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ABSTRACT

Rainfall forecasting through machine learning can play a crucial role in several areas, such as agriculture, energy, infrastructure, and public
safety. The machine learning models have the ability to anticipate climate patterns and extreme events, allowing plantation planning, water
resource management, and forecasting energy demands, as well as adopting preventive measures against natural disasters. In this work, we
explore three machine learning models (random forest, long short-term memory, and bidirectional long short-term memory) to predict the
amount of precipitation in five Brazilian regions (South, Southeast, Central-West, Northeast, and North). We use three-variable reanalysis
climate data: local temperature, Atlantic Ocean temperature, and total precipitation. The models are trained by means of the local and Atlantic
Ocean temperatures as input features and the total precipitation as a label. Our results indicate that all models perform satisfactorily in their
predictions. We verify that the random forest exhibits average absolute errors less than the errors related to the recurrent neural network
models. Our results show the effectiveness of machine learning models in predicting rainfall patterns.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0259222

Rainfall is an atmospheric phenomenon that impacts not only
the local weather but also the global atmospheric circulation.
The analysis of precipitation plays a crucial role in the hydro-
logic cycle, ecosystem processes, and climate patterns. Various
approaches and algorithms of machine learning have been used
by researchers for rainfall forecasting. In this work, we ana-
lyze the precipitation in Brazilian regions by means of machine
learning models. For the rainfall forecasting, we use random
forest, long short-term memory, and bidirectional long short-
term memory. To do that, we consider the Atlantic Ocean
and local temperatures, as well as previous precipitation data.
Our findings demonstrate a good accuracy for rainfall pre-
diction in Brazil using some techniques related to machine
learning.

. INTRODUCTION

In Brazil, the rainfalls exert a significant influence on the
country’s economy, especially due to its close relationship with
key sectors, such as agriculture and energy production. Brazil
is one of the largest agricultural producers in the world, hence
a reliable and accurate rainfall forecast is extremely important.'
These forecasts play a crucial role in the production of crops,
such as soybeans, corn, coffee, and sugar cane. Adequate rainfall
during the planting and growing seasons is essential to ensur-
ing healthy and abundant harvests. However, periods of prolonged
drought” or excessive rainfall can result in crop failures, negatively
impacting farmers and the entire supply chain. Therefore, a highly
accurate forecast is essential for farmers to plan their activities
appropriately.
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The rainfall is one of the most complex meteorological
phenomena’ due to its non-linear nature and the variety of factors
involved in its occurrence. Even in seemingly similar weather condi-
tions, the chance of rainfall can vary considerably from one moment
to the next. In the past, weather forecasting was often associated
with the image of meteorologists interpreting meteorological maps
based on their experience and theoretical knowledge accumulated
over the years.”” In recent years, machine learning® has become a
powerful tool when it comes to rain forecasting. Through sophis-
ticated algorithms and analysis of historical data, it is possible to
develop models capable of anticipating weather patterns and pro-
viding more accurate predictions about when and where rainfall can
occur. The historical rainfall data is essential for training machine
learning models, allowing them to learn from past patterns and
make future predictions. The algorithms used in rainfall forecasting
can range from simple models, such as linear regression,” to more
complex models, such as artificial neural networks® and decision tree
algorithms.’

One of the challenges in forecasting rainfall is dealing with
the complex and dynamic nature of weather,'” which can be influ-
enced by a variety of factors,'' as well as long-term climate change.'”
Various studies have demonstrated the efficiency of algorithms
in predicting rainfall. Markuna et al.”” studied the application of
four machine learning techniques for long-term rainfall predic-
tion. Machine learning models were used to predict Indian summer
monsoon rainfall." Sahai et al."” employed the error backpropaga-
tion algorithm to predict summer monsoon rainfall in India using
monthly and seasonal time series. They based their predictions on
data from the previous 5 years of average monthly and seasonal
precipitation values. Philip and Josheph'® adopted the neural net-
work (adaptive basis function) to predict the annual rainfall in the
Kerala region. Poornima and Pushpalatha,'” using a long short-
term memory (LSTM) based intensified recurrent neural network
with weighted linear units, demonstrated the importance of accu-
rate rainfall forecasting in meteorology and showed a new approach
using deep learning techniques. Somvanshi et al.' carried out rain-
fall forecasts in the Hyderabad region, India, utilizing an artifi-
cial neural network (ANN) model. They conducted a comparison
between ANN and the autoregressive integrated moving average
(ARIMA) technique. To feed the neural network model, they used
precipitation data from the last 4 months. Wu et al."” carried out
rainfall forecasts in India and China using the modular artificial neu-
ral network (MANN). They compared the performance of MANN
with logistic regression (L), k-nearest neighbor (KNN), and ANN
methods. Aswin et al.”’ showed that the LSTM and ConvNet archi-
tectures contribute to rainfall forecasting, effectively capturing tem-
poral and spatial patterns in the data, respectively. Caseri et al.”
addressed heavy rainfall forecasting by means of weather radar data
and convolutional recurrent neural networks (CNN-LSTM). Con-
sidering LSTM, de Araujo et al.”’ proposed an approach to predict
extreme precipitation events in the southeast region of Brazil. Using
ANNS, Esteves et al” introduced a softcomputing technique to
predict the occurrence of rainfall over short periods of time.

In this work, we focus on the rainfall forecasting in the five
Brazilian regions (South, Southeast, Centalr-West, Northeast, and
North). We consider the Atlantic Ocean temperature (divided
into Atlantic and South Atlantic), local temperature, and previous
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precipitation data. Previous works reported the strong relationship
between Atlantic meteorological conditions and the region’s precip-
itation regime.”*~*" For the predictions, we use three models: random
forest, LSTM, and bidirectional LSTM. We demonstrate that these
machine learning models are able to predict precipitation in Brazil-
ian regions. They perform satisfactorily in their predictions when
trained with data on climate variables. Moreover, in our simula-
tions, we do not find significant improvement in forecasting across
the three techniques related to machine learning. We show that the
random forest algorithm exhibits the smallest average absolute error
value compared with LSTM and bidirectional LSTM.

In our study, the main novelty is the rainfall forecast in five
Brazilian regions considering not only the local temperatures but
also the Atlantic Ocean temperatures. In addition, we do not observe
a significant improvement in the forecasting when previous pre-
cipitation data are added in the training of the machine learning
algorithms.

This paper is structured as follows: in Sec. II, we describe
the machine learning methods as data acquisition and processing.
Section I1I is devoted to present and discuss our results. Finally, our
conclusions are drawn in Sec. I'V.

Il. METHODS

We collect the data from the Copernicus program
(www.copernicus.eu/en). Copernicus is the Earth observation com-
ponent of the European Union’s space program, which records and
analyzes data about our planet and its environment from 1940 to
2023. The data are the monthly averages for each region, measured
by the average of their values between the latitudes and longitudes
for each region, as shown in Table I. The average is taken over
the range of the coordinates with a precision of 0.25. We utilize
the temperature measured 2 m from the surface, ocean temperature
measured 2 m from the surface, and total precipitation in meters.

When there are many outliers in the data set, a standardization
technique can reduce the error in the results. In this work, we use
the Robust Scaler method, which works by subtracting the median
[med(X)] from the data (X) and scaling in the interval between the
first (Q;) and the third (Qs) quartiles. The Robust Scaler equation is
given by

x; — med(x)

RS(x,-):7Q o (1)
3 1

TABLE |. Latitude and longitude of each region where the reanalysis data were
obtained.

Longitude Latitude
Regions (West, East) (North, South)
South (—57.6, —48.35) (—22.72, —33.72)
Southeast (—52.97, —39.97) (—14.54, —25.29)
Midwest (—61.47, —46.22) (=7.91, —23.66)
Northeast (—48.51, —35.01) (—1.3,—18.3)
North (—73.73, —46.23) (5.21, —13.56)
Atlantic (—49.2,—17.2) (12.25, —34,12)
South Atlantic (—65.73, —56.19) (=342, —56.19)
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FIG. 1. Temperature as a function of years for (a) South, (b) Southeast, (c) Midwest, (d) North, and (e) Northeast. The curve represents the annual averages and the bars
correspond to the monthly temperatures for each year. The temperature scale is measured in degrees Celsius (°C).
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FIG. 2. Total precipitation as a function of years for (a) South, (b) Southeast, (c) Midwest, (d) North, and (e) Northeast. The curve represents the annual averages and the
bars correspond to the monthly total precipitation for each year. The total precipitation scale is measured in meters (m).

The median and interquartile range (Q; — Q;) are stored and used concept of Ensemble Learning, which combines multiple mod-
in future data as the transformation applied in the forecast. els to improve prediction accuracy. It comprises multiple decision

In our simulations, we chose to use the Random Forest (RF)’ trees and is known for its effectiveness in handling complex data
algorithm. RF is a supervised learning algorithm based on the sets and reducing overfitting. RF uses an initial data set (D) to
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generate predictions or classifications through multiple decision
trees.

Long short-term memory (LSTM) models capture long-term
dependencies in sequential data. They stand out for their ability
to retain and select information within the model’s memory cell,
using specialized control mechanisms such as forget, input, and
output gates. Due to their complex architecture, which includes
gate operations controlled by sigmoid functions and hyperbolic tan-
gent functions,” LSTMs are capable of handling and processing
sequential information in extended sequences.

Successful applications of LSTM networks cover areas such as
human trajectory prediction, traffic prediction, speech recognition,
and weather forecasting. These RNN cells have the ability to capture
dependencies from at least two previous states as well as the current
state. The evanescent gradient problem is reduced by incorporat-
ing three gates along with the hidden state. These gates, commonly
known as entry, exit, and forget gates, regulate how much infor-
mation from the new state is relevant. The input port defines how
much information from the new state is used. The output port deter-
mines the amount of information used from previous states. The
forget gate controls the amount of internal state information that
is transmitted to the next layer. The LSTM model equations are
defined as

ft = O‘g(fot + Ufht,l + bf),
it = og(W,-x[ + U,'I’ltfl + b,‘);

0y = Ug(Woxt + Uoht—l + bo)) (2)
zt = o (Wex; + Ucht—l + bc)a
Ct :ﬁQthl +it®Et>

hy = 0; © ou(cy),

where x; is the input vector to the LSTM unit, A, is the hidden state
vector (output vector of the LSTM unit), f; is the forget gate’s activa-
tion vector, o, is the sigmoid function, o, is the hyperbolic tangent
function, oy, is the hyperbolic tangent function or o;,(x) = x, iy is the
input/update gate’s activation vector, o, is the output gate’s activa-
tion vector, ¢ corresponds to the cell input activation vector, and h;
is the hidden state vector.

During the training, the weight matrices (W and U) and bias
vectors (b) are the learnable parameters. The operator © denotes the
element-wise multiplication (Hadamard product). Stacked LSTM
networks are composed of two or more LSTM networks successively
connected as hidden layers. This stacked architecture can provide, in
some applications, a higher level of representation of time series data
than individual LSTM networks.

We also compute bidirectional long short-term memory
(LSTM), that is, a variation of RNNs capable of learning depen-
dencies on previous and future states. This type of architecture has
shown good results in domains such as natural language process-
ing for speech and handwriting recognition. Bidirectional LSTM
involves LSTM cells that capture left-to-right time series data (stan-
dard LSTM cells) and LSTM cells that capture data in reverse.””
The architecture of a bidirectional network-LSTM has two hidden
layers. Replacing RNN cells with LSTM cells in bidirectional RNN
results in bidirectional-LSTM networks.
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11l. RAINFALL FORECAST IN BRAZIL

In this work, our objective is to demonstrate that, despite rain-
fall being a complex time series, it is possible to make predictions
with high accuracy using machine learning models, such as Random
Forest and LSTM. In order to simplify and make the model more
robust, we chose to use as few variables as possible as input charac-
teristics in our models, focusing mainly on the climate variables of
local temperature (Fig. 1), Atlantic Ocean temperature (Fig. 2) and
delayed data on total precipitation (Fig. 3). In our simulations, the
length of the training set is equal to 806 and the length of the test
set is equal to 202, where the attributes are related to the climate
features.

In Fig. 1, the temperature reanalysis data are exhibited over the
years, covering the interval from 1940 to 2023. The graphs show the
temperatures measured in the five regions of Brazil (South, South-
east, Midwest, North, and Northeast). Figure 2 displays the total
precipitation in each region, also using the reanalysis data from 1940
to 2023. Figure 3 shows the temperature data for the Atlantic Ocean
and South Atlantic in blue and orange, respectively.

Figure 4 displays the correlation matrices between the climate
variables in each region. We analyze the correlations between the
climate variables (Atlantic and South Atlantic) related to the tem-
perature and total precipitation. In Fig. 4(a), which corresponds to
the South region, it is observed that the correlations are less than 0.5,
indicating a low correlation between the temperature and precipita-
tion. Analyzing the Southeast region [Fig. 4(b)], we verify a more
significant correlation, with emphasis on the temperature which
exhibits a stronger correlation, above 0.5. This pattern is repeated
in the Central-West region [Fig. 4(c)]; however, it is the tempera-
ture of the Atlantic Ocean that shows the greatest correlation. It is
important to highlight that, despite these stronger correlations, we
see a relatively low correlation pattern in these three regions.

—— Atlantic
- mww
:J 25;
2 24
=
©
o 23
£ A
20
1940 1960 1980 2000 2020

Year

FIG. 3. Temperature as a function of years, the curve represents the annual aver-
age, and the bars are the monthly averages. The temperatures are measured in
the Atlantic (blue) and South Atlantic (orange) Oceans.
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FIG. 5. Rainfall prediction for the five regions
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orange lines are the actual and predicted val-
ues for (a) South, (b) Southeast, (c) Midwest,

(d) Northeast, and (e) North.
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TABLE Il. The mean absolute error (MAE) for each region considering without (sec-
ond column) and with (third column) rainfall. It includes local temperature and ocean
temperature, both lagged by 2 months.

Regions MAE (no rainfall) MAE (with rainfall)
South 6.7 x 1074 6.5x 107*
Southeast 7.5 x 107* 7.5x 1074
Midwest 9.2 x107* 6.0 x 107*
Northeast 8.4 x10™* 5.5x 107*
North 7.2 x107* 6.0 x 10~*

Analyzing the northernmost regions of Brazil, a change in the
correlation matrix is notable. In this area, practically, all variables
exhibit correlations above 0.5, with some reaching higher values,
such as 0.7 and 0.8. This significant increase in the correlations sug-
gests a more robust relationship between climate variables and total
precipitation in the northern regions of Brazil.

In the northern region [Fig. 4(d)], where most of the Ama-
zon forest is located, we see that the ocean temperature has a high
correlation in relation to the rainfall profile, with emphasis on the
northernmost Atlantic region, which has a correlation equal to 0.86.
An interesting behavior is the negative correlation in relation to the
temperature. In the northeast region [Fig. 4(¢)], we also observe a
large correlation in relation to precipitation and ocean temperature
profiles, with emphasis on the northernmost Atlantic Ocean region
and a correlation equal to 0.73. The South Atlantic Ocean region has
a correlation with a value equal to 0.70. A temperature with a value
of —0.02 shows a zero correlation with the precipitation.

Random forest is a supervised learning method that uses
Ensemble Learning, combining multiple models to improve predic-
tion accuracy. It comprises multiple decision trees and is recognized
for its effectiveness in handling complex data sets and reducing over-
fitting. For the training process, we first separate the samples into
70% and 30% for the training and test, respectively. To predict the
amount of precipitation (y; + «), we consider as input SSTN;, SSTS;,
and T;,

(yi+01) = f(SSTN,, SSTS,, T,', )/1) (3)

The training objective is to find the best function fthat correlates the
inputs (SSTN;, SSTS;, T;, y;) with the output y; + «.

Two different learning processes are carried out. In the first
process, we use the local temperature and the Atlantic Ocean tem-
perature (North and South) as input. For the training phase, we
utilize the data with a size of 750 times, that is, all input data (local
and Atlantic Ocean temperatures) from 1940 to 2002, as shown in
Fig. 5. For the test, we consider data 258 in length (2002-2023). In
Table 11, we see that the model is able to predict precipitation with an
average absolute error with an order of ~107*. The best delay with
the best result is equal to 2 months (@ = 2).

In Fig. 6, we consider the temperatures and previous precipita-
tion data (2 month delay). It is not observed a significant improve-
ment in the results, as shown in Table II by means of the mean
absolute error. In the time series, we see that the southern region is
the noisiest; however, it is the one with the lowest prediction error.
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FIG. 6. Rainfall prediction for the five regions of Brazil considering the local
temperature, the temperature of the Atlantic Ocean (North and South), and pre-
vious precipitation data. The blue lines are the actual values and the orange
dashed lines are the predicted values for (a) South, (b) Southeast, (c) Midwest,
(d) Northeast, and (e) North.

The long short-term memory (LSTM) neural network, intro-
duced by Hochreiter and Schmidhuber,” was designed to address
the evanescent gradient problem, that is, a common challenge in
recurrent neural networks. During the training phase, the network
weights are updated iteratively using an error gradient to adjust
the network output. However, the calculation of this gradient can
become insignificant due to the long temporal range of temporal
sequences.”!

The LSTM neural network is trained with time series of climate
variables related to total precipitation. The sequences of climate
features are separated into 80% and 20% of training and test sets,
respectively. We used other partitions to split between training
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and testing data sets, for instance, 70% and 30%. The best results TABLE lll. The mean absolute error (MAE) for each region considering without (sec-
are obtained using an 80/20 split. The input data are normal- ond column) and with (third column) rainfall. It includes local temperature and ocean
ized through RobustScaler before entering the LSTM network. The ~ temperature, both lagged by 2 months (LSTM).

activation function is a specific non-linear sigmoid (S-shaped) func-

tion, the logistic function, which allows nodes to learn complex ~ Regions MAE (no rainfall) MAE (with rainfall)
structures.”” The loss function is given by the Mean Square Error South 2.0 x 103 20 x 102
(MSE) metric with the Adam optimizer.* Southeast 3'0 % 10-3 2.6 % 10-3
In this work, each sample/instance is composed of a sequence Midwest 3'2 « 10-3 3‘8 « 103
of five consecutive values, each with the values of the climatic char- Northeast 2'3 %103 3'1 %103
acteristics (local temperature, Northernmost Atlantic Ocean tem- North 2'1 %103 2.6 %103
perature, and Southernmost Atlantic Ocean temperature). To find i -
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FIG. 7. Rainfall prediction for the five regions of Brazil considering the local tem- ) o ) ) o
perature and the temperature of the Atlantic Ocean (North and South). The black FIG. 8. Rainfall prediction for the five regions of Brazil considering the local tem-
vertical line separates the training and testing region. The blue lines are the actual perature and the Atlantic Ocean (North and South) temperatures. The blue and
values and the orange dashed lines are the predicted values for (a) South, (b) orange lines are the actual and predicted values for (a) South, (b) Southeast, (c)
Southeast, (c) Midwest, (d) Northeast, and () North. Midwest, (d) Northeast, and (e) North.
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TABLE IV. The mean absolute error (MAE) for each region considering without (sec-
ond column) and with (third column) rainfall. It includes local temperature and ocean
temperature, both lagged by 2 months (bidirectional LSTM).

Regions MAE (no rainfall) MAE (with rainfall)
South 1.4 x 1073 1.4 x 1073
Southeast 28x1073 2.8 x 1073
Midwest 3.6x 1073 3.6 x 1073
Northeast 2.7 %1073 3.1x1073
North 2.6x1073 2.6 x 1073

an optimal number of epochs, i.e., the number of times in which the
training is performed, some tests are carried out for 50, 80, and 100.
The prediction error decreased from 10 to 80 epochs. There is no
significant change above 80 epochs and hence the number of epochs
adopted is 80. At each training epoch, a validation is performed
using 10% of the data to evaluate the convergence of the training
process and analyze whether overfitting has occurred. A conver-
gence is observed in the training and validation data, indicating that
the neural network does not suffer from overfitting.

After the model training phase, we apply the training network
to the test data (Fig. 7). In Fig. 7, the blue and orange lines represent
the true data and values predicted, respectively. Compared with RF,
we verify that these results are not better than RF. Table I1I exhibits
the values of the mean absolute error with and without precipitation.
Comparing the error with or without precipitation, we observe that
there is no significant change.

In Fig. 8, we compute the bidirectional long short-term mem-
ory (LSTM). We use two bidirectional layers, one with 64 units and
the other with 28 units, dropout of 0.5 and 0.25, respectively. We also
utilize a third dense layer with one unit. The activation functions
are ReLU, ReLU, and linear, respectively. In the training process, we
consider batches of 64 trained in 100 epochs. We use 10% of the
training data for validation and find that the neural network is not
overfitted. In Table I'V, we observe that there is no significant change
in the mean absolute error with or without the use of precipitation
data. Figure 8 shows that the southern region has worsened com-
pared to the other previous models. By means of the mean squared
error, this worsening is not very clear. The other regions exhibit
results similar to the ones obtained by the LSTM model.

Comparing the values of the mean absolute error, we see that
RF stands out as the best model. The RF error has values about 1074,
while the neural networks have their errors about 1073, Figures 6, 7,
and 8 show that RF stands out in predicting rainfall. We compute
the mean absolute percentage error (MAPE) for the regions using
Random Forest (RF), LSTM, and bidirectional LSTM, considering
no rainfall, as exhibited in Table V. Our results show that the MAPE
values using the RF algorithm are less than 10%, indicating a highly
accurate prediction.

Considering RF for Malaysian rainfall prediction, Zainudin
et al.’" achieved an accuracy of under 90% and our current model
achieves an accuracy of over 90% in most regions. Nguyen-Duc
et al.”” used LSTM for seasonal prediction of monthly rainfall across
Vietnam and found absolute errors about 10~!. In our findings, we
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TABLE V. Mean absolute percentage error (%) for the regions using Random Forest
(RF), LSTM, and bidirectional LSTM, considering no rainfall.

Regions RF LSTM Bidirectional LSTM
South 9.24 30.58 30.83
Southeast 7.47 23.47 22.93
Midwest 6.67 13.19 12.24
Northeast 7.17 18.69 17.92
North 5.28 17.28 17.4

observe absolute errors about 1073, highlighting the effectiveness of
combining oceanic and local temperatures in Brazilian contexts.

IV. CONCLUSIONS

In this work, we investigate the ability of some machine learn-
ing models to predict precipitation with high accuracy. We use local
and Atlantic Ocean temperatures as input characteristics, both in the
southern and northern regions. We include the temperature of the
Atlantic Ocean due to its recognized influence on the precipitation
regime in Brazil.

We test three machine learning models, which are Random
Forest (RF), LSTM, and bidirectional LSTM. Trained with data on
climate variables, these models show excellent results, with empha-
sis on RF, which achieved the best performance. The RF model has
an average absolute error with a value of about 107, while the other
models about 1073. We perform two different tests on each model.
In one, we use local and ocean temperatures, while in the other, we
also considered the delayed total precipitation data. Our results indi-
cate that there is no significant improvement in prediction across all
machine learning models.

The total precipitation data from the southern region exhibit
a noisier and more complex behavior than other regions. However,
even with this complexity, the RF model provides excellent accu-
racy in its predictions. On the other hand, the bidirectional LSTM
performs worse compared to the other models.

Opverall, our findings highlight the interplay between local and
ocean temperatures in rainfall forecasts in Brazil. By using machine
learning algorithms, our work provides a step toward connecting
some climate data and meteorological prediction. Capturing com-
plex patterns associated with climate data, it is possible to improve
the rainfall forecast accuracy. Due to this fact, disaster impacts
related to heavy rains can be reduced.

In future works, we plan to focus on rainfall forecasting in the
southern region, where intense rainfall is frequent and has a signifi-
cant impact. Our approach will involve using imagery to predict the
amount of rainfall locally and exploring other model architectures
to further improve forecast accuracy.
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