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Abstract
This work deals with the influence of the gravitational field produced by a
charged and rotating black hole (Kerr–Newman spacetime) on massive scalar
fields. We obtain an exact solution of the Klein–Gordon equation in this
spacetime, which is given in terms of the confluent Heun functions. In the
particular case corresponding to an extreme Kerr–Newman black hole the
solution is given by the double confluent Heun functions. We also investigate
the solutions in the regions near the event horizon and far from the black hole.

Keywords: Klein–Gordon equation, Kerr–Newman metric, Heun’s differential
equations
PACS numbers: 04.20.Jb, 04.70.Dy, 02.30.Gp

1. Introduction

The study of the interaction of scalar and spinor particles with a gravitational fields goes
back to the beginning of the last century, when the generalization of quantum mechanics
to curved spaces was discussed, motivated by the idea of constructing a theory combining
quantum physics and general relativity. Along this line of research the study of solutions of
the Klein–Gordon equation in some gravitational fields as well as their consequences have
been discussed in the literature [1–12].

By the middle of the 70s of the last century, Rowan and Stephenson [5], solved the Klein–
Gordon equation for a massive field in the Kerr–Newman spacetime. The obtained solutions
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are not valid for the whole spacetime, but only near the exterior horizon and at infinity, and
are given in terms of Whittaker functions.

Solutions to the Klein–Gordon equation for a charged massive scalar field in the Kerr–
Newman spacetime were obtained by Wu and Cai [9]. They showed that the radial and
angular equations correspond to a generalized spin-weighted spheroidal wave functions, in
the non-extreme case. In this context, the general solutions in integral forms and in power-
series expansion were obtained and the appropriate forms of the equations suitable to study
some problems of physical interest, as the ones concerning black hole evaporation, black hole
radiation and scattering states, among others, were presented and their solutions given. In the
extreme case, the solutions of the radial equation were written in power-series expansion and
some discussion was presented.

Another paper by Furuhashi and Nambu [13] presents solutions of the Klein–Gordon
equation for a massive scalar field in the Kerr–Newman spacetime. The solutions were
considered very far from the exterior event horizon and near the black hole event horizon.
In the first case, it was found that the solutions regular at infinity are given in terms of the
confluent hypergeometric functions, and in the opposite situation, namely, near the horizon,
the solution is given in terms of the Gauss hypergeometric function. Therefore, the obtained
solutions are valid in a restricted range.

In our paper, we obtain the exact solutions of the Klein–Gordon equation in the background
under consideration, valid in the whole space which corresponds to the black hole exterior
which means between the event horizon and infinity. In this sense, we extend the range in which
the solutions are valid as compared with the ones obtained by Rowan and Stephenson [5]. They
are given in terms of solutions of the Heun equations [14]. We also analyze the asymptotic
behavior of the solutions and compare with the corresponding ones obtained by Rowan and
Stephenson [5]. The solution of the Klein–Gordon equation for the extreme Kerr–Newman
black hole is also obtained and is given by the double confluent Heun function.

This paper is organized as follows. In the section 2 we introduce the Klein–Gordon
equation in a curved background and write it in the Kerr–Newman spacetime, by separating
the angular and radial parts. In section 3 we present the exact solution of the radial equation and
discuss the asymptotic limits. In section 4, we consider the extreme Kerr–Newman spacetime
and present the solution of the Klein–Gordon equation. Finally, in section 5 we present our
conclusions.

2. The Klein–Gordon equation in a Kerr–Newman spacetime

We want to study the behavior of the scalar fields, in the gravitational field of a charged and
rotating black hole. In this way, we must solve the covariant Klein–Gordon equation, which
is the equation that describes the behavior of scalar particles, in the curved spacetime under
consideration which in our case is the one generated by a charged and rotating black hole. In
a curved spacetime, we can write the Klein–Gordon equation in the covariant form which is
given by [

1√−g
∂σ (gστ

√−g∂τ ) + μ2

]
� = 0 . (1)

On the other hand, the metric generated by a charged and rotating black hole is the Kerr–
Newman metric [15], which in the Boyer–Lindquist coordinates [16] can be written as

ds2 = �

ρ2
(dt − a sin2 θ dφ)2 − sin2 θ

ρ2
[(r2 + a2)dφ − a dt]2 − ρ2

�
dr2 − ρ2 dθ2 (2)

2
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where

� = r2 − 2Mr + a2 + Q2, (3a)

ρ2 = r2 + a2 cos2 θ. (3b)

Thus, writing down the Klein–Gordon equation in the Kerr–Newman spacetime given by
(2), we obtain the following equation{

1

�
[(r2 + a2)2 − �a2 sin2 θ ]

∂2

∂t2
− ∂

∂r

(
�

∂

∂r

)
− 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)

− 1

� sin2 θ
(� − a2 sin2 θ )

∂2

∂φ2

− 2a

�
[� − (r2 + a2)]

∂2

∂φ∂t
+ ρ2μ2

}
� = 0. (4)

To solve the equation (4), we assume that its solution can be separated as follows

� = �(r, t) = R(r)S(θ ) eimφ e−iωt . (5)

Substituting equation (5) into (4), we find that

1

R

d

dr

(
�

dR

dr

)
+ 1

S

1

sin θ

d

dθ

(
sin θ

dS

dθ

)
+ (� − a2 sin2 θ )(−m2)

� sin2 θ
+ 2a[� − (r2 + a2)]mω

�

− 1

�
[(r2 + a2)2 − �a2 sin2 θ ](−ω2) − ρ2μ2 = 0 . (6)

This equation can be separated according to

1

sin θ

d

dθ

(
sin θ

dS

dθ

)
+

(
λlm + c2 cos2 θ − m2

sin2 θ

)
S = 0 (7)

where c2 = a2(ω2 − μ2), and

�
d

dr

(
�

dR

dr

)
+ [ω2(r2 + a2)2 − 4Maωmr + 2Q2aωm − μ2r2�

+m2a2 − (ω2a2 + λlm)�]R = 0 . (8)

The equation (7) has as its solutions the oblate spheroidal harmonic functions Slm(ic, cos θ )

with eigenvalues λlm, where l, m are integers such that |m| � l [17, 18]. What about the solution
of the radial equation given by (8)? As we can see, the radial equation has a complicated
dependence with the coordinate r, which makes the determination of the solution not so
simple.

In order to solve the radial part of the Klein–Gordon equation, let us write

� = r2 − 2Mr + a2 + Q2 = (r − r+)(r − r−) (9)

where

r± = M ± [M2 − (a2 + Q2)]1/2, (10)

are the roots of � and correspond to the event and Cauchy horizons of the black hole. Using
(10), we can rewrite equation (8) as

(r − r+)(r − r−)
d

dr

[
(r − r+)(r − r−)

dR

dr

]
+ [ω2(r2 + a2)2 − 4Maωmr + 2Q2aωm

−μ2r2(r − r+)(r − r−) + m2a2 − (ω2a2 + λlm)(r − r+)(r − r−)]R = 0. (11)

3
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Now, we define a new coordinate x and a parameter d given by [5]

Mx = r − r+, (12a)

2Md = r+ − r− = 2[M2 − (a2 + Q2)]1/2. (12b)

The new coordinate is such that when r → r+, x → 0, and when r → ∞, we obtain that
x → ∞. We are interested in studying the behavior of the particles only in the exterior region
of the event horizon, namely, for r > r+, which correspond to 0 � x < ∞, in terms of the
new coordinate. Thus, writing equation (11) using the new coordinate, we get

d

dx

[
x(x + 2d)

dR

dx

]
+

[[
ω2 {M2[(x + d + 1)2 − (d2 − 1)] − Q2}2

M2x(x + 2d)
− 4aωm(x + d + 1)

x(x + 2d)

+ 2Q2aωm

M2x(x + 2d)
− M2μ2(x + d + 1)2 + m2a2

M2x(x + 2d)
− (ω2a2 + λlm)

]]
R = 0. (13)

Defining a new function by R(x) = Z(x)[x(x + 2d)]−1/2, we can write equation (13) in
the following form

d2Z

dx2
+ (M2(ω2 − μ2) + 1

M2x2(x + 2d)2
[[ω2{M4[4(x + d + 1)2 + 4(x + d + 1)x(x + 2d)]

− 2M2Q2[x(x + 2d) + 2(x + d + 1)] + Q4}
− 4aωmM2(x + d + 1) + 2Q2aωm − μ2M4[2x + (d + 1)2]x(x + 2d)

+ m2a2 − (ω2a2 + λlm)M2(x + 2d)x + M2d2]])Z = 0 . (14)

This differential equation can be written in a form which permits us to compare with a Heun
differential equation, and this will be done in the next section.

3. Solution of the Klein–Gordon equation in a Kerr–Newman spacetime

In order to obtain the radial solution of the Klein–Gordon equation in a Kerr–Newman
spacetime, given by equation (14), we follow the same procedure adopted by Rowan and
Stephenson [5] and write the radial equation in the partial fraction form as

d2Z

dx2
+

[
M2(ω2 − μ2) + 1

M2

(
A

x2
+ B

x
+ C

(x + 2d)2
+ D

(x + 2d)

)]
Z = 0, (15)

where the coefficients A, B, C and D are given by

A = 1

4d2
[m2a2 + 2Q2aωm − 4aωmM2(d + 1) − 4M2ω2Q2(d + 1)

+ 4M4ω2(d + 1)2 + M2d2 + ω2Q4] , (16a)

B = 1

4d3
[−m2a2 − 2Q2aωm + 4aωmM2 − 4M2ω2Q2(d2 − 1) + 4M4ω2(d + 1)2(2d − 1)

− 2M4μ2d2(d + 1)2 − 2M2d2(ω2a2 + λlm) − M2d2 − ω2Q4], (16b)

C = 1

4d2
[m2a2 + 2Q2aωm + 4aωmM2(d − 1) + 4M2ω2Q2(d − 1)

+ 4M4ω2(d − 1)2 + M2d2 + ω2Q4], (16c)

D = 1

4d3
[m2a2 + 2Q2aωm − 4aωmM2 + 4M2ω2Q2(d2 − 1) + 4M4ω2(d − 1)2(2d + 1)

+ 2M4μ2d2(d − 1)2 + 2M2d2(ω2a2 + λlm) + M2d2 + ω2Q4]. (16d)

4
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Now, we define a new independent variable, z, such that

z = −1

2

x

d
. (17)

Changing once more the variable, from x to z, equation (15) can be written as

d2Z

dz2
+

[
4d2M2(ω2 − μ2) + A

M2z2
+ −2dB

M2z
+ C

M2(z − 1)2
+ −2dD

M2(z − 1)

]
Z = 0. (18)

Consider a linear ordinary differential equation of second order in the standard form

d2U

dz2
+ p(z)

dU

dz
+ q(z)U = 0. (19)

Changing the function U (z) using the relation

U (z) = Z(z) e− 1
2

∫
p(z)dz, (20)

equation (19) turns into the normal form

d2Z

dz2
+ I(z)Z = 0, (21)

where

I(z) = q(z) − 1

2

dp(z)

dz
− 1

4
[p(z)]2. (22)

Now, let us consider the confluent Heun equation [19]

d2U

dz2
+

(
α + β + 1

z
+ γ + 1

z − 1

)
dU

dz
+

(
μ

z
+ ν

z − 1

)
U = 0, (23)

where U (z) = HeunC(α, β, γ , δ, η, z) are the confluent Heun functions, with the parameters
α, β, γ , δ and η, related to μ and ν by

μ = 1
2 (α − β − γ + αβ − βγ ) − η, (24)

ν = 1
2 (α + β + γ + αγ + βγ ) + δ + η, (25)

according to the standard package of the MapleTM17. Using equations (19)–(22), we can write
equation (23) in the normal form as [14]

d2Z

dz2
+

[
B1 + B2

z2
+ B3

z
+ B4

(z − 1)2
+ B5

z − 1

]
Z = 0, (26)

where the coefficients B1, B2, B3, B4 and B5 are given by

B1 ≡ − 1
4α2, (27a)

B2 ≡ 1
4 (1 − β2), (27b)

B3 ≡ 1
2 (1 − 2η), (27c)

B4 ≡ 1
4 (1 − γ 2), (27d)

B5 ≡ 1
2 (−1 + 2δ + 2η). (27e)

The radial part of the Klein–Gordon equation in the Kerr–Newman spacetime in the
exterior region of the event horizon, given by (18), can be written as (26), and therefore, its
solution is given by

Z(z) = U (z) e
1
2

∫ (
α+ β+1

z + γ+1
z−1

)
dz

, (28)

5
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where U (z) is solution of the confluent Heun equation (23), and the parameters α, β, γ , δ and
η are obtained from the following relations

−1

4
α2 = 4d2M2(ω2 − μ2), (29a)

1

4
(1 − β2) = A

M2
, (29b)

1

2
(1 − 2η) = −2dB

M2
, (29c)

1

4
(1 − γ 2) = C

M2
, (29d)

1

2
(−1 + 2δ + 2η) = −2dD

M2
. (29e)

Thus, from the above relations, we find that

α = 4dM(μ2 − ω2)1/2, (30a)

β =
√

1 − 4A

M2
, (30b)

γ =
√

1 − 4C

M2
, (30c)

δ = − 2d

M2
(B + D), (30d)

η = 1

2
+ 2dB

M2
. (30e)

The general solution of equation (11) over the entire range 0 � z < ∞ is obtained with
the use of equation (28). It is given by

R(z) = M

�1/2
e

1
2 αz(z − 1)

1
2 (1+γ )z

1
2 (1+β){c1 HeunC(α, β, γ , δ, η, z)

+c2 z−β HeunC(α,−β, γ , δ, η, z)}, (31)

where HeunC(α,±β, γ , δ, η, z) are the confluent Heun functions, c1 and c2 are constants
and α, β, γ , δ and η are fixed by relations (30a)–(30e). These two functions form linearly
independent solutions of the confluent Heun differential equation provided β is not an integer.
However, there is no specific physical reason to impose that β should be an integer.

Now, let us analyze the asymptotic behavior of the general solution of equation (11), given
by equation (31), over the range 0 � x < ∞. Firstly, we will consider a region close to the
event horizon, which means that r → r+, that is, x → 0. Secondly, we will consider a region
very far from the black hole, that is, r → ∞, or equivalently, x → ∞.

Taking these limits into consideration is important in order to obtain the appropriate
solutions to study some aspects of the black hole radiation, in which case we need to know
the outgoing wave in the horizon surface r = r+.

6
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3.1. Case 1: x → 0

When z → 0 we have that x → 0 and r → r+. Thus, using the expansion in power-series for
all z of the confluent Heun function, namely

HeunC(α, β, γ , δ, η, z) = 1 + 1

2

(−αβ + βγ + 2η − α + β + γ )

(β + 1)
z + 1

8

1

(β + 1)(β + 2)

× (α2β2 − 2αβ2γ + β2γ 2 − 4ηαβ + 4ηβγ + 4α2β − 2αβ2 − 6αβγ

+ 4β2γ + 4βγ 2 + 4η2 − 8ηα + 8ηβ + 8ηγ + 3α2 − 4αβ − 4αγ

+ 3β2 + 4βδ + 10βγ + 3γ 2 + 8η + 4β + 4δ + 4γ )z2 + · · · , (32)

the solutions of (11), in that limit, are given by

R(r) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M

�1/2

[
− 1

2dM
(r − r+)

] 1
2 +m̄

,

M

�1/2

[
− 1

2dM
(r − r+)

] 1
2 −m̄

,

(33)

with m̄ defined by

m̄2 = 1

4
− A

M2
. (34)

At this point, we can compare the obtained result with the ones of Rowan and Stepheson
[5]. It is worth paying attention to the difference between the functional form of the asymptotic
behavior of the general solution of the radial equation obtained analytically, given by equation
(33), and the approximated solution obtained by Rowan and Stephenson [5], given by

R(r) ∼

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M

�1/2
e−(

√
F/M)(r−r+ )

[
2
√

F

M
(r − r+)

] 1
2 +m̄

,

M

�1/2
e−(

√
F/M)(r−r+ )

[
2
√

F

M
(r − r+)

] 1
2 −m̄

,

(35)

where

F = M2(μ2 − ω2) − C

4M2d2
− D

2M2d
. (36)

It is worth noting that expanding (35) up to the first order in terms of x = (r − r+)/M, we
conclude that the results agree with ours, given by equation (33), except for a multiplicative
constant, which should be adjusted appropriately.

3.2. Case 2. x → ∞
When |z| → ∞ we have that |x| → ∞ and r → ∞. Thus, using the fact that in the
neighborhood of the irregular singular point at infinity, the two solutions of the confluent Heun
equation exist, in general they can be expanded (in a sector) in the following asymptotic series
[14]

HeunC(α, β, γ , δ, η, z) ∼
⎧⎨
⎩z

−
(

β+γ+2
2 + δ

α

)
,

z
−

(
β+γ+2

2 − δ
α

)
e−αz ,

(37)

7
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where we are keeping only the first term of this power-series asymptotics. Thus, the solutions
of (11) in this limit are given by

R(r) ∼

⎧⎪⎪⎨
⎪⎪⎩

M

�1/2
e−[(μ2−ω2)1/2(r−r+ )]

[
− 1

2dM
(r − r+)

]κ

,

M

�1/2
e+[(μ2−ω2)1/2(r−r+ )]

[
− 1

2dM
(r − r+)

]−κ

,

(38)

with κ defined by

κ = B + D

2M3(μ2 − ω2)1/2
. (39)

Therefore, at infinity, we have the asymptotic forms which are consistent with the fact that
very far from the black hole, the Kerr–Newman spacetime tends to the Minkowski spacetime.

In this case there is also a difference between equation (38) and the one obtained by
Rowan and Stephenson [5], given by

R(r) ∼

⎧⎪⎨
⎪⎩

M

�1/2
e−[(μ2−ω2)1/2(r−r+ )][2(μ2 − ω2)1/2(r − r+)]κ ,

M

�1/2
e+[(μ2−ω2)1/2(r−r+ )][−2(μ2 − ω2)1/2(r − r+)]−κ ,

(40)

provided μ2 − ω2 �= 0. Once more, the two results are equivalent, except for a multiplicative
constant.

4. Solution of the Klein–Gordon equation in an extreme Kerr–Newman
spacetime

Let us now analyze the special case (extreme case) in which a2 = M2 − Q2, so that the metric
given by equation (2) reduces to the form of the extreme Kerr–Newman spacetime. We should
note that the radial part of the Klein–Gordon equation, given by equation (15), does not admit
this case, because a2 = M2 − Q2 implies, due to equation (12b), that d = 0 and, therefore,
the coefficients A, B, C and D given by equation (16a)–(16d) are divergent. Thus, to study the
extreme Kerr–Newman spacetime, we start from equation (14) and, taking a2 = M2 − Q2 and
d = 0, we obtain

d2Z

dx2
+ (M2(ω2 − μ2) + 1

M2x4
[[−4ωmM3(x + 1)(M2 − Q2)1/2

+ m2(M2 − Q2) + ω2{Q4 − 2M2Q2[x2 + 2(x + 1)]

+ M4[4(x + 1)2 + 4(x + 1)x2]} − μ2M4(2x + 1)x2

+ 2ωmQ2(M2 − Q2)1/2 − [ω2(M2 − Q2) + λlm]M2x2]])Z = 0. (41)

Now, we write equation (41) in the partial fraction form as

d2Z

dx2
+

[
F + A

x
+ B

x2
+ C

x3
+ D

x4

]
Z = 0 , (42)

where the coefficients of the partial fractions are given by

A = 4M2ω2 − 2M2μ2, (43a)

B = 7M2ω2 − M2μ2 − λlm − Q2ω2, (43b)

C = −4ω[m(M2 − Q2)1/2 − 2M2ω + Q2ω], (43c)

8
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D = m2M2 − 4ωmM2(M2 − Q2)1/2 + 4M4ω2 − m2Q2

M2

+ 2ωmQ2(M2 − Q2)1/2 − 4M2Q2ω2 + Q4ω2

M2
, (43d)

F = M2(ω2 − μ2). (43e)

Let us define a new independent variable, z, such that

z = i(FD3)
1
4 x − D

i(FD3)
1
4 x + D

. (44)

Defining a new function given by Z(z) = U (z)x1/2, where x = x(z) is obtained from equation
(44), we can rewrite equation (42) in the normal form as

d2U

dz2
+

⎧⎪⎪⎨
⎪⎪⎩

[
−B − iC(FD3)

1
4

2D + iA(FD3)
3
4

2FD2

]
(z − 1)

+

[
B + iC(FD3 )

1
4

2D − iA(FD3 )
3
4

2FD2

]
(z + 1)

+

[
B − iA(FD3)

3
4

FD2

]
(z − 1)2

+

[
B + iC(FD3 )

1
4

D

]
(z + 1)2

+

[
2iA(FD3 )

3
4

FD2

]
(z − 1)3

+

[
2iC(FD3 )

1
4

D

]
(z + 1)3

+

[
− 4(FD3 )

1
2

D

]
(z − 1)4

+

[
− 4(FD3 )

1
2

D

]
(z + 1)4

⎫⎪⎪⎬
⎪⎪⎭U = 0. (45)

The double confluent Heun equation is given by

d2U

dz2
+

[
2z5 − αz4 − 4z3 + 2z + α

(z − 1)3(z + 1)3

]
dU

dz
+

[
βz2 − (−γ − 2α)z + δ

(z − 1)3(z + 1)3

]
U = 0 . (46)

Using equations (19)–(22) we can write equation (46) in the normal form

d2Z

dz2
+

[
A

(z − 1)
+ B

(z + 1)
+ C

(z − 1)2
+ D

(z + 1)2

+ F

(z − 1)3
+ G

(z + 1)3
+ J

(z − 1)4
+ K

(z + 1)4

]
Z = 0. (47)

Thus, comparing equation (47) with the radial part of the Klein–Gordon equation in an extreme
Kerr–Newman spacetime, given by (45), we have that

Z(z) = U (z) e
1
2

∫ [
2z5−αz4−4z3+2z+α

(z−1)3 (z+1)3

]
dz

, (48)

where U (z) is solution of the double confluent Heun differential equation given by (46). Now,
the relations between the parameters are

1

32
(−8 + α2 − 2β + 6δ) = −B − iC(FD3)

1
4

2D
+ iA(FD3)

3
4

2FD2
, (49a)

1

32
(8 − α2 + 2β − 2γ − 6δ) = B − iA(FD3)

3
4

FD2
, (49b)

1

8
(β + γ + δ) = 2iA(FD3)

3
4

FD2
, (49c)

9
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− 1

16
(−α2) = −4(FD3)

1
2

D
. (49d)

Using equations (49a)–(49d) we can write, explicitly, the coefficients α, β, γ and δ, as

α = 8(FD3)
1
4

D1/2
, (50a)

β = −1 + 4B − 4iC(FD3)
1
4

D
+ 8(FD3)

1
2

D
+ 4iA(FD3)

3
4

FD2
, (50b)

γ = 8i[CFD(FD3)
1
4 + A(FD3)

3
4 ]

FD2
, (50c)

δ = 1 − 4B − 4iC(FD3)
1
4

D
+ 8(FD3)

1
2

D
+ 4iA(FD3)

3
4

FD2
. (50d)

Therefore, taking into account (48), the general solution of equation (11) over the range
0 � z < ∞, for the case of the extreme Kerr–Newman metric, is given by

R(z) = M

�1/2
e

1
2

αz
(z−1)(z+1)

{
c1 HeunD

(
−α,−δ,−γ ,−β,

1

z

)

+ c2 e− αz
(z−1)(z+1) HeunD

(
α,−δ,−γ ,−β,

1

z

)}
, (51)

where c1 and c2 are constants and the following identity for the double confluent Heun function
was used:

HeunD

(
−α,−δ,−γ ,−β,

1

z

)
= HeunD(α, β, γ , δ, z) . (52)

Therefore, the solution for the extreme Kerr–Newman metric is different than the one obtained
for the general Kerr–Newman metric.

5. Conclusions

In this paper, we presented analytic solutions of the radial part of the Klein–Gordon equation
for a massive scalar field in the spacetime of a charged and rotating black hole (Kerr–Newman
spacetime).

These solutions extend the ones obtained by Rowan and Stephenson in the sense that now
we have analytic solutions for all spacetime, which means, in the region between the event
horizon and infinity, contrary to the results of Rowan and Stephenson which were obtained for
asymptotic regions, namely, very close to the horizons and far from the black hole. The solution
is given in terms of the confluent Heun functions, and is valid over the range 0 � z < ∞. In
this way, the obtained solution generalizes the results found by Rowan and Stephenson [5].

Additionally, we also obtained the solutions to the extreme Kerr–Newman spacetime,
which are given in terms of the double confluent Heun functions and are qualitatively different
from the one which solves the radial equation for the Kerr–Newman spacetime.

The obtained results have the advantage, as compared with the papers by Rowan and
Stephenson [5] and Furuhashi and Nambu [13], that the solutions are valid from the exterior
event horizon to infinity, instead of being valid only closed to the exterior event horizon and at
infinity, as in Rowan and Stepheson [5] and Furuhashi and Nambu [13] papers. On the other
hand, compared with the paper by Wu and Cai [9], our results are given in terms of analytic
functions, and not in integral forms or in form of series.

The obtained solutions certainly, will be important to study the physics of black hole
radiation, scattering process, stationary state energy and in the analysis of stability [13] of the
charged and uncharged black holes.
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