposition 7.6. For any positive integer s, the estimates

E[(f:akﬁk)%ﬂ} = O(m~1?), (7.9)
k=1

E[(ﬁ o) | = w3 Elp(H)] + O(m ™). (7.10)
k=1

HGCS
hold true as m — 0o.

Proof: Let us estimate the s-moment via equation (7.7). From Claims 7.2 and 7.4 we conclude
that when estimating the sum in equation (7.7) the contribution of graphs in Gs with less than s/2
connected components is too small when compared to m3s/2. By Claim 7.5, the contribution of
graphs with more than s/2 is precisely zero. Hence, equation (7.9) is immediate: for the (2s + 1)-
moment we can write

m=3CH ST Elp(H)) = mo 3G 30 > Elp(H)]

HeGas41 1<t<s H with t connected
components

< m35=3/2 L Fe3stl — g 1/2

When estimating the 2s-moment, the same argument shows that we only have to worry with
the contribution of graphs with exactly s connected components. By Claim 7.3 if H has some
component with only one edge then E[p(H)] = 0. Consequently, for a non-zero contribution, each
of the s components must have at least 2 edges. But then we already have 2s edges in total, and

we conclude that each component has exactly 2 edges. In principle, we can have multiple edges in
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such graphs. However, another simple counting argument shows that the number of such graphs
containing at least one multiple edge is at most Km?3~!. This implies we can focus on the sum
over H € Cs, as claimed in (7.10). O

With Proposition (7.6) at hand, the remaining step is to estimate the sum over cherry graphs in
the right-hand side of (7.10), we will see that this remaining sum is in fact ©(m??), so the leading
order is indeed given by it, and we will in fact be able to compute its contribution precisely.

7.3. Computing the leading contribution, and the conclusion of the proof of Theorem 2.5. What
remains is to count all the cherry graphs H € Cs and compute E[p(H)]. Since cherries are disjoint,
we break any H € C, into s cherries, which we denote Hy, ..., Hs. For a cherry H; the value of
E[p(H;)] will depend on which dice are used for its joints and tips. We say that cherry H; has:

Type (k,1): If its joint is on die D*), one tip is on D*~1) and the other is on D*+1),
Type (k,2): If its joint is on die D*), and both tips are on D*+1),
Type (k,3): If its joint is on die D*), and both tips are on D*~1),
By the construction of the graph G in (7.5), these are the only cherries that can occur as compo-
nents of a graph H € C,. It is straightforward to compute E[p(H;)].

Proposition 7.7. If cherry H; has type (k,t) then E[p(H;)] depends only on (k,t). Denoting its
value by i ¢, we have

A1 .
UZ 102 (st — Pr—1Pr) ift=1;
2
(677 .
ore = Elp(H;)] = (%) (rx — pi) ift =2 (7.11)
2
Qg )
(Uk—i> (qk—pi_l) if t = 3.

Proof: It is straightforward from the definition of ¢(H;) given in (7.6) and the definitions of
Pk, Ak, Tk, Sk in (2.9)—(2.12). -

Since k € [f], we have in total 3¢ different types of cherries. Recall that the total number of
cherries is s. It is useful to classify H € Cs; with respect to the number of occurrences of each type.
We define My, ; = My, ;(H) as the number of cherries of type (k,t) on the cherry graph H, we encode
these numbers in the matrix M = (M} +)¢x3, and say that H has type M. Observe that My, € N
and Zk’t My, = s.

With this codification in mind, for a cherry graph H of type M we have

Elp(H)] = [[Ele;)] = [[ers (7.12)
j=1 k.t

Finally, to estimate the sum over all H € Cs; we partition the cherry graphs according to the
possible types. Let Cs(M) denote the set of all cherry graphs H € C; of type M. We need estimates
on the number of elements of Cs(M) for each M.

Lemma 7.8. For each cherry type (k,t), define

fe—1frfesr ift=1;
ke = < 5ol ift =2; (7.13)
hfE ift = 3.
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As m tends to infinity, the size |Cs(M)| of Cs(M) satisfies

My ¢

e = m* [T 1| (@) (14 0(1/m) (7.14)

M 4!
kot kit

Since f = fr(m) depends on m, we also have that ¢ = ¢ (m) depends on m, but in virtue of
Assumption 2.4 each ¢ has a nonzero limit as m — oo.

Proof: We begin by counting the number of cherries of a given specific type, considering that its
edges are not ordered. Recall that nj, = fim denotes the number of faces in the die D*), and let
us define

1
Cri(ni,...,ng) = §|{H € Gy : H is a cherry of type (k,t)}|, (7.15)

where the factor % is precisely to disregard the order of edges in a cherry. By a simple counting

argument, we have that

Ng—1mgng+1 L =1;

Nk41 .
ft=2;
Cra(ny, ... mg) = ”’f< 2 ) : ’ (7.16)
np— .
nk( k21> if t = 3.
Therefore, the estimate
Cri(ni,...,ng) = ck’tmg +0(m?), asm — oo,

is valid, where ¢ ¢ are the values in (7.13).

Now, let us fix a type M = (My,). First, we compute in how many ways we can choose an
unordered collection of s cherries with exactly M}, ¢ occurrences of each type (k,t). Given M, we
will choose its cherries one by one following the sequence of types {(k;,t;) : j € [s]} in lexicographic
order.

The first cherry, with type (ki1,t1), is chosen from all possible edges of G. When choosing the
following cherries, we have to successively remove the vertices that appear in the previous cherries, to
ensure disjointness. Hence, when choosing the vertices of cherry (kj, ;) we have Cy, 4. (ngj ). , néj ))
EJ ) is the number of faces of die D@ that do not appear in the 7 — 1 previously
()

i

options, where n

chosen cherries. It is clear that (n,”’) will depend on the sequence {(k;,t;)}. However, for our

estimates it is enough to notice that since we only choose s cherries, we have nl(j ) = fim+ O(1).

Finally, the above procedure chooses the s cherries following the ordering {(k;,t;)}. Hence, the
number of choices of an unordered collection of s cherries is given by

o y
M Coty 020 Tty O+ O) _ iy a1y, o1 /my
[Txs Mis! [xs Mis! ey Mi! '

To conclude the argument, just notice that when summing over H € C; we are actually summing
over all fixed unordered collection and considering all possible permutations of the 2s edges that
compose H. The estimate in equation (7.14) follows. O
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Now, we proceed with the estimate in equation (7.10). Breaking the sum on the right-hand side
with respect to the type M of the cherry graphs H € C, and using equation (7.12), we have that

E[(é akﬁk>2s} = m3 Z E[p(H)] +O0(m™)

HeCs
_ —382 Z H Mkt —1)
M HeCs(M) k
Ch 1 Pr,t) Mot _
= > (sl [H (ChatPra) T4 ’“’]‘\’Zt)! }—l—O(m h. (7.17)
M kit )

To obtain a more meaningful expression, we recognize the sum over M as a sum to the s power.
Indeed, recall that M = (M}, ;) is such that Mj; € N must sum to s. Hence, we can write

(Ch,t ,t)M’%t 2s)! s! -
S [ - By

M k.t ’ T (Mg )Y My =5 kit ’
25)! s
(s!) (Z Ck,t(Pk,t)
k.t
S
= @5 = )Y 200000 (7.18)
kit

where we used that (2s — 1)!! = (32';);

Using equation (7.17) the next step is to identify the limit of this 2s-moment. From equa-
tions (7.13) and (7.11) we have that
2fe-1fefrr1oor - (s — Pr—1Pr) ift=1;

Ok—10k

2Pkt = fkka(a)Q (rx — PE) if ¢t =2 (7.19)
ap—1\2 .
fefty (5=5) - (ar — P_y) ift—3,

and we can recognize the sum over (k,t) € [{] x [3] as a quadratic form in the vector a =
(a1, ...,a0)T. The coefficient of of is given by

1
oz [efbaton = pD) + fEfea(ain = pD)] = 1,

recalling the definition of oy in (2.14). The coefficient of ay_qay is precisely the value v = v (m)
given by (2.15)

1
Vi = fe—1fkfrv1(Sk — Pe—1Pk) -
Ok—10%
Writing o = (o, ..., ar)T, and defining
L ym) 0 - 0 mm)
Y2(m) 1 y(m) -+ 0 0
0 v3(m 1 e 0 0
X(m) = : (. ) . : . ;
0 0 0 - 1 ym)
~y1(m) 0 0 o ye(m) 1

with v (m) as in (2.15), we just unraveled the identity

Z 20Ktk = OZTE(m)OA

k,t
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By Assumption 2.4, we learn that ¥(m) converges to the matrix ¥ in (2.17). This last convergence
thus shows (7.3), and concludes the proof of Theorem 2.5.

8. Asymptotic behavior of the number of intransitive strings

In this section we prove Theorem 2.3. We continue using the notation and notions introduced in
Section 4 extensively. In particular, we will work with both sets W ¢(n) and Dy, ¢(n).

To prove Theorem 2.3 we will find lower and upper bounds for |W (n)|. However, the structure
of the set W ¢(n) is too cumbersome for a direct combinatorial analysis. We circumvent this by
translating the set of words into a set of dice that behave well, allowing us to use Theorem 2.5 in
its full force.

Any collection of dice D = (D(l), e D(f)), each with n faces, and with any two faces of any two
dice being distinct, may be embedded in the set Dy(n) from (2.2) in a natural way: the smallest
among the numbers D/ is replaced by the number 1, the second smallest among D] is replaced by
2, and so forth.

Denote by Dy(n) = (DU, ..., DY) a collection of random dice, such that the faces D](-z) are

all i.i.d. uniform random variables in (0,1). If (i,5) # (k,l), then IP’(DJ(Z) = Dl(k)) = 0, so that
any two faces within the collection Dy ¢(n) are distinct almost surely. Thanks to the argument
in the previous paragraph, we view Dy (n) as an element of Dy(n), which generates a random
word Wy y(n) = m(Dye(n)) € Wy(n), where 7 is the canonical bijection between Dy(n) and Wy(n)
constructed at the beginning of Section 4.1.

A routine symmetry argument shows that (D ¢(n)) can be any word in Wy(n) with equal
probability, so that 7 induces the uniform distribution in Wy(n). We will use this observation
extensively in what follows.

By Theorem 2.8 we infer in particular that

[We.e(n)|

Pl _p (DWW ..o DOSDD) 50 as n — oo, 8.1
Wi~ E ) (8.

On the other hand, by Theorem 2.2,
|W[>7[(n)| — enL(Z)Jro(n) )

As indicated by (8.1), the number of intransitive words is rather small compared to the total
number of words. Furthermore, the number of intransitive words obtained by concatenating two
other intransitive words cannot substantially exceed the product of the sizes of each set, so there is
little hope of estimating L(¢) using this approach alone. However, we can improve this algorithm
to increase the count of intransitive words significantly. By taking almost intransitive words from
a large subset of Wy(n) and concatenating them with highly intransitive words, we will construct a
large subset of intransitive words of size ~ e™198¢,
Introduce

2 3/2 1/2
Qu(n) = {WGWg(n):Nk(W)>n—n<1—|— 1) : k:zl,...,é}.

2n
We use Lemma 5.2 and compute explicitly

> _ Ni(Wyge(n)) —n?/2

N(Wpe(n)) = , =1,...,L
Stressing that we equip W, ¢(n) with the uniform distribution, we see that
[Qe(n)] N
=P (N (W —V6/2, k=1,...,¢). 8.2
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For a word W to be intransitive, we must have Ny(W) > n?/2, so the set Qy(n) contains words
that are not intransitive. Using our CLT, namely Theorem 2.5, we now show that Qy(n) is rather
large, and later we will use composition of words to construct a new set of intransitive words with
the same size as Qg(n).

Lemma 8.1. For any ¢ > 3, the limit

lim =/{log/t
n—oo

log [Qy(n)|
n

1s valid.

Proof: Applying Theorem 2.5 to the right-hand side of (8.2), we see that

|Qe(n)]| :
%]P(X-zf\/éz,]:y..,z), 8.3
i) =Y &
where (X71,...,X/) is a centered Gaussian vector. The covariance matrix (2.17) must be computed
having in mind that the underlying vectors (N1(n), ..., N¢(n)) are all coming from i.i.d. dice Dy ¢(n),

and thanks to Lemma 5.2 this matrix is explicitly given by ~;(o0) = —1/2, for every k.

Because the vector (Xi,...Xy) is centered, we must have that P((Xq,...,X,) € B:) > 0 for
every ball B, C R? centered at the origin with radius e > 0. By choosing € > 0 sufficiently small,
we can make sure that B. C {(x1,...,2,) € R | z; > —/6/2, i =1,...,£}, and therefore

P(ij—\/é/z, j:l,...,z) > P((X1,... X)) € B.) >0

Having in mind that (log [Wy(n)|)/n = (log|De(n)|)/n — £logt (see (2.3)), the result now follows
from (8.3). O

As said, we will concatenate words in Qg(n) with a new word S to produce a large set of intran-
sitive words. Since words in Qy(n) are not necessarily intransitive, we need to choose this new word
S to be “highly intransitive”, to counterbalance the transitivity of words in Qy(n). We present such
a word S in the next lemma.

Lemma 8.2. There exists an increasing sequence (ng)r C N with the following property: for each
k there is Sy, € W o(ng,) fulfilling

21 3141
Ni(Sk) > % +§”i(l+”)v for k=1,...,1,
and for each k, n}jl/% e N.

Proof: For each k € N, set ny, := (8k%)'2. With ¢ := 8k3 € N, the word

— n® M (2) (3) (=1) (0) (1) (2)
St 1= Dyny Dyt g Dz m Dy - Dpgsey Dtz m Dz Dy
where
pY =p®. .. p®
bl T ——
J
fulfills all the conditions of the statement. O

We are finally ready to prove Theorem 2.2.

Proof of Theorem 2.2: As observed in (2.3), we already know that L(¢) < ¢log¢. The remaining
task is to prove the converse inequality.
Let (Sg) be the sequence of words from Lemma 8.2, and set my, = n}jl/%. We claim that for

any k sufficiently large, given any word W € Qy(my,), the concatenated word WSy, is intransitive,
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that is, WS, € W, ¢(ng + my). In fact, for each i« = 1,...,¢ and for sufficiently large k, and
recalling (4.2) and that N;(-) = Nj+1(), we compute

2N;i+1(WSg) = 2N;(W) + 2N;(Si) + 2myny,

1
3 1 \2 3(14L
> mi —m] <1+zmk> 0+ 2y

3 1 3 1 1/2
2, o 30+5) _ 50+3) 1
= (myp+ng)"+ng ¥ —nZ <1 + 2mk>

s 1\ 12
= (mg +ng)? + nﬁ(HSG) (n,l/24 — <1 + > )

ka
> (my, +np)?
As the map W — WSy, is one-to-one, we have |W, ¢(my, + ng)| > |Qe(myg)], so

oy 1081Qe(mi)|

llogl = 1i
k—ro0 mp
< lim log [Ws o(my, + ny)|
k—ro0 mg
1+1/36
log |W,
T G 0| W L(e) lim " 1;:5”16 — 1),
k—o0 mg + N mg k—o0 nk+ /
which completes the proof. O
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