

20 a 23 de outubro de 2025

Majestic Hotel - Águas de Lindóia - SP - Brasil

Optimizing electrochemical H_2O_2 generation in a concentric cube reactor for the degradation of water contaminated with the herbicide Atrazine

Andre Luis C. Souza^{1*}, Raul J. A. Felisardo¹, Marcos R. V. Lanza¹

¹Institute of Chemistry of São Carlos (IQSC), University of São Paulo (USP), Av.

Trabalhador São Carlense, 400, Parque Arnold Schimidt, São Carlos, SP, 13566-590,

Brazil

e-mail: andreluis49@usp.br

The study aimed to optimize the operational conditions of a concentric cube electrochemical reactor for the in situ production of hydrogen peroxide (H₂O₂) and to apply this system to the treatment of water contaminated with the herbicide atrazine. H₂O₂ generation was carried out using gas diffusion electrodes (GDE) based on Printex L6 carbon, developed according to a standard method established by the research group (1). Optimization was performed using a Central Composite Rotatable Design (CCRD) with a 2⁴ factorial design, varying the K₂SO₄ concentration, current density, oxygen flow rate, and pH. The response variable was the H₂O₂ concentration after 30 minutes of electrolysis, and statistical analysis yielded a regression model with $R^2 = 0.96$, identifying current density and pH as the most influential factors. After optimization, the system was applied to the degradation of atrazine through different oxidative processes: (i) anodic oxidation with H_2O_2 (AO/ H_2O_2), (ii) AO/ H_2O_2 combined with UV-C irradiation (AO/H₂O₂/UV-C), (iii) AO with UV-C (AO/UV-C), (iv) anodic oxidation alone (AO), and (v)UV-C alone. In processes without H_2O_2 , nitrogen (N_2) was used instead of oxygen (O_2) . Among the tested processes, AO/H₂O₂/UV-C showed the highest degradation and mineralization efficiency, mainly due to the generation of highly reactive hydroxyl radicals (•OH) through UV-C activation of H₂O₂. These results demonstrate that the concentric cube electrochemical reactor, under optimized conditions for H₂O₂ production, is a promising alternative for advanced treatment technologies targeting water contaminated with recalcitrant organic compounds.

Acknowledgments: This study was financed, in part, by the São Paulo Research Foundation (FAPESP), Brazil (Process Number #2023/16462-5, #2023/13260-2, #2022/12895-1) and the Brazilian National Council for Scientific and Technological Development – CNPq (grant #303943/2021-1).

References: [1] Souto, R.S., Souza, L.P., Cordeiro Junior, P.J.M., Ramos, B., Teixeira, A.C.S.C., Rocha, R.S., Lanza, M.R. V, 62, Ind. Eng. Chem. Res. (2023).