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h i g h l i g h t s

• We describe and explore a new class of asymmetric stochastic spin models in detail.
• The models provide a spin-like alternative to study nonequilibrium phenomena.
• The models provide a natural setup to study the spatial dynamics of reaction networks.
• We illustrate the application of the models to the repressilator, a synthetic GRN.
• Monte Carlo simulations reveal stationary state oscillations for the repressilator.
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a b s t r a c t

We describe an approach to model genetic regulatory networks at the level of promo-
tion–inhibition circuitry through a class of stochastic spin models that includes spatial
and temporal density fluctuations in a natural way. The formalism can be viewed as an
agent-based model formalism with agent behaviour ruled by a classical spin-like pseudo-
Hamiltonian playing the role of a local, individual objective function. A particular but oth-
erwise generally applicable choice for the microscopic transition rates of the models also
makes them of independent interest. To illustrate the formalism, we investigate (byMonte
Carlo simulations) some stationary state properties of the repressilator, a synthetic three-
gene network of transcriptional regulators that possesses oscillatory behaviour.

© 2015 Elsevier B.V. All rights reserved.

The simplest possible variable is one which takes on two values. (If there is only one value, no change is possible.)
S.-K. Ma, Statistical Mechanics (1985)

1. Introduction

Mathematical models in biology – whether in the study of ecological populations or biochemical signalling networks –
are traditionally based on systems of reaction–diffusion differential equations akin to chemical kinetics ideas and techniques
[1,2]. The main tool of these approaches is the rate equation. If the numbers of interacting species (individuals, molecules,
etc.) are sufficiently large and the system is sufficiently homogeneous (‘‘well stirred’’), the dynamics of the density profile
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x(t) = (x1(t), . . . , xn(t)) of the densities xi(t) of each type of component can be described by the dynamical system

dx(t)
dt
= f (x(t))− g(x(t)), (1)

where f and g are limited functions denoting, respectively, the rates at which the components of the system are produced
and degradedwhen the instantaneous density profile is x(t). Eq. (1)may include time-delayed terms, differential-difference
terms, and stochastic perturbations as refinements [3–9].

In the modelling of biochemical reaction networks, application of chemical kinetics ideas and techniques typically pro-
duce large systems of nonlinear differential equationswithmultiple timescales that are very difficult to solve. To circumvent
these complications, and also to provide modelling tools at varied levels of abstraction, approaches based on Boolean net-
works, stochastic Petri nets, and rule-based formalisms, among others, have been developed [10–13]. While some of these
modelling frameworks propose innovative forms of representing biochemical reaction networks and integrating the mod-
els with laboratory tools and automation, most rely on differential equations for quantitative predictions. Chemical master
equations, a mesoscopic approach to chemical kinetics based on stochastic birth and death processes, are also based on
differential equations (and most of the times also on the well-stirred approximation) [14,15].

In this article we explore discrete state space, continuous time stochastic spinmodels on the lattice to describe biochem-
ical reaction and signalling networks that provide an alternative to the continuous descriptions based on rate equations.
Stochastic spin models have been widely used to model interacting particle systems like exclusion and contact processes,
voter models, branching and annihilating random walks, and similar models on the lattice [16,17]. The asymmetric, type-
dependent stochastic spin models presented here were introduced in Ref. [18] and seem to be promising in describing the
space–time behaviour of biochemical reaction and signalling networks. In particular, the fact that they deal with inhomo-
geneous, spatially distributed systems in a natural way provides a convenient framework to investigate the importance
of space–time patterns to the efficiency of biological signalling, an important issue in the description of certain reaction
cascades—e. g., in the immune system [19]. Here we supplement the exposition given in Ref. [18] with a somewhat simpler
notation and ‘‘practical’’ simulations of a model system aiming at an audiencemore interested in model building andMonte
Carlo simulations.

The article is organised as follows. In Section 2 we describe type-dependent stochastic spin models, introduce themicro-
scopic transition rates that model the dynamics of the promotion–inhibition circuitry and discuss the differences between
the choices made for the transition rates here and the usual recipe in the context of equilibrium statistical mechanics. In this
section we also remark how the formalism can be viewed as an agent-based model formalism with agent behaviour ruled
by a classical spin-like pseudo-Hamiltonian playing the role of a local, individual objective function. In Section 3, we test the
formalism by means of Monte Carlo simulations of the repressilator, a three-genes genetic regulatory network of negative
feedback that displays oscillatory behaviour. Finally, in Section 4 we summarise our results, highlight some features of the
formalism presented, and indicate directions for further investigations and applications.

2. Type-dependent stochastic spin models

2.1. Mathematical setup

In what follows we draw heavily on Ref. [18], to which we refer the reader for mathematical minutiae; note, however,
that our notation differs from that of Ref. [18]. Let T = {a1, a2, . . . , an} be a finite set of n types (e. g., molecules, genes,
or proteins), Sa = {s(1)a , s(2)a , . . . , s(Sa)a } the set of Sa possible internal states of type a, and E = {(a, s) : a ∈ T , s ∈ Sa}.
Also, letV be the vertex set of a simple graph (without loops or multiple edges) of order V = |V |. We call the ordered pair
(i, a) ∈ X = V ×T a ‘‘site,’’ that is, an element of type a lying in position i, and denote its internal state by ηa

i ∈ Sa. The state
space of configurations η = (ηa

i ) is given byΩ = SVa1 ×SVa2 ×· · ·×SVan . Sites interact through a set of two-body interaction
matrices Jabij ( ·, · ) : E × E → R, one for each pair of vertices i, j ∈ V . The element Jabij (ηa

i , η
b
j ) denotes the interaction

strength that site (i, a) in the internal state ηa
i exerts upon site (j, b) in the internal state ηb

j . Interactions between different
types do not need to be symmetric, Jabij ≠ Jbaij ; otherwise, we shall only consider isotropic interactions, Jabij = Jabji .

An example, thatwill be useful later,may help to clarify all these quantities. Suppose that our system is composed of three
types, A, B and C , so that T = {A, B, C}, and that each of these types can be in one of two states, say, inactive, that we will
denote by−1, and active, that wewill denote by+1, such that SA = SB = SC = {−1,+1}. We thus have, for each edge (i, j)
of a given substrate, modelled by a graph (e. g., a square lattice or the complete graph), an interaction strength Jabij (ηa

i , η
b
j )

that can be any one of the |E ×E | = 36 possible combinations JAAij (−,−), JAAij (−,+), . . . , JBCij (+,−), . . . , JCCij (+,+).
From the matrices Jabij we define an ‘‘energy’’ function H : Ω → R by

H(η) =


(j,b)∈X
Hb

j (η), Hb
j (η) =


(i,a)∈X b

j

Jabij (ηa
i , η

b
j ), (2)

where X b
j is a neighbourhood of (j, b) that may or may not include j, b, or (j, b). If ηa

i promotes ηb
j , J

ab
ij (ηa

i , η
b
j ) < 0, while if

ηa
i inhibits ηb

j , J
ab
ij (ηa

i , η
b
j ) > 0. Viewed as a spin Hamiltonian, H(η) is closely related with n-colour Ashkin–Teller and Potts
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models [20,21], but generalises them on the counts that it is in general a mixed-spins model, since the internal state spaces
Sa do not need to be identical, and that interactions between different types do not need to be symmetric.

2.2. Transition rates

FunctionH(η) allows us to define a dynamics for the transitions of the internal states of the sites from the change brought
by them to the value of H(η), as with the usual stochastic spin models [17]. Here we will consider single-site transitions,
although stirring can be addedwith some extra care. Let ηa

i (s) ∈ Ω be the configuration given by [ηa
i (s)]

b
j = s if (j, b) = (i, a)

and [ηa
i (s)]

b
j = ηb

j otherwise. The energy cost of a transition ηa
i (r)→ ηa

i (s) is then given by

∆a
i (r, s)(η) = H(ηa

i (s))− H(ηa
i (r)). (3)

Because of the asymmetry in the interactions, ∆a
i (r, s)(η) decomposes into ∆a

i (r, s)(η→ i)+∆a
i (r, s)(η← i), where

∆a
i (r, s)(η→ i) =


(j,b)∈X


Jbaji (ηb

j , s)− Jbaji (ηb
j , r)


(4)

collects the energy difference due to the action of the sites in η upon the site (i, a) when it flips from ηa
i = r to ηa

i = s, and

∆a
i (r, s)(η← i) =


(j,b)∈X


Jabij (s, ηb

j )− Jabij (r, ηb
j )


(5)

collects the energy difference due to the action of the site (i, a) upon the sites of η when it flips from ηa
i = r to ηa

i = s. We
now define a dynamics for the model specified by H(η) through the set of single-site transitions rates

cai (r, s)(η) = Θ(∆a
i (r, s)(η→ i)), (6)

where Θ : R→ R+ is any non-increasing function obeying Θ(∆)e∆
= Θ(−∆)e−∆.

The transition rates (6) depend only on the energy difference of the single site that flips, not on the global energy
difference caused by the flip. From the vantage point of the flipping site, it is as if the rest of the system acted as a reservoir
that goes unperturbed by the flip—only subsequent flips will eventually notice the change. This prescription, that takes into
account only the energy difference of the single site that flips, strongly resembles agent-basedmodelling approaches. In fact,
it is as if each type in its site were an ‘‘agent’’ that analyses the situation around, evaluates its local objective function given
by Hb

j (η), and takes (or not) an action that maximises its resulting local fitness by minimising its local objective function.
The difference is that in general agent-based model rules are set by hand, and here they are provided by an energy-like
functional. The same thing happens in the modelling of interacting particle systems like the contact, voter, and exclusion
processes, where the transition rates are assigned without making any reference to a microscopic Hamiltonian [16,17].

2.3. A remark on the (nonequilibrium) stationary distribution

Rule (6) diverts from the usual Metropolis recipe for rates used in Markov chain Monte Carlo simulations of equilibrium
statistical systems, based on the global energy difference∆H = H(η′)−H(η) between configurations, and has the important
consequence that the stationary states of the model will not in general be distributed according to the Gibbs measure
µG(η) ∝ exp(−H(η)), although there may be some function of η that renders a Gibbs-like stationary distribution for the
model. For finite systems there will always be such a function, however nonlinear and nonlocal it may be; for infinite
volume systems there may be none [22,23]. For reversible stochastic spin models, single-site transition rates given by
cai (r, s)(η) = Θ(∆a

i (r, s)(η)) guarantee that the stationary state will be distributed according to µG(η). For symmetric
interactions, Jabij = Jbaij , we obtain from Eqs. (4) and (5) that ∆a

i (r, s)(η) = 2∆a
i (r, s)(η → i), and the two prescriptions

coincide up to a factor of 2.
So, why should one pick the transition rates given by (6) instead of those that guarantee that the system will relax to its

equilibrium Gibbs distribution? The answer is that the rates in (6) lead to forward Kolmogorov equations that, in the mean
field approximation – corresponding to awell-stirred solution – and in the limit of a large number of particles are equivalent
to a dynamical system ẋ(t) = V (x(t)) for the density profile x(t) ∈ RS , where S = 

a∈T Sa and V (x(t)) : RS → RS is
a smooth vector field of the form f (x(t))− g(x(t)). The rates given by (6) thus allow us to establish a connection between
the microscopic description in terms of the Markov jump process governed by H(η) and macroscopic descriptions in terms
of rate equations, although the rates obtained for V (x(t)) may not be related with the rates uniquely determined by the
elementary chemical reactions, and the ensuing dynamical system may differ from the one obtained from the law of mass
action [1–3]. This result was obtained in Ref. [18] and is mildly related with results first obtained by T. G. Kurtz in the
1970s [24], but the introduction of the type-dependent stochastic spin models (2) and the rates (6) is novel and provides a
versatile modelling framework of independent interest.

Recent work on asymmetric Ising models [25,26] and their relationship with non-equilibrium stationary measures
for stochastic evolutions and their transitions from Gibbs to non-Gibbs measures and vice-versa through dynamic
bifurcations [27] may become of importance in the understanding of the non-equilibrium stationary state properties of
type-dependent stochastic spin models and related models.
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Fig. 1. The repressilator genetic regulatory network circuit. Blunt arrows indicate inhibition through a genetic regulation mechanism briefly described in
the text.

3. A type-dependent stochastic spin model for the repressilator

3.1. The type-dependent stochastic Ising model

The simplest type-dependent stochastic spin model has all internal state spaces Sa = {−1,+1} and will be referred to
as type-dependent stochastic Ising model (TDSIM). The most general two-body interaction Hb

j (η) for TDSIMs is, to within
an irrelevant additive constant, given by

Hb
j (η) =


(i,a)∈X b

j


Jabij ηa

i η
b
j + Aab

ij ηa
i + Bab

ij ηb
j


, (7)

where now Jabij , A
ab
ij , and Bab

ij are scalar quantities. We remark that Ising-like Hamiltonians have already been used to model
gene–gene interacting networks, butwithin the context of equilibriumdistributions [28]. In our dynamic approach, the rates
(6) are as important as Hb

j (η) itself. Note also that the present approach is only barely related with the use of Ising spins
to analyse consistency and monotonicity of reaction network graphs [29], although the determination of Hb

j (η) depends on
such graphs.

3.2. The TDSIM for the repressilator

Let us illustrate the formalism by considering the repressilator, a genetic regulatory network designed to exhibit stable
oscillations that are believed to be important in the determination of the circadian rhythms observed in most living
organisms. The repressilator was induced in the prokaryote bacteria Escherichia coli through a genetically engineered
plasmid, together with a reporter plasmid that expresses the green fluorescent protein (GFP). In this system, the protein
LacI from E. coli inhibits the transcription of a second gene, tetR from the tetracycline-resistance transposon Tn10, whose
protein product TetR inhibits the transcription of a third gene, cI from the λ-phage, whose protein CI inhibits the expression
of lacI, closing the loop of negative feedback [30]. This genetic regulatory network is represented in Fig. 1. This is clearly a
highly stylised description of the true biochemical reaction network, that involves different operator sites, depends on how
many proteins bind to the sites, and have lots of intermediate steps. It can, however, capture the essential nature of the
interactions and is widely used to represent biochemical networks at a higher level of abstraction.

The TDSIM for the repressilator in the absence of external driving (Aab
ij = Bab

ij = 0) has three coupling constants, one
for each pair of unidirectionally interacting types, all positive and that can be taken homogeneous. We take all coupling
constants equal, JAB = JBC = JCA = J , that despite being a considerable simplification of the full Hb

j (η) possesses oscillatory
dynamical behaviour already in the mean field approximation [18]. In this case, the two-body interaction term becomes

Hj(η) = J

i∈Xj


ηA
i η

B
j + ηB

i η
C
j + ηC

i η
A
j


. (8)

The velocity vector field associated with the mean field equations for this model using a heat bath prescription for the rates
(6) (cf. below) is given by [18, Prop. 5.4 and Eq. (6.3)]

V (xa) = e−Jxb −

eJxb + e−Jxb


xa, (9)

where xa = x+a (t) is the time-dependent density profile of type a in state ‘‘+1’’ (clearly, x−a (t) = 1− x+a (t)) and the indices
(a, b) run through the pairs (A, B), (B, C), and (C, A).

In the lattice setting, the main quantities of interest are the empirical time-dependent densities

ρs
a(t) =

1
V


i∈V

δ(ηa
i (t), s), (10)

where δ( ·, · ) is the Kronecker delta symbol. In practice, we measure ρa(t) = (1/V )


i∈V ηa
i (t), from which ρ±a (t) =

1
2 (1 ± ρa(t)) can be easily recovered. The time evolution of these quantities in the stationary state of the model for
some choices of J appears in Fig. 2. All data were obtained by Monte Carlo simulations using a heat bath prescription
Θ(∆) = 1/(1+ e2∆) for the rates (6) in a simple square lattice of V = 100× 100 sites with periodic boundary conditions
and nearest-neighbour interactions. Note that we include a given position in its own neighbourhood to allow for intrasite
interactions between different types. OneMonte Carlo step equals nV move attempts at randomly chosen sites (i, a), where
n is the number of different types in the system.
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Fig. 2. Evolution of the densities of the types in the stationary state of the TDSIM for the repressilator with J = 0.3 (top panel) and J = 0.5 (bottom panel).
The densities clearly oscillate out of phase and are pairwise anticorrelated most of the time. The oscillation amplitudes at J = 0.3 are typical in the whole
range 0.07 . J . 0.42.

3.3. Density profiles and correlation functions

Fig. 2 displays the density profiles in the nonequilibrium stationary state of the model. From that figure we clearly see
that the densities of different types oscillate and are out of phase. Note that the curves are mostly pairwise anticorrelated
and that different types alternate in the peaks. The oscillations in Fig. 2 are similar to the oscillations found experimentally as
well as in ODEmodels and stochastic simulations [30,31].When J ≈ 0, the types become independent or nearly independent
and their densities fluctuate at will, so that we do not observe true oscillations. We could identify oscillations in our finite
system for J & 0.07. There is nothing special about this value, only that we can clearly observe oscillatory behaviour above
it. We found that the amplitudes of the oscillations vary little in the range 0.07 . J . 0.42, but decay for J & 0.42 and gets
smaller as J gets larger past this point.

We found that the amplitudes of the oscillations scale like
√
V , signalling that the oscillations are spatially

unsynchronised, since otherwise the amplitudes would scale like V . As a consequence, it becomes difficult to distinguish
cycles or quasi-cycles out of the noise directly from the density profiles, and the analysis of correlation functions becomes
preferable. This is well known from the study of population dynamics [32,33]. We then compute the density–density time
correlation functions in the stationary state,

Cab(t) = lim
T→∞

1
T

 T

0
[ρa(t + t ′)− ρa][ρb(t ′)− ρb]dt

′, (11)

and their power spectral densities

Sab(ω) =
1
2π


∞

−∞

Cab(t)e−iωtdt, (12)

where ρa and ρb are the average densities of types a and b in the stationary state. In practice, the integration limits in (11)
and (12) are bounded by the lengths of the time series available. In our simulations we sampled the stationary densities
every 1t = 1

10 MCS for 104 MCS.
Fig. 3 displays the autocorrelation function CAA(t) at J = 0.415 normalised by its value at t = 0 and some associated

Fourier transforms SAA(t). The other autocorrelation functions behave like CAA(t) because of the symmetry between the
types. We see from Fig. 3 the decay of the autocorrelation function, typical of stochastic dynamics due to the variability of
the oscillations, and the peak in SAA(ω) aroundω = 0.26±0.03MCS−1 at J = 0.415. The oscillation frequencies do not vary
much with J as long as J < 0.415; otherwise, the oscillations cease almost completely for J > 0.415.

3.4. Onset of oscillations and the critical point

In Fig. 4 we exhibit snapshots of the sites where ηa
i = ηb

i = ηc
i in the stationary state for some values of J . This figure

depicts a typical transition from a disordered phase to an antiferromagnetic-like phase. We clearly see how the dynamics of
the types in the stationary state becomes more and more constrained by their repressors in the immediate neighbourhood
as J gets larger, hence the smaller amplitudes in the oscillations of the densities. From Figs. 2 and 4 we can infer that there
is a transition from a spatially uncorrelated, oscillating density stationary state to an almost frozen, non-oscillating density
stationary state at J ≃ 0.415. We thus regard the point J = 0.415 = J∗ as a critical point of the model. The system does not
freeze completely because of the frustration induced by the intrasite interactions between types and the form of the rates
(6), that depend only on the single site that flips and its neighbourhood, not on the state of the entire system. We located J∗
by computing the ‘‘staggered densities’’ in lattices of several sizes.
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Fig. 3. Autocorrelation function CAA(t) at J = 0.415 normalised by its value at t = 0 (upper panel) and some Fourier transforms SAA(ω) for several different
values of 0.1 6 J 6 0.415 (lower panel). The curve SAA(ω) for J = 0.415 (bolder line) peaks at ω = 0.26± 0.03 MCS−1 .

In the dynamical mean field approximation to the same model (but with a constant external driving field independent
of type) the above mentioned transition was identified with a Hopf bifurcation (when the associated real Jacobian matrix
acquires a pair of pure imaginary eigenvalues) at J∗ = 2/ cos(π/3) = 4 [18], and in a related asymmetric model with
JAB = JBC = JCA = δJ and JBA = JCB = JAC = (1− δ)J , with J > 0 and 0 6 δ 6 1, it was found that (with δ ≠ 1

2 and again in
the presence of a type-independent constant external driving) there is a Hopf bifurcation at J∗ = 2 [34].

Our intuition about the difference in the values of J∗ observed in our simulations and in the mean field version is that
the mean field version corresponds not just to a mean field version of the model, but to a continuous, off-lattice mean field
version of themodel. On-lattice and off-lattice versions of the same dynamics are not expected to have the same parameters;
usually there are exponentials intervening in the relationship between the two limits. We remark, however, that in either
case the transition at J∗ should be understood as a change in the regime of the dynamical system, not as a thermodynamic
phase transition, although for systems described by a function like H(η) the two interpretations conflate largely.

In the actual repressilator, the densities of proteins per cell oscillate with an observed period Tobs = 160±40min [30]. In
our simulations, we found that at J∗ = 0.415 the period Tsim = 3.9± 0.4 MCS. We thus have the approximate equivalence
1 MCS ≃ 41± 7min in the real system, and since in our simulations 1 MCS = 100× 100× 3 flip attempts, we can estimate
that in our simulationswe observed (at J∗ = 0.415) approximately 12±2 transitions per second. Translation of these figures
into meaningful quantities like, e. g., transcription and degradation rates of proteins is a delicate question that we intend to
pursue elsewhere.

4. Summary and perspectives

Type-dependent irreversible interacting particle systems provide a tool to model the dynamics of biochemical reaction
networks by linking influence flow diagrams like the one depicted in Fig. 1 with a model description at the same level
of abstraction. The models capture the main dynamic characteristic of the system, are predictive, relatively simple,
easily computable, and verifiable in a phenomenological sense. They can also be easily composed to describe interacting
subsystems,

H(η, ξ) = H(η)+ H(ξ)+

(j,b)


(i,a)

K ab
ij (ηa

i , ξ
b
j ), (13)

in accordance with modularity principles commended by the systems approach to biology [35].
We showed that the TDSIM for the repressilator generates density oscillations that reproduce those found experimentally

and in ODE-basedmodels. To display oscillations is a nontrivial task for nonequilibrium stationary states and is only possible
for TDSIMs because the rates (6) do not obey the detailed balance condition with respect to its ‘‘energy’’ function (2).
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Fig. 4. Correlation between the three types in a square lattice of 100 × 100 sites with periodic boundary conditions. The figure depicts the sites with
ηa
i = ηb

i = ηc
i (black dots) in the stationary state when J = 0.3 (left panel), J = 0.415 (mid panel), and J = 0.5 (right panel). At J = 0.5 we see an almost

exact splitting into two sublattices. In this state, the remaining dynamics, responsible for the residual small amplitude oscillations shown in the bottom
panel of Fig. 2, occurs mostly in the interstices between the sites with ‘‘pinned’’ ηa

i = ηb
i = ηc

i .

The lattice, spatial structure of the spin systems provides a natural setting to study the spatiotemporal dynamics of
extended networks, an aspect of biochemical reaction networks that has received increasing attention in the context of
coupled genetic regulatory networks [36–43] and also in the reconstruction of biological information flow networks from
data [44,45]. Type-dependent stochastic spin models can include diffusion through a Kawasaki-type exchange dynamics
and also account for the possibility that types may be absent, not only active or inactive, in a given site, e.g., by taking some
Sa = {−1, 0,+1}. This possibility allows the modelling of deterministic and stochastic kinetics concurrently by putting
on the same model types of low density (e.g., plasmid copies or enzymes) described by discrete variables ηa

i together with
types of higher density (e.g., peptides or small substrate molecules) described by an effective density in a mean-field-like
description, e.g. as an external field (‘‘pumping’’) acting selectively on some types. An important feature of the formalism
is that it allows for multiple occupancy of vertices. Each vertex i ∈ V can be occupied or not by each of the possible types
a1, . . . , an in any of their possible internal states. Single occupancy models are usually harder to analyse thanmodels which
allow for multiple occupancy, and we believe that this is one of the strengths of the formalism.

It may be that some biochemical reaction networks give rise to TDSIMs resembling Hamiltonians known from
other contexts. For example, the circadian oscillations of the proteins KaiA, KaiB, and KaiC in cyanobacteria can be
modelled by the promotion–inhibition circuit A → C ⊣ B → A [46–48], whose TDSIM is closely related with an
Ising version of the spin- 12 ferromagnetic–ferromagnetic–antiferromagnetic trimerised Heisenberg chain, an important
model in the study of magnetisation processes in strong fields [49]. On the other way around, the dynamics of an
activator–repressor clock model that displays both toggle switch and oscillatory behaviours [50] may be modelled by a
dimerised ferromagnetic–antiferromagnetic Ising chain that seems to be unexplored.
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