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Abstract
Image foresting transform (IFT) is a graph-based framework to develop image operators based on optimum connectivity
between a root set and the remaining nodes, according to a given path-cost function. Oriented image foresting transform
(OIFT) was proposed as an extension of some seeded IFT-based segmentation methods to directed graphs, enabling them to
support the processing of global object properties, such as connectedness, shape constraints, boundary polarity, and hierarchical
constraints, allowing their customization to a given target object. OIFT lies in the intersection of generalized graph cut and
general fuzzy connectedness frameworks, inheriting their properties. Its returned segmentation is optimal, with respect to an
appropriate graph cut measure, among all segmentations satisfying the given constraints. In this work, we propose differential
oriented image foresting transform, which allows multiple OIFT executions for different root sets, making the processing time
proportional to the number ofmodified nodes. Experimental results show considerable efficiency gains over the sequential flow
of OIFTs in image segmentation, while maintaining a good treatment of tie zones. We also demonstrate that the differential
flow makes it feasible to incorporate the prior knowledge about the maximum allowable size for the segmented object, thus
avoiding false positive errors in the segmentation of multi-dimensional images. We also propose an algorithm to efficiently
create a hierarchy map that encodes area-constrained OIFT results for all possible thresholds, facilitating the quick selection
of the object of interest.

Keywords Oriented image foresting transform · Image segmentation in directed graphs · Generalized graph cut · Differential
algorithms

1 Introduction

In graph-basedmethods, image segmentation can be seen as a
graph partition problem between sets of seed pixels. Oriented
image foresting transform (OIFT) [1] and oriented relative
fuzzy connectedness (ORFC) [2] are extensions to directed
weighted graphs of somemethods from the generalized graph
cut (GGC) framework [3], including fuzzy connectedness [4]
and watersheds [4, 5]. OIFT generates an optimal cut in the
graph according to an appropriate graph cut measure, while
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having a lower computational complexity compared to the
min-cut/max-flow algorithm [6].1

OIFT also belongs to a class of general fuzzy connected-
ness (GFC) algorithms described in [8], and so, has several
good theoretical properties, like robustness for seed place-
ment [9]. Indeed, it has been experimentally verified that
OIFT has a good balance between accuracy and robust-
ness when compared to other similar methods in graphs
[10]. OIFT has also some relationship with the extension
of max-tree algorithm to directed graphs from [11]. How-
ever, the segmentation approach described in [11] is more

1 Concerning the computational complexity, OIFT can be implemented
in O((M + N ) log N ) (linearithmic time), where N is the number of
vertices in the graph and M is the number of arcs, if a binary heap
is used for its priority queue. This computational complexity can be
improved to O(M + N × K ), when the weights are integers in a small
interval of size K , by using bucket sorting. The graph cut computational
complexity is O(

√
M ∗ N 2) = O(N 2.5) for a sparse graph, which is

more than quadratic-time using a push-relabel based on the highest label
node selection rule [7].
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Fig. 1 Example of a leaf segmentation:aMethod from [27]withmodels
trained on a combination of COCO and LVIS datasets with four clicks.
b OIFT with shape constraints from [28] with two markers

strongly related to the ORFC method from [2]. OIFT has
been used in practice, for example, to segment hundreds of
three-dimensional images to create an anatomical atlas to reg-
ularize the electrical impedance tomography problem [12].

OIFT’s energy formulation on digraphs makes it a very
versatile method, supporting several high-level priors for
object segmentation, including global properties such as con-
nectedness [13, 14], shape constraints [9, 15–17], boundary
polarity [1, 18], and hierarchical constraints [19, 20], which
allow the customization of the segmentation to a given target
object [21]. On the other hand, the integration of machine
learning techniques with methods built on the strong formal-
ism of graph partitions has become a very relevant research
topic [22–24]. There are different ways to integrate proba-
bility maps by convolutional neural networks (CNN) with
optimization frameworks in graphs, such as the learning
of graph weights and to define seeds or other constraints
[25, 26]. In this sense, although this is not the subject of
this work, the proposed OIFT extensions can be used at the
top of a segmentation pipeline combining with deep learn-
ing techniques, guaranteeing the theoretical establishment
of the formal properties of the generated objects, increasing
the robustness of the obtained results. For example, Fig. 1
presents a comparison of interactive segmentation of natural
images of a deep learning based method from [27] with an
OIFT equipped with shape constraints for leaf segmentation
from [28]. Note that the network would have to be retrained
for this particular type of object under consideration in order
to generate better results, whereas the high-level constraints
supported by OIFT can provide good results.

In interactive region-based segmentation from markers
(i.e., set of seeds), the user can add markers to and/or remove
markers from previous interactions in order to improve the
results. In the context of image foresting transform (IFT)
[29], which is based on propagating paths from seeds, instead
of starting over the segmentation for each new set of seeds,
differential image foresting transform (DIFT) algorithm [30]
can be employed to update the segmentation in a differential
manner, by correcting only the wrongly labeled parts of the

optimum-path forest in time proportional to the size of the
modified regions in the image (i.e., in sublinear time). This
greatly increases efficiency,which is crucial to obtain interac-
tive response times in the segmentation of large 3D volumes.
However, DIFT [30] requires that the path-cost function be
monotonically incremental (MI), consequently not support-
ing the OIFT path-cost functions.

More recently, a novel differential IFT algorithm, named
Generalized DIFT (GDIFT) [31], has been proposed, which
extends the original DIFT algorithm to handle connectivity
functions with root-based increases (which can be non-
monotonically incremental), avoiding segmentation incon-
sistencies (e.g., disconnected regions) in applications to
superpixel segmentation [32–34]. However, there were still
no studies on the differential computation for the case of
the OIFT path-cost functions. This work aims to close
this gap by testing three alternatives for differential ori-
ented image foresting transform (DOIFT). Our experimental
results show considerable efficiency gains of the differential
flow of DOIFTs over the sequential flow of OIFTs in image
segmentation of medical images, while maintaining a good
treatment of tie zones for two of the presented solutions. We
also demonstrate that the differential flow makes it feasible
to incorporate an area constraint in OIFT, as a new high-level
prior for object segmentation in multi-dimensional images,
which is useful for getting regions of interest in the image
with less user interaction. These area/volume constraints can
also be used to build a hierarchy of OIFT segmentations by
varying the area threshold. This facilitates the quick selection
of the object of interest, as each threshold value implies the
automatic selection of several extra seeds, simplifying the
segmentation process.

DOIFT was first presented in a conference paper [35]. In
this extended work, we provide: (i) A more formal and com-
plete description of the DOIFT algorithms; (ii) the usage of
DOIFT to incorporate a new high-level prior in the OIFT
segmentation, by proposing a new algorithm of OIFT sub-
ject to area constraints, including a formal definition of the
obtained objects and a formal mathematical proof of the
correctness of the algorithm; (iii) the proposal of a new
algorithm to efficiently create a hierarchy map that encodes
area-constrainedOIFT results for all possible thresholds; and
(iv) an extensive evaluation of the computed hierarchy, show-
ing the improvements in segmentation with reduced user
interaction, including 3D volumes.

The next section presents the required notations and the
related graph-based methods. The proposed DOIFT algo-
rithms are then presented in Sect. 3. Section4 discusses the
application of DOIFT for the incorporation of a new high-
level constraint limiting the maximum area/volume of the
segmented object and the hierarchy of OIFT segmentations
by varying the area threshold. This section presents new algo-
rithms that have not been presented in the conference version
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of the paper [35]. Finally, the experiments and conclusions
are shown in Sects. 5 and 6, respectively.

2 Background

A multi-dimensional and multi-spectral image Î is a pair
〈I, I〉, where I ⊂ Z

n is the image domain and I(t) assigns
a set of c scalars Ii (t), i = 1, 2, . . . , c, to each pixel t ∈ I,
with c denoting the number of image channels. The subindex
i is removed when c = 1, representing a grayscale image.

An image can be interpreted as a weighted digraph G =
〈V,A, ω〉, whose nodes V are the image pixels in its image
domain I ⊂ Z

n or superpixels, and whose arcs are the
ordered pixel pairs 〈s, t〉 ∈ A (e.g., 4-neighborhood or 8-
neighborhood, in case of 2D images) or are defined by a
Region Adjacency Graph (RAG). The digraph G is symmet-
ric if for any of its arcs 〈s, t〉 ∈ A, the pair 〈t, s〉 is also
an arc of G. Each arc 〈s, t〉 ∈ A has a weight ω(s, t) ≥ 0,
such as a dissimilarity measure between pixels s and t (e.g.,
ω(s, t) = ‖I (t) − I (s)‖).

For a given image graph G = 〈V,A, ω〉, a path of length
� ≥ 0 is a sequence π = 〈t0, t1, . . . , t�〉 of adjacent nodes
(i.e., 〈ti , ti+1〉 ∈ A, i = 0, 1, . . . , � − 1) with no repeated
vertices (ti 
= t j for i 
= j). Other Greek letters, such
as τ , can also be used to denote different paths. A path
πt = 〈t0, t1, . . . , t� = t〉 is a path with terminus at a vertex t .
When we want to explicitly indicate the origin of the path,
the notation π

s�t
= 〈t0 = s, t1, . . . , t� = t〉may also be used,

where s stands for the origin and t for the destination node.
More generally, we can use π

S�t
= 〈t0, t1, . . . , t� = t〉 to

indicate a path with origin restricted to a set S (i.e., t0 ∈ S).
A path is trivial when πt = 〈t〉. A path πt = πs · 〈s, t〉
indicates the extension of a path πs by an arc 〈s, t〉. The set
of all possible paths in a graph G with terminus at a node
t is denoted as �G

t and �G denotes all paths in G (i.e.,
�G = ⋃

t∈V �G
t ).

A predecessor map is a function P : V → V ∪ {nil} that
assigns to each vertex t in V either some other adjacent node
inV , or a distinctivemarkernil not inV , inwhich case t is said
to be a root of the map. A spanning forest is a predecessor
map which contains no cycles, i.e., one which takes every
node to nil in a finite number of iterations. For any vertex
t ∈ V , a spanning forest P defines a path π P

t recursively as
〈t〉 if P(t) = nil, and π P

s · 〈s, t〉 if P(t) = s 
= nil.

2.1 Image Foresting Transform (IFT)

The image foresting transform (IFT) algorithm (Algorithm1)
is a generalization of Dijkstra’s algorithm for multiple
sources (root sets) and more general connectivity functions
[29, 36]. A connectivity function f : �G → R computes a

value f (πt ) for any path πt , usually based on arc weights.
A path πt is optimum if f (πt ) ≤ f (τt ) for any other path
τt ∈ �G

t . By taking to each vertex t ∈ V one optimum path

with terminus at t , we obtain the optimum-path value V f
opt (t),

which is uniquely defined by V f
opt (t) = min

πt ∈�G
t

{ f (πt )}. The
image foresting transform (IFT) [29] takes an image graph
G = 〈V,A, ω〉, and a path-cost function f ; and assigns one
optimum path to every vertex t ∈ V such that an optimum-
path forest P is obtained, i.e., a spanning forest where all
paths π P

t for t ∈ V are optimum. However, f must satisfy
the conditions indicated in [36], otherwise, the paths π P

t of
the returned spanning forest may not be optimum.

For the sake of simplicity, in this section we will present a
particular version of the IFT algorithm, focused on seed-
based segmentation problems, such that we constrain the
search to paths that start in a given set S ⊆ V of seed nodes.
We can model this constraint by considering a seeded path-
cost function f S , such that f S( π

s�t
) = +∞ when s /∈ S.

The seeded path-cost functions are usually defined by an
initialization rule for trivial paths and an extension rule for
non-trivial paths. For example, consider the case of the path-
cost function f Smax:

f Smax(〈t〉) =
{−1 if t ∈ S

+∞ otherwise

f Smax(πs · 〈s, t〉) = max{ f Smax(πs), ω(s, t)}. (1)

In the context of multiple object segmentation, let L =
{0, . . . , k} denote a label set, where k is the number of objects
to be segmented. IFT can be used to divide an image into k+1
partitionsO0,O1,…,Ok (

⋃
l∈LOl = V andOi ∩O j = ∅ for

i, j ∈ L with i 
= j), by assigning a label L(t) ∈ L to each
vertex t , such that L(t) = 0 is used to indicate the background
and L(t) = l > 0 is used to represent the corresponding
object Ol = {t ∈ V | L(t) = l}. In segmentation problems,
a partial labeling of the image λ : S → L is usually provided,
defining labels for a subset of seeds S ⊂ V , such that S =
S0 ∪ . . . ∪ Sk and λ(t) = l if and only if t ∈ Sl . During the
seeded IFT computation, this initial labeling of the seeds inS
is propagated to all other unlabeled nodes in V \S, such that
each vertex t ∈ V\S receives the same label as the origin of
the computed path π P

t , that is, L(t) = l if π P
t = 〈r , . . . , t〉

and r ∈ Sl .
In Algorithm 1, the root map R : V → V stores the

origin of the paths ending at each node (i.e., R(t) = r if
π P

t = 〈r , . . . , t〉) and the path-cost map V converges to

V f
opt , when f S satisfies the conditions indicated in [36].
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Algorithm 1 – Seeded IFT Algorithm

Input: Image graph 〈V,A, ω〉, a seeded path-cost function
f S , seed set S and an initial labeling function λ : S →
L.

Output: The label map L : V → L, root map R : V → V ,
path-cost map V : V → R and the spanning forest
P : V → V ∪ {nil}.

Auxiliary: Priority queue Q, variable tmp and an array of status
S : V → {0, 1}, where S(t) = 1 for processed nodes
and S(t) = 0 for unprocessed nodes.

1. For each t ∈ V , do
2. Set S(t) ← 0 and R(t) ← t .
3. Set P(t) ← nil and V (t) ← +∞.
4. For each t ∈ S, do
5. Set L(t) ← λ(t) and V (t) ← f S(〈t〉).
6. Insert t in Q.
7. While Q 
= ∅, do
8. Remove s from Q such that V (s)=min

t∈Q
{V (t)}.

9. Set S(s) ← 1.
10. For each node t such that 〈s, t〉 ∈ A, do
11. If S(t) 
= 1, then
12. Compute tmp ← f S(π P

s · 〈s, t〉).
13. If tmp < V (t), then
14. If t ∈ Q, then remove t from Q.
15. Set P(t) ← s and V (t) ← tmp.
16. Set R(t) ← R(s) and L(t) ← L(s).
17. Insert t in Q.

2.2 Oriented Image Foresting Transform (OIFT)

In a symmetric digraph, each objectO ⊂ V has two possible
cuts: An outer cut composed of the arcs in the set Cout(O).
An inner cut composed of the arcs in the set Cin(O).

Cout(O) = {〈s, t〉 ∈ A | s ∈ O and t /∈ O} (2)

Cin(O) = {〈s, t〉 ∈ A | s /∈ O and t ∈ O} (3)

In this work, OIFT will be presented based on the opti-
mality of the outer-cut energy,2 but note that the inner cut is
a dual case that can be obtained by inverting the seed labels
in L = {0, 1}, that is Cout(O) = Cin(V\O).

In its first version [1], OIFT was built on the IFT frame-
work for the binary segmentation problem with L = {0, 1}
by considering the following seeded path-cost function in a
symmetric digraph with integer weights (i.e., ω : A → Z):

f ♂
1 (〈t〉) =

{−1 if t ∈ S1 ∪ S0

+∞ otherwise

2 As will be shown, the ♂ sign is used for the OIFT path-cost functions
to indicate that they are related to the optimality of the outer-cut bound-
ary (see Theorem 1), since it resembles an arc pointing to the exterior
of an object.

f ♂
1 ( π

r�s
· 〈s, t〉) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

If r ∈ S1:

max{ f ♂
1 ( π

r�s
), 2 × ω(s, t)+1}

Else if r ∈ S0:

max{ f ♂
1 ( π

r�s
), 2 × ω(t, s)}

(4)

Later, a second version [18], with a better handling of
energy ties and real weights ω : A → R, was proposed
based on the following alternative seeded path-cost function,
designed to be used with FIFO tie-breaking policy for the
priority queue Q in Algorithm 1:

f ♂
2 (〈t〉) = f ♂

1 (〈t〉)
f ♂
2 ( π

r�s
· 〈s, t〉) =

{
ω(s, t) if r ∈ S1

ω(t, s) else if r ∈ S0
(5)

The segmented object O1 ={t ∈V | L(t)=1} by OIFT is
defined from the label map L computed by Algorithm 1 with
f ♂
2 (or f ♂

1 ). See Fig. 2a–c.

Thepath-cost functions f ♂
1 and f ♂

2 are non-monotonically
incremental connectivity functions, as described in [1, 18].
Theoptimality ofO1 byOIFT is supported by an energy crite-
rion of cut in graphs involving arcs fromobject to background
nodes in Cout (O1) (Fig. 2d–e), according to Theorem 1 from
[1, 18].

E(O) = min
〈s,t〉∈Cout (O)

ω(s, t) (6)

Theorem 1 (Outer-cut optimality by OIFT) For two given
sets of seeds S1 and S0, let U(S1,S0) = {O ⊆ V | S1 ⊆
O ⊆ V\S0} denote the universe of all possible objects sat-
isfying the seed constraints. Any label map L computed by

Algorithm 1 for function f ♂
1 (or f ♂

2 ) defines a segmented
object O1 = {t ∈ V | L(t) = 1} that maximizes E (Eq. 6)
among all possible segmentation results in U(S1,S0). That
is, E(O1) = maxO∈U(S1,S0) E(O).

2.3 Differential Image Foresting Transform (DIFT)

Let a sequence of IFTs be represented as 〈I FT(S1), I FT(S2),

. . . , I FT(Sn)〉, where n is the total number of IFT executions
on the image. At each execution, the seed set S i is modified
by adding and/or removing seeds to obtain a new setS i+1.We
define a scene Gi as the set of maps Gi = {Li , Ri , V i , Pi },
resulting from the ith iteration in a sequence of IFTs.

The DIFT algorithm [30, 31] allows to efficiently com-
pute a scene Gi from the previous scene Gi−1, a set �+

S i =
S i\S i−1 of new seeds for addition, and a set �−

S i =
S i−1 \ S i of seeds marked for removal. In the execution
flow by DIFT, after the first execution of I FT(S1), we
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Fig. 2 a Input graph with marked seeds S1 = {e} and S0 = {l}. b–c
The computed forests by OIFT with f ♂

1 and f ♂
2 , respectively. The

values within the nodes indicate the costs of the paths and the arrows

point to the predecessor of each node. d–e The corresponding outer cuts
of the objects generated by OIFT with f ♂

1 and f ♂
2 , respectively, with

both having an energy value of 3 by Eq.6

have that the scenes Gi for i ≥ 2 are calculated based
on the scene Gi−1, taking advantage of the trees that were
computed in the previous iteration, thus reducing the pro-
cessing time. Hence, we have the following differential flow:
〈I FT(S1), DI FT(�+

S2 ,�−
S2 ,G1), DI FT(�+

S3 ,�−
S3 ,G2), . . . ,

DI FT(�+
Sn ,�−

Sn ,Gn−1)〉.

3 Differential OIFT (DOIFT)

Figure 3 shows that the generalized DIFT (GDIFT) algo-
rithm [31] with f ♂

2 , to differentially compute the sequence
〈I FT(S1), I FT(S2)〉, where S1 = S1

1 ∪ S1
0 = {a} ∪ {i, l}

and S2 = S2
1 ∪ S2

0 = {a} ∪ {i}, may generate a result not
predicted by I FT(S2) via Algorithm 1. The problem occurs
because nodes b and g are initially processed in a given order
during the first run of the IFT (Fig. 3b), but later become fron-
tier nodes, i.e., neighboring nodes of removed trees/subtrees
(Fig. 3c), that can be reprocessed in a different order than
the original (Fig. 3d). Due to the strictly minor inequality of
Line 13 of Algorithm 1, in the case of ties in offered costs,
we have that the node that first sees its contested neighbor
will win the dispute. Therefore, multiple processing orders
affect the conquest of neighboring nodes (such as nodes c
and f in Fig. 3).

The DIFT algorithms [30, 31] do not attempt to address
this issue, as they assume that the usage of the “≤” com-
parison on Line 13 of Algorithm 1 would also be perfectly
valid. However, in the case of functions such as f ♂

2 , in which
the cost along the path is not a non-decreasing function,
these problems in the processing order of frontier nodes are
severely aggravated and can generate solutions that would
never be obtained in the sequential flow. To resolve these
issues, it would be necessary to explicitly store the process-
ing order of the nodes, to ensure that later, the frontier nodes
would be reprocessed in the same previous order. However,
in addition to spendingmorememory, it would be complex to

ensure the consistency in maintaining this new map of order
over several iterations.

In order to address these issues without compromising the
execution time of the algorithms, we chose to develop solu-
tions for the differential OIFT focused only on the issue of
generating segmentation labels that are consistent with the
sequential flow labeling (consequently ensuring an optimal
cut as in Theorem 1), even though the predecessor mapmight
be different. Note that this decision does not adversely affect
any of theOIFT applications to date, becauseminor topology
details of the resulting forest are irrelevant to the segmenta-
tion task.

The first proposed solution, denoted as DO I FT1, is sim-
ply to consider the usage of the generalized DIFT (GDIFT)
algorithm from [31] with the f ♂

1 path-cost function. Note

that f ♂
1 is a function with non-decreasing costs along the

path, with cost variations depending only on the root label
and the arc weights ω(s, t) and ω(t, s), which perfectly fits
the conditions required in [31]. Note that problems like the
one reported inFig. 3 do not occurwith f ♂

1 , since there are no
cost ties between object and background in this formulation,
as they are treated as odd and even numbers, respectively,
and the background is always favored. Figure 4a-c shows an
example of DO I FT1. The disadvantage of this solution is
the unbalanced treatment in favor of the background in the
case of ties, when there are multiple solutions with the same
optimal cutting energy by Eq.6 (Fig. 4c).

The second proposed solution, denoted as DO I FT2,
is to use Algorithm 2, which considers for each path
πt a lexicographical path-cost function with two compo-
nents 〈F♂

2 (πt ), T (πt )〉, where F♂
2 (π = 〈t0, . . . , tn〉) =

maxi=0,1,...,n{ f ♂
2 (〈t0, . . . , ti 〉)} and T (πt ) is related to the

number ofmaximumvalued arcs crossed along the path, aim-
ing at a better handling of tie zones, but we use odd numbers
in T (πt ) for paths from the background seeds and even num-
bers for the object, so that there are no ties in the second
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component between object and background:

T (〈t〉) =
{

λ(t) + 1 if t ∈ S1 ∪ S0

+∞ otherwise

T (πt = π
r�s

· 〈s, t〉) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

If r /∈ S1 ∪ S0:
+∞

Else if f ♂
2 (πt ) 
= F♂

2 (πt ):
T ( π

r�s
)

Else if F♂
2 ( π

r�s
) = F♂

2 (πt ):

T ( π
r�s

) + 2

Else:
λ(r) + 1

(7)

Figure 4d–e illustrates an example of DO I FT2.

Algorithm 2 – Algorithm DO I FT2

Input: Image graph G = 〈V,A, ω〉, the set �+
S of seeds for

addition, set �−
S of seeds for removal, the maps L ,

V and P initialized with the result from the previous
OIFT/DOIFT execution, and an initial labeling func-
tion λ : �+

S → {0, 1} for the new seeds. We consider
V (t) = 〈V1(t), V2(t)〉 as weworkwith lexicographical
costs.

Output: The updated maps L , V and P .
Auxiliary: Priority queue Q, and variables tmp1 and tmp2.

1. Set Q ← ∅.
2. If �−

S 
= ∅, then
3. DOIFT-RemoveSubTrees(G, L, V , P, Q,�−

S )
4. For each s ∈ �+

S , do
5. Set L(s) ← λ(s) and P(s) ← nil.
6. Set V (s) ← 〈−1, L(s) + 1〉.
7. If s /∈ Q, then insert s in Q.
8. While Q 
= ∅, do

9. Remove s from Q such that V (s)
lex≤ V (r)

for all r ∈ Q.
10. For each node t such that 〈s, t〉 ∈ A, do
11. Compute tmp1 ← F♂

2 (π P
s · 〈s, t〉).

12. If tmp1 
= f ♂
2 (π P

s · 〈s, t〉), then
13. Set tmp2 ← V2(s).
14. Else If V1(s) = tmp1, then
15. Set tmp2 ← V2(s) + 2.
16. Else , then
17. Set tmp2 ← L(s) + 1.

18. If 〈tmp1, tmp2〉 lex
< V (t), then

19. Set L(t) ← L(s) and P(t) ← s.
20. Set V (t) ← 〈tmp1, tmp2〉.
21. If t /∈ Q, then insert t in Q.
22. Else If s = P(t), then
23. If tmp1 
= V1(t) or tmp2 > V2(t) or

L(t) 
= L(s), then
24. DOIFT-RemoveSubTrees(G, L, V ,

P, Q, {t})
25. Break; #GOTO LINE 9

ProcedureDOIFT-RemoveSubTrees inAlgorithm3 releases
the entire subtrees, converting its nodes to trivial trees of
infinite cost, and transforms all of its neighboring nodes into
frontier vertices, inserting them in Q, assuming that the graph
is symmetric. It plays the role of both DIFT-RemoveSubTree
and DIFT-TreeRemoval from [31], but has been modified to
not rely on the use of a root map to save memory.

Algorithm 3 – Procedure DOIFT- RemoveSubTrees

Input: Image graphG, themaps L ,V and P , the priority queue
Q, and a set R of roots of the subtrees to be removed.

Output: The updatedmaps L , V and P , and the updated priority
queue Q passed by reference.

Auxiliary: Queue J and a set F .

1. Set J ← ∅, F ← ∅.
2. For each t ∈ R, do
3. If t ∈ Q, then remove t from Q.
4. Set V (t) ← 〈∞,∞〉, P(t) ← nil.
5. Insert t in J .
6. While J 
= ∅, do
7. Remove s from J .
8. For each node t such that 〈s, t〉 ∈ A, do
9. If s = P(t), then
10. Insert t in J .
11. If t ∈ Q, then remove t from Q.
12. Set V (t) ← 〈∞,∞〉, P(t) ← nil.
13. Else If V (t) 
= 〈∞,∞〉 and t /∈ Q, then
14. Insert t in F .
15. WhileF 
= ∅, do
16. Remove t from F .
17. If V (t) 
= 〈∞,∞〉 and t /∈ Q, then
18. Insert t in Q.

Other differences of Algorithm 2 in relation to GDIFT
[31], are the absence of the state map used in [31],
which proved to be unnecessary for functions with non-
decreasing costs along the paths, as for the lexicographical
cost 〈F♂

2 (πt ), T (πt )〉, and modifications to avoid using the
root map to save memory. Another difference is the inclusion
of Line 25 in Algorithm 2, to immediately break the inner-
most loop, thus avoiding the repeated processing of part of
the neighborhood.

The third proposed version of DOIFT is a variant of the
second, which was designed to better mimic the behavior of
the sequential flow with f ♂

2 by Algorithm 1. More specifi-
cally, it was modified so that disputed nodes with the same
cost (from the perspective of f ♂

2 ) are given to the first pro-
cessed neighbor, so as to respect Proposition 1, that will be
defined next.

For any function f (π), let F(π) denote themaximumcost
along the path:

F(π =〈t0, . . . , tn〉) = max
i=0,1,...,n

{ f (〈t0, . . . , ti 〉)} (8)
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Fig. 3 a Input graph with marked seeds S1
1 = {a} and S1

0 = {i, l}. b
Initial computed forest by OIFT with f ♂

2 , assuming node b was pro-
cessed first than node g. The values within the nodes indicate the costs
of the paths and the arrows point to the predecessor of each node. c The
tree of node l is marked for removal and its nodes are made available for
a new dispute between the frontier nodes of neighboring trees (marked

with a pink background). d A possible result of the differential flow,
where the frontier node g was processed before b, thus gaining c, but
leading to a result that cannot be generated by the sequential flow via
Algorithm 1. e–f The two possible outcomes of sequential flow for f ♂

2
with S2

1 = {a} and S2
0 = {i}

Fig. 4 a Input graph. b Initial forest by OIFT with f ♂
1 for S1 = S1

1 =
{a}. The values within nodes reflect the costs of f ♂

1 and the arrows
point to the predecessor of each node. c The updated result by the first
proposed differential solution for DOIFT, using GDIFT with f ♂

1 , as a
new background seed h is inserted, so that S2 = S2

1 ∪ S2
0 = {a} ∪ {h}.

d–eAlternative differential flow through the usage ofAlgorithm2, lead-
ing to a better balanced solution. The pairs of values inside the nodes
indicate the lexicographical costs 〈F♂

2 (π P
t ), T (π P

t )〉. d Initial forest
by Algorithm 2 for S1 = {a}. (e) The updated result by Algorithm 2
for S2 = {a, h}. Note that the cost offered to node f by π P

g · 〈g, f 〉
would be 〈3, 3〉, which is worse than 〈3, 2〉 offered by seed a

Consider the following lemma:

Lemma 1 Let P be a predecessor map computed by Algo-
rithm 1 for a seeded path-cost function f . For any two paths
δP

t = 〈t0, t1, . . . , tn = t〉 and τ P
s = 〈s0, s1, . . . , sm = s〉,

defined by P, if F(δP
t ) < F(τ P

s ), then we have that node t
was removed before s from Q on Line 8 of Algorithm 1.

Proof Let sk be a node in τ P
s , such that f (〈s0, . . . , sk〉) =

F(τ P
s ). From Eq.8, we have that f (〈t0, . . . , ti 〉) ≤ F(δP

t ),

i = 0, 1, . . . , n. From the assumptions of Lemma 1,
we may conclude that F(δP

t ) < f (〈s0, . . . , sk〉). Thus,
f (〈t0, . . . , ti 〉) < f (〈s0, . . . , sk〉), i = 0, 1, . . . , n.
From the dynamic of execution of Algorithm 1, we know

that paths δP
t and τ P

s stored in the map P are gradually
computed by the removal from Q of nodes with mini-
mum cost (Line 8). After sk gets inserted in Q with cost
V (sk) = f (〈s0, . . . , sk〉), it won’t be removed fromQ before
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Fig. 5 a Input graph. b Initial forest by OIFT with f ♂
2 for S1 = S1

0 =
{ f }. c The updated result by Algorithm 2, as a new object seed j is
inserted, so that S2 = { f , j}. The values within nodes reflect the costs
of f ♂

2 . d The correct result by Proposition 1 with respect to f ♂
2 . Note

that node i leaves Q prior to g, since F♂
2 (π P

i ) = 0 < F♂
2 (π P

g ) = 2.

So, π P
h cannot be π P

g · 〈g, h〉 according to Proposition 1

all nodes ti , i = 0, 1, . . . , n, are consecutively processed in
Q, with lower costs V (ti ) = f (〈t0, . . . , ti 〉). Therefore, we
have that t = tn is removed prior to s from Q. ��

FromLemma1,wecan also conclude the followingpropo-
sition:

Proposition 1 Let P be a predecessor map computed by
Algorithm 1 for a seeded path-cost function f . For any two
paths δP

s and τ P
s′ , s 
= s′, defined in P, if F(τ P

s′ ) < F(δP
s )

and f (δP
s · 〈s, t〉) = f (τ P

s′ · 〈s′, t〉), then we have that
π P

t 
= δP
s · 〈s, t〉.

Proof Algorithm 1 will assign t to the first optimum path
that reaches it, because of the strict inequality in Line 13.
According to Lemma 1, we have that s′ leaves Q before s.
Consequently, the path τ P

s′ · 〈s′, t〉 is evaluated before δP
s ·

〈s, t〉, offering the same cost (i.e., f (δP
s · 〈s, t〉) = f (τ P

s′ ·
〈s′, t〉)). Therefore, we have that π P

t cannot be δP
s · 〈s, t〉. ��

Figure 5 discusses the consequences of Proposition 1
in the differential execution of OIFT. Note that the prede-
cessor map P computed by Algorithm 2 does not satisfy
Proposition 1 with respect to function f ♂

2 . To correct this
issue, the condition of Line 18 of Algorithm 2 must be
changed to amuchmore complex condition: tmp1 < V1(t)or
(tmp1 = V1(t) and ((tmp2 < V2(t) and notH2) or H1))

where X , H1 and H2 are Boolean variables defined as:

X←V1(t)= f ♂
2 (π P

s · 〈s, t〉)>V1(s) and V1(t)>V1(P(t))

H1 ← P(t) 
= nil and X and V (s)
lex
< V (P(t))

H2 ← P(t) 
= nil and X and V (s)
lex
> V (P(t))

With these modifications, we have the third version of the
DOIFT algorithm, denoted as DO I FT3.

4 OIFT with area/Volume Constraint Aided
by DOIFT

The boundary of an object O is defined as

bd(O) = {s ∈ O | ∃〈s, t〉 ∈ A such that t /∈ O} .

Let G[O] be the subgraph of G induced by O ⊆ V and
π

S�t
[O] denote a path from a node in S to t in the subgraph

G[O]. Consider the following universe of solutions:

Ũ(S1,S0) = {O ∈ U(S1,S0) | ∀t ∈ O ∃ π
S0�t

[O]},

whereO = V \O. This set defines any solution that satisfies
the seed constraints with its background being connected to
the seeds in S0. In this section, we show how to compute an
optimum segmentation subject to area constraints by OIFT
according to the following theorem.

Theorem 2 For two given sets of seeds S1 and S0, and an
area threshold T (such that T ≥ |S1|), any label map L com-
puted by Algorithm 4 defines a segmented object O1 = {t ∈
V | L(t) = 1} that maximizes E (Eq. 6) among all possible
segmentations results in ŨT (S1,S0) = {O ∈ Ũ(S1,S0) |
|O| ≤ T }. That is, E(O1) = maxO∈ŨT (S1,S0)

E(O) and

O1 ∈ ŨT (S1,S0).

Algorithm 4 – Area- Constrained OIFT

Input: Image graphG = 〈V,A, ω〉, seed setsS1 andS0, initial
labeling function λ : S → {0, 1}, and area threshold
T .

Output: The label map L : V → {0, 1}.
Auxiliary: Energy map E : V → R, path-cost map V : V → R

2,
and the spanning forest P : V → V ∪ {nil}.

1. (L, R, E, P) ← IFT(G, f S1
max,S1, λ).

2. For each t ∈ V , do
3. Set P(t) ← nil and V (t) ← 〈∞,∞〉.
4. Set �+

S ← S1 ∪ S0 and S1 ← S1 ∪ S0.
5. Set �−

S ← ∅.
6. Set i ← 1 and area ← ∞.
7. While area > T , do
8. DOIFT(G,�+

S ,�−
S , Li , V , P, λ).

9. Set Oi
1 = {t ∈ V | Li (t) = 1}.

10. Set s ← argmaxt∈bd(Oi
1)

E(t).

11. Set �+
S ← {s} and S i+1 ← S i ∪ {s}.

12. Define λ(s) := 0.
13. Set area ← ∑

t∈V Li (t).
14. Set Li+1 ← Li and i ← i + 1.
15. Return Li .

Let E A = maxO∈U(S1,A) E(O) denote the optimum
energy value by Eq.6 of a segmentation by OIFT using
set A as background seeds in Theorem 1. In order to prove
Theorem 2, we need first to establish some supporting propo-
sitions.
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Proposition 2 The optimum energy E A∪B, among all objects
in U(S1, A ∪ B), satisfies E A∪B = min{E A, E B}.
Proof Since the energy E A∪B is optimum, we have:

E A∪B = max
O∈U(S1,A∪B)

E(O) (9)

Given that U(S1, A ∪ B) ⊂ U(S1, A), we have that
maxO∈U(S1,A∪B) E(O) ≤ maxO∈U(S1,A) E(O). Thus,
E A∪B ≤ E A. By the same arguments, we also have E A∪B ≤
E B . So we can conclude that:

E A∪B ≤ min{E A, E B} (10)

Let OA ∈ U(S1, A) and OB ∈ U(S1, B), such that
E(OA) = E A and E(OB) = E B . The objectD = V\(OA ∪
OB) is a valid solution in U(S1, A ∪ B) (i.e., S1 ⊆ D,
A ∩ D = ∅ and B ∩ D = ∅). From Equation 9, since
D ∈ U(S1, A ∪ B), we may conclude:

E(D) ≤ E A∪B (11)

By Eq.6 we have:

E(D) = min
〈s,t〉∈Cout (D)

ω(s, t) =
min

〈s,t〉∈Cout (V\(OA∪OB ))

ω(s, t) =
min

〈s,t〉∈Cin(OA∪OB )

ω(s, t) =

min

{

min
〈s,t〉∈Cin(OA)|s /∈OB

ω(s, t), min
〈s,t〉∈Cin(OB )|s /∈OA

ω(s, t)

}

≥

min

{

min
〈s,t〉∈Cin(OA)

ω(s, t), min
〈s,t〉∈Cin(OB )

ω(s, t)

}

=

min

{

min
〈s,t〉∈Cout (OA)

ω(s, t), min
〈s,t〉∈Cout (OB )

ω(s, t)

}

=
min{E A, E B}

By the above equation, we have E(D) ≥ min{E A, E B},
which combinedwithEq.11 leads to E A∪B ≥ min{E A, E B}.
But since E A∪B ≤ min{E A, E B} according to Eq.10, we
have E A∪B = min{E A, E B}. ��
Proposition 3 For a given strongly connected and symmetric
digraph G, and sets of seeds S1 and S0, such that S0 = {t},
we have that E {t} = V f

S1
max

opt (t), where f S1
max is the path-cost

function from Eq.1, but being computed only from the object
seeds in S1.

Proof Consider the set of cutting arcs Cout (Oopt ) of an opti-
mum solution Oopt ∈ U(S1, {t}), i.e., E {t} = E(Oopt ).
By Eq.6, we have that ω(a, b) ≥ E {t} for all 〈a, b〉 ∈

Cout (Oopt ). An optimum path π
S1�t

, from S1 to t , must

necessarily pass through some arc of Cout (Oopt ). So its con-

nectivity value f S1
max( π

S1�t
) = V f

S1
max

opt (t) cannot be lower than

E {t}, i.e., V f
S1
max

opt (t) ≥ E {t} (C1).
To conclude the proof, let us consider the following state-

ment:

(⊛) There is a path τ
S1�t

= 〈v0, v1, . . . , v�〉 fromS1 to v� = t

inG, which is composed only by arcs 〈vi , vi+1〉, such that
ω(vi , vi+1) ≤ E {t}, i = 0, 1, . . . , � − 1.

This statement can be proven by contradiction. Let R be
the set of nodes that are still reachable from S1 by paths after
removing all arcs 〈a, b〉 such that ω(a, b) > E {t}. From
the contradiction hypothesis we assume that t /∈ R, thus
R ∈ U(S1, {t}). Note that the cutting arcs 〈a, b〉 ∈ Cout (R)

all have ω(a, b) > E {t} in G. Consequently, Cout (R) has a
better cut value than E {t} (E(R) > E {t}), which leads to a
contradiction by the definition of E {t}.

From statement (⊛), we may conclude that the connectiv-

ity value V f
S1
max

opt (t) of an optimum path from S1 to t cannot be

higher than E {t}, i.e., V f
S1
max

opt (t) ≤ f S1
max( τ

S1�t
) ≤ E {t} (C2).

From the above conditions (C1) and (C2), we may con-

clude that the only valid configuration is V f
S1
max

opt (t) = E {t}.
��

Algorithm4defines an optimal object ofmaximumenergy
via OIFT but having area/volume less than or equal to a given
threshold T . It assumes that the defined background must be
connected to the originally selected background seeds (i.e.,
the solution belongs to Ũ(S1,S0)). If the object by OIFT has
an area above the threshold (Line 7), we can reduce its size
by inserting new background seeds in its boundary (Lines
10-12). The energies of background nodes can be computed
by IFT with f S1

max from the object seeds in S1, according to
Proposition 3 (Line 1). In order to get an optimal object, at
each iteration we must then select a new background seed
at the highest energy node of the object’s boundary (Line
10). We can then repeat this procedure until the area of the
resulting object falls below or equals the given threshold.
We therefore have a sequence of OIFTs, with a new OIFT
for each new inserted seed, that can be calculated faster by
DOIFT (Line 8). Next, we present a proof of Theorem 2.

Proof The proof is based on the following loop invariant of
Algorithm 4:

(
) At each iteration of the main loop of Algorithm 4, we
have an object Oi

1 = {t ∈ V | Li (t) = 1} (Line 9), such
that Oi

1 ∈ Ũ(S1,S0) and ∃ O∗ ⊆ Oi
1, i > 0, where
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O∗ is an optimal solution for the conditions established
in Theorem 2 (i.e., E(O∗) = maxO∈ŨT (S1,S0)

E(O) and

O∗ ∈ ŨT (S1,S0)).

This invariant can be proved by induction. For the induc-
tion basis (i = 1), observe that O1

1 is equivalent to the
result of a regular OIFT from S1 and S0. So we have O1

1 ∈
Ũ(S1,S0), due to the propagation of labels from seeds by
OIFT. To prove the existence of an optimal solutionO∗ con-
tained inO1

1, note that E(O1
1) ≥ E(O∗), since ŨT (S1,S0) ⊆

U(S1,S0) and O1
1 is optimal in U(S1,S0) (Theorem 1). So

we have ω(s, t) ≥ E(O∗) for all 〈s, t〉 ∈ Cout (O1
1). Assume

that O∗
� O1

1 and consider O′ = O∗ ∩ O1
1. Note that

O′ 
= ∅, since S1 ⊆ O∗ and S1 ⊆ O1
1. Now notice that

Cout (O′) = X ∪ Y , where X = Cout (O′) ∩ Cout (O1
1) and

Y = Cout (O′) ∩ Cout (O∗). Given that min〈s,t〉∈X ω(s, t) ≥
E(O1

1) ≥ E(O∗) and min〈s,t〉∈Y ω(s, t) ≥ E(O∗), we
can conclude that E(O′) = min

〈s,t〉∈X∪Y
ω(s, t) ≥ E(O∗). It

remains only to prove thatO′ ∈ ŨT (S1,S0). Note that |O′| ≤
T sinceO′ ⊆ O∗, so it suffices to prove thatO′ ∈ Ũ(S1,S0).

Now notice that O′ = O∗ ∩ O1
1 = O∗ ∪ O1

1. Given that

O∗,O1
1 ∈ Ũ(S1,S0), then we have ∀t ∈ O∗ ∃ π

S0�t
[O′]

and ∀t ∈ O1
1 ∃ π

S0�t
[O′], so we can conclude ∀t ∈

O′ ∃ π
S0�t

[O′]. So we can take O′ as an optimal solution

contained in O1
1, since E(O′) = maxO∈ŨT (S1,S0)

E(O).
For the induction step, we must prove that if the statement

(
) holds for i , then it also holds for i +1. The condition that
Oi+1

1 ∈ Ũ(S1,S0) is easy to prove, as it is enough to observe
that the newadditional seed s inS i+1\S i (Line 11) is selected
on the boundary of Oi

1, so for all new nodes t conquered

to the background in Oi+1
1 \Oi

1, we have that there is a path

π
S0�t

[Oi+1
1 ]. By the induction hypothesis, there is an optimal

solutionO∗, such thatO∗ ⊆ Oi
1. We must prove that there is

also an optimal solution contained inOi+1
1 . The objectOi+1

1
is only computed when |Oi

1| > T ≥ |O∗|. Among all the
ways to reduce Oi

1 to another smaller object in Ũ(S1,S0),
in Algorithm 4, the choice leading to the highest possible
energy is performed (Line 10), according to Propositions 2
and 3.3 Therefore, we have that E(Oi+1

1 ) ≥ E(O∗). The
remainder of the proof is analogous to the arguments used
for the base case and therefore we will present it here only
briefly. Assume that O∗

� Oi+1
1 and consider O′ = O∗ ∩

3 Note that in Line 10 of Algorithm 4, a new seed s is selected from
bd(Oi

1) such that E {b} ≤ E {s} for any b ∈ bd(Oi
1), which implies

that ESi
0∪{b} ≤ ESi

0∪{s} according to Proposition 2, where S i
0 denotes

the background seeds of the ith iteration. Therefore, the new set of
background seeds S i+1

0 = S i
0 ∪ {s} is the one leading to the highest

possible energy.

Oi+1
1 . Note that O′ 
= ∅, since S1 ⊆ O∗ and S1 ⊆ Oi+1

1 .
Also note that |O′| ≤ T since O′ ⊆ O∗. Now notice that
Cout (O′) = X ′ ∪Y ′, whereX ′ = Cout (O′)∩Cout (Oi+1

1 ) and
Y ′ = Cout (O′) ∩ Cout (O∗). Given that min〈s,t〉∈X ′ ω(s, t) ≥
E(Oi+1

1 ) ≥ E(O∗) and min〈s,t〉∈Y ′ ω(s, t) ≥ E(O∗), we
can conclude that E(O′) = min

〈s,t〉∈X ′∪Y ′ ω(s, t) ≥ E(O∗). So

we can take O′ as an optimal solution contained in Oi+1
1 .

Now that we have proved the loop invariant of Algo-
rithm4;we can conclude the proof ofTheorem2.Note that by
(
) we always have an objectOi

1 ∈ Ũ(S1,S0), i = 1, . . . , n,
which contains an optimal solution to Theorem 2. As object
Oi

1 decreases in size for increasing values of i , the loop in
Line 7 will break for i = n such that |On

1 | ≤ T . Note that
On

1 ∈ ŨT (S1,S0). Also note that On
1 equals the result of

an OIFT with additional background seeds, so we have that
On

1 ∈ U(S1,Sn\S1) has optimal energy among all solutions
in U(S1,Sn\S1). By the invariant (
) we have that there is
O∗ ⊆ On

1 . Since O∗ ∈ U(S1,Sn\S1), we conclude that
E(On

1 ) ≥ E(O∗). So the computed result On
1 is optimal as

we wanted to prove. ��
A problem with Algorithm 4 is the fact that it has to

identify and process the entire object boundary on Line
10 for every generated object Oi

1. Another problem is that
if the threshold T changes (for example, as in an inter-
active segmentation), we would have to run the algorithm
again. Next, we present Algorithm 5, which generates a
hierarchy map H : V → {|S1|, . . . , |V|} that encodes area-
constrained OIFT results for all possible thresholds T , so
that OT

H = {t ∈ V | H(t) ≤ T } equals the result of Algo-
rithm 4. Algorithm 5 is also modified to update the boundary
nodes of the generated objects bd(Oi

1) differentially during
the DOIFT computation, keeping boundary nodes in a prior-
ity queue QE . For this purpose, Algorithm 5 uses a modified
DOIFT given by Algorithm 6. The main differences between
Algorithm 2 and Algorithm 6 are the inclusion of Lines 9-12
and Lines 28-31 in Algorithm 6. Lines 9-11 assign values to
map H for the regions conquered by the background in the
current DOIFT, considering only regions not yet included in
the hierarchy (H(s) = 0). Line 12 and Lines 28-31 update
the boundary nodes stored in QE . The priority queue QE is
used to allow the efficient selection of the boundary element
of maximum energy in the map E (Line 10 of Algorithm 5).
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Fig. 6 The mean curves of accuracy, time, and accumulated time. O I FT stands for a f ♂
2 implementation with binary heap for the priority queue

Q, while O I FT (F I F O) considers f ♂
2 with a bucket sorting for Q and with FIFO tie-breaking policy

Fig. 7 Example of the liver segmentation using area-constrained OIFT
for different values of T and 2500 superpixels. The blue line indicates
the gold standard and the yellow line the segmentation results. a The

result with T = 740. b An improved result is obtained by lowering the
threshold to T = 440, which is done by simply sliding a slider in our
graphical interface. c The hierarchy map H computed by Algorithm 5

Algorithm 5 – OIFT Area Hierarchy

Input: Image graph G = 〈V,A, ω〉, the seed sets S1 and S0,
initial labeling function λ : S → {0, 1}.

Output: Hierarchy map H : V→{|S1|, . . . , |V|}.
Auxiliary: Priority queue QE , the energy map E : V → R, the

labelmap L : V → {0, 1}, path-cost map V : V → R
2,

the spanning forest P : V → V ∪ {nil}, and variable
area.

1. (L, R, E, P) ← IFT(G, f S1
max,S1, λ).

2. Set QE ← ∅.
3. For each t ∈ V , do
4. Set P(t) ← nil and V (t) ← 〈∞,∞〉.
5. Set H(t) ← 0.
6. Set area ← |V|.
7. Set �+

S ← S1 ∪ S0.
8. While area > |S1|, do

9. H_DOIFT(G,�+
S , L, V , P, λ, QE , H , area).

10. Remove s from QE such that E(s)=max
t∈QE

{E(t)}.
11. Set �+

S ← {s}.
12. Define λ(s) := 0.
13. For each t ∈ S1, do
14. Set H(t) ← |S1|.
15. Return H.

Algorithm 6 –H_DOIFT: Algorithm DOIFT for hier-

archy construction
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Input: Image graph G = 〈V,A, ω〉, the set �+
S of seeds for

addition, themaps L , V and P initializedwith the result
from the previous OIFT/DOIFT execution, an initial
labeling function λ : �+

S → {0, 1} for the new seeds,
the priority queue QE , the hierarchy map H : V →
{0, . . . , |V|}, and variable area. We consider V (t) =
〈V1(t), V2(t)〉 as we work with lexicographical costs.

Output: The updated maps L , V , P , H , priority queue QE , and
variable area passed by reference.

Auxiliary: Priority queue Q, and variables tmp1, tmp2 and hlevel.

1. Set hlevel ← area.
2. Set Q ← ∅.
3. For each s ∈ �+

S , do
4. Set L(s) ← λ(s) and P(s) ← nil.
5. Set V (s) ← 〈−1, L(s) + 1〉.
6. If s /∈ Q, then insert s in Q.
7. While Q 
= ∅, do

8. Remove s from Q such that V (s)
lex≤ V (r)

for all r ∈ Q.
9. If L(s) = 0, then
10. If H(s) = 0, then
11. Set H(s) ← hlevel and area ← area − 1.
12. If s ∈ QE , then remove s from QE .
13. For each node t such that 〈s, t〉 ∈ A, do
14. Compute tmp1 ← F♂

2 (π P
s · 〈s, t〉).

15. If tmp1 
= f ♂
2 (π P

s · 〈s, t〉), then
16. Set tmp2 ← V2(s).
17. Else If V1(s) = tmp1, then
18. Set tmp2 ← V2(s) + 2.
19. Else , then
20. Set tmp2 ← L(s) + 1.

21. If 〈tmp1, tmp2〉 lex
< V (t), then

22. Set L(t) ← L(s) and P(t) ← s.
23. Set V (t) ← 〈tmp1, tmp2〉.
24. If t /∈ Q, then insert t in Q.
25. Else If s = P(t) and (tmp1 
= V1(t) or

tmp2 > V2(t) or L(t) 
= L(s)), then
26. DOIFT-RemoveSubTrees(G, L, V ,

P, Q, {t})
27. Break; #GOTO LINE 8
28. Else If L(s) = 0 and L(t) = 1, then
29. If t /∈ QE , then insert t in QE .
30. Else If L(s) = 1 and L(t) = 0 and

H(t) > 0, then
31. If s /∈ QE , then insert s in QE .

5 Experimental Results

Figure 6 shows the experimental curves for the segmentation
of the talus bone using 40 slices of 256 × 256 pixels from
MR images of the foot by using a robot user.4 In the first row,
the arc weights were defined as ω(s, t) = ‖I (t) − I (s)‖ and

4 We used a robot user [37] to simulate user interaction by placing brush
strokes automatically to iteratively perform the segmentation task. At
each iteration, the robot user selects a new corrective seed in the largest
connected component of mislabeled pixels, placed at a point farthest
from the boundary of the component, in order to imitate the behavior
of a real user.

Fig. 8 The mean experimental curves for the liver segmentation: a
Accuracy by Dice coefficient. b Execution time in ms

with boundary polarity parameter defined as -50% (see [1]).
In the second row, we repeat the experiment but with the arc
weights quantized in a smaller range of values, correspond-
ing to a quarter of the original range. DO I FT1 and O I FT

(with f ♂
2 and a heap priority queue) had a performance drop

in the second case, due to their worse handling of tie zones.
DO I FT2 and DO I FT3 had an accuracy performance con-
sistent with the O I FT with FIFO tie-breaking policy using
f ♂
2 . In case of O I FT (F I F O), we considered a bucket sort-

ing for Q and a binary heapwas used for all other cases. Even
using a slower queue Q, differential approaches were faster
than O I FT (F I F O)with the exception of the first iteration.
The times were measured on an Intel Core i5-10210U CPU
@ 1.60GHz×8 machine with 8 GiB memory.

In the second experiment, we aim to demonstrate the
effectiveness of using high-level priors via the maximum
allowable size T by Algorithm 5, in order to achieve a good
segmentation of the desired object with less user effort. We
used 40 computed tomography (CT) slices of size 512×512
pixels, obtained from thoracic studies of 10 individuals, to
segment the liver (Fig. 7). We used a region adjacency graph
of superpixels and compared the Dice coefficients, for dif-
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Fig. 9 Brain segmentation in an
MR image. a–c The coronal,
sagittal and axial planes. Only
three markers were selected in
the indicated coronal slice. d–f
The coronal, sagittal and axial
planes of the hierarchy map H
computed by Algorithm 5. g–i
Area-constrained OIFT
segmentation results computed
by Algorithm 4 for different
values of T

ferent values of k (number of superpixels). In Fig. 8, the
DO I FT curves represent the segmentation results of 10
interactions of the robot user, with a new corrective seed
being selected for each robot interaction and without area
constraints. In DO I FTarea curves, the robot interactions
occur in pairs, with the selection of a new seed by the robot
user in odd interactions, followed by an even interaction for
the selection of the area threshold T that best approximates
the desired object. Therefore, the process of searching for
the best area threshold was considered a user intervention.
Note that, in practice, a human user could easily make this
selection by sliding a slider in the program’s interface with
immediate visual feedback, because the computed hierarchy
map H encodes all possible area-constrained outcomes by its
thresholding. In the first iteration, we consider the automatic
selection of T , as the one that generates the object with the
closest size to a fixed average area expected for the dataset.5

Note that from the second interaction of DO I FTarea , by
tuning the threshold, it is already possible to obtain very
good results (Fig. 8a). We also computed the standard Num-
ber of Clicks (NoC) measure, which is commonly used to

5 In the first interaction of the robot user, a seed is selected for the
object to start the process. The background seed is not counted as a
user interaction as we use a fixed set of background seeds at the image
border for all images.

report the results of recent deep learning-based algorithms
for interactive segmentation [27]. NoC measures the number
of interactions required to achieve a predefined intersection
over union (IoU) threshold between predicted and ground
truth masks. We denote NoC with IoU threshold set to 85%
and 90% as NoC@85 and NoC@90, respectively. For the
liver segmentation, DO I FTarea has achieved a value of
NoC@90=1.3, which is very close to the optimal limit value
of NoC for interactive methods, so the presented results are
competitivewith the state of the art. It also obtainedNoC@85
= 1.0, which is the best possible value for this measure.

In order to get an idea of the impact of applying DOIFT
in the context of large 3D MR images, we also carried
out experiments in a 3D MR-T1 image with volume size
of 256 × 256 × 157 voxels to segment the brain, using
the area-constrained OIFT segmentation from Sect. 4. The
image was acquired with a 2T Elscint scanner and at a voxel
size of 0.98 × 0.98 × 1.00 mm3. We considered a region
adjacency graph of supervoxels by [32] with an average
of 100 voxels per region. The arc weights were defined as
ω(s, t) = ‖I (t) − I (s)‖ (where I (t) represents the average
intensity of each supervoxel t) and with boundary polar-
ity parameter defined as 50% (see [1]). Figure9 shows the
results obtained for different values of the maximum volume
threshold T , which is expressed in number of supervox-
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els. To measure the time gain obtained by using DOIFT
in Algorithm 4, we compared its execution time with the
time that would be spent if a regular OIFT had been used
in Line 8 of Algorithm 4. So, regarding the execution time
of Algorithm 4, for T = 9, 000 we had 1 sec if DO I FT2
(Algorithm 2) is employed and 75 sec if a regular OIFT is
employed with heap. For T = 10, 000, we had 0.86 sec
for DO I FT2 and 64 sec for OIFT. On the other hand, the
computation of the full hierarchy map H via Algorithm 5
is even faster, taking only 127 ms and allowing us to obtain
the same results via the simple thresholding of H (Fig. 9d–f).
The times were measured on an Intel Core i5-10210U CPU
@ 1.60GHz×8 machine with 8 GiB memory.

6 Conclusion

We have successfully tested different approaches to imple-
ment the differential OIFT, as well as the use of DOIFT for
implementing an area/volume constraint in OIFT and for cre-
ating a hierarchy of OIFT segmentations by varying the area
threshold. The computed hierarchy map helps the user to
quickly select the appropriate area threshold, improving seg-
mentation considerably, without the need to select multiple
markers.

As future works, we intend to investigate other appli-
cations and operators based on DOIFT. In this work, we
considered the area constraint as an upper bound, but note that
we could equally implement it as a lower bound, by requir-
ing the resulting generated object to have an area above the
given threshold. How to calculate an optimal result with area
comprised in a range of allowed values is a topic for investi-
gation.
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