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ABSTRACT. In this paper we divide the plane in 2] sectors and
define a discontinuous polynomial differential system such that in
each sector is defined a smooth generalized Kukles polynomial dif-
ferential systems. Applying the averaging theory of first order
for discontinuous differential systems to get a upper bound to the
number of limit cycles that can bifurcates from the linear cen-
ter © = —y,y = x when perturbed in the particular class of the
generalized Kukles discontinuous piecewise polynomial differential
systems when [ = 1,2, 3.

1. INTRODUCTION AND STATEMENT OF THE MAIN THEOREM

In the qualitative theory of real planar differential system the de-
termination of limit cycles as defined by Poincaré [20] has become one
of the main problems. The second part of the 16th Hilbert problem
proposes to find a uniform upper bound for the number of limit cycles
that a planar polynomial vector field of degree n can have which only
depends on the degree of the polynomial differential system.

The investigation of the existence of periodic orbits of differential
systems via the averaging methods has a long history, see for instance
Marsden and McCracken [19], Sanders and Verhulst [22], Verhulst [23],
Buica and Llibre [3], Buica, Francoise and Llibre [4] and the references
therein. The averaging methods are useful tools for investigating the
number of limit cycles for some differential systems and this method
can be applied to obtain the shape, stability and the approximate ex-
pression of limit cycles.

A large number of problems from engineer [1], nonlinear oscillations
[12], economy [10] among others cannot be described with smooth dy-
namical systems, so recently many researches are interested to study
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qualitative aspects of the phase space of non-smooth dynamical sys-
tems. A representative of this class is the mathematical model

i+x+ f(x, &) = sgn(h(z,i))g(x, &),

which can be found in many applications as for instance in control the-
ory [2, 7]. In order to bring the investigation about the upper bound
of limit cycles to the class of non-smooth dynamical systems general-
izations of the averaging methods for some particular classes of non-
smooth systems were given by Novaes-Llibre-Teixeira [16] and Novaes
-Llibre [15].

In this paper we apply the averaging theory of first order for systems
in the class of the generalized Kukles discontinuous piecewise polyno-
mial differential systems to get an upper bound to the number of limit
cycles for this family of non-smooth differential systems.

The classical Kukles system was introduced by Kukles in [11] which
gave necessary and sufficient conditions to system

T = —Y,
Y = x4+ apy + a1 2® + apry + asy® + asx® + asr’y + agry® + ary?®,

has a center at the origin. Sadovskii [21] solved the center-focus prob-
lem for this system with asa; # 0 and proved that it can have seven
limit cycles. Zang et al. [24] studied the number and distribuition of
limit cycles for a class of reduced Kukles systems under cubic pertur-
bation. Chavarriga et al. [6] studied the maximum numer of small
amplitude limit cycles for Kukles system which can coexist with some
invariant algebraic curves. Llibre and Mereu [13] studied the maximum
number of limit cycles given by averaging methods of first and second
orders which can bifurcates form the periodic orbits of the linear cen-
ter © = y,y = —x, perturbed inside of the class of generalized Kukles
polynomial differential systems

T =y,
W= o= Y (@) + gh, (@) + bl (09 + diy®),
k>1
where for every k the polynomials f,’fl,gf;z), h';;g have degree ni,ny and
n3 respectively, df # 0 is a real number and ¢ is a small parameter.

In this work we play with many straight lines of discontinuity through
the origin of coordinates and with two different continuous Kukles sys-
tem (of the form (1)) located alternatively in the sectors defined by the
straight lines. This idea was applied to study two distinct classes of
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discontinuous generalized Lienard polynomial differential equation, see
[14] and [18].

Let [ a natural number and consider the function h : R? - R

(2) hi(x,y) = ﬁ (y — tan (a + k%) a:) :

k=0

The set h; '(0) is the product of [ straight lines passing through the
origin of coordinates dividing the plane in 2[ sectors with angles 7/l
T
when a € (—7, 7)
In this work we investigate an upper bound to the number of limit
cycles that can bifurcate from the periodic orbits of the linear center

T =1y, y = —x when this is perturbed as following
XQ(xay) if h(l‘,y) <0,

Y .
. , , ; th
( o~ e(f, (@) + ab, @)y + 1, ()9 + dgy?) ) "
7 (x), g),(x) and hi_(x) polynomials of degrees ny, ny and ng respec-

where X;(z,y) =

tively, and d% is a nonzero real number for j = 1,2, when [ € {1,2,3}.
System (3) can be written using the sign function as

X = Z(z,y) = Gi(z,y) +sign(h(z,y))Ga(z, y),

where Gy (z,y) = 3 (Xi1(z,y) + Xo(z,y)) and Ga(z,y) = 3(X1(z,y) —
Xo(x,y)).

The main result is the following

Theorem 1. Assume that j = 1,2, the polynomials f] (x), g7 ()
and hi (x) have degree ny > 1, ny > 1 and ng > 1 respectively, &
is a nonzero constant and | € {1,2,3}. Then for || sufficiently small
the generalized Kukles discontinuous piecewise polynomial differential
system (3) has at most m(l) limit cycles, using the averaging theory,
where

i) m(1) = maX{Q[%} na + 1,2[”3;r 2},3};

iy 1 21211

2
iii) m(3) = max{Q [%} e+ 1,2 [n32—|— ] ,3} -1
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We recall that in [13] the authors show that smooth generalized Kuk-

n

les polynomial differential systems have at least max { [—2, 1| ¢ limit
cycles, using averaging theory. So comparing the obtained results for
discontinuous with the results for continuous generalized Kukles poly-
nomial differential systems, this work shows that the discontinuous
systms have more or the same number of limit cycles than the contin-
uous systems. In short, we have at least 2 more limit cycles, at least
1 more limit cycle and the same number or more depending on ny, no

and ng if [ =1, 1 =3 and [ = 2, respectively.

2. BASIC DEFINITIONS AND AVERAGING THEORY

In this section we summarize the main results on the theory of av-
eraging that will be used to prove Theorem 1 as some basic definitions
about planar discontinuous piecewise differential system.

Let D C R"™ an open subset and h : Rx D — R a C* function having
0 as regular value. Consider F'*, F? : R x D — R™ continuous functions
and ¥ = h~1(0). We define the Filippov’s system as

. F(t,z) if (t,z) € ¥,
(4) i(t)=F(t,z)={ : _
F*(t,z) if (t,x) € X7,
where X7 = {(t,2) e Rx D : h(t,z) >0} and ¥~ = {(t,2) e Rx D :
h(t,z) < 0}.
The manifold ¥ is divided in the closure of two disjoint regions,
namely Crossing region (3¢) and Sliding region (3°),

Se={p€X : (Vh(p),(1,F'(p) - (Vh(p), (1, F*(p

St ={p e X : (Vh(p),(1,F(p) - (Vh(p), (1, F*(p

Consider the differential system associated to system (4

(5) (t) = F(t,x) = x4 (t, 2) F' (t,2) + x-(t, 2) F*(t, 2),
where y., x_ are the characteristic functions defined as

(t.2) = Lif A(t,x) > 0,
BTN 0wt o) < 0.

> 0},

)
))) <0}
)

and
0if h(t,z) > 0,
() = VD
Lif h(t,z) < 0.
Systems (4) and (5) does not coincides in h(t,z) = 0, but applying
the Fillipov’s convention for the solutions of systems (4) and (5) (see
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8]) passing through a point (¢, x) € ¥ we have that these solutions do
not depend on the value of F'(¢,z), so the solutions are the same.

The averaging methods which will be applied in this paper for a
particular discontinuous piecewise differential systems is the following

Theorem 2. [16] Consider the following system
(6) i(t) = eF(x,t) + 2 R(t, x,¢),

where F(t,z) = Fi(t,z) +sign(h(t, z))Fa(t,x) and R(t,x) = Ri(t,z) +
sign(h(t, x))Ro(t, x). Moreover, Fi, Fy : Rx D — R", Ry, Ry : R x D X
(—€0,80) = R" and h : R x D — R are continuous T —periodic in the
first variable and D C R™ is an open subset. Suppose that h is a C!
function such that 0 € R is a regular value.

We define the averaged function f: D — R" by

(7) f(x) = / F(t, 2)dt,

and consider valid the following hypotheses:

i) Fy, Fy, Ry, Ry and h are locally Lipschitz with respect to x;

ii) Ezist an bounded open set C' C D such that, for |e| > 0 suffi-
ciently small, every orbit starting in C reaches the set of dis-
continuity only at its crossing regions (crossing hypothesis);

iii) For a € C, with f(a) = 0, exist an neighbourhood U C C' of a
such that f(z) # 0, for all z € U\{a} and dg(f,U,0) # 0.

Then, for |e| > 0 sufficiently small, exist one T—periodic solution
x(t,e) of (6) such that x(0,¢) — a if € — 0.

Here dp(f,U,0) denotes the Brouwer degree for a continuous func-
tion(see [5]. For details about the proof of this result, see [17].

Remark 3. If f(x) is a C' function such that f'(a) # 0, then there
exist an neighbourhood U C C of a such that f(z) # 0, for all z €

U\{a} and dg(f,U,0) # 0.

3. PrROOF OF THEOREM 1

Writing
ni n2 n3
fr@)=>aa', g (x) =) bt by (x) =) e,
=0 i=0 =0
ni n2 n3

fﬁl () = Zdixi, giz(x) = Zeixi, hig(a:) = Zmimi,

=0 =0 =0
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doing the change of coordinates x = r cosf, y = rsinf and taking 6 as
the new independent variable, system (3) takes the form

d

(8) d; = csinOP;(r,0) + O(e?),
where

ni n2

Pi(r,0) = Z a;r’ cos' O + Z bir'tt cos' fsin O
=0 =0
ns
+ Z cir't? cos' §sin? 0 + dgr® sin® 6,

and

ni n2
) = Z d;rt cos' 0 + Z e;r'" ' cos' @ sin 6
; i—0

+Zmlr cos' 6 sin® 9+d7‘ sin® 9.

Observe that system (8) satisfies the condition of Theorem 2 with h
given by (2). So, to estimate the limit cycles of system (3), we need to
estimate the number of zero of the averaged function (7).

Denoting

l Q+M

iji(a) = Z/ l cos' @ sin’ Ode,

2(k—1)m
k=1 +(l)

and

Pijia Z/ cos' 0 sin’ 0d0),
+(2k 1w
the averaged function (7) becomes
(9)
ni ‘ ng '
)= Y osgnta) + i) |+ 31 hparte) + eipa(a)]
i=0 i=0
+ Z rit? {Cz%m + Mg (o )} +r {d})@w(@) + dg@ou(a)} :
The next lemma exhibit the relation between some integrals in the

expression of the averaged function.

Lemma 4. For each i € N and | # 0 the following holds:
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1) Vi = — P,

i) Qisi = —Piz-
Moreover, if 1 is odd then

iii) i1 = —Pyop-

Proof. Note that for each [ # 0

o R atBE
/ cos’ 6 sin 6df + / cos’ 6 sin 6d6
2(k—1)7
1 at=—

MN

(pin + @) (@) =

. ot (2k?1)7r

a+2kT” ' a2 '
cos' fsin 6df = cos' fsin0df = 0.
at 2(k?1)7r

=~ I

k=1 @
Analogously
l OH_M 01+2kT7T
- O = ( in3 % 3
(izt + Pizp) (@) Z (/Jrz(k_l)w cos' fsin” 6df + /Jr(%_l)w cos’ 0 sin 9d9>
k=1 @ 7 @ 7
l a—&-%T” ) a2 )
= / cos’ @ sin® 0dh = / cos' B sin® 0dh = 0.
o1 a+2(k71)ﬂ' a

These computations prove items i) and ii).
a+-2m

As (pior + Py ) () = cos' fsin? 0df, assuming i = 2m + 1 the
item iii) follows directly from the formulae 2.511-4 of [9]

(10)

/ cos?™ 1 9sin? dh =

sin® 6 [ — 2m(m —1)...(m —j+1
(Z ( )(m—j+1)

_ 2m—2j9 2m9 ]
2m+3\ & @m+D)@2m—1)..2m—2j+3) cos )

O
Remark 5. Observe that

1) if i is even @io(ar), @i(c) >0 for alll # 0 and o € R, in fact
if i is even then cos’ @sin?6 > 0.

2) wou (@), Boy () >0 for all « € R because sin*f > 0.

In order to estimate the number of zeros of the averaged function

remains to study three functions ¢;q;, ;3 and ;9;, the first and second

for each © € N and [ # 0 and the third one, for ¢ odd. For these
functions we must to fix the number [ # 0.
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3.1. Proof of item (i). Let a € (—%,%). The case a = % will
be considered separately. If [ = 1 then hi(z,y) = y — (tana)z and

hi'(0) = {(z,y) e R? : y = (tan )z}
The next lemmas will be used to estimate the maximum number of
zeros of the averaged function (9) when [ = 1.

Lemma 6. If i is odd then ;11 = 0 and @;11 does not vanish for
a# £5 and i even.

Proof. Now we note that

(=1)"* cos™*! v — cosit

1+ 1

a-+m
i (@) = / cos' A sin Bd = —

0 if 7 is odd,
=4 cos'tla

g if 7 is even.
7+ 1

Then if 7 is even the function ¢;11 () vanishes if and only if o = +7/2.

O
Lemma 7. Ifi is odd and o # 0 the functions ;01 do not vanish.

Proof. If i =1 then
o+ 2
p121(@r) = / sin? f sin 6dh = ~3 sin® .

So if a # 0, the function @197 is not zero.

If i > 1 and odd we write i = 2m + 1 for some m € N\{0} and from
(10) we get

o+

Pemin(a) = / sin® 6 cos®™ " 0df) =

«

_ sin® a (i”: 2im(m —1)...(m — j + 1_) o o
2m + 3 = (2m+1)(2m —1)...(2m — 2j + 3)
+ cos®™ a).
S0 YEm+1)20(a) = 0 if, and only if a = 0. O

Lemma 8. Consider i even and o # 5 then the function ;31 does
not vanish. Moreover ;31 =0 if 1 is odd.
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Proof. We have that
a—+m )
wis1 (o) = / cos’ 6 sin® 0d#
o

(—1)*3cos*3a — cosi™Ba (—1)i*! cositl a — cosla

1+ 3 1+1
0 if 7 is odd,
_ i+1 i+3
2 CO.S e Cqs a #0 ifiis even.
1+ 1 1+ 3

So the function ;31 () vanishes if and only if i odd or o = £7. [

Proof of Theorem 1 (i). By the previous lemmas the averaged function
is given by

for) = Z Ai(a)(a; — d)r' + Z Bi()(b; + e;)rit!

i even i even

ng n3
+ Z Ci(a)(b; — e;)r ™ + Z Dj(a)(c; — my)r'™?
i'odd i'oven

+ (E'(@)dy + B*(a)dg)r”,
with A;(a) and D;(cr) does not vanish if a # £%, B;(«), E' (), E*(a) >
0, and Cy(a) # 0 if a # 0.

Then the degree of the averaged function is m given by
(i) max{ns + 1,3}, if a € {—g,% ;

(ii) max{z {%} ,2 {%} +1,2 {"3;2] ,3}, if a =0;

(iii) max {2 [%} g+ 1,2 [”ST“} ,3}, if o & {0,+£2}.

So the maximum number of zeros of the averaged function will be m
in each case.

Moreover it is possible to choose the coefficients a;, b;, ¢;, d;, €;, m; and
d) and « in the expression of the averaged function such that f(r) has

exactly m(1) = max { 2| % |,n2 + 1,2 {”37”] ,3} simple positive roots,

what guarantee that the maximum number of zeros is reached. Then
making this choose we conclude by Theorem 2 that system (3) has at
most m(1) limit cycles, each one with period near to 2w. This proofs
the item (i) from Theorem 1. O
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3.2. Proof of item (ii). For [ = 2 in (2) we have hy(z,y) = (v —
(tana)z)(y + tan(a 4 5)z). The degree of (9) with [ = 2 will be
determinate using the next lemmas.

Lemma 9. The function o2 do not vanish for a # £% and i odd. If
1 1s even then ;10 = 0.

Proof. We have

o+3 oty
via(@) = / cos' @ sin 0df + / cos' f sin 6d0

—+m
s ev
0 if ¢ is even,
— i1 AN |
= cos o —sin""a ...
: if 7 is odd.
7+ 1

Obviously ¢112(a) = 0 if and only if cos? a = sin® «, i.e., if and only if
o =+% £33
If : > 1 and it is odd then ¢ + 1 = 2n for some n € N and

(0052"2 a+ g cos” asin’ o+ sin?" 2 a> (cos® a — sin® @)
k+j=2(n—1)

2

= cos®™ a — sin?

" o

So the zeros of the function p;»() are a = T %’r in the established

interval. 0
Lemma 10. If i is odd the function ;o0 is identically null.

Proof. 1f i =1 then
1 1
p12(a) = 3 (C083 a — sin® )+§ ( — cos® o + sin® a) = 0.
If i > 1 and odd then we apply (10) to write
sin® (a 4+ Z T " , . s
ira(r) = —( 2) cos>™ (a + 5) + Z A(m, j) cos®™ ¥ (a + 5)

2m+ 3 ’
7j=1

-3 m
S o 2m - 2m—2j
~omT3 (cos a+ JZ:; A(m, j) cos a)

-3 3T = -
e .
T % (’” (O‘ i 37#) " ijl Al g)eost (O‘ 3 )>

. 3 m
- % (cosm(a + ) + ; A(m, j) cos™ ¥ (o + 7'(')) ,
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2m(m —1)...(m —j+1)
2m+1)(2m —1)...2m —2j 4+ 3)

where A(m, j) =

So
iz () ;:jj_ag( ™o+ leA m, j) sin®™ =% a)
— ;;?ifg (cos2m a+ ji;A(m, §) cos? 2 a)
— 2(3;31043 (sian o+ ]ZW;A(m, ) sin®m2 a)
+ sin’ (c a—i—ZAmj ) cos®™™ 2704)

J=1

O

Lemma 11. Ifi is odd the only zeros of the function iy are a = £7.
When i is even the function is identically null.

Proof. From straightforward calculations we get that ¢;32(c) = 0, when
7 is even. Otherwise

(—sin"™ a + cos' ).

iza() = : i 3(sinl+3 o — cos™ a) + Tl

Besides o = £7 are roots of the function @iz2(a) when 7 is odd. To
show that they are the unique roots in the established interval we study
the sign of its derivative

@lan(a) = —2(cos’ asin® a + cos® asin’ @),

For o € (=3,0), ¢is5(a) > 0 and hence p;35(v) is strictly increasing.
For o € (0, 3), izp() < 0 and hence p;32(v) is strictly decreasing. So
the unique roots of ¢;32(cr) in the established interval are o = £%. [

Proof of Theorem 1 (ii). It follows from Lemmas 9 — 11 that the aver-
aged function is given by

n1 n2
= Ai(a)(a; — di)r' + > (Bi(a)b; + Bi(a)e;)r'™!
iaad ié;én

+ Z Cila m)r? + (B (a)d} + E*(a)d2)r®

zodd
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where A4;(a) and C;() are not zero except by a = £ and B;(«), B;(«)
are not zero.

Then the averaged function f(r) is a polynomial of degree m where
m is given by

1) max{ 2|02 12| e visLita g (-5 5,
2) maX{Z {%} +1, 3} otherwise.

Moreover, if a # £7 the averaged function is an odd function hence
it has at most mT_l positive roots. From the averaging theory it follows
the proof of Theorem 1 (ii).

Besides it is not difficult to verify that the polynomials, whose roots
provide the number of limit cycles which bifurcates from the linear cen-
ter, have independent coefficients as functions of the coefficients of the

perturbed system. Therefore the upper bound provides in statements
(ii) can be reached. O

3.3. Proof of item (iii). When [ = 3 in (2) the function h3 becomes
hs(z,y) = (y — (tan a)z)(y — (tan(o + 5))z)(y — (tan(a + 5F))x).

Lemma 12. About the function @;3 the following hold

(i) ¢iiz(a) <0n (0, 3).

(i) wiz(a) is a even function.

i) @3() is 2w /3-periodic.
) @)

(iii
(iv) pas(a) #0, if a # £5 and i # 0 is even.

Proof. We have

N ot arsy
viz(a) = / cos' f sin 6d0 + / cos' 0 sin 6dO + / cos' 6 sin 6df
« a—l—%r oz—&-%r
_ (1) cos™ a + cos™™ o — (=1)" sin (o — §) + sin" (o — %)
1+ 1
N (_1)i+1 siniﬂ(a 4 %) o Sini+1(a + %r)
1+1
So p;13() vanishes if ¢ odd. If 7 is even then
2 , A )

vns(a) = ) (cos™ a + sin"™ (o — g) — sin" (o + %))

Therefore @o13(a) = 0 if and only if & = £7/2. To consider the case
1 even and @ # 0 we take the derivative of ¢;13 with respect to . Using
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computational tools like Mathematica we get
Vis(a) = ( — 2cos’ asina

— (V/3cosa +sina) <(\/§sina + cosa)’ — (V3sina — cos a)i) /21>

In the case of 3 straight lines, without loss of generality we can make
all the computations in the interval (0, 7). and in this interval we have
(a) sinacos’ a > 0;

(b) V3cosa +sina > 0 and

(¢)(cosa +V3sina) — (—cosa + V3sina)' =

i1 , 2,
=) ( ]:, ) (V3)F cos'* asin® o + < li ) (V/3)* cos'* asin® a
k=1 K2
kimpar kpar
i—1 . 1—2 .
+ Z < ]i > (v/3)* cos"™* avsin® o — Z ( llc ) (v/3)* cos"* asin o
kilir?plar ;?;1%

i—1 X
=2 Z ( ]i ) (V3)F cos™F asin® a > 0.

Hence ¢jj3(a) < 01if a € (0, §), so @i3(a) is strictly decreasing in this
interval. Item (i) is proved.

Moreover,
2 . ‘ )

viz(—a) = T (cos™ (—a) + sin ™ (—a — %) —sin" ! (—a + %))
2 T

= H—l(COSiH(@) —sin" (o + %) +sin ! (a — 6))
= piz(a),
from what we conclude the proof of item (ii), i.e., p;3(cv) is an even
function.

Because
puslat ) = 2 eost* o+ ) — s o+ 0T 4 sin (o — 7))
= (st 5) s - ) —sin o+ )
= o (cos'™H () —sin* o+ ) s - )

= piz(a),
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we get that ¢;13() is 2%Lperiodic.
Finally if ¢ # 0

See the graphic of y;13(«), for i even not zero in Figure 1.

FIGURE 1. Graphic of p;13(a), for i even

As 13 is strictly decreasing in (0, ) and @;13(%) = 0 it follows that
% is the unique root of ¢;13 in (0,%). Analogously, as ;3 is strictly
increasing in (—%,0), —% is the unique root in this interval.

Now suppose that there exist an ag € (3, ) such that @;i3(ag) = 0.
So pis(ao — &) = 0. But if ag € (5,%), then ag — & € (=%, —F) will
be a root of ;13, contradiction.

O

Lemma 13. Ifi is odd and o ¢ {0,£%} then the function i3 do not
vanish.
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Proof. If @ = 1 then ¢i23(c) = 3sin(3c). Otherwise we can write
i =2m + 1 for some m € N\{0} and use (10) to get

pizs(ar) =
:Qw cos> +§:Am]COS2m 2](a+7r)
2m + 3 = 3
3 5T m
S + 5
%(COS +;Am ,j) cos®™ % (o 4 ;))

sin®(a + ) o - - 2m—2j
—i—m(cos (oz—i-ﬂ)—i-jz_;A(m,j)cos (a—i—w))},

2m(m—1)..(m—j+1)

where AU ) = G D@m= 1).@m —2j 1 3)

Now, using the software Mathematica we can evaluate the expres-

sions of po3(a) with i = 2m + 1, for some values of m, below we give
some of them (m =1,2,...,7),

(') p323(cr) = 1/8sin(3a),
i) pso3(a) = —61/1.120sin(3a),
( ii) @ro3(a) = —31/630sin(3a) + 1/384 sin(9«),
a) = —26.123/887.040 sin(3ar) + 7/1.536 sin(9«v),
v) ¢ 23( ) = (1/92.252.160)(—1.612.309 sin(3a)+389.550 sin(9«v) ),

17103735 sin(9a) + 135.135 sin(15a)),

(vi) @15.05(cr) = (1/376.388.812.800)(—2.715.648.724 sin(3a) +
811.055.280 sin(9«) + 29.864.835 sin(15«)).

From the expressions of ¢;o3(a) for i = 1,2,...10, .. we conclude that

©ioz(a) = ay, sin(3a) + by, sin(9a) + ¢, sin(15a) + ...

Y

with @y, b, ¢ € R. Therefore the roots of these functions are 0, —%,

3
O
Working as in the case | = 2 we can prove the following lemma

Lemma 14. The function @3 do not vanish for o # +¢ and i even.
If v 1s odd we have p;33 = 0.
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Proof. We have

3 Q+M

iss(a) = Z /a+2<k1)” cos’ @ sin® 6df

k=1

1 ) ) .
= - 2 cos™ a + 2in't! (a — z) — 2gin'*t! (a + z)
1+ 1 6 6
1

Z,+3<—2cosi+3a—2sini+3 (a— %) + 2sin't3 (a—i— g) )

So @ig3(a) = 0 if 7 is odd. If 7 is even the function ;33(a) vanishes
only at o = +%. The prove of this fact follows from similar arguments
used in the study of function ;3. 0

_|_

Proof of Theorem 1 (iii). From Lemmas 12 — 14 we conclude that, in
the case [ = 3 the averaged function becomes

ni

F(r) =3 riAa) (e = di) + 3 r T (biBi(a) + eiBi()

=2 =
ieven ieven

+ g r 1 Ci(a )+ E 2D m;)
zodd 'Leven

+ (B (@)dy + E*(a)dg)r®

where B;(«
and A;(a),
Then f(r

1)m:max{2 o 2[&]—1—1 2[M},3} 1fa€{0 —%.3
2) m =max{n, + 1,3} if a € {-z.2};
3) m:max{2 a ,n2+1,2{n32+ } }1fa§!{0 +Z, +1}.

) are different from zero if o # £7.
a polynomial function of degree m where

), Bi(a) > 0 for all a, Cy(c) do not vanish if o ¢ {0, £%}
Di(a
) is

Applying the averaging theory it follows that an upper bound to the
number of limit cycles of system (3) when | = 3 is given by m(3) =

max{Z{%},HQ—i— 1,2[“37“},3}.

We remark that can choose the coefficients of the perturbation such
that the averaged function f(r) has exactly m(3) positive roots. Then
as discussed previously the proof of Theorem 1 is concluded. O



LIMIT CYCLES FOR A KUKLES DISCONTINUOUS SYSTEM 17

4. EXAMPLES

In this section we illustrate Theorem 1 studying the existence of
periodic solutions for three generalized Kukles discontinuous piecewise
polynomial differential systems.

Example 15 (One line of discontinuity). Consider | =1, a = 0 and
the functions

m(v)= 242+, 2 (z) = 124 20— 10,2,
Iy (@) = 22+, gp(x) = 04— B2,
hy,(x) = 1+ 3z 4 1527, 2 (x)= 1—3c— %5352'
Take the constants dy = 1 and d3 = —1. Under this conditions we have
ny =ng = nsg = 2, m =4 and the discontinuous piecewise system
(11) Z(x,y) = {il(lﬂy) i hlz,y) >0,
o(z,y) if h(z,y) <O0.

where h(z,y) =vy ,

_ y = i
Xl(l',y> = ( P 8F1(I,Q) ) and XQ(:E7y) - ( —x —€F2(17,y) ) ’
with
Fi(z,y) =24+ + 2”4+ 2z + 2%)y + (1 + 3z + 152°)y° + o/,
and

103 100 80 45
Fy(x,y) = 12+2x—7x2 (——+x—ﬂx2)y+(l—3x—zx2)y2—y3.
m m

Therefore the averaged function is given by
i e 100 [
f(ry=24 sin 6d6 + 12 sin df — —r sin® 0df+
0 T ™ g

T T 27
+ 72 (/ cos? @ sin 6df + / sin® Ad6 + / sin® 6dO+
0 0 T

103 [ . 2 s [T 2o
- sin 6 cos” 0d0 | +r cos” 0 sin” 0df-+
0

T 2
+ / sin* 6d6 — M / sin? 6 cos? QdQ) +
0 ™ T

T 4 2
+ 7t (15 / cos? 0 sin® 0do + —5 / sin® 0 cos? 9d9) =
0 T

™

4
= — 1013 4 3512 — 501 + 24,
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whose roots are r = 1,2,3,4. Hence by Theorem (2) it follows that for
e # 0 sufficiently small the discontinuous differential system (11) has
at least four limit cycles.

Example 16 (Two lines of discontinuity). Consider | =2, a =0, the
functions

L (z) = 4+ 2z — 32 + 227, 2 (x) = T+ 3x+92% + 227,
gp,(x) = 345w, g2, (x) = —3+ 2z,
hy,(z) = 9+, he(x)= 5—u.
Taking the constants dj =1 and d2 = —1 we have ny = 3,ny =nz =1
and m = 3. Therefore the get the discontinuous system
12) Ze.y) = {§<x y) if h(zy) >0,
Q(xay) th(l’,y) <07

where h(z,y) =y ,

Xi(@y) = < e eR(ay) ) and Xa(2,y) = ( o= eFyay) ) ’

with
Fi(z,y) =4+ 27v — 32> +22° + (3 + 52)y + (9 + 2)y° + 3,
and
Fy(z,y) = 7+ 32+ 92% + 22° + (=3 + 2z)y + (5 — 2)y* — y°.
The averaged function for this system is given by
) =1,

whose roots are r = 0,1, —1. Hence by Theorem 2 it follows that for
e # 0 sufficiently small the discontinuous differential system (12) has
at least one limit cycle.

Example 17 (Three lines of discontinuity). Consider | = 3, o = 7,

the functions

(z)= 3+ 2x+2? fi(x)= —2+4Tx+a?
)

ni

g, (x) = 2, g2, (x —12 4 (2 - 22V2)z,
hl (z) = 1+ 32+ 222 h2. (x) = 1+ 22+ (24 8v2)a?
and the constants dy = df = —2. In this case ny = ng = 2,ny = 1,

m =4 and the discontinuous system is

o Xl(xay) th(l’,y) > 07
(13) Aoy = {XQ(x,y) if bz, y) < 0.
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where h(x,y) =vy ,

_ Y B y
Xl(may) - ( —r _gFl(fE,y) ) and XQ(%‘,y) = ( _SE—aFQ(x’y) ) ,
with

8
Fi(z,y) =3+ 2x+ 2+ 2zy + (14 3z + 2x2)y2 — ;:937
and
9 12
Fy(x,y)=—2+ 7o+ + (—? + (2 — 22V2)x)y+

8
+ (1422 + (2 + 8V2)2?)y? — ;y3.

The averaged function is given by
f(r) =r*—6r® + 11r* — 6r,

whose roots are r = 0,1,2,3. Hence by Theorem 2 it follows that for
e # 0 sufficiently small the discontinuous differential system (13) has
at least three limit cycles.

5. CONJECTURE

From the study of the system (3) with 1, 2 or 3 lines of discontinuity
we observe some particularities but because the computations are be-
coming increasingly complicated as we increase the number of lines we
cannot established a general expression for the averaged function (9)
with many lines of discontinuity. Based on our study we establish the
following conjecture.

Conjecture 18. Assume that j = 1,2, the polynomials f (x), g (z)
and hﬁn(x) have degree nqy > 1, ng > 1 and nsy > 1 respectively, dj is
a nonzero constant and | € N. Then for |e| sufficiently small the gen-
eralized Kukles discontinuous piecewise polynomial differential system

(3) has at most m(l) limit cycles, where

2
i) m(l) = max{2{%},n2 n 1,2[”3;r ]3} if 1 is odd;

ii) m(l) = max{ {7112— 1} , [%] , {n?’; 1} ,1} if 1 is even;
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