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Abstract

Fibre production can be conducted using a variety of techniques, including electrospinning and electroblowing.
These techniques require strict control of different parameters, such as the voltage, presence of fillers, viscosity,

and airflow rate (for electroblowing). At the end of the process, fibres with different morphologies are obtained.
Poly-1,1-difluoroethene (PVDF) is a polymer with excellent potential for fibre applications due to its properties, includ-
ing good piezoelectricity, biocompatibility, and pyroelectricity. These attributes make PVDF suitable for biomedical
applications. Other applications include conventional and hybrid nanogenerators, sensors, and potentially future
green energy sources. To achieve a high production rate of fibres, parameter control must be sufficient to obtain fibres
with the required characteristics at the spinning process. In this study, Ca(NO5),-4H,0 and triethyl phosphate (TEP)
were used as precursors at the hydroxyapatite (HAp) production within a polymeric solution to increase the PVDF
fibre production rate and change morphology. The analysis techniques of X-ray diffraction, Fourier-transform infrared
spectroscopy, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy mechanical
tensile test, and viscosity analysis were employed to observe the effect of the HAp precursor solution on the fibre’s
final properties. The addition of 5% and 10% of the solution containing these two precursors dissolved in ethanol
(EtOH) increased the fibre diameter from 0.2 um (without precursors) to 1.1 um (5% of precursors) and 1.6 um (10%
of precursors). Additionally, the distribution of fibres on the collector became more uniform, suggesting a change

in the fibre’s electrical charge. These results demonstrate improved control of PVDF fibre production using a solution
tailored for biomaterial purposes.
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Introduction
Spinning is a widely used method to make fibres with
different morphologies and properties (Harshal Gade
SNGGCDHR 2021; Sun et al. 2024). One of the most
well-known techniques to produce fibres is electrospin-
ning (Elnabawy et al. 2023; Purushothaman et al. 2023).
This method is popular due to its low cost and rapid spin-
ning capabilities (Li et al. 2021). However, there are other
techniques to make polymer fibres, including thermal-
induced phase separation, drawing, template synthesis,
solution blow spinning, and electroblowing (Elnabawy
et al. 2023; Li et al. 2021; Paajanen et al. 2023; Holopainen
and Ritala 2016; Wang et al. 2018). Electroblowing, in
particular, stands out for its speed, exceeding that of elec-
trospinning (Demina et al. 2022). Besides high voltage,
it uses airflow as a key parameter, which enhances fibre
production compared to electrospinning (Elnabawy et al.
2023). This airflow increases the collector area for fibre
deposition during spinning, allowing for the creation of a
continuous and extensive fibre blanket.

A good spinning process for fibre production using the
most common techniques, including electrospinning

and electroblowing, requires meticulous control over
multiple parameters beyond just airflow to ensure the
quality of the product (Demina et al. 2022). The need for
this control is the main focus of several studies on fibre
production where the solvent, fillers, and the type of
polymer can be changed (Sun et al. 2024; Purushotha-
man et al. 2023; Demina et al. 2022; Luchese et al. 2024).
Alternatively, these parameters can be modified to find
the best processing conditions to produce high-quality
fibres (Elnabawy et al. 2023; Li et al. 2021; Demina et al.
2022; He et al. 2021). Each technique has specific con-
ditions, but in all cases, especially electroblowing and
electrospinning, the recipe, voltage, solution viscos-
ity, solution feed rate, percentage of solvent, and rate
of solvent evaporation need to be controlled during
spinning (Paajanen et al. 2023; Holopainen and Ritala
2016; Demina et al. 2022). Therefore, the parameter val-
ues and type of material, including fillers, will vary for
each spun polymer (Li et al. 2021; Demina et al. 2022).
Attention to effective spinning processes has led to the
identification and study of suitable materials, such as
poly(vinylidene fluoride) (PVDEF), for specific properties
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that make them ideal for certain applications (Kujawa
et al. 2024; Concha et al. 2024; Mokhtari et al. 2025;
Bernard et al. 2018).

In the case of PVDF, piezoelectricity is one of its most
important properties (Ahmed et al. 2022; Wu et al.
2022; Salimi and Yousefi 2003). This property converts
mechanical energy into electrical energy and vice versa
(He et al. 2021). This and other characteristics make
PVDF suitable for applications, such as filtration, tissue
engineering, monitoring, solar devices, battery electro-
lytes, and molecular separation (Wu et al. 2022; Saxena
and Shukla 2021). PVDF occurs in five different phases.
This polymorphism can also be observed when the
material is exposed to high electrical charge, stretching,
specific temperatures, and other processes (Zhou et al.
2023). The three most common PVDF phases can be seen
in Fig. 1.

Given the piezoelectric properties of natural bone,
materials with this property find applications as bioma-
terials due to their ability to generate bioelectric signals
through the direct or converse piezoelectric effect (Sun
et al. 2024; Saxena and Shukla 2021; Carter et al. 2021).
Piezoelectric biomaterials are advantageous as they offer
a wider range of materials for specific applications and
eliminate complications associated with donor tissue,
such as those encountered with autograft and allograft
implants (Carter et al. 2021; Kathera et al. 2025; Choud-
hury et al. 2025). Considering these aforementioned
advantages, as well as the biocompatibility of PVDE, this
polymer can be used as a biomaterial for different appli-
cations (Concha et al. 2024; Carter et al. 2021; Szewczyk
et al. 2019). As a biomaterial, PVDF in its B-phase form
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Fig. 1 PVDF:a a-phase, b 3-phase, and ¢ y-phase
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is typically used for suture materials and surgical meshes
(Wu et al. 2022; Petersmann et al. 2020).

The production of PVDF fibres is crucial for their use in
biomaterials (Sun et al. 2024; Elnabawy et al. 2023; Con-
cha et al. 2024). Similar to other materials, such as poly-
lactic acid (PLLA) and polycaprolactone (PCL), PVDF
requires precise parameter control during the spinning
process to achieve a significant f-phase percentage, high
fibre production, and optimal performance as a biomate-
rial (Elnabawy et al. 2023). However, the production yield
of PVDF fibres can sometimes be insufficient, necessitat-
ing additional manufacturing batches.

In this work, aiming to increase both fibre produc-
tivity and PVDF biocompatibility, a solution compris-
ing Ca(NOs;),-4H,0 and triethyl phosphate (TEP)
((C,H;)3P0O,) as sources of calcium and phosphorus was
used. This solution was mixed with dimethylformamide
(DMF), acetone (ACE) and PVDF and processed via
electroblowing to produce fibres with ceramic fillers.
Considering that the DMF and the ACE, two solvents
highly used to spin PVDE, will evaporate during process-
ing, the biocompatibility of the final fibre can be ensured
in this case, as the PVDF has already been extensively
reported in the literature for its use as a biomaterial
(Concha et al. 2024; Ahmed et al. 2022; Wu et al. 2022;
Barski et al. 2017; Mullaveettil et al. 2021; Correa Braga
et al. 2007; Cheng et al. 2020; Li et al. 2009; Abd El-Aziz
and Afifi 2024).

The HAp precursor solution was added in differ-
ent percentages to the PVDF solution to investigate
the effects on fibre morphology, production rate, and
B-phase percentage. This approach aimed to create a

a-phase
TGTG’
Nonpolar

- B-phase
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more stable composite fibrous biomaterial by combin-
ing the HAp precursor solution with the electroblow-
ing technique. Given the increased risk of clogging
when using powder-based fillers, employing the desired
bioceramic derived from precursor solutions presents a
promising alternative. This approach enhances spinning
control by enabling more precise regulation of filler size
through controlled nucleation and growth from calcium
and phosphate sources, which are already used in the lit-
erature to form hydroxyapatite (Holopainen and Ritala
2016; Mokhtari et al. 2025).

Material and methods

First, a HAp precursor solution was prepared with
magnetic stirring at room temperature with 9.27 g of
Ca(NO;),-4H,0 from Merck, 4 mL TEP (99%) from
ABCR Gute Chemie, and 10 mL of absolute EtOH
from VWR Chemicals (Pasuri et al. 2015). A second
solution was prepared with PVDF acquired from
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Solvay Rhodia (Brazil) dissolved in DMF and acetone
(ACE) (Zhou et al. 2023).

The PVDF powder (PVDF Solvay, Brazil) was dis-
solved in 80% DMF from Merck and 20% ACE from VWR
Chemicals, ensuring a 14% polymer concentration in
the solution, solvents selected for their extensive use in
research involving PVDF fibres (Al Rai et al. 2020; Chacko
and Raneesh 2023; Martins et al. 2014; Tandon and Cart-
mell 2019). The HAp precursor solution was added in
proportions of 5% and 10% (v/v) to the 14% PVDF solu-
tion. The selection of these proportions took into account
the influence of the lower viscosity of the precursor solu-
tion, which could significantly impact the reliability of the
polymer solution due to the higher viscosity expected in
the latter, and was also guided by relevant literature ref-
erences (Tandon and Cartmell 2019; Kim and Fan 2021).
This final solution was stirred for 1 h at 65 °C to obtain
a final homogeneous solution. Figure 2 shows the steps
involved in preparing the final solution, with precursors
dispersed in a 14% PVDF polymeric solution.

Ca(NO3)2'4H20

TEP

=

/

L

EtOH
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Fig. 2 Preparation of solution for electroblowing
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After stirring, the solution was placed in a 12 mL
syringe (HSW) with a 21G (0.21 mm inner diameter)
needle. For electroblowing, the solution was delivered by
a syringe pump (KDS Legato " 101). All the electroblow-
ing parameters can be found in Table 1, while an illustra-
tion of the device can be seen in Fig. 3.

The parameters were maintained across the three types
of fibre preparation: PVDF fibres without HAp pre-
cursors (PVDF), PVDF fibres with 5% HAp precursors
(PVDE/HAp Precursors 5%), and PVDF fibres with 10%
HAp precursors (PVDF/HAp Precursors 10%). As illus-
trated in Fig. 3, the device consists of two collectors, the
side collector and the back collector, each located at dif-
ferent distances from the needle. This large area setup
ensures effective collection of fibres during the spinning
process.

After the spinning, the samples were characterised by
a variety of techniques: X-ray diffraction (XRD) using a
Rigaku Ultima IV X-ray diffractometer; scanning elec-
tron microscopy (SEM, FESEM, Hitachi S-4800) with

Table 1 Parameters for electroblowing

System parameters
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a 4 nm layer of Au/Pd deposited by sputtering before
analysis, preventing charging of the samples and pro-
ducing better quality images; Raman spectroscopy
(Horiba, LabRam HR Evolution); Fourier-transform
infrared FTIR spectroscopy (FTIR iS10 Spectrometer,
Nicolet), mechanical tensile (TA Instruments DMA
Q800 V21.3 Build 96), transmission electron micros-
copy (TEM) (Thermo Fisher/FEI Titan Cubed Themis).
Viscosity analysis was also performed using a TA
Instruments DHR-2 rheometer with a 50-mm parallel
plate geometry at room temperature, considering the
solution used for the spinning process. These analy-
sis methods were chosen to evaluate the impact of the
precursors on phase content, morphology, elemental
composition, and compound formation in fibres. The
Image] software (Rasband 2018) was used to deter-
mine the average fibre diameter based on the measure-
ment of 100 individual fibres from different areas of
the SEM images. The p-phase fraction was determined
using Eq. 1, which is based on Beer-Lambert’s law, as
explained by Gregorio and Cestari (Grecorio and Ces-
tari 1994):

() »

where F(f) represents the p-phase fraction; A, and A

are the FTIR absorbance at around 763 and 840 cm™,
respectively; and K, and Kj are the absorption coeffi-
cients, which are 6.1 x 10* and 7.7 x 10* cm?/mol, respec-
tively (Grecorio and Cestari 1994; Koroglu et al. 2021; Ma
etal. 2017).

Side collector

60 cm /

Polymer concentration (wt%) 14%
Solvent ratio (DMF/acetone) 80/20
Temperature in the box, T (°C) ~22,1
Voltage, V (kV) 20
Solution flow rate (mL/h) 6
Primary airflow (NL/min) 30
Secondary airflow (NL/min) 40
Temperature of stirring (°C) 65
Humidity (%) 35+5
Air flow
\
[
Nozzle

High voltage i ;

10 cm

Fig. 3 A schematic of the experimental setup of the electroblowing technique
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Results and discussions
The initial preparation of fibres involved controlling
the electroblowing parameters without adding precur-
sors (PVDEF). In the case of the other samples (PVDEF/
HAp Precursors 5% and PVDF/HAp Precursors 10%),
the calcium and phosphorous precursors were added to
just change the morphology of the fibres. However, the
HAp precursors were also found to increase the area
over which the fibres deposited on the collector (Fig. 4).
Figure 4a and b show the fibre distribution on the col-
lector when the spinning was done with the polymeric
solution without HAp precursors (PVDF). Figure 4b
highlights preferential fibre deposition on the upper
left side of the back collector. This behaviour could be
attributed to the strong influence of the airflow direct-
ing the fibres during deposition and the phase confor-
mation of the polymer, which exhibits less response to
the electrical field in its non-polar a-phase compared to
the B-phase which presents the highest dipole moment
(Koroglu et al. 2021). The addition of the HAp precur-
sors appears to enhance the conductivity of the solu-
tion, resulting in more uniform fibre distribution on the
collectors, as shown in Fig. 4c for the PVDF/HAp Pre-
cursors 5% sample. Ultimately, a significant amount of
material was observed, as depicted in Fig. 4d where the

High fibre
concentration

Back

Side collector

collector

Best fibre distribution

Fig. 4 Images showing a and b different fibre deposition of PVDF and ¢ and d PVDF fibre obtained with HAp precursors
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fibre mat from the collectors has been folded multiple
times over a silicon wafer with a diameter of 150 mm.

Additionally, it was observed that the addition of HAp
precursors facilitated the detachment of fibres at the col-
lectors, resulting in a reduction in the amount of mate-
rial lost due to decreased sticking. This effect can also be
influenced by the high potential applied during the pro-
cess, which contributes to phase changes in PVDE. Such
changes are induced by the high electrical potential dur-
ing poling and the presence of acetone mixed with DMF
(Debili et al. 2020; Singh et al. 2021).

X-ray diffraction

Phase analysis was conducted using XRD to determine
if the addition of HAp precursors influenced the phases
present in the materials. Figure 5 shows the XRD pat-
terns of the three samples, showing both the a and p
phases. For the PVDF sample without the HAp precur-
sors (PVDF), the a-phase peaks at 18.4° and 19.9° and
the B-phase peak at 20.6° are clearly visible (Cheng et al.
2020; Debili et al. 2020; Vasic et al. 2021).

When the HAp precursors were incorporated, addi-
tional peaks (36.6° and 41.2°) corresponding to the
hydroxyapatite appeared alongside the peaks related to
the a-phase and p-phase (Cheng et al. 2020; Debili et al.
2020; Vasic et al. 2021). The peaks associated with HAp

" Fibre blanket formed due to the
deposition on the back and side
collectors.
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Fig. 5 XRD patterns of PVDF with and without additions of 5% and 10% HAp precursors

are located at 36.4° and 42.03° (Bakan et al. 2013; Mer-
zougui et al. 2022). These two peaks are easily observed
in the samples with precursors, indicating the successful
integration of ceramic fillers into the final fibres. These
peaks are absent when there are no precursors on the
PVDF fibres.

The precursor solution also influences the PVDF
B-phase intensity, which increases when the precursors
are added (36.4° and 42.03°). This interaction between
HAp precursors and PVDF a-phase considering their
electrical charges suggests that the presence of precur-
sors results in an o/p-phase conversion, a phenomenon
commonly observed in this polymer because the B-phase
is more stable with the high potential environment lend-
ing to the increase of the polarization effect and making
more easily polar phase (B-phase) occurrence (Concha
et al. 2024; Ahmed et al. 2022).

The transition of the a-phase to the B-phase supports
the idea of enhanced electrical properties due to the
change from the non-polar (a-phase) phase to the polar
phase (B-phase) (Ma et al. 2017). This phase transition
influences the distribution of fibres over a larger area of
the collectors, as observed in Fig. 4c.

SEM

SEM analysis was performed to examine the morphol-
ogy of the fibres and the effect of increasing the HAp
precursor content. According to Fig. 6, the fibre diameter
increased with higher precursor concentration. While

it is known that the percentage of solvent influences
fibre diameter, the solvent percentage remained con-
stant across all samples (Yin et al. 2022). Therefore, the
observed changes in fibre diameter and bead formation
are attributed to the addition of HAp precursors.

Figure 6a shows the effect on the fibres obtained dur-
ing spinning via electroblowing. Beads with an aver-
age diameter of 2.4 um are seen in the PVDF sample
(Fig. 6a and d). In Fig. 6b and c, a significant reduction
in bead formation is evident, suggesting an influence
of the precursors on this aspect of fibre morphology.
Figure 6d, e and f show the fibre morphology at higher
magnification for the same three samples, highlighting
a reduction in the packing density of fibres, which is
linked to an improved fibre distribution in the samples
containing HAp precursors (PVDF/HAp Precursors 5%
and PVDF/HAp Precursors 10%).

Another effect of the precursors is that as their percent-
age increases, the diameter of the fibres also increases. In
the sample with no precursors, the average diameter was
0.2 um (Fig. 7a), which increased to 1.1 pm for the sam-
ple with 5% precursors (Fig.7b) and 1.6 um in the sample
with 10% precursors (Fig. 7c). Analysis of these samples
indicates a Gaussian distribution of fibre diameters when
HAp precursors are used. This can be attributed to the
more homogeneous distribution of fibres across the
collectors.

Considering this effect, it is possible to correlate fibre
diameter with cellular adhesion, proliferation, and
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differentiation; an increase in fibre diameter alters the
surface properties, potentially hindering cell-compos-
ite interactions (Chen et al. 2007; Tandon et al. 2019).
However, although larger fibre diameters may reduce cell
adhesion, the presence of hydroxyapatite (HAp) counter-
acts this effect by enhancing cell-material interactions,
due to the well-established high biocompatibility of this
ceramic (Chen et al. 2007; Tandon et al. 2019; Gittings
et al. 2009; Zima 2018; Yuwono and Siswanto 2023; Rod-
riguez et al. 2016).

The observed morphological changes suggest that
adjusting the amount of HAp precursors can fine-tune
the fibre parameters, enhancing the applicability of the
final product for biomaterial studies considering the

changes in the available surface area and therefore the
interaction of the biomaterial with the environment
(Zhang et al. 2024; Barbosa et al. 2022). The few visible
HAp particles, due to nucleation and grain growth, sug-
gest a good distribution of the precursor solution within
the polymer matrix.

FTIR

FTIR is commonly used as a complementary technique
to verify PVDF phase formation and the presence
of other compounds resulting from the interaction
between the polymeric solution and the precursor
solution containing TEP, Ca(NO,),-4H,0, and EtOH.
Figure 8 shows the spectra of the three samples,
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Fig. 8 FTIR spectra of PVDF, PVDF/HAp Precursors 5%, and PVDF/HAp Precursors 10%

highlighting the compounds and suggesting phase
transitions. An increase in peak intensity is observed
for the samples containing HAp precursors.

The peaks representing the o-phase are easily
observed at wavelengths of 763, 876, and 1071 cm™!
(Wu et al. 2022; Cheng et al. 2020; Yoon et al. 2024),
while the peaks for the B-phase are at 840, 1169, 1279,
1401 (associated with CH, wagging mode), and 1431
cm™! (Cheng et al. 2020; Debili et al. 2020; Singh
et al. 2021; Pradhan et al. 2023). Peaks related to the
HAp are observed at 985 (related to the P-O stretch-
ing mode in PO,), 1036 (PO,*"), 1107, and 1657 cm™*
(OH) (Bakan et al. 2013; Costa et al. 2024; Goh et al.
2021; Mondal et al. 2014).

Phase percentage analysis was carried out using
Eq. 1. When only the o and B phases are present on
the polymeric matrix, it is possible to use this equation
and estimate the amount of these two phases (Cai et al.
2017).

Figure 9 shows the p-phase percentage according to
Eq. 1 for the three samples. Considering the peaks at
763 and 840 cm™! for the two samples, it was concluded
that the f-phase remained at around 70.93% with sig-
nificant changes when compared with the PVDF and
PVDE/HAp Precursors 5%. For the third case, PVDF/
HAp Precursors 10%, a minor increase in the amount of
the B-phase was observed.

RAMAN

Figure 10 shows the results from Raman spectroscopy
analysis. An increase in peak intensity is observed at 1044
cm™! when the HAp precursors are added (Rodrigues
et al. 2020). The peaks at 795, 880, 1430, 2977, and 3015
cm™! indicate the presence of a-phase, while the peaks at
510, 840, and 1279 cm™! represent the B-phase (Chipara
et al. 2020). This analysis indicates that HAp precursors
increase the presence of the B-phase, particularly for the
510, 840, and 1279 cm™! peaks. The a-phase peaks at 795
and 880 cm ™! show a reduced intensity with the addition
of the HAp precursors, supporting the findings from the
FTIR analyses.

The increase in the B-phase may be linked to the higher
percentage of HAp precursors, which changes the poly-
mer conformation towards the [B-phase. This suggests
that a threshold amount of HAp precursors is needed to
increase the p-phase content. The final analysis suggests
that even with the transitional behaviour of the o and p
phases, even a minor increase in the B-phase percentage
requires at least 10% of HAp precursors (Fig. 9).

Viscosity

Viscosity analyses were conducted to evaluate the behav-
iour of polymer solutions prepared for electroblowing,
in the absence and presence of HAp precursor solutions.
These analyses enabled the assessment of the influence
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Fig. 10 Raman spectra of PVDF and PVDF/HAp precursor fibres

of precursor addition, at two different concentrations,
on the viscosity of the solutions loaded into the syringe
during fibre spinning. Figure 11 shows the relationship
between viscosity and shear rate for the pure PVDF solu-
tion, PVDF with 5% HAp precursor, and PVDF with 10%
HAp precursor.

As expected, the lowest viscosity was observed for
the PVDF solution without precursor addition (Tandon
and Cartmell 2019). However, the anticipated trend of
increasing viscosity with higher precursor concentrations

was not observed. The solution containing 5% precursor
exhibited the highest viscosity, which changed the trend-
ing interpretation of the precursor concentration’s effect
on the overall viscosity of the polymer solution.
Although a linear relationship was not observed, the
presence of precursors appears to increase the viscosity
of the spinning solution due to their interaction with the
polymer. This effect may be associated with the surface
area of the precursor particles, as a larger surface area
promotes greater particle/polymer interaction (Yang
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Fig. 11 Viscosity curves of PYDF and PVDF/HAp precursor fibres

et al. 2018). Thus, even small amounts of precursor solu-
tion have a significant impact on the viscosity of poly-
mer solutions used in the electroblowing process (Yang
et al. 2018; Cui et al. 2023). This observation highlights
the need to define appropriate limits for both the amount
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of precursor solution to be added and the viscosity of the
polymer solution prior to mixing, in order to avoid clog-
ging during fibre spinning considering the nucleation and
growth of the HAp particles during the stirring in differ-
ent sizes and the formation of clusters.

TEM

Regarding the TEM analyses, it was possible to inves-
tigate the distribution of HAp particles following the
nucleation and growth processes from the added precur-
sors (Goh et al. 2021). Additionally, the absence of such
particles in the PVDF samples without precursor addi-
tion was confirmed.

Figure 12 presents the TEM images of the three sam-
ples studied. In Fig. 12a and d, as expected, no HAp parti-
cles were observed in the cross-sectional or outer regions
of the pure PVDF fibres as expected. This condition was
maintained even in fibres with diameters larger than the
average. In Fig. 12b and e, corresponding to PVDF fibres
containing 5% HAp precursors, particles with an average
diameter of approximately 20 nm were observed, and the
visualization of a relative homogeneous distribution was
possible through images.

nm

Fig. 12 TEM images of a and d PVDF, b and e PVDF/HAp Precursors 5%, ¢ and f PVDF/HAp Precursors 10%
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Figure 12c and f show the images of PVDF fibres with
10% HAp precursors, where particles with an aver-
age diameter of approximately 34.51 nm were detected.
In this case, particle concentration was predominantly
observed on the outer surfaces of the fibres, with no sig-
nificant indication of particle formation inside the fibres.
This behaviour may be attributed to the dispersion of a
considerable amount of material during processing, lead-
ing to particle aggregation on the fibre surface.

Mechanical testing

Tensile tests were conducted to evaluate the effects of
precursor solution addition on the mechanical properties
of the HAp-containing samples, as well as to assess the
behaviour of samples without the presence of these mate-
rials. Figure 13 presents the corresponding stress—strain
curves and reveals variations in the mechanical stability
of the fibres under tensile loading.

The tensile analysis clearly demonstrated a direct
influence of the precursor content on material brittle-
ness, with increased precursor concentration leading to
greater fragility. Considering that the presence of ceramic
structures can act as stress concentration sites within the
fibrous polymeric matrix, higher precursor proportions
result in a reduction of tensile strength (Stratiotou Efstra-
tiadis et al. 2024).

Conclusion

The production of PVDF fibres by electroblowing in a
14% polymeric solution, with and without HAp precur-
sors, demonstrates a few phases conversion of this pol-
ymer from the a-phase to the B-phase. The precursor
solution containing TEP, Ca(NO;),-4H,0, and EtOH

5
PVDF
4
©
a 34
=
»
»
£ 24
(2]
PVDF/HAp precursors 5%
14
PVDF/HAp precursors 10%
0 T T T T T T T
0 10 20 30 40 50 60 70

Strain (%)
Fig. 13 Stress—strain curves of tensile testing of fibres of PVDF
and PVDF with HAp precursors
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significantly enhanced fibre distribution, leading to
deposition across all collectors rather than just at a sin-
gle region on the electroblowing device. The addition
of 5% and 10% v/v precursor solution to the polymeric
solution led to increased fibre diameter and improved
homogeneity, with diameters increasing from 0.237
pum without precursors to 1.565 um with 10% of HAp
precursors.

The precursor solution containing TEP, Ca(NO;),-4H,0,
and EtOH effectively improved the spinnability of PVDE,
changing the morphology and phase composition of the
polymeric matrix. This final solution of PVDF dissolved in
DME, with the addition of the precursor solution, proves to
be a promising method for promoting fibre production for
biomedical applications. This is attributed to the increased
presence of the 3-phase and the expected enhancement in
biocompatibility resulting from the incorporation of HAp
precursors into a biomaterial with potential for extensive
biomedical applications.

Moreover, TEM analyses revealed an internal distri-
bution of ceramic particles within the fibres at the 5%
precursor concentration. However, with increasing HAp
precursor content, a tendency for particle migration
toward the outer regions of the fibres was observed. The
tensile test results indicated a trend toward increased
mechanical fragility of the fibres with higher precur-
sor concentrations. Finally, the viscosity studies showed
a tendency for viscosity to increase in the presence of
precursor solution, although this effect did not follow a
proportional relationship with the amount of precursor
solution added.

Computational simulations can be employed in future
studies to investigate the effects of interactions between
the polymer solution and the precursor solution in the
presence of B-phase, providing a deeper understanding of
the influence of each factor. Furthermore, in vitro studies
may expand the potential applications of this biomaterial
across various biomedical fields.
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