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Abstract The supervised pattern recognition methods
K-Nearest Neighbors (KNN), stepwise discriminant anal-
ysis (SDA), and soft independent modelling of class
analogy (SIMCA) were employed in this work with the aim
to investigate the relationship between the molecular
structure of 27 cannabinoid compounds and their analgesic
activity. Previous analyses using two unsupervised pattern
recognition methods (PCA—principal component analysis
and HCA—hierarchical cluster analysis) were performed
and five descriptors were selected as the most relevants for
the analgesic activity of the compounds studied: R; (charge
density on substituent at position C3), Q; (charge on atom
C;), A (surface area), log P (logarithm of the partition
coefficient) and MR (molecular refractivity). The super-
vised pattern recognition methods (SDA, KNN, and
SIMCA) were employed in order to construct a reliable
model that can be able to predict the analgesic activity of
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new cannabinoid compounds and to validate our previous
study. The results obtained using the SDA, KNN, and
SIMCA methods agree perfectly with our previous model.
Comparing the SDA, KNN, and SIMCA results with the
PCA and HCA ones we could notice that all multivariate
statistical methods classified the cannabinoid compounds
studied in three groups exactly in the same way: active,
moderately active, and inactive.
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Introduction

Cannabis sativa is one of the first plants to have been used
as medicine, for religious ceremonies and recreations. The
first accounts of its use for these purposes stretch back
5,000 years [1]. This plant is the unique source of a set of
more than 60 oxygen-containing aromatic hydrocarbon
compounds collectively known as cannabinoids. It also
contains a number of other compounds of potential interest
including at least 120 different terpenes and 21 flavonoids
[2]. From these constituents, only two of them have many
discoveries about their pharmacology: (1) A°-tetrahydro-
cannabinol (A9—THC), which has psychoactivity and (2)
cannabidiol, which is not psychoactive [2].

About 41 years ago, Gaoni and Mechoulam identified A°-
tetrahydrocannabinol (THC) as the main psychoactive
molecule present in Cannabis sativa [3]. The pharmaco-
logical effects of cannabinoids are mediated through at least
two receptors, named as CB; and CB,, and these effects
include tachycardia, hypothermia, analgesia, and the appe-
tite-enhancing effects [3, 4]. In this work, we have studied
cannabinoid compounds with analgesic activity and this is
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significant since the control of pain requires a knowledge of
the pain mechanisms and an understanding of the drugs used
for this purpose. Therefore, analgesic drugs have a very
important role in the therapy against pain as, for instance, the
therapy of patients in the terminal stage of cancer.

The rational search for new analgesic drugs is a very
efficient strategy to obtain more specific and potent com-
pounds without side effects. Some methods used for this
strategy include studies based on structure-activity rela-
tionships (SAR) and quantitative structure-activity
relationships (QSAR). The main goal of applying these
methods is to transform the chemical structure of a com-
pound into a set of numbers (parameters, properties, or
variables) and correlate them with the biological activity
establishing a qualitative/quantitative relationship between
calculated molecular properties and biological activity [5].
In this context, we can cite the multivariate statistical
methods or pattern recognition methods, which are very
helpful to extract meaningful information of the system
studied and construct mathematical models that can be able
to predict some properties of interest. There are two kinds
of pattern recognition methods: the unsupervised and the
supervised ones. In the first category (the unsupervised
methods), the main goal is to reduce the data complexity so
that inherent clusters in the samples can be visualized. In
the supervised methods, a training set of samples with
known class is used to produce a mathematical model that
can predict the class of unknown samples.

In a previous work [6], we used two unsupervised pat-
tern recognition methods known as Principal Component
Analysis (PCA) and Hierarchical Cluster Analysis (HCA)
with the aim to investigate which molecular properties
(variables or descriptors) would be more efficient in clas-
sifying cannabinoid compounds according to their degree
of analgesic activity. According to previous results [6],
three categories of compounds were observed from PCA
and HCA: active, moderately active, and inactive com-
pounds. The PCA and HCA results indicated that five
descriptors were the most important for the discrimination
of the compounds: R; (charge density on substituent at
position C3), Q; (charge on atom C;), A (surface area), log
P (logarithm of the partition coefficient) and MR (molec-
ular refractivity) [6].

Now, the main goal of this work is to investigate the
therapeutic aspects of cannabinoid compounds according
to their analgesic potency by using supervised pattern
recognition methods (or classification methods) in order to
predict the class of new cannabinoid compounds and val-
idate our previous results employing PCA and HCA [6].
Since the unsupervised pattern recognition PCA and HCA
are not appropriate for the prediction of unknown com-
pounds, we have decided to use more robust classification
methods: SDA [7], KNN [8], and SIMCA [9], which will
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help us to construct a more reliable model for future pre-
diction studies [10].

Methodology
Molecular structure of cannabinoid compounds

The general structure of cannabinoid compounds and the
numbering system used in this work are shown in Fig. 1.
Figure 2 shows the chemical structure and the biological
activity of the 27 cannabinoid compounds studied in this
work, which were tested using the same biological assays
[11-15]. The 27 analgesic cannabinoid compounds studied
here were classified into three classes: actives, moderately
actives, and inactives, based on the qualitative effects
caused on rhesus monkeys when the compounds were
intravenously injected [11-15].

Following the previous PCA and HCA analyses [6], the
compounds of the training set were classified into three
classes: active, moderately active, and inactive regarding
their analgesic activity. The molecular descriptors were
calculated based on the most stable conformation for each
cannabinoid structure.

The geometry optimization and all of the quantum
chemical calculations were performed by using the quan-
tum chemical semi-empirical method AM1 (Austin model
1) [16]. The calculated properties were selected so that they
could represent electronic, stereochemical, and hydropho-
bic characteristics of the compounds studied. The
molecular descriptors were calculated based on the most
stable conformation for each cannabinoid structure and the
most important descriptors selected by PCA and HCA
analyses [6], as mentioned before, were: R3 (charge density
on substituent at position Cz), Q; (charge on atom C;), A
(surface area), log P (logarithm of the partition coefficient),
and MR (molecular refractivity) [6]. The numerical values
of the five selected variables (R3, O, A, log P, and MR) are
displayed in Table 1. It is important to say that the five
variables were autoscaled before all analyses.

The three supervised pattern recognition methods used
here (KNN, SDA, and SIMCA) made use of the PCA and
HCA results obtained previously [6] in order to obtain a
reliable model that can be able to predict the class of new
samples [17]. The classification rules achieved were vali-
dated by means of a leave-one-out cross-validation
procedure due to the small number of cannabinoid com-
pounds tested with the same biological assays [11-15]. In
order to perform the statistical analyses by using the KNN
and SIMCA methods we employed the PIROUETTE 3.11
program [18], and to perform the SDA analysis we made
use of the STATISTICA program [19].
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Fig. 1 General structure a 1
bidimensional with the
numbering system used for the
cannabinoid compounds studied
and b tridimensional structure
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Fig. 2 Chemical structure of the 27 cannabinoid compounds studied
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Fig. 2 continued

SAR analyses

Structure-activity relationship (SAR) studies with bioactive
molecules can help in the developing of more effective
compounds (by selecting the molecular properties that can
be responsible for the biological activity) with the goal of
understanding the interaction mechanism between ligands
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and their biological receptors [20]. For this purpose, sev-
eral multivariate statistical methods can be used.

Stepwise discriminant analysis (SDA)

Stepwise discriminant analysis (SDA) can be used for
discrimination  (recognition or classification) and
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Table 1 Value of the five most relevant descriptors selected by the
PCA and HCA methods [6]

Compound  R; 0, A log P MR
(A% (A%

1 0.053 0.438  665.297 3.601 113.116
2 0.043 0.021  625.808 2.638  119.493
3 0.075 0.681  638.244 2470  123.613
4 0.066 0.475  650.838 2.625  117.060
5 —0.135 0.405  650.214 0.883  128.677
6 —0.144  —0.021 611.168 2378  129.843
7 —0.339 0.535  660.107 1.817  133.146
8 —0.144 —-0426 613.764 1.985  131.126
9 —-0.175 —0.222  696.602 1.752  131.183
10 —0.173 0.081  683.156 2754 129.409
11 —0.159  —0.061  603.943 2.601  125.127
12 0.051 0.305 641.516 4580 123471
13 0.040 0.341  648.036 4350  116.253
14 0.040 0.380 562.287 4374  100.574
15 0.049 0.360  607.592 4.582 99.547
16 0.049 0.387  592.857 4374  100.574
17 0.540 0.391  606.116 3393  114.143
18 0.062 0431  616.797 3291  114.217
19 0.065 0446 512916 1.721 96.881
20 0.065 0.440  526.331 1.465 97.125
21 —0.147 —0.328 579.533 1.614  132.333
22 —0.155 —0.139 574953 1.380  132.390
23 0.050 0.555  563.101 1.441 98.674
24 0.056 0.535  553.243 1.079 93.379
25 0.036 0.556 445743  —0.506 74.975
26 0.062 0447  649.390 2.533  111.678
27 0.077 0418  516.640 1.837 95.918

prediction of samples. Its main objective is to determine
discriminant functions, which represent linear combina-
tions of the calculated variables [20]. The procedure used
in the SDA method is to build discriminant functions
(one function for the active compounds and another one
for the inactive ones) adding one variable at a time until
obtaining the final discriminant functions based on the
set of the best variables that discriminate the groups of
compounds [21]. This method is useful for selecting
variables with the highest relevance to separate the
compounds into different groups (often referred to as
discriminant power of the variables), since it builds the
discriminant functions using one variable at a time until
the best discriminant function is obtained. After the
statistical validation of the model through this procedure,
the discriminant functions may be used to make pre-
dictions with unknown compounds. [22].

K-nearest neighbours (KNN)

The KNN method classifies the compounds studied based
on the distance among them. In general, Euclidean distance
is used to measure the nearness between samples. The
predicted class of a test compound is determined according
to its distance regarding the closest K compounds in the
training set [7, 10, 17]. Leave-one-out cross-validation is
used to select the optimal number of the nearest neighbors
(K). In this procedure, each sample in the training set is
excluded and then classified using the remaining training
set compounds. This is repeated for different values of K
and each one of the K nearest samples “votes” once for its
class. The class receiving the highest number of “votes” is
assigned to that sample [23].

Soft independent modeling of class analogy (SIMCA)

SIMCA is a classification technique that minimizes
assumptions on the linearity of relationships between
descriptors and classes [24]. This technique uses PCA to
model the shape and position of the object formed by the
samples [8, 17]. The number of optimal principal compo-
nents (PCs) is determined for each class and the model is
finished by defining boundary regions for each PCA model.
A multidimensional box is constructed for each class and
the classification of future samples (prediction) is per-
formed by determining within which box, if any, the
samples lies. This is in contrast to KNN where only the
physical closeness of samples is used for classification.
The main advantage of SIMCA over other classification
methods is its ability to detect outlier samples [17].

Results and discussion

According to a previous study [6], the most important
descriptors found in PCA and HCA analyses were: R3, Oy,
A, log P, and MR, which are responsible for the discrimi-
nation of the cannabinoid compounds under study here into
three groups (active, moderately active, and inactive can-
nabinoid compounds). As can be seen from Fig. 3, the
dendrogram showed a good discrimination among the three
classes of compounds. The similarity value between the
classes of active (including the moderately active com-
pounds) and inactive compounds was 0.0, indicating there
was a very good distinction between these classes of
compounds. After the use of the unsupervised pattern
recognition methods (PCA and HCA), we employed the
classification methods (KNN, SDA, and SIMCA) in order
to validate and construct a model that can be used to pre-
dict the class of new analgesic cannabinoid molecules with
similar molecular structure.
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Fig. 3 Dendrogram obtained for the set of selected variables

K-nearest neighbor (KNN)

Table 2 presents the results obtained using the five selected
descriptors (R3, Q1, A, log P, and MR) taking into account
1-9 nearest neighbors (9NN). For the cases of 1 until 7
nearest neighbors, the accuracy of classification was 100%
(i.e., all compounds were classified correctly), where 11
samples belong to the group of active compounds (class 1),
7 belong to the group of inactive compounds (class 2) and 9
to the group of moderately active compounds (class 3). For
the case of 9NN, one compound was incorrectly classified
(compound 23), decreasing the accuracy of classification
(see Table 2). So, in order to construct our KNN model we
considered 7NN as the limit of confidence.

Furthermore, as the outcomes obtained by the KNN
method agree perfectly with those from PCA and HCA, we
can conclude that these multivariate statistical models
obtained by the three techniques (PCA, HCA, and KNN)
are reliable to be used in the prediction of new cannabinoid
compounds with analgesic activity.

Stepwise discriminant analyses (SDA)

The SDA analyses were performed using the variables Rj,
log P, O;, MR, and A. The discriminant functions obtained
by SDA for each group of cannabinoid compounds, written
as a linear combination of the five original variables, are:

Group 1 = —171.88 + 109.66 R3 + 5.79 Log P — 0.05
Q; + 0.39 MR + 0.43 A (actives)

Group 2 = —186.46 — 138.47 R3 + 0.78 Log P — 34.61
Q; + 0.39 MR + 0.47 A (moderately actives)

@ Springer

Table 2 Classification obtained with the KNN method

Compound Observed INN 3NN SNN 7NN  ONN

class

1 1 Class 1 Class 1 Class 1 Class 1 Class 1
2 1 Class 1 Class 1 Class 1 Class 1 Class 1
3 1 Class 1 Class 1 Class 1 Class 1 Class 1
4 1 Class 1 Class 1 Class 1 Class 1 Class 1
5 3 Class 3 Class 3 Class 3 Class 3 Class 3
6 3 Class 3 Class 3 Class 3 Class 3 Class 3
7 3 Class 3 Class 3 Class 3 Class 3 Class 3
8 3 Class 3 Class 3 Class 3 Class 3 Class 3
9 3 Class 3 Class 3 Class 3 Class 3 Class 3
10 3 Class 3 Class 3 Class 3 Class 3 Class 3
11 3 Class 3 Class 3 Class 3 Class 3 Class 3

2 1 Class 1 Class 1 Class 1 Class 1 Class 1
13 1 Class 1 Class 1 Class 1 Class 1 Class |
14 1 Class 1 Class 1 Class 1 Class 1 Class 1
15 1 Class 1 Class 1 Class 1 Class 1 Class 1
16 1 Class 1 Class 1 Class 1 Class 1 Class 1
17 1 Class 1 Class 1 Class 1 Class 1 Class 1
18 1 Class 1 Class 1 Class 1 Class I Class 1
19 2 Class 2 Class 2 Class 2 Class 2 Class 2
20 2 Class 2 Class 2 Class 2 Class 2 Class 2
21 3 Class 3 Class 3 Class 3 Class 3 Class 3
22 3 Class 3 Class 3 Class 3 Class 3 Class 3
23 2 Class 2 Class 2 Class 2 Class 2 Class 1
24 2 Class 2 Class 2 Class 2 Class 2 Class 2
25 2 Class 2 Class 2 Class 2 Class 2 Class 2
26 2 Class 2 Class 2 Class 2 Class 2 Class 2
27 2 Class 2 Class 2 Class 2 Class 2 Class 2

Group 3 = —114.47 + 109.07 R; + 1.47 Log P — 2.21
Q; + 0.23 MR + 0.38 A (inactives)

Comparing the SDA results with the PCA and HCA
analyses [6], we can notice that the three methods classified
the cannabinoid compounds studied in three groups exactly
in the same way, i.e., active, moderately active, and inac-
tive compounds.

Another way to perform the classification by using the
discriminant functions is to calculate the classification
matrix by using the coefficients shown by the discriminant
functions. According to this matrix, the accuracy of clas-
sification obtained using the SDA method was 100%,
indicating a good separation of the three groups of can-
nabinoid compounds (active, moderately active, and
inactive).

The allocation rule derived from the SDA results, when
the analgesic activity of a new cannabinoid compound is
investigated, is: (a) initially one calculates, for the new
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analgesic cannabinoid compound, the values of the most
important variables obtained with the SDA methodology;
(b) substitute these values in the three discriminant func-
tions obtained in this work; (c) see which discriminant
function (Group 1: active; Group 2: moderately active and
Group 3: inactive compounds) presents the highest value.
The new cannabinoid compound is active if the highest
value is related to the discriminant function of Group 1 and
SO on.

Soft independent modeling of class analogy (SIMCA)

We performed the SIMCA analyses using the autoscaled
values of the five selected variables (R5, log P, O, MR, and
A). The best SIMCA model found was the one built with
the same variables used in the SDA method. Figure 4
shows the three-dimensional projection of the compounds
obtained with three PCs. The hyperboxes for the three
classes of cannabinoid compounds studied are represented
in Fig. 4 by the points around each class.

From Fig. 4 we can see the splitting of the set of com-
pounds into three well distinct classes, corresponding to
class 1 (active compounds), class 2 (moderately active
compounds), and class 3 (inactive compounds). The coor-
dinates of the hyperboxes that determine the limits of the
classes are based on the standard deviations of the sample
scores in the direction of each PC and state a confidence
limit of 95% for the distribution of the classes (represented
by dotted surfaces in Fig. 4). The rotation of Fig. 4 shows
that no compound is allocated out of the confidence limits
and that there is no superposition between the three classes.

Figure 5 displays the class distances calculated according
to the residuals of the samples when they are adjusted to the

Actives

Moderalety

.- |PC1

Fig. 4 Three-dimensional projection of the hyperboxes for the three
classes of compounds obtained by SIMCA using the five selected
variables (R3, log P, O;, MR, and A)

classes. The compounds lying in the north-west quadrant
(NW) belong solely to the x-axis class. Analogously, the
compounds in the south—east quadrant (SE) are members of
the y-axis class only. Compounds positioned in the south—
west quadrant (SW) may belong to both classes. However,
the compounds in the north—east quadrant (NE) belong to a
third class of compounds (the moderately active ones).

From the SIMCA method, we are able to obtain the
following data: (i) the distance between classes, which is a
measure of how separated are the classes in a model; (ii)
the modeling power (MP) of the variables used in the
classification model, indicating the influence of each vari-
able in the model; (iii) the discriminant power (DP) of the
variables, which is indicative of the importance of each
variable in the discrimination of the compounds into dif-
ferent classes [25]. Table 3 shows the values of the
modeling and discriminant powers for the five selected
variables. The most important variable in the two models is
R; (charge density on substituent at position Cs), since it
has the highest value for MP and DP, indicating that
electronic effects can have an important role in the inter-
action between the cannabinoid compounds and the
biological receptor.

Table 4 shows the calculated distances between classes
1, 2, and 3. The distance between the classes 1 and 1, 1 and
2, 1 and 3, 2 and 3 are: 0.000, 4.080, 8.279, and 18.933 (all
above 3), respectively. In chemometrics, the distances
above 3 are considered suitable for a good distinction
between classes [26].

From our results, we can see that for a cannabinoid
compound to become an analgesic active molecule it must
have some important characteristics: (1) high log P values
(the analgesic compounds studied have a higher lipophylic
character than the inactive ones, indicating a high capacity
of crossing the biological membrane and, consequently,
they are able to reach the biological receptor more easily);
(2) a suitable surface area (A) value (compounds with small
surface area cannot interact with the biological receptor);
(3) positive MR values, which indicate that some substit-
uents in the active compounds can interact by two ways: (a)
through polar groups of the biological receptor (due to
polarizability effects) and (b) through steric effects (due to
the size of the substituents), since some modifications on
the receptor can occur avoiding the interaction between the
compounds and the biological receptor; (4) negative values
for R; and Q, (this indicates that the cannabinoid com-
pounds studied need to have electron donor substituents at
C, and C; positions in order to present analgesic activity).

The results obtained in this work using the SDA, KNN,
and SIMCA methods confirm the importance of the five
descriptors employed in all statistical analyses (Rs, O, A,
log P and MR), which can represent the main interactions
between the analgesic cannabinoid compounds and the
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Fig. 5 Class distances obtained
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Table 3 Modeling and discriminant powers for the five selected
variables according to SIMCA method

Variable Discriminant power Modeling power
(DP) (MP)
R3 478.926 0.724
0, 86.393 0.610
A 21.123 0.607
Log P 29.874 0.557
MR 199.805 0.581
Table 4 Distance between classes for the selected variables
according to the SIMCA method
Class 1 Class 2 Class 3
Class 1 0.000 4.080 8.279
Class 2 4.080 0.000 18.933
Class 3 8.280 18.933 0.000

biological receptor. It is important to notice that all multi-
variate statistical methods classified the analgesic
cannabinoid compounds studied here in three groups exactly
in the same way: active, moderately active, and inactive.

Conclusions
The results obtained in this work, using three supervised
pattern recognition methods (KNN, SDA, and SIMCA),

agree perfectly with our previous model, in which we used
two unsupervised pattern recognition methods (PCA and
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HCA). This is a strong indication that our previous selec-
tion of variables was suitable, since it provided 100% of
accuracy in the classification and this indicates that the
models obtained with all of the five methodologies (PCA,
HCA, KNN, SDA, and SIMCA) are reliable.

Comparing the SDA, KNN, and SIMCA results with the
PCA and HCA ones, we concluded that all methods clas-
sified the analgesic cannabinoid compounds studied in
three groups exactly in the same way: active, moderately
active, and inactive. Therefore, from our KNN, SDA, and
SIMCA results we can see that our models are very reliable
and they can help in the design of new analgesic cannab-
inoid compounds.
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