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ABSTRACT

The spectral density of a graph is a key concept for quantitatively characterizing empirical networks. It has
many applications, including community detection, graph signal processing, spectral embedding, network
evolution, brain network analysis, and random graph modeling. The graph’s spectral density is also crucial
in developing statistical methods for graphs, such as model selection and comparative testing. Despite its
broad applicability, a complete understanding of the relationship between a graph’s spectral density and
structure remains elusive. To advance our understanding of the relationship between graph spectra and
their structure, we introduce a vertex-wise decomposition of the graph’s spectral density, allowing us to
determine each vertex’s contribution to specific eigenvalues. We show that the decomposition of distinct
isospectral graphs (graphs with identical spectra) can be distinguished by the vertex-wise graph spectra,
showing that the proposed new quantities are finer invariants between isomorphic graphs. Finally, we apply
these insights to analyze chemical molecules and identify genes associated with normal versus tumoral
breast gene interaction networks.

KEYWORDS: Spectral distribution; vertex decomposition; random graphs; localization.
2000 Math Subject Classification: 15A18, 15B57, 05C82.

1. INTRODUCTION

A graph’s spectral density refers to the distribution of eigenvalues of a graph’s adjacency matrix (or
Laplacian matrix). It represents the frequency or density of eigenvalues.

Graph spectral density has various applications across different fields due to its ability to capture
structural properties and connectivity patterns in complex networks. Some of the critical applica-
tions of a graph’s spectral density include community detection [1, 2], graph signal processing [3],
spectral embedding [4, 5], network evolution and growth [6-8], brain network analysis [8-10],
and random graph models [11-13].
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More recently, spectral density has also proved critical in developing graph statistical tools [ 14].
Takahashi et al. [ 14] introduced a general statistical framework based on the graphs’ spectral density.
They proposed a parameter estimator similar to the maximum likelihood estimator [ 14, 15], amodel
selection approach similar to the Akaike Information Criterion [13, 14], and a comparison test
similar to the t-test for graphs using the spectral density associated with the graph’s adjacency matrix.
Later, De Domenico and Biamonte [16] published a parameter estimator and model selection
approach using a similar idea based on the spectral density of the graph’s Laplacian matrix. Then,
many other statistical tools have been proposed: a comparison test for two or more (sets of ) graphs
like ANOVA [10, 17], a concept of correlation between vectors of graphs [18], Granger causality
between time series of graphs [19], and supervised [20] and unsupervised [2] classification
approaches.

Although spectral density is an exciting framework for constructing statistical tools for graphs,
this approach has a bottleneck: It lacks interpretation. Suppose a spectral density-based statistical
test like analysis of graph variability (ANOGVA) [17] suggests that two graphs present different
spectral densities. Then, the next question is: Which vertices are differentially connected, or which
graph structures are different? To answer these questions, we should identify the regions where the
spectral densities differ the most (i.e. the eigenvalues with the most differential frequency). Then,
based on those eigenvalues, identify the related structures. However, identifying the relationship
between the eigenvalue and the graph’s structure is not trivial [21]. Dorogovtsev et al. [22] were
the first to identify some structures that give rise to eigenvalue 0 in locally tree-like graphs. Golinelli
[23] identified some structures that generate eigenvalues 0, =1, and +42in large random trees.
Kamp and Christensen [24] studied the association of graph motifs with eigenvalues 0 and 2 in
the Drosophila melanogaster’s protein—protein interaction network. Yadav and Jalan [25] identified
three structures that generate the eigenvalue 0 and their biological origins. Marrec and Jalan [26]
identified two structures that generate the eigenvalue —1. They also proposed an algorithm to
identify them. However, their method only identifies a few patterns [25, 26].

Here, we aim to understand better the relationship between the graph’s spectral density and
structure. To this end, we present a vertex-wise graph’s spectral density decomposition and its
relationship with eigenvector localization. Based on this, we calculate the contribution of each vertex
to the spectral density—that is, how much each vertex contributes to the appearance of a specific
eigenvalue. Finally, we associate the vertex-wise graph’s spectral density with the number of closed
walks to that vertex.

2. GRAPH’S SPECTRAL DENSITY

Let G = (V, E) be an undirected graph composed of a set V of n vertices and a set E of edges. Let
A be its n X n symmetric adjacency matrix. We call the set of eigenvalues A1 > Ay > ... > 1,
and their respective eigenvectors {vy, vy, . . ., v} of A as the spectrum of G. Let d be the Dirac delta
function. Then we can define the spectral density p (1) as follows:

PGy =350~ 4 (21)

i=1

Based on the arguments of [27-29], we can rewrite Equation (2.1) as follows. First, we express
the Dirac delta function of Equation 2.1) as the limit of a Cauchy distribution

1 1
0(A)=—— lim I . 2.2
(4) n'g_1>n(}+ mi—i—ie (22)
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Then, substituting Equation (2.2) into Equation (2.1), we have that
1 - 1
A lim — Im —_ 2.3
D= lim ) T 23

Setz = A + ie and define the smoothed spectral density

= ——Im (tr(zl — A) )

(2.4)

In the last equality of Equation (2.4), we used the fact that, for a nonsingular diagonalizable n X n
matrix M with eigenvalues 1, B2, . . ., B, the trace of M~ ! is the sum ofﬂl_l, ﬁz_l, .. .,ﬂn_l. The
parameter ¢ determines the smoothness of the smoothed spectral density p.(4) [27] and

pe(4) m p(4).

Equation (2.4) was first derived in the Quantum Chaos community [30] to calculate the density
of states of a quantum mechanical system. Besides, [31] expressed the spectral density using the
eigenvectors V.= [vy, vy, ..., V,] of A as follows:

pe(2) = —Lim(tr(el — &)Y,

- _1 i 11
= ——Im tr(leag(Z_)yl,Z_llz,...,z_/1

: )]
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> % Z Z |V]1| 5(/1 /1]);

e—>0t i=1j=1

where vj; is the (j, )th element of V.

Another way of expressing Equation (2.4) is by using the number of closed walks w! of length
from vertex i [32]:

pe(2) = —ilm(trm —A)™h,
Im (L Z Ll),

(2.6)

Equation (2.6) shows that the spectral density is related to the number of closed walks of any length
on the graph. If two vertices have the same number of closed walks of any length, their spectral
density functions will be the same, but the converse might not be true. The relationship between
spectral density and closed walks is already known [33].
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3. VERTEX-WISE GRAPH’S SPECTRAL DENSITY DECOMPOSITION

In this section, we obtain the vertex-wise graph’s spectral density decomposition.
Notice that we can rewrite Equation (2.6) as follows:
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In Equation (3.1), we can observe that, the ith diagonal element of (zI — A)lisa weighted sum of
the closed walks of vertex i. With this in mind, we can express that the spectral density of the graph
is the mean of the diagonal elements p; . (1),Vi = 1,. .., n, given by:

pie(2) = —2Im((l — A);}1),

/2

(32)
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This observation naturally suggests the following definition for the spectral density associated with
the ith vertex.

pi(A) = lim —lIm((zI—A)i_il). (3.3)
e—>0T T ’

Also, by considering Equation (2.5), we can express p;(1) in terms of the eigenvalues and eigenvec-
tors of A as follows. Let vj; be the i-th element of the jth eigenvector. Then,

pi(A) =" Ivjl*[ — %limg»w Im(‘z—lz,-)]’
j=1 (34)
- i
=> |vj,,-|25(/1 — /lj).
j=1

Considering Equations (3.3) and (3.4), we observe that two isospectral graphs (with the same set
of eigenvalues, i.e. the same spectral densities) [32] may have different vertex-wise graph spectral
densities. However, by construction, all graphs with the same vertex-wise spectral density are
isospectral. In practice, to approximate the vertex-wise spectral density, we will use the smoothed
version with small € and a discretization of the interval [4,, 11]. See Fig. 1 for an example using
¢ = 0.01.

From Equation (3.4), we can deduce that the importance of ith vertex for an eigenvalue 1 is
proportional to the weighted sum of the square of the entries of the ith element of all eigenvectors.
Hence, when ¢ — 07, the ith vertex’s importance will be the eigenvector’s squared ith entry
corresponding to the eigenvalue A. All vertices will have the same importance when the eigenvector
is delocalized (all its entries are equal); otherwise, when the eigenvector is localized, a subset of the
vertices will have more importance than the others [34].Jalan et al. [26, 35, 36] used the localization
of the eigenvectors to identify some structures related to eigenvalue —1. Dorogovtsev et al., Yadav
and Jalan, and Rai et al. [22, 25, 36] propose to use the entries of the eigenvectors associated with
1 and 0 to identify some structures that generate such eigenvalues. The largest eigenvalue is related
to the largest degree in the graph [37], and we could also look at the entries of its corresponding
eigenvector to identify the vertices that generate the largest eigenvalue.

G20z AInf 1.z uo 1asn DS 33 - ojned 0eS ap apepisieAlun Aq 029281.8/€ | 0JBUS/Y/E L /AI01HE/12UWO0/W00" dNO"0jWaPEDE//:Sd)Y WOl PapEOjuMO(



Vertex-wise graph’s spectral density decomposition -« 5

(a) (b)

pi(M)

:
_—
~—

(c) (d)

—_— =1
o| —/ i=2-5
=
n

A‘_
<
& o
e
(s) i
o

) A 0 i 2
A

Figure 1. Vertex-wise graph’s spectral density decomposition for two isospectral graphs. Panels (a) and (c)
illustrate two isospectral graphs. Both graphs have the same set of eigenvalues, i.e. —2,0, 0,0, 2. Panels (b)
and (d) show the spectral decompositions of the graphs described in panels (2) and (c), respectively. The
red line represents the spectral density of vertex 1. In contrast, the blue line represents the spectral density
of vertices 2, 3, 4, and S. To obtain the vertex-wise decomposition, we used Equation (3.3) with ¢ = 0.01,
and discretized the interval [—2, 2] in 40 points.

Alt text: Side-by-side comparison of two isospectral graphs and their vertex-wise spectral density
decompositions. Panels (a) and (c) display different graph structures that share the same set of eigenvalues
{-2,0,0,0,2}. Panels (b) and (d) show the corresponding vertex-wise spectral density plots. Red lines
represent the spectral density of vertex 1, while blue lines represent vertices 2—5. These visualizations
demonstrate that although the graphs have identical spectra, their vertex-level contributions differ.

We generated graphs using the Watts-Strogatz [38] and Barabési-Albert [33] models with differ-
ent parameters to show how our proposed method works. Then, we computed the contribution of
their vertices to the eigenvalues —1, 1, 0, and A; (largest eigenvalue).

Figure 2 shows the contribution of the vertices for a graph generated using the Watts-Strogatz
model with 40 vertices, a mean degree of d = 4,and a rewiring probability p,, of zero. This
configuration generates a regular ring lattice graph vertex-transitive [ 39]. Panel (a) depicts the graph
to be analyzed. Panel (b) describes the associated spectral density. Panels (c) and (d) highlight
the vertices associated with 4 = —1 and A = 1. Panel (e) shows the vertices associated with
A = 0. Panel (f) shows the vertices associated with the largest eigenvalue. We can observe that
for all eigenvalues, the contribution of the vertices to the considered eigenvalue is the same. This
happens because vertex-transitive graph eigenvectors are delocalized [40]. Hence, the contribution
of the vertices will be the same for any eigenvalue.
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Figure 2. The darker red the vertex is, the higher its contribution to the considered eigenvalue. (a)
Example of a graph generated with the Watts-Strogatz model with a rewiring probability p,, = 0.0 and
mean degree d = 4. (b) The spectral density of the graph described in panel (a). (c) Vertices related to the
eigenvalue -1 (p;(1 = —1)). (d) Vertices related to the eigenvalue +1 (p;(4 = +1)). (e) Vertices related
to the eigenvalue 0 (p;(1 = 0)). (f) Vertices related to the largest eigenvalue (p;(4 = A1)). To obtain the
contribution of each vertex to a particular eigenvalue, we used Equation (3.3) with ¢ = 0.01.

Alt text: Visualization of vertex contributions to specific eigenvalues in a Watts-Strogatz graph. Panel (a)
shows a network generated with a rewiring probability pw = 0.0 and average degree d = 4. Panel (b)
displays the graph’s spectral density. Panels (c-f) highlight vertex-wise contributions to individual
eigenvalues: -1, +1, 0, and the largest eigenvalue (41), respectively. Vertex color intensity (red) indicates
the magnitude of contribution—darker red means a higher contribution.

Figure 3 shows the contribution of the vertices for a graph generated using the Watts-Strogatz
model with 40 vertices, a mean degree d = 4, and a rewiring probability p,, of 0.10. Unlike the
previous example, we broke the symmetry of the ring lattice structure. Hence, some vertices make
more contributions than others.

Figure 4 shows the contribution of the vertices for a graph generated using the Barabasi-Albert
[33] model with 40 vertices, a mean degree m = 2, and a scaling parameter y = 0.5. We can
observe that only a subset of vertices contribute to the presence of an eigenvalue, which means there
exists a localization in the eigenvectors near the considered eigenvalues. In particular, for the largest
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(d)

Figure 3. The darker red the vertex is, the higher its contribution to the considered eigenvalue. (a)
Example of a graph generated with the Watts-Strogatz model with a rewiring probability p,, = 0.10 and
mean degree d = 4. (b) The spectral density of the graph described in panel (a). (c) Vertices related to the
eigenvalue -1 (p;(A = —1)). (d) Vertices related to the eigenvalue +1 (p;(4 = +1)). (e) Vertices related
to the eigenvalue 0 (p;(4 = 0)). (f) Vertices related to the largest eigenvalue (p;(4 = 41)). To obtain the
contribution of each vertex to a particular eigenvalue, we used Equation (3.3) with ¢ = 0.01.

Alt text: Visualization of vertex contributions to specific eigenvalues in a Watts-Strogatz graph. Panel (a)
shows a network generated with a rewiring probability pw = 0.0. and average degree d=4. Panel (b)
displays the graph’s spectral density. Panels (c-f) highlight vertex-wise contributions to individual
eigenvalues: -1, +1, 0, and the largest eigenvalue (41), respectively. Vertex color intensity (red) indicates
the magnitude of contribution—darker red means a higher contribution.

eigenvalue, we can observe that the vertices with the largest contribution are the ones with the largest
degree and the nearby vertices. This phenomenon of localization of the largest eigenvalue was found
in [34] and happens when the scaling parameter is smaller than 5/2.

Figure 5 shows the contribution of the vertices for a graph generated using the Barabdsi-Albert
[33] model with 40 vertices, a mean degree m = 2, and a scaling parameter y = 3.0. Since the
scaling factor is large, many peripheral vertices connect to the same (hub) vertices. Thus, those
peripheral vertices contribute to the presence of eigenvalue 0 [25, 26, 35, 36]. Also, for the largest
eigenvalue, we can observe that the vertices with the largest contribution are the ones with the largest
degree. Pastor-Satorras and Castellano [34] found this phenomenon of localization of the largest
eigenvalue. It happens when the scaling parameter is greater than 5/2.
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Figure 4. The darker red the vertex is, the higher its contribution to the considered eigenvalue. (a)
Example of a graph generated with the Barabasi-Albert model with a scaling parameter y = 0.5 and mean
degree m = 2. (b) The spectral density of the graph described in panel (a). (c) Vertices related to the
eigenvalue -1 (p;(4 = —1)). (d) Vertices related to the eigenvalue +1 (p;(1 = +1)). (e) Vertices related
to the eigenvalue 0 (p;(1 = 0)). (f) Vertices related to the largest eigenvalue (p;(4 = A;)). To obtain the
contribution of each vertex to a particular eigenvalue, we used Equation (3.3) with ¢ = 0.01.

Alt text: Visualization of vertex contributions to specific eigenvalues in a Barabdsi-Albert graph with
scaling parameter y = 05 and mean degree m = 2. Panel (a) displays the graph structure. Panel (b) shows
the graph’s spectral density. Panels (c)-(f) highlight vertex-wise contributions to the eigenvalues -1, +1, 0,
and the largest eigenvalue (41), respectively. Vertex color intensity (darker red) represents a higher
contribution of that vertex to the corresponding eigenvalue.

Figure 6 shows the contribution of the vertices for a graph generated using the Erdés-Rényi
[41] model with 40 vertices. We set the probability p of adding an edge between two vertices
as 0.103. The reason is to produce graphs with an average degree of 4, i.e. the same as the graph
generated using the Watts-Strogatz model. The graph generated using the Erdés-Rényi model, with
40 vertices and p = 0.103, does not exhibit significant symmetric structures. Therefore, only a pair
of vertices contributes to the presence of the eigenvalues 4 = =£1. Additionally, only three vertices
contribute to the presence of the eigenvalue 4 = 0, two of which are leaf vertices, and one is an
isolated vertex. Due to the lack of symmetry, some vertices contribute more than others to the largest
eigenvalue (41).
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Figure S. The darker red the vertex is, the higher its contribution to the considered eigenvalue. (a)
Example of a graph generated with the Barabasi-Albert model with a scaling parameter y = 3.0 and mean
degree m = 2. (b) The spectral density of the graph described in panel (a). (c) Vertices related to the
eigenvalue -1 (p;(4 = —1)). (d) Vertices related to the eigenvalue +1 (p;(1 = +1)). (e) Vertices related
to the eigenvalue 0 (p;(1 = 0)). (f) Vertices related to the largest eigenvalue (p;(4 = 11)). To obtain the
contribution of each vertex to a particular eigenvalue, we used Equation (3.3) with ¢ = 0.01.

Alt text: Visualization of vertex contributions to specific eigenvalues in a Barabasi-Albert graph with
scaling parameter y = 3.0 and mean degree m=2. Panel (a) displays the graph structure. Panel (b) shows
the graph’s spectral density. Panels (c-f) highlight vertex-wise contributions to the eigenvalues -1, +1, 0,
and the largest eigenvalue (41), respectively. Vertex color intensity (darker red) represents a higher
contribution of that vertex to the corresponding eigenvalue.

Figure 7 shows the contribution of the vertices for a graph generated using the Erdés-Rényi [41]
model with 40 vertices. We set the probability p of adding an edge between two vertices as 0.051. The
reason is to produce graphs with an average degree of 2, i.e. the same as the graph generated using
the Barabdsi-Albert model. The graph generated using the Erdés-Rényi model, with 40 vertices
and p = 0.051, does not exhibit significant symmetric structures. Therefore, only a pair of vertices
contributes to the presence of eigenvalues 4 = % 1. Several leaf and isolated vertices also contribute
to the eigenvalue A = 0. We observe that the vertices with the highest degrees contribute more to
the largest eigenvalue (41).
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Figure 6. The darker red the vertex is, the higher its contribution to the considered eigenvalue. (a)
Example of a graph generated with the Erdés-Rényi model with probability p of adding an edge between
two vertices as 0.103. (b) The spectral density of the graph is described in panel (a). (c) Vertices related to
the eigenvalue -1 (p;(1 = —1)). (d) Vertices related to the eigenvalue +1 (p;(A = +1)). () Vertices
related to the eigenvalue 0 (p;(4 = 0)). (f) Vertices related to the largest eigenvalue (p;(1 = 11)). To
obtain the contribution of each vertex to a particular eigenvalue, we used Equation (3.3) with ¢ = 0.01.
Alt text: Visualization of vertex contributions to specific eigenvalues in an Erdés-Rényi graph with edge
probability p = 0.103. Panel (a) shows the graph structure. Panel (b) displays the graph’s spectral density.
Panels (c-f) illustrate vertex-wise contributions to the eigenvalues -1, +1, 0, and the largest eigenvalue
(21), respectively. Darker red coloring indicates a higher contribution of a vertex to the corresponding
eigenvalue.

Henceforth, considering Equation (3.4), the vertex-wise spectral density of a graph depends on
the eigenvector localization [34]. This means that the importance of a vertex for a given eigenvalue
A relies on the magnitude of the i-th element of all eigenvectors whose associated eigenvalue is 4.

To show that our proposed measure is distinct and captures information that classical centrality
measures do not, we generated 100 graphs with 40 vertices using the following random graph
models:

Watts-Strogatz with parameters d = 4 and p,, = 0.0.

Watts-Strogatz with parameters d=4and pw = 0.10.

Barabési-Albert with parameters m = 2 and y = 0.5.

Barabasi-Albert with parameters m = 2 and y = 3.0.

Erdés-Rényi graph with parameters p = 0.103 (generating graphs with an expected average
degree of 4).
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Figure 7. The darker red the vertex is, the higher its contribution to the considered eigenvalue. (a)
Example of a graph generated with the Erdés-Rényi model with probability p of adding an edge between
two vertices as 0.051. (b) The spectral density of the graph is described in panel (a). (c) Vertices related to
the eigenvalue -1 (p;(1 = —1)). (d) Vertices related to the eigenvalue +1 (p;(4 = +1)). () Vertices
related to the eigenvalue 0 (p;(4 = 0)). () Vertices related to the largest eigenvalue (p;(1 = 11)). To
obtain the contribution of each vertex to a particular eigenvalue, we used Equation (3.3) with & = 0.01.
Alt text: Visualization of vertex contributions to specific eigenvalues in an Erdés-Rényi graph with edge
probability p = 0.051. Panel (a) shows the graph structure. Panel (b) displays the graph’s spectral density.
Panels (c-f) illustrate vertex-wise contributions to the eigenvalues -1, +1, 0, and the largest eigenvalue
(21), respectively. Darker red coloring indicates a higher contribution of a vertex to the corresponding
eigenvalue.

e Erdés-Rényi graph with parameters p = 0.051 (generating graphs with an expected average
degree of 2).

For each graph, we computed the degree, eigenvector centrality, closeness centrality, betweenness
centrality, and clustering coeflicient [42], along with the vertex importance for the eigenvalues —1,
0, 1, and the largest eigenvalue (1;) using & = 0.01. We then calculated the Spearman correlation
between our proposal and these measures. Table 1 presents the mean Spearman correlation and its
standard deviation across the 100 graphs.

The vertex contribution for the largest eigenvalue (1) strongly correlates with most centrality
measures, particularly eigenvector centrality. This high correlation is expected, as the contribution
of a vertex to A incorporates the entries of its corresponding eigenvector, which, in turn, is closely
related to the degree of each vertex [43]. Consequently, other centrality measures—except for the
clustering coeflicient—also show some correlation [44, 45].

Regarding the relationship between centrality measures and the vertex contributions to the
eigenvalues —1, 0, and 1, we do not observe strong or consistent correlations as we do with ;.
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Table 1. Mean and standard deviation of the Spearman correlation between a centrality measure and the
vertex contribution for a particular eigenvalue.

Eigenvalue (1)

Measure
1 0 1 M
Degree - - - -
Eigenvector —0.01 + 0.03 —0.02 £ 0.03 —0.02 £ 0.03 0.02 £ 0.09
Watts-Strogatz d = 4, p,, = 0 Closeness - - - -
Betweenness —0.11 £ 0.00 0.04 £ 0.00 —0.17 £ 0.00 0.77 £ 0.00
Clustering - - - -
Degree —0.09 £ 0.15 —0.11 £0.17 —0.09 £ 0.16 0.85 £ 0.06
Eigenvector —0.06 +0.15 —0.09 £ 0.18 —0.06 +0.19 1.00 £+ 0.00
Watts-Strogatz d = 4,p,, = 0.10  Closeness —023+016 —013+0.18 0.06 £0.18 0.66 £ 0.12
Betweenness  —0.25 £ 0.15 —0.12 +0.17 0.07 +0.17 0.55 £0.13
Clustering 0.35+£0.16 0.07 £+ 0.17 —0.21 £0.18 —0.24 +0.21
Degree —0.29 +0.13 —0.56 +0.18 —0.28 +0.17 0.79 + 0.06
Eigenvector —0.26 £ 0.13 —0.32 £ 0.17 —0.23 £ 0.16 1.00 £ 0.00
Barabasi-Albertm =2,y = 0.5  Closeness —028+013 —035+017 —0.24=+0.15 0.94 4 0.03
Betweenness  —0.29 £ 0.14 —0.52 +£0.17 —0.25+0.17 0.7 £ 0.08
Clustering —0.02 +0.16 —0.12 + 0.14 —0.21 £0.17 0.54 +0.13
Degree 0.24 £ 0.24 —0.55 £ 0.07 0.24 £0.28 0.46 £ 0.12
. . Eigenvector —0.13 +0.28 0.03 £0.15 —0.14 = 0.24 0.59 £+ 0.22
Barabisi-Albertm =2,7 =30 P 004£033 —028+023 006+033  0.58+0.8
Betweenness 0.25 +0.25 —0.56 +0.10 0.26 +0.29 0.41 +0.17
Clustering —0.24 £ 0.27 0.53 +0.17 —0.26 £0.3 —0.38 £0.22
Degree —0.19 +£0.18 —0.43 +£0.19 —0.21 £0.17 0.88 £ 0.05
Eigenvector —0.14 £ 0.19 —0.29 £ 0.18 —0.18 £ 0.17 1.00 £ 0.00
Erdés-Rényi p = 0.103 Closeness —0.17 £ 0.19 —-033+017 —0.17+0.17 0.91 &£ 0.07
Betweenness —0.19 £ 0.17 —0.46 £0.18 —0.19 £ 0.16 0.72 £ 0.10
Clustering 0.06 = 0.16 —0.13+£0.15 —0.17 & 0.17 0.49 £0.16
Degree 0.18 +0.18 —0.71 £ 0.12 0.18 £ 0.17 0.83 = 0.07
Eigenvector 0.16 £ 0.22 —0.42 1+ 0.16 0.17 £0.2 0.98 £0.12
Erdés-Rényi p = 0.051 Closeness 0.29 £0.19 —0.53 £0.12 0.29 £0.21 0.67 £ 0.25
Betweenness 0.05 £+ 0.16 —0.6 £0.12 0.07 £0.15 0.73 £ 0.08
Clustering - - - -

*-12pt

We (I:,)onsidered 100 graphs generated using the Watts-Strogatz, Barabasi-Albert, and Erdés-Rényi
models with different parameters. We computed the degree, eigenvector, closeness, betweenness,
and clustering centrality, along with the vertex contributions for the eigenvalues —1, 0, 1, and 4;,
using ¢ = 0.01. “~” indicates that the centrality measure and the vertex contribution for a particular
eigenvalue are constants. Therefore, the Spearman correlation is not defined.

This is because contributions to non-dominant eigenvalues often capture more subtle structural
properties than centrality-related aspects.

Finally, to study the effect of choosing the parameter &, we consider a graph generated by the
Watts-Strogatz model with an average degree of 4, a rewiring probability of 0.10, A = —1, and
e € {1071,1072,1073,10™*}. Since ¢ acts as a smoothing parameter [27] and Equation (2.5)
relates the entries of the eigenvector to the importance of the vertex, we expect that as ¢ approaches
0, the importance of a vertex to a particular eigenvalue becomes the weighted sum of the entries of
the eigenvector corresponding exclusively to 4 = —1. For large ¢, the contribution of a vertex to
a particular eigenvalue also considers the eigenvector entries corresponding to eigenvalues close to
A=-1

Figure 8 shows the effect of € on vertex contribution. As ¢ decreases, fewer vertices exhibit a
large contribution. This occurs because, for small values of ¢, the weighted sum of the entries of the
eigenvectors corresponding to the eigenvalue —1 carries more weight than the entries associated
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1
400 800 1200
Figure 8. The darker red the vertex is, the higher its contribution to the eigenvalue —1 of a graph
generated with the Watts-Strogatz model with a rewiring probability of 0.10 and mean degree 4. (2)
Contribution of each vertex when & = 107L. (b) Contribution of each vertex when & = 1072. (c)
Contribution of each vertex when ¢ = 1073. (d) Contribution of each vertex when ¢ = 1074,
Alt text: Four heatmaps showing vertex-wise contributions to the eigenvalue -1 in a graph generated by
the Watts-Strogatz model with rewiring probability 0.10 and mean degree 4. Panels (a-d) show the
contributions using different values of £:10-1, 10-2, 10-3, and 10-4, respectively. Vertices are colored in
shades of red, where darker red indicates a higher contribution to the eigenvalue. The progression across
panels demonstrates how the resolution of the spectral decomposition changes with decreasing ¢.

with other eigenvalues. Additionally, as ¢ decreases, the contribution of the vertices scales as
O(¢™1). Using & = 0.01 already yields the same results as using smaller values.

4. APPLICATION

As a first application, we obtain the vertex-wise spectral density decomposition of two isospectral
molecules [46]: 1,4-Divinylbenzene and 2-Phenylbutadiene. Since these molecules are isospec-
tral with eigenvalues {—2.214, —1.675, —1.000, —1.000, —0.539, 0.539, 1.000, 1.000, 1.675, 2.214},
their spectral densities are equal. Figure 9 shows the graph representations of 1,4-Divinylbenzene
and 2-Phenylbutadiene in panels (a) and (b), respectively. Notice that although they are isospectral,
they are not isomorphic. Panels (c) and (d) display the vertex-wise decompositions of the graphs
described in panels (a) and (b), respectively. Both molecules are composed only of carbon. Thus, we
had to identify which atom of 1,4-Divinylbenzene corresponds to which atom of 2-Phenylbutadiene.
To this end, we constructed a distance matrix among the vertex-wise densities of the two molecules.
Then, we applied the Hungarian algorithm [47] to determine the assignment that minimizes the
total L, distance.

Finally, panels (e) and (f) show the vertex-wise densities of the vertices with the smallest (vertex
2) and largest (vertex 9) L, distances, represented by solid and dotted lines, respectively. In panel
(e), we observe only one line. This is because the L, distance between the vertex-wise densities of

G20z AInf 1.z uo 1asn DS 33 - ojned 0eS ap apepisieAlun Aq 029281.8/€ | 0JBUS/Y/E L /AI01HE/12UWO0/W00" dNO"0jWaPEDE//:Sd)Y WOl PapEOjuMO(



14 . Guzmanetal.

oE o
2 2-
0| 0]
2o =
& &
< <
AN AN
o o
2 0 1 2 2 10 1 2
h h

Figure 9. Graph representation of 1,4-Divinylbenzene (a) and 2-Phenylbutadiene (b), along with their
respective vertex-wise decompositions in panels (c) and (d). We assigned the vertex labels using the
Hungarian algorithm [47] to find the combination that minimizes the L, distance between the vertex-wise
densities of the graph vertices. Finally, panels (e) and (f) show the vertex-wise densities of the vertices
with the smallest (vertex 2) and the largest (vertex 9) L, distances, represented by solid and dotted lines,
respectively. We observe that the vertex-wise densities of vertex 2 are equal, i.e. their L, distance is close to
zero (panel (e)). This means that vertex 2 has a similar local neighborhood. On the other hand, the
vertex-wise densities of vertex 9 are different (panel (f)). This means that vertex 9 has a very different local
neighborhood. We set ¢ = 0.01 to obtain the vertex-wise decomposition.

Alt text: A figure comparing the graph structures and vertex-wise spectral decompositions of two
chemical compounds: 1,4-Divinylbenzene (panel a) and 2-Phenylbutadiene (panel b). Panels (c) and (d)
show each graph’s vertex-wise spectral density decompositions, using vertex labels assigned by the
Hungarian algorithm to minimize the L2 distance between corresponding vertices. Panels (e) and (f)
display the spectral densities of the vertices with the smallest (vertex 2) and largest (vertex 9) L2
distances, represented by solid and dotted lines, respectively. Panel (&) shows nearly identical densities,
indicating similar local neighborhoods, while panel (f) reveals distinct densities, reflecting structural
differences. All decompositions were computed using & =0.01.
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— Normal
— Tumoral

20 30

Figure 10. Spectral densities of the normal and tumoral gene networks. We can observe two peaks in
spectral densities, one at —1 and another at 0 (dashed lines). Among them, the eigenvalue with the largest
difference between normal and tumoral spectral densities is when 4 = 0. We set ¢ = 0.01 to obtain the
importance of each vertex.

Alt text: A line graph comparing the spectral densities of normal and tumoral gene networks. Two
prominent peaks are visible near the eigenvalues -1 and 0, indicated by dashed vertical lines. The most
significant difference between the two curves occurs at 4 = 0, suggesting this eigenvalue is key in
distinguishing the two networks. The spectral densities were computed using ¢ = 0.01.

vertex 2 in the graphs from panels (a) and (b) is close to zero (i.e. smaller than 10~10), even though
the overall structures of the graphs are different. This indicates that the weighted sum of their closed
walks, where shorter walks have more significant weight (see Equation (2.6)), is equal, meaning
that their local neighborhoods (considering vertices up to a distance of 2) are identical. In contrast,
panel (f) displays a solid and a dotted line, indicating that these vertices have the most dissimilar
local neighborhoods among the assignments.

As a second application, we consider the normal (1,408 vertices and 6,904 edges) and tumoral
(1,408 vertices and 7, 018 edges) breast gene interaction networks collected from [48] for illustra-
tion. We selected the largest connected component, which shared the same genes in both networks.
Thus, we analyzed a normal network comprising 1, 319 vertices and 6,904 edges and a tumoral
network comprising 1, 319 and 6, 702 edges. We compared the two gene interaction networks using
the semi-parametric analysis of graph variability (ANOGVA) test with 1000 bootstrap samples
[17]. Briefly, the semi-parametric ANOGVA tests whether the estimated parameters of two or more
random graph models are equal based on the graph’s spectral densities. Following the literature,
we considered that both networks were generated by a Barabési-Albert model [49, 50]. The semi-
parametric ANOGVA test estimated as parameters 1.226 for the normal and 1.430 for the tumoral
gene interaction networks, and a P value < 0.001. Therefore, we have statistical evidence that the
estimated parameters are significantly different.

The next step in the analysis is identifying which genes or structures are different between the
two gene interaction networks. To this end, we analyzed the graphs’ spectral densities. Figure 10
shows the spectral densities of the normal and tumoral gene interaction networks. Visual inspection
reveals that the differences between the spectral densities occur at eigenvalues —1 and 0. This finding
aligns with previous works [25, 35, 36], which report that real-world networks exhibit degeneracies
at these values. Then, we identified the genes related to these eigenvalues using the approach we
proposed in Section 3 using Equation (3.3) with¢ = 0.01and A = —1,0.

G20z AInf 1.z uo 1asn DS 33 - ojned 0eS ap apepisieAlun Aq 029281.8/€ | 0JBUS/Y/E L /AI01HE/12UWO0/W00" dNO"0jWaPEDE//:Sd)Y WOl PapEOjuMO(



16 - Guzmanetal

Normal Tumoral
(a) THOCS AKAP9
THOC7 THOC4
THOC7
THO
THREZ STRAP GHoC!
THOCG6
THOCI
THOLS KIFI5 RPS6KA4
SH3PXD2A
KTNI BCAS3
THOC4 TEX1 PSMD1
(b) THOCS PSME2
THEE THOC7
TEXI
TH&EE THOCI
THOC4 TEX1 MAPK12
(c) GPSM2 TRP2
vcrs) | TRIM28
CcDKLs / CAD RPS6KA2
ERBB4 DLGI TSED10
GPSM1 DLG3 LRP2
PTK2B ABCAl
DLG3
AEC RPS6KAZ om0 ENSG00000224156
SD17B10
GRIK2
EXOC4 COL11A1

Figure 11. Egocentric networks of the three genes (red colored) with the largest difference in the vertex
contribution for eigenvalue —1 between normal (left) and tumoral (right) gene interaction networks.
Notice that the structure of egocentric networks changed considerably between conditions.

Alt text: Egocentric networks of the three genes (in red) with the largest difference in vertex contribution
for eigenvalue -1 between normal (left) and tumoral (right) gene interaction networks. The structure of
the egocentric networks changed considerably between conditions.

Figure 11 shows the three genes (and respective egocentric networks, i.e. the subnetwork com-
prising the referred gene and its direct neighbors) that most contribute to eigenvalue —1 differently
between normal and tumoral gene interaction networks. Observe that the structure of egocentric
networks centralized on genes THOC6, TEX1, and DLG3 differs between normal and tumoral
conditions. THOC6 and TEX1 have the same neighborhood in the normal gene network. Also,
their neighbors are fully connected. This means that THOC6 and TEX1 are symmetric vertices
and are responsible for the —1 eigenvalue [26]. Since our proposed measure is associated with
eigenvector localization, the genes with the highest importance may correspond to vertices where
the eigenvectors related to the —1 entries are localized.

5. CONCLUSIONS

This work introduces the vertex-wise graph’s spectral density decomposition, which measures the
contribution of each vertex to a particular eigenvalue. We demonstrate the relationship between the
vertex-wise spectral density, eigenvector localization, and the number of closed walks. We applied
the vertex-wise graph’s spectral density decomposition to identify atoms and genes with differential
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connectivity in two conditions. We propose that analyzing vertex-wise spectral density enables us
to uncover new structures in empirical graphs.
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