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Abstract.

Early fusion techniques in content analysis aim to enhance efficacy by generating compact data models

that retain semantic clues from multimodal data. Initial attempts used fusion operators at low-level feature space, which
compromised data representativeness. This led to the development of complex operations inseparable from multimodal
semantic clues processing. Previous studies showed that simple arithmetic-based operators could be as effective as com-
plex operations when applied at the mid-level feature space, highlighting an unexplored opportunity to assess the efficacy
of logical operators. This paper investigates the application of logical fusion operators (And, Or, X or) at the mid-level
feature space for Temporal Video Scene Segmentation. Comparative analysis demonstrates that Or and X or logical
operators are viable alternatives in the specific Temporal Video Scene Segmentation content analysis tasks.
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1 Introduction

Videos have become ubiquitous in modern life, appearing
in news, streaming platforms, and social media. While this
proliferation expands access to knowledge, it also worsens
the information overload—the difficulty of identifying rele-
vant content amid vast amounts of data (Gross [1965]). Ad-
dressing this issue has driven research in Multimedia Con-
tent Analysis, where multimodal approaches integrate data
from different sources (modalities) to enhance tasks such
as search (Wei et al. [2024]), navigation (Ashutosh et al.
[2024]), summarization (Jangra et al. [2023]), and segmen-
tation (Tan et al. [2024]).

A key challenge in these tasks is the semantic gap
(Smeulders et al. [2000]), where raw data lacks the necessary
context for accurate interpretation. To mitigate this, multi-
modal fusion techniques combine different modalities (e.g.,
visual and aural (aka audio)) into a unified representation,
reducing data volume while preserving meaningful distinc-
tions. Early fusion, which integrates modalities at an ini-
tial stage, allows better correlation exploration and reduces
computational costs by running tasks only once. However,
traditional early fusion methods—such as concatenation and
simple arithmetic operators (summation, maximum, and av-
erage) directly at feature vectors level—struggle with issues
like data heterogeneity, differing dimensionalities, and syn-
chronization misalignment (Snoek et al. [2005]).

To overcome these limitations, mid-level feature repre-
sentations enrich low-level data with semantic context, im-
proving efficacy (Jhuo et al. [2014]). Prior studies have
demonstrated that simple arithmetic fusion operators can
achieve reasonable efficacy compared to more complex,
computationally expensive methods (Beserra et al. [2020];
Golo et al. [2024]). However, logical operators (And, Or
and X or) remain unexplored.

This paper investigates the use of logical operators for
multimodal fusion at the mid-level feature representation
space, specifically within the Temporal Video Scene Seg-

mentation (TVSS) task. The TVSS pipeline was modified
only in its fusion module, ensuring that differences in seg-
mentation results were solely due to the chosen fusion opera-
tor. Comparisons were made between multimodal represen-
tations fused with arithmetic and logical operators, as well as
monomodal (visual or aural) baselines. The results indicate
that Or and X or operators are viable alternatives for TVSS
and may be applicable to other multimedia content analysis
tasks.

The remainder of this paper is structured as follows:
Section 2 reviews related work on multimodal fusion; Sec-
tion 3 defines the arithmetic and logical fusion operators;
Section 4 describes the TVSS pipeline, detailing feature
extraction, the low-level to mid-level features process, fu-
sion strategies, and the segmentation algorithm; Section 5
presents evaluation methods and results; and Section 6 con-
cludes with final remarks.

2 Related Work

Multimodal early data fusion integrates information from
multiple sources by combining features from different modal-
ities into a single feature vector. As Snoek ef al. [2005] dis-
cussed, initial early fusion approaches directly concatenated
low-level feature vectors, which, while straightforward, dou-
bled the data volume. Nowadays, the literature reports vari-
ous approaches utilizing neural network models for data fu-
sion (Liu et al. [2022], Xing et al. [2024], Pereira et al.
[2024], Jia and Lao [2022]).

In the specific field of video scene segmentation, state-
of-the-art works include Xing et al. [2024], which fuses fea-
ture embeddings from video transcripts and video frames
by means of a cross-modal attention mechanism in order to
temporally segment videos into topics/scenes. Also includes
VSMBD (Tan et al. [2024]), which employs a visual multi-
feature self-supervised learning method to model upon large-
scale pre-trained visual encoders, extracting foreground and
background visual features. This model is then applied
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in the temporal video scene segmentation. Another exam-
ple is TransNet V2 (Soucek and Lokoc [2024]), which seg-
ments videos into scenes by concatenating visual inputs from
RGB color histograms and proposed convolutional DDCNN-
based deep architecture features. Those examples highlight
that the fusion process is inherently a model decision, grap-
pling with Al explainability and limiting the number of input
modalities.

On the other hand, non-deep learning early fusion meth-
ods are more explainable, generally have no limits on input
types, and can reduce data volume effectively. These meth-
ods fall into two categories: those based on finding correla-
tions among modalities and those applying early fusion oper-
ators. The first group faces the drawback of task-specific fu-
sion, making reuse difficult. For example, Yang et al. [2022]
focused on multimodal fusion using the Laplacian matrix
and medium-level semantic features from visual and textual
modalities involving hypergraph construction with high com-
putational cost. Jia and Lao [2022] concentrated on medical
image fusion using MRI images transformed by regional ho-
mogeneity, achieving fusion via Canonical Correlation Anal-
ysis (CCA) with a kernel function. However, this technique
is not readily extendable to other domains. Samadiani et
al. Samadiani et al. [2022] investigated emotion recognition
using medium and low-level semantic features fusing visual
and aural modalities through a sparse representation matrix,
but the technique is limited to emotion classification.

The second group applies simple mathematical opera-
tors to feature vectors from different modalities, resulting
in a fused vector with the same dimensionality as the input
ones (Beserra et al. [2020]; Samadiani et al. [2022]). Pre-
vious work (Beserra and Goularte [2023]) proved that mid-
level feature space fusion using these operators are effective
and simpler in processing than more complex fusion meth-
ods, including those based on deep learning. However, this
group just explored arithmetic operators, leaving a gap for
exploring the efficacy of logical fusion operators (And, Or,
Xor). Logical operators share mathematical operators sim-
plicity and explainability, and are faster (Patterson and Hen-
nessy [2021]). Thus, if logical operators can be proven to
deliver comparable or superior efficacy to mathematical op-
erators, their utilization becomes advantageous for tasks such
as temporal video scene segmentation.

3 Early Fusion Operators in the
Mid-Level Feature Space

As defined by Beserra and Goularte [2023], an early fusion
operator is a mathematical arrangement of procedures with
a set of multiple feature vectors as input that outputs a sin-
gle feature vector representing this set. This representation
should have a lower data volume than the set and keep se-
mantics, as it will be used as input to the following stages
of a task’s pipeline. In the mid-level feature space, the fea-
ture vectors are generally frequency histograms. Each bin re-
sults from computations over a set of low-level descriptors,
enriching the final representation with semantic information
extracted from the original feature vectors (see Section 4.2).

To define fusion space and operators, lowercase let-
ters with subscript numbers represent a histogram, like i,
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and ho, and uppercase letters represent the resulting vec-
tor/histogram from the early fusion operators: H = hy op ho.
Each bin is represented by its index, so hjs, for example,
represents the second pattern counting in the histogram h,
representation. The fusion space is the matrix M., where
each line n stands for a k dimensional histogram. In the cases
where a histogram has a lower dimension, Inputation tech-
niques should be applied, inserting data (zeros, for instance)
to fill the gap until the correct dimension.

In this way, operators can be applied to each column of
the feature space M, and the arithmetic ones of interest in this
work are given by Equations 1, 2 and 3 as defined by Beserra
and Goularte [2023]:

Hgum = [Z hit, Zhw, Y hi )
=1 = i=1

where the Sum operation consists of a sum of each bin in
the histograms. Instead of increasing dimensionality, this op-
erator raises the final signal amplitude representation. High-
valued signals existing in one or more operands may increase
bias in favor of those signals, even when there are low-valued
signals in the other operands. This could be useful to distin-
guish between relevant signals and noise.

n n n
Hyviax = [max hi1, max h;a, - - -, max @)
i—1 i—1 i—1

where the Max operation consists of keeping the maxi-
mum value of each bin in the histograms (each M’s col-
umn). The rationale for this operator is that high-valued
signals determine the resulting representation. This could
be useful to represent the dominant values in the operands.
However, unlike Sum, if some dominant signals are noise,
they will persist only in the fused representation. This op-
erator does not need any imputation process where the his-
tograms’ dimensionalities are different. However, higher-
dimensional histograms may influence most of the final re-
sult since lower-dimensional histograms are not compared
in the last columns.

Havg = lavgl_yhiy, avglyhiz, -+ avglsha] - (3)
where the Avg operation consists of calculating the average
value for each M’s column. The rationale here is that the
average acts like a smoothing filter, which could help when
very high or very low signals are noise.

Regarding logical operators, operations are also done
on the columns of M. The rationale is not obvious since log-
ical operations are made bit-wise, resulting in zeros or ones.
However, generally, we may think the Or operator behaves
like an approximation of a Sum, and the And operator be-
haves like a bit dot product approximation. This may lead us
to believe the Or operator is more advantageous for feature
fusion than the arithmetic operators since logical operations
are faster and Or behaves like Sum !.

'Sum achieves better arithmetic operators’ results in the experiments
(Subsection 5.3).
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However, the X or operator gives positive (ones) when
the operands are different. So, there is a chance, in this
case, that the operands’ information is complementary, and
complementarity is a key concept when thinking about mul-
timodality 2. Of course, if the operands are equal, there is no
complementarity, and the final representation will be zeros.
We provide some answers in Section 5.3. The formulation
for early fusion logical operators is given by Equations 4, 5
and 6:

Hag = [and]_; hi1, and]_ hio, -+, and]_ hy] (D)

Hy = [ori_  hy1, orj_ihio, -+, orj_ hy] Q)

Hyor = [XO1;_1 41, XOTj_1hio, - -+, Xor;—  hit]  (6)

4 TVSS Pipeline

In this Section, we present the TVSS pipeline and its modu-
les, how the mid-level feature representations are generated,
how they are fused, and the TVSS algorithm used to predict
the scene boundaries. This pipeline is used in the Section 5
comparative analysis between logical and arithmetic simple
operators aiming to verify the efficacy of fusion logical op-
erators at mid-level feature space. The TVSS task aims to
predict all scene boundaries of a given input video automati-
cally. A scene is defined as a sequence of semantically cor-
related adjacent video shots, which, in turn, are contiguous
sequences of frames captured by a single camera (Koprin-
ska and Carrato [2001]). According to Beserra and Goularte
[2023], TVSS is suitable for the proposed analysis because:
it is a common preprocessing step for most of the multime-
dia content analysis tasks; it is a typical example of a video
analysis task needing to reduce the data volume of frames
and shots by alternative representations (features vectors and
features histograms); those representations typically benefit
from multimodal fusion.

Monomodal Sholt
Beginnin visual grouping
£ ¢ /' representation; \ / \
Feature Fused

Feature ¢ ) TVSS
_)exlraction fusion 7 |representation -
\ e End
Monomodal

aural
representation

Figure 1. TVSS Pipeline.

Figure 1 illustrates the TVSS pipeline. From the
left to the right, it begins with the set of shots of the
input video (Shot labeled box). From each shot, the
'Feature Extraction’ module proceeds low-level feature

2Important data helping to represent information that may be present on
amodality but not on others, making the joint use of modalities better Snoek
et al. [2005]
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vectors extraction (Subsection 4.1) and enrichment, turn-
ing those vectors into mid-level feature histograms (Subsec-
tion 4.2) representing the shots. This process is made for
each modality, resulting in monomodal representations. This
work used two different modalities (visual and aural), as de-
picted in the two Monomodal Figure 1 labeled boxes. Fur-
thermore, the pipeline has no restrictions on the number of
modalities or the number of different features.

Those mid-level monomodal representations are
then fused by the ’'Feature fusion’ module, using
one of the early fusion operators described in Sec-
tion 3, outputting fused multimodal shot representa-
tions (Fused representation labeled box). Next, the
fused shot representations are grouped into scenes by
the 'Shot grouping’ module, which uses a video scene
segmentation algorithm (Subsection 4.4). The result is a list
of shots classified as scene boundaries (7'V S S labeled box).

4.1 Feature Extraction

Taking the visual case as an example (the same applies to
the aural case), the Feature Extraction process (Figure 1) ex-
tracts visual low-level feature vectors from the video dataset.
A keyframe (the middle frame) was chosen for the visual
modality to represent each shot. This is commonly practiced
to extract visual information from videos (Jhuo et al. [2014];
Beserra et al. [2020]; Baraldi et al. [2015]). The pipeline
does not impose restrictions on the kind of features to be ex-
tracted, which can be either hand-crafted or deep features.
In this work, we extracted well-known SIFT (Scale Invari-
ant Feature Transform, proposed by Lowe [2004]) visual fea-
tures from each keyframe.

Aural features, in turn, were extracted using MFCC
(Mel-Frequency Cepstrum Coefficients), a widely recog-
nized handcrafted method for representing speech patterns
as feature vectors. This approach is well-suited to the BBC
dataset and multimodality, as the BBC content often includes
a narrator discussing concepts that may have corresponding
visual elements. For the extraction process we applied the ap-
proach proposed by Beserra ef al. [2020], where the whole
aural content of a shot is used since the aural data volume is
considerably smaller than the visual one. The MFCC descrip-
tors were obtained from the aural stream divided into 30 ms
frames with a 10 ms overlapped window. This approach has
proven satisfactory in speech recognition applications (Sen
etal.[2019]). SIFT and MFCC features were extracted using
the implementations provided by the OpenCV Python API.

4.2 Mid-Level Features Representation

Next in the pipeline, this section describes the process of turn-
ing the extracted visual and aural low-level features into mid-
level features, still in an unimodal way, to build shots’ repre-
sentations. Figure 2 illustrates this process, taking the visual
case as an example. The first step is to allocate visual or aural
low-level features to a common space for further processing.
This space is called Bag-of-Features (BoF', in Figure 2).
The second step is clustering similar feature vectors
(Clusters, in Figure2). In this work, we have used the
k-means clustering algorithm, recognized as a simple and
fast method for numeric data. We used the default accu-
racy and maximum number of iterations provided by the



Logical Operators for Multimodal Fusion in Temporal Video Scene Segmentation

Barbosa and Goularte 2025

Beginning

Visual
Monomaodal

/—? Clustering
L

.

Features

Visual AL
Feature
vector
exiraction
Monomaodal
Visual
Histogram (—\

I

14|

End

Visual
dictionary
Centroids
S Ny
t ]2 ]3] -
'.—_t o
e | / R K

Figure 2. Mid-level monomodal features representation. Taking the visual case as an example. The same rationale applies to other modalities.

OpenCV implementation (I'ERM CRITERIA EPS +
TERM CRITERIA MAX ITER). The optimum
number of clusters (the k parameter) was 100 for the used
video dataset (Section 5.3), and it was defined using the sil-
houette analysis method (Shutaywi and Kachouie [2021]).
The next step establishes a dictionary of visual/aural words,
also known as Bag of Visual/Aural Words (BoVW/BoAW).
This is done by selecting all clusters’ centroids (Centroids in
Figure 2) and building a k-dimensional feature vector - the
Visual/Aural Dictionary (Visualdictionary in Figure 2).

Finally, a shot representation is built as a monomodal
visual/aural histogram (M onomodalVisual Histogram in
Figure 2). This process is done by building a k-dimensional
feature vector (the histogram) where each bin counts how
many times each correspondent visual/aural word appears
in a given shot. This count is done by comparing the (low-
level) feature vectors from the shot with the dictionary words
through a similarity measurement - the cosine similarity mea-
sure was chosen since it is adequate to measure semantic sim-
ilarity between vectors. The measure that results in the small-
est distance will indicate the visual/aural word corresponding
to that feature vector. In the histogram, the frequency of this
visual word bin will be increased by 1.

The rationale behind this representation is that shots
with similar histograms exhibit comparable patterns within
a given modality. In this way, similarity comparisions be-
tween histograms of the same modality applies. However,
although different histograms representing different modali-
ties have the same dimensions and comparable pattern count-
ing, the patterns represented by each bin are distinct and un-
correlated. Therefore, direct similarity comparisons between
histograms from diverse modalities have no meaning. Hence,
a fusion operation is necessary to transfer the unimodal infor-
mation from heterogeneous spaces into a unified multimodal
one.

4.3 Feature Fusion

The feature fusion process consists of inputting two mid-
level representations of a shot, one visual and another aural
(unimodal histograms, as detailed in Sub-section 4.2), and
applying a fusion operator. The output generated by an oper-
ator is a new histogram, with the same dimensionality as the
inputs (k-dimensional), containing information from visual
and aural modalities - a new multimodal shot representation.
The fusion operators of interest in this work are those defined
in Section 3.

4.4 Scene Segmentation Algorithm
We have used the baseline Scene Transition Graph (STG)
algorithm Yeung et al. [1998] for segmenting a video into
scenes, as defined by Kishi et al. [2019]. STG is suitable for
our purposes, as the primary objective of this work is not to
achieve high segmentation accuracy but rather to analyze the
accuracy behavior of different fusion operators when applied
to a temporal video segmentation task. In the experiments
(see Sub-section 5.3), the pipeline was configured with fixed
modules—including the segmentation—with the exception
of the fusion module. The fusion operator was varied in
each experimental run, and the segmentation efficacy was
measured accordingly. This approach allows for an indirect
evaluation of the operators’ efficacy. Consequently, any seg-
mentation algorithm can serve as the pipeline’s segmentation
module. We selected STG because it is simple, well-known,
and a common baseline algorithm

The algorithm takes the multimodal fused histograms
as input. In this approach, video shots are grouped using
the hierarchical clustering algorithm with complete linkage,
adapted to the scene segmentation task to avoid including
temporally distant shots despite their similarity. The distance
calculation, dmaz, is given by:

dmaz(C;, C;) =

~

d(z,y)

max
zeC,yeCy

)

where C; and C; are the shot clusters. d(s;, S;) is de-
termined by d(S;, S;) if d¢(S;,S;) < T, or oo otherwise.
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Here, d represents the adopted distance measure in the algo-
rithm, d; is the temporal distance between shots, and 7T is
a temporal window. The stopping criterion is defined by a
parameter 8. Grouping stops when dynaz(A, B) > ¢ for all
pairs of groups (A, B) with A # B. The resulting groups
correspond to the vertices in the scene transition graph. An
edge is created between vertices A and B if A contains a shot
temporally adjacent to any shot in B.

The cut edges in the graph identify scene transitions,
with each subgraph representing a scene. In the experiments,
cosine distance was used with parameters 7" and § set to 7 and
0.35, respectively. Those values were obtained empirically
by a silhouette analysis on the video dataset.

5 Experiments

This section provides a detailed account of the experiments
conducted during the study. Subsection 5.1 outlines the com-
monly used metrics in this field, elaborates on their distinc-
tions, and offers a rationale for the selected metrics in this
work. Subsection 5.2 offers an overview of the widely rec-
ognized BBC dataset. Finally, Subsection 5.3 presents an
in-depth discussion of the experimental results.

5.1 Metrics

In the field of Multimedia Analysis, commonly used met-
rics for evaluating video tasks include Precision (P), Recall
(R), and the F;-score (F7), with the latter being the harmonic
mean of the former two Smeulders ef al. [2000]. Although
these metrics effectively measure efficacy and are widely
adopted in the Multimedia area, they fall short in the TVSS
context due to their inflexibility. Specifically, they treat the
misclassification of one shot in a scene with the same sever-
ity as the misclassification of two, ten, or more shots in the
same scene. This behavior does not account for the varying
degrees of impact as the number of misclassified shots in-
creases. To address these limitations, Vendrig and Worring
[2002] proposed the metrics Coverage (C') and Overflow (O),
which were reformulated by Han and Wu [2011]. Coverage
measures the number of correctly predicted transition shots
within the ground-truth scene boundaries, while Overflow
quantifies the number of transition shots predicted beyond
those boundaries. These metrics are more suitable for the
TVSS task, as they better capture the nuanced differences
in misclassification severity compared to the exact hits and
misses measured by P and R. The formulations for C' and O
according to Han and Wu [2011] are as follows, respectively,
in Equations 8 and 9:

max! ,1 |s; N 3¢

Ct =
|5¢]

®)

|st|
Or=1- —5— . — )
>i—1 |8¢l x min(L, [s; N 5¢])

where S = {s1,...,5g} is the set of predicted scenes,
S = {54,.. -+ 5|5} is the set of real scenes and |s;| is the
number of shots in a scene s;. C; of a scene 5; measures
the number of shots of s; correctly grouped together in the
prediction, which corresponds to the longest overlap between
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s; and s;. O, of a scene ¢ measures how many shots of ¢
aren’t covered by the prediction. C' and O of an entire video
are given by Equations 10 and 11:

E

C=5"C, % 10
> s (10)

ozio « Al an
2 O g

The Fi-score between C and O is calculated by the har-
monic mean of C' and 1 — O since lower overflow values
represent better segmentation.

In this work, we have adopted C and O metrics. How-
ever, we also present results (Subsection 5.3) using the F;-
score for P and R in order to allow comparisons with some
of the related works.

5.2 Video Dataset

The BBC Dataset is a well-known dataset for temporal video
segmentation introduced by Baraldi et al. [2015], comprising
11 videos from the BBC Planet Earth documentary series 3
about varied natural habitats on planet Earth. Each video
is approximately 50 minutes long, coded in MP4 format
(H.264/AVC video codec and MPEG-4 AAC audio codec)
with 360x288 pixels, 25 F'PS, and stereo channels with a
sample rate of 48 kHz. This dataset includes ground truth
annotations, listing 4916 shots and 672 scenes.

5.3 Results

This section presents the results of evaluating the efficacy of
logical fusion operators using the TVSS pipeline described in
Section 4. The goal is to determine the effectiveness of logi-
cal fusion operators compared to arithmetic fusion operators.
Arithmetic fusion operators are a viable alternative in the
TVSS task domain (Beserra and Goularte [2023]). However,
logical fusion operators, despite being more efficient in terms
of computational time (Patterson and Hennessy [2021]), re-
main underinvestigated.

An experiment was conducted by setting up the pipeline
described in Section 4 (Figure 1) with a round-based fusion
operator. We compared arithmetic operators (Sum, Max, and
Average (Avg)) with logical operators (And, Or, and Xor).
For each round, a multimodal fused representation was gen-
erated (Section 4.3) using one of the fusion operators, for
each shot in each of the 11 videos of the BCC Dataset. This
set of multimodal representations for each video’s shot was
then provided as input to the STG algorithm (Section 4.4).
The segmentation results were compared with the dataset’s
Ground Truth by calculating the efficacy measures Coverage
(C), Overflow (O), and F;-score (F1,,) (Section 5.1). The
only modification in the TVSS pipeline, for each round, is a
replacement of the fusion operator. In this way, a compari-
son of the segmentation results, using each of the operators,
can give an evaluation of the operators efficacy. In total, 8
rounds were conducted: one for each of the 6 fusion oper-
ators and two additional rounds using unimodal representa-
tions (visual only and aural only). The purpose of comparing

3https://www.bbc.co.uk/programmes/b006mywy/episodes/guide
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with unimodal representations is to confirm the advantages
of multimodal fusion.

Table 1 presents the obtained results. The measures (C,
P and F_ ) are presented by each multimodal fusion op-
erator (columns Sum to Xor) plus the results from each
monomodal segmentation (columns Visual and Aural).
The left-most column (Video/ Episode) identifies the BCC
Dataset videos. At the bottom, Table 1 presents the metric av-
erage (Average) and the F;-score standard deviation (£},
Std.Dev.).

Upon analyzing the metrics’ values from Table 1 across
the dataset episodes, an expected pattern emerges: the met-
rics’ values generally vary for each line. However, an excep-
tion is observed in the episode entitled C'aves, which con-
sistently presents identical values in multiple instances. This
anomaly can be attributed to the unique characteristics of this
episode. Unlike the others, the video shots in C'aves are pre-
dominantly captured in open, dark environments, featuring
numerous small flying or floating objects (such as birds, bats,
and fish) in the foreground, or in close-up shots of rock walls
and cave entrances. Additionally, the audio in this episode
only occupies a small portion of each shot and does not con-
tinue seamlessly from one shot to another. Consequently,
SIFT features fail to provide accurate image representations,
while MFCC is unable to offer sufficient audio data to dis-
tinctly represent each shot.

Now analyzing the aural and visual F;-score results,
aural monomodal segmentation consistently outperforms vi-
sual monomodal one. This can be attributed to two key fac-
tors: 1) the aural stream (documentary narrator) provides
a coherent narrative with consistent semantics, unlike the
visual stream, where images and video sequences change
rapidly; 2) local features (SIFT) from the visual stream fo-
cus on small pieces of content, making it harder to find cor-
relations between video sequences within a shot. Different
choices for visual features may improve modalities’ comple-
mentarity and final results. Nevertheless, multimodal ap-
proaches surpass monomodal ones, confirming that multi-
modal approaches improve results and demonstrate the com-
plementarity of BCC Dataset modalities.

Observing the logical operators’ results, the And opera-
tor is less effective, consistently showing lower F , values
(13%) compared to Or and X or (60%). This reflects the na-
ture of the And operation, which negates information com-
plementarity by turning a [1,0] input into a 0 output. Compar-
ing Xor and Or operators, X or is more stable. Both opera-
tors perform best in 3 out of 11 instances and have the same
Fy,, average, but X or has a better O average (62% vs. 59%)
and lower standard deviation (2 vs. 3). This indicates X or
is more stable when information complementarity exists.

Making a comparison between arithmetic and logical
operators, the arithmetic Sum operator achieves the best
overall performance with an average Fy,  of 61%, outper-
forming in 4 out of 11 episodes. It is closely followed by Or
and Xor, each with an average F}-score of 60% and lower
standard deviations.

Also, the execution time for both mathematical and log-
ical operators was measured. The procedure involved cal-
culating the average execution time over 100 runs for each
of the six operators. Each run measured the time to com-
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pute a fusion operation over a pair of monomodal histograms
randomly selected. As the histograms are 100-dimensional,
the fusion operation performed 100 logical/arithmetic oper-
ations. Therefore, the resulting execution time value was
divided by the dimensionality (100), giving an approximate
average execution time for a single logical/arithmetic opera-
tion.

The results, in seconds, were Sum =
0.00053715705871582, Awvg = 0.00109481811523438,
Max = 0.0106735229492188, And = 0.0002305114746,
Or = 0.0001430511475, and Xor = 0.0001525573734.
These results demonstrate that both the logical operators Or
and X or are competitive alternatives to the arithmetic ones.
They are almost as effective as the arithmetic operators,
although more efficient.

We compared arithmetic and logical operators
with three recent state-of-the-art TVSS methods:
TransNet Soucek and Lokoc [2024], VSMBD Tan et al.
[2024], and Dual Xing et al. [2024], all using the BBC
Dataset. These related works report their experimental
results using the Fq-score (F1,,) (Subsection 5.1) and omit
Precision (P) and Recall (R) values. Table 2 presents the
comparison results, showing the average Fy, for each
operator and the related works. By following the same
pipeline procedure described earlier, we now calculated the
average Fy, . The Sum arithmetic operator outperformed
the state-of-the-art methods with an Fy . of 57%, followed
by the logical Or and Xor operators, each with an Fy
of 52%. Although Sum achieved 5% higher Fy _ than the
Dual and VSMBD methods (and 4% more than Xor and
Or), it is important to note that F  is rigid and heavily
penalizes over- and under-segmentations. When using the
more suitable TVSS metrics Coverage (C') and Overflow
(O), the noticed differences tend to be smaller.

6 Conclusions

This work investigates the application of logical fusion oper-
ators (And, Or, Xor) at the mid-level feature space for the
TVSS task. The proposed use of these operators for multi-
modal fusion has several advantages: no restrictions on the
number of input features or types of modalities; effective re-
duction of data volume; applicability in different video anal-
ysis tasks as long as using feature vectors as information rep-
resentation; simple and explainable methodology; fusion op-
erators may be used as baselines for more complex methods,
based on neural network models or not.

A comparative analysis (Section 5) using the public
BBC Dataset demonstrates that Or and X or logical opera-
tors are viable alternatives to arithmetic ones, with only a
1% lower efficacy on average and reduced computational
time. This is especially important in scenarios where com-
putational time is more critical than minor efficacy differ-
ences. Even when compared to neural networks state-of-the-
art methods, fusion operators remain competitive. The Sum
arithmetic operator outperforms them by an average of 5% in
efficacy, followed by And and X or operators with a margin
of 1%. This suggests the compared neural models have the
fusion mechanism highly coupled with the task or the corre-
lation extraction module, introducing noise and diminishing
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Table 1. Metrics measures obtained from BBC Dataset: coverage (C), overflow (O), Fi-score (F1,,), and their averages (Average), in
percentage (%), and standard deviation (F ., Std.Dev). Highlighted values (X) mean the best F-score for that row (video) and bold font

values (X) mean the second best. Higher values are better.

Operators (%)

Sum Max Avg And Or Xor Visual Aural
Video / Episode C,0,F,, | C,O,F¢, | C,O,Fy,, | C,O,F,, | C,O,F1,, | C,O,F1,, | C,O,F1., | C,O,Fq1_,
From Pole to Pole | 66,57,61 | 64,57,60 | 66,55,60 | 98,03, 06 65,59, 61 66, 58,62 | 100,03,06 | 55,73, 63
Mountains 64,62,63 | 64,60,62 | 64,62,63 | 98,04,08 65,57, 60 65,64, 64 | 99,04,07 | 40, 80,58
Ice Worlds 68,61,64 | 65,63,64 | 68,61,64 | 100,03,05 | 66,60, 63 61,69,65 | 100,03,05 | 53,77, 63
Great Plains 76,62,68 | 78,61,68 | 76,62,68 | 98,05, 14 78,62,69 | 67,69,68 | 84,33,47 64,75, 69
Jungles 66, 64,65 | 69,58,63 | 66,64,65 | 79,29,42 67, 62, 65 63,63,63 | 96,17,29 62,73,67
Seasonal Forests 71,59,64 | 68,52,59 | 70,59,64 | 92,12,22 67,57, 61 67,56,61 | 86,24,37 59, 68, 63
Fresh Water 62,75,67 | 62,67,66 | 61,75,67 | 93,10, 17 65,71,68 | 59,74,65 | 85,31,46 | 47,85, 60
Ocean Deep 63,73,68 | 61,75,67 | 63,72,67 | 100, 04,08 | 59,75, 66 58,77,66 | 97,08, 14 56,75, 64
Shallow Seas 69,71,70 | 69,70,70 | 68,70,69 | 99,03, 06 71,71,71 65,75,70 | 76,59, 67 51, 80, 62
Caves 99,04, 08 | 99,04,08 | 99,04,08 | 100,03,06 | 100,03,06 | 99,04,08 | 100,03,06 | 99,04, 08
Deserts 65,69,67 | 58,71,64 | 65,69,67 | 97,05,09 60, 72, 66 53,77,63 | 99, 04,09 55, 82, 66
Average 70, 60,61 | 68,58,59 | 70,59,60 | 95,05,13 69, 59, 60 66, 62,60 | 93,17,25 59, 70, 58
Fi,, Std. Dev. 4 2 2 2 3 2 2 4

Table 2. BCC Dataset F1-score (F71,, ) averages from each fusion operator compared with F1-score from Related Work. Highlighted (x)
values mean the best F1,,  score and bold font values (x) mean the second best. Higher values are better.

Operators (%) Related Work (%)
Sum Max Avg And Or Xor Dual VSMBD TransNet
FlZ’T Flpr Flpr FlPr Pr Flpr FlPT Flpr FlI’r
Average | 57 52 53 18 53 53 52 52 50
the fusion efficacy. This was also pointed out by Beserra References

et al. [2020].

As limitations, this study used only one dataset and a
local-based visual feature extraction. Future work should
include datasets from different video domains and employ
global or semantic visual feature extraction aiming to en-
hance both the generalization of fusion operators and task ef-
ficacy. Expanding this approach to other tasks also presents
an interesting direction for future research.
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