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ABSTRACT

Sdo Paulo state is the largest sugarcane cultivation area in Brazil and the largest sugarcane
producer in the world, yet the impact of sugarcane cultivation on carbon dynamics in tropical
stream ecosystems remains poorly understood. We investigated CO, emissions and
concentrations in streams draining sugarcane fields and native vegetation catchments to
elucidate the influence of sugarcane cultivation on CO, dynamics in streams. Contrary to our
hypothesis, streams from native vegetation catchments exhibited greater CO, emissions and
concentrations than those from draining sugarcane fields. This result can be attributed to the
soil respiration, which is higher in native vegetation catchments because of higher organic
matter inputs. Our findings emphasize the significant role of tropical vegetation dynamics in
shaping carbon dynamics in freshwater ecosystems and the connections between terrestrial and
aquatic ecosystems in headwaters. Additionally, we observed higher CO, emissions during the
summer, attributable to increased temperatures, streamflow, and terrestrial organic matter
inputs in soils and streams. The variables influencing CO, concentrations were pH, conductivity,
season, and methane concentration, highlighting the complex interplay of environmental
factors. Future research should address critical gaps, including the effects of soil texture and
liming on CO, dynamics, and the quantification of the contributions of methane oxidation to
CO, emissions. Understanding these factors is vital for assessing the impact of sugarcane
cultivation on freshwater carbon cycles, particularly in regions such as Brazil, which is a major
contributor to global sugarcane production.
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Introduction the length of the entire drainage basin in the tropics

Headwater streams are important players in the pro-
cessing and transporting the terrestrially derived
organic carbon to carbon dioxide (CO,) before it is
delivered into the ocean (Hotchkiss et al. 2015, Peralta-
Maraver et al. 2021). Approximately 72% of the total
CO, emissions are derived from terrestrial carbon in
streams and rivers (Hotchkiss et al. 2015), especially
important in tropical streams because they are charac-
terized by relatively high water temperatures and year-
round litterfall dynamics (Taniwaki et al. 2017b).
Because these factors can increase metabolic rates and
CO, emissions (Cole et al. 2007), tropical freshwater
ecosystems can disproportionally transform terrestrial-
derived organic carbon to CO, when compared to
their temperate counterparts (Ward et al. 2017). In
addition, headwater streams can represent ~60% of

(Taniwaki et al. 2018), reflecting their relevance for
studies analyzing CO, emissions and their connections
to land-use change and climate change.

Several different types of human impacts can alter
CO, emissions and concentrations in tropical head-
water streams by increasing organic carbon and nutrient
loads into stream channels. In Brazil, most of these
impacts are related to urbanization and agricultural
practices (Mello et al. 2020). In Sdo Paulo state, an
important agricultural region in Brazil, one of the
most common agricultural crops is sugarcane. The
state is the largest producer in the country, and Brazil
is the largest producer in the world (Cherubin et al.
2021, Zheng et al. 2022). Common practices particular
to sugarcane production can alter carbon dynamics at
the catchment scale, which will affect carbon dynamics
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in streams. For example, sugarcane straw is left on the
soil to avoid soil erosion, and ethanol production resi-
dues (vinasse) are sprayed on the soil to increase soil fer-
tility (do Carmo et al. 2013). Considering that the
residues from these processes are carbon rich and can
be carried into streams by runoff and carbon leaching,
these agricultural practices likely alter the carbon
dynamics in headwater streams and may increase CO,
concentrations and emissions in these environments.
In addition, sugarcane production, similar to that of
large-scale agricultural crops, requires fertilization,
especially nitrogen and phosphorus, which can reach
freshwater ecosystems by runoff and subsurface
runoff, increasing CO, emissions through alterations
in the metabolic rates of methane-oxidizing bacterial
communities (Saltarelli et al. 2018, Bonetti et al. 2022).

In addition to the effects of land-use changes and
agricultural practices, seasonality can also interfere
with CO, concentrations and emissions in tropical
streams. In the tropics, litterfall inputs do not follow
regular annual cycles as in temperate streams and
show great variability in leaf breakdown rates because
of the high diversity of vascular plants with different
leaf characteristics (Wantzen et al. 2008), which
affects carbon availability throughout the year. Many
tropical streams are characterized by high energy
inputs and fast rates of change in terms of hydrologi-
cal characteristics, which affect how organic matter is
processed in stream channels and groundwater (Wohl
et al. 2012) and the gas transfer velocity for green-
house gases produced in catchments and streams
(Aho and Raymond 2019). In addition to these fea-
tures, year-round temperatures are generally >15 °C
(de Mello et al. 2018, Taniwaki et al. 2019), with
water temperatures reaching >20 °C during the sum-
mer, which promotes decomposition and accelerates
metabolic rates.

Considering the effects of seasonal changes and
sugarcane cultivation on the soil and freshwater car-
bon cycles, we aimed to analyze whether sugarcane
cultivation at the catchment scale affects CO, emis-
sions and concentrations in headwater streams.
Therefore, we tested the following hypotheses: (1)
streams draining sugarcane fields would show greater
CO, emissions and concentrations than native vege-
tation catchments because of the carbon inputs from
sugarcane crops and fertilizer application; (2) CO,
emissions and concentrations would be greater dur-
ing the summer because of the increased temperature
and streamflow; and (3) the most important variables
controlling CO, concentrations would be related to
dissolved carbon and total dissolved nitrogen concen-
trations in streams.

Methods
Study area

This study was conducted in the Sdo Carlos, Itirapina,
and Brotas municipalities in the state of Sio Paulo,
southeastern Brazil. The climate is humid subtropical
with hot summers (Kottek et al. 2006, Alvares et al.
2013). The average annual air temperature is 19.5 °C,
with a maximum monthly average temperature of
21.9 °Cin January and February and minimum monthly
average temperature of 15.9 °C in July (Bere and Tundisi
2011). The total precipitation (30-year average for Sdo
Carlos municipality) is ~1500 mm yr~', with 35 mm
of precipitation in the driest month (Aug) and
277 mm of precipitation in the wettest month (Dec).

The region, originally covered by the Cerrado (i.e.,
Brazilian woodland savannas), was extensively modified
and is now predominantly covered by agriculture, with
sugarcane as one of the most important crops (Machado
etal. 2016, Finkler et al. 2018). The broader region of the
central-north state of Sao Paulo, where our study sites
are located, is the most important sugarcane-producing
region in the world (Rudorff et al. 2010, Cherubin et al.
2021). Litterfall by native vegetation occurs year-round
but is greater during the winter (~1 t ha™'; Valenti et al.
2008). Sugarcane harvest in this region occurs between
April and November, depending on the cropping sys-
tem and sugarcane variety.

Six sandy/rocky-bottom headwater streams (first to
second order) were selected based on the main land
use in the catchment (Table 1, Fig. 1). Three headwa-
ter streams drained the sugarcane plantations, and the
3 other headwater streams drained native vegetation
catchments (Cerrado vegetation). The “native vegeta-
tion 1” stream drained a municipal conservation unit
inside of the Federal University of Sao Carlos, campus
Sao Carlos. The “native vegetation 2” stream drained
an area with an experimental grass field in addition
to the native vegetation forest (Brazilian Agricultural
Research Corporation - EMBRAPA). The “native veg-
etation 3” stream drained a catchment located in the
Itirapina Ecological Station, an important conserva-
tion unit for Cerrado vegetation. Catchment drainage
areas were determined by digital elevation models,
and land use was classified based on satellite images
from LANDSAT using ArcGIS software. These
streams have been studied for methane dynamics
(Taniwaki et al. 2022), and some have been previously
studied in relation to nutrient uptake and stream
metabolism (Dodds et al. 2017, Finkler et al. 2018, Sal-
tarelli et al. 2018).

Three field campaigns with 3 replicate sampling dates
within each campaign were conducted 3-6 and 11-14
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Table 1. Main characteristics of the study streams and catchments in the state of Sdo Paulo, southeastern Brazil. *65% of the native
vegetation 2 catchment is occupied by grass and a laboratory, with little agricultural intervention.

Coordinate  Coordinate

Stream S w Mean width (cm)  Mean depth (cm)  Catchment size (ha)  Native (%)  Sugarcane (%)
Sugarcane 1 (Fig. 1a) 21°56/50" 47°51'53" 83.7 7.2 62.8 8.2 86.0
Sugarcane 2 (Fig. 1b) 21°56'28" 47°51'30” 130.6 8.7 1229 18.2 59.8
Sugarcane 3 (Fig. 1c) 22°09'41" 47°56/20" 1173 13.1 104.9 1.7 88.3
Native vegetation 1 (Fig. 1d) 21°58'00" 47°50'33" 105.8 7.8 1313 97.9 0
Native vegetation 2* (Fig. 1e)  21°58'46" 47°52'23" 69.1 18.8 267.0 31.7 0
Native vegetation 3 (Fig. 1f) 22°11'36" 47°53'52" 120.0 36.6 2823 100 0

July (winter), 2-5 and 11-14 September (spring), and
13-20 December (summer) 2018. All samples were ran-
domly collected among the streams between 0800h and
1600h. In each stream, a 60-100 m reach of the channel
was selected to characterize the physicochemical prop-
erties of the stream water, to quantify the CO, concen-
trations of the stream water at 3 substations, and to
conduct tracer experiments to quantify the gas exchange
velocity across the air-atmosphere interface at 5
substations.

Physical and chemical characteristics of stream
water

The physical and chemical characteristics of the stream
water were measured at 3 sites within each stream, with

Brazil

Legend
O Outlets
— Headwater streams
i Native vegetation catchments
i Sugarcane catchments

3 temporal replicates for each season. In situ physico-
chemical characterization of basic water quality param-
eters was conducted using a YSI Professional Plus
handheld multiparameter meter (YSI, Yellow Springs,
OH, USA) to determine dissolved oxygen (DO, mg L),
water temperature (Temp, °C), pH, electrical conductivity
(EC, uS cm™'), and oxidation-reduction potential (ORP,
mV). Three water samples per stream were collected in
50 mL sterile RNase-/DNase-free polypropylene Falcon
tubes for laboratory analysis and transported in refriger-
ated containers to the laboratory where total dissolved
carbon, dissolved inorganic carbon (DIC), dissolved
organic carbon (DOC; detection limit of 4 pg L"),
and total dissolved nitrogen (nitrogen compounds in
filtered samples were oxidized at 720 °C - detection
limit of 5ug L") were determined using a TOC-L

Figure 1. Location of the study catchments and their land use in Sao Paulo state, Brazil. (a—c) Catchments occupied by sugarcane
cultivation (sugarcane 1, 2, and 3, respectively); (d-f) catchments occupied by native vegetation (native vegetation 1, 2, and 3,

respectively).
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Shimadzu TOC analyzer (Shimadzu Co., Kyoto, Japan)
coupled with a TNM-L total nitrogen measuring unit
(Shimadzu Co., Kyoto, Japan). The conservative tracer
method was used to estimate the mean stream water
velocity and streamflow (Stream Solute Workshop
1990). To achieve this, 60-100 m of stream length was
selected, measured along the channel using a measuring
tape. In each section, sodium chloride (NaCl) pulses
were released upstream, and a YSI Professional Plus
conductivity meter (YSI) was used to record the down-
stream conductivity every 15 s starting just prior to the
addition of NaCl and continuing until the conductivity
returned to the baseline conditions observed before the
addition of NaCl (Webster and Valett 2007). All mea-
surements were conducted after water sample collection
at random times throughout the day, and as a result, diel
cycles of streamflow were not considered.

CO, sampling and analysis

We collected 3 samples in each stream from a 60-100 m
reach, with 3 temporal replicates in each season (spring,
summer, and winter) using the headspace extraction tech-
nique (Schade et al. 2016). We were unable to collect sam-
ples from the “sugarcane 3” stream during spring and
summer 2018 because of authorization issues to access
the area. In the laboratory, 60 mL acid-washed syringes
fitted with sealed 3-way stopcocks were filled with
30 mL of ultrapure nitrogen (5.0). In the field, 1 syringe
was filled with 30 mL of stream water at each station.
The stopcock was closed underwater to avoid any bubbles.
Syringes were then shaken for 5 min to equilibrate gases
between water and air, and the entire headspace gas was
injected into a preevacuated gas-tight vial for CO, and
methane analysis (Taniwaki et al. 2022). Gas samples
were stored under positive pressure until analysis.

CO, analysis was carried out using a Shimadzu GC-
2014 gas chromatograph equipped with an electron cap-
ture detector 63Ni (ECD, detection limit: 0.1 ppb) and a
flame ionizer detector (FID, detection limit: 0.1 ppm)
operating at 325 °C (Bowden et al. 1991) with a methan-
izer (operating at 380 °C). Gas concentrations were cal-
culated by comparing peak areas for samples with
standards (Scott-Marrin, Riverside, CA, USA - 1551,
1009, and 353 ppm) calibrated against standards pre-
pared by the National Oceanic and Atmospheric
Administration/Climate Monitoring and Diagnostic
Laboratory (NOAA/CMDL, Boulder, CO, USA). The
concentrations of CO, in the headspace were converted
to partial pressures of CO, in the initial water samples
using Bunsen solubility coefficients (Mulholland et al.
2004). CH, analyses were conducted in the same sam-
ples (methods for CH, analysis in Taniwaki et al. 2022).

CO, emissions

The CO, emission (F; equation 1) was calculated by
multiplying the gas transfer velocity (K) by the differ-
ence between the measured dissolved concentration
(Cy) and the predicted CO, concentration at equilib-
rium with the atmosphere (C.q; Raymond et al. 2012,
Beaulieu et al. 2016, Schade et al. 2016). The predicted
CO, concentration was calculated using the partial pres-
sure in the gas phase by the Bunsen solubility coefficient
(equation 2; Weiss 1974):

F = K(Cw — Ceq), (1)

where F is the CO, emission; K is the gas transfer veloc-
ity (m d™');and C, - C.q is the difference between the
measured (umol L") and predicted (umol L") equilib-
rium concentrations.

Ceq = Pco, X Br X Pharometric (2)

where Ceq is the equilibrium concentration of CO,
(pmol L™"); Pco, is the partial pressure in the gas
phase of CO; (in atm); P is the Bunsen solubility coeffi-
cient for CO, (Weiss 1974); and Pp, ometric 1S the baro-
metric pressure at each sampling site (atm).

Gas transfer velocities in all studied streams were
estimated for 2 field campaigns (Jul and Dec, the dry
and wet seasons) using the gas tracer method (Tsivoglou
and Neal 1976, Raymond et al. 2012). Sulfur hexafluor-
ide (SFs) and NaCl were employed as conservative gas
and solute tracers, respectively. SFs was continuously
bubbled at an upstream station, and NaCl pulses were
used to indicate the time needed for the stream channel
to become saturated with SFs Once saturation was
reached, gas samples were collected at 5 substations
using previously described methods and analyzed
using a Shimadzu GC-2014 gas chromatograph.

Equation 3 was used to estimate the downstream
decrease in the SF¢ concentration (Kgspg) and the DO
gas transfer velocity at the air-water interface (Kpo).
We ran a linear regression between the Neperian loga-
rithm of SF¢ concentration measured in the sampling
stations and the total length of the reach (x) (Benson
et al. 2014, Tromboni et al. 2017). The Kpo was
obtained from each reach through the conversion factor
proposed by Canale et al. (1995):

Cy = Cpe Ksret, (3)

where C, is the SF¢ concentration at each sampling sta-
tion (g m™); C, is the initial SFs concentration (g m™)
at the release point (x =0 m); ¢ is tracer residence time
(d); and K is the gas transfer velocity for SF4 (m d™).

The gas transfer velocity for CO, (Kco,) was calcu-
lated by the Schmidt number, the ratio of the kinematic



viscosity of water to the diffusion coefficient, used to cal-
culate the gas transfer velocity of one gas from another
(equation 4). Kpo was converted to Kco, using pub-
lished methods and protocols (Wanninkhof et al
1990, Canale et al. 1995, Raymond et al. 2012):

1
Kpo (SCDO)Z’ @

Kcoo Sccon

where, Kpo is the gas transfer velocity for DO (m d™,
Kcos is the gas transfer velocity for CO, (m d™), and
Scpo and Scco, are the Schmidt number for DO and
CO,, respectively. The equations for determining Scpo
and Scco;, are available in Raymond et al. (2012).

Statistical analysis

We used descriptive statistics and nonparametric tests to
compare the physical and chemical characteristics of
stream water among different seasons and land uses
after checking the lack of normality and homoscedasticity
in several variables of our data. The differences among
land uses were compared using Wilcoxon rank-sum
test. For the comparisons between seasons, we used the
Kruskal-Wallis test, and to compare the multiple pairs
of means we applied the Dunn-Bonferroni post hoc test
using the FSA package with a = 0.05 (Ogle et al. 2020).
To test the first and second predictions (i.e., that CO,
concentrations and emissions are greater in the summer
and in streams draining sugarcane catchments), we com-
pared CO, emissions and concentrations in different sea-
sons and across different land uses using Wilcoxon rank-
sum and Kruskal-Wallis tests. All analyses were con-
ducted in R software (R Core Team 2019).

To test our third prediction (i.e., that the most
important variables controlling CO, concentrations
are related to nutrient concentrations in streams), we
first removed variables with multicollinearity through
the variance inflation factor (VIF) test (O’Brien 2007)
using the caret (Kuhn 2008) and tidyverse (Wickham
et al. 2019) packages in R software (R Core Team
2019). In this step, the VIF test suggested removing
total dissolved carbon from our analysis. After remov-
ing multicollinear variables, we used machine learning
techniques and constructed a random forest model to
identify and rank the main contributors for explaining
the CO, concentrations in the studied streams (Breiman
2001, Cutler et al. 2007) through variable importance
(VIMP), which represents the difference in out-of-bag
prediction error before and after permutation (Ehrlin-
ger 2014). The independent variables included in the
model were pH, water conductivity, season, CH4 con-
centrations, total dissolved nitrogen, dissolved oxygen,

INLAND WATERS (&) 5

oxidation-reduction  potential, = water  velocity,
streamflow, water temperature, percentage of native
vegetation in the catchment, DOC, and DIC using the
randomForestSRC package (Ishwaran and Kogalur
2021) in R (R Core Team 2019).

Results

Physical and chemical characteristics of stream
water

Stream water characteristics varied both seasonally and
between the sugarcane (SG) and native vegetation (NV)
catchments for most parameters (Table 2). Significant
differences were observed between almost all parame-
ters across land uses except for total dissolved carbon
and streamflow. Streams draining sugarcane catchments
had significantly greater values of water temperature
(SG % 19.6 °C, NV x 17.9 °C), dissolved oxygen (SG x
7.89mg L' NV % 6.68 mg L"), conductivity (SG %
18.14 uS cm™', NV % 11.47 uS cm™'), pH (SG % 6.09,
NV x 5.01), water velocity (SG X 0.14 m st NV x
0.04m s '), DIC (SGX 1.45mg L™, NV £ 0.95mg L")
and total dissolved nitrogen (SG X 0.37 mg L™, NV %
0.13mg L7'). The parameters significantly lower in
streams draining sugarcane catchments were oxidation-
reduction potential (SG X 418 mV, NV X 526 mV) and
DOC (SG % 0.52 mg L', NV % 1.29 mg L™"). The DOC
concentrations were below global average concentrations
of 10.4 mg L™ (Liu and Wang 2022). The DIC concen-
trations were also below global average concentrations
of ~60 mg L™ (Cole and Prairie 2024).

In relation to the seasonal characteristics, the streams
did not vary in relation to water velocity, DOC, total dis-
solved carbon, or total dissolved nitrogen. Other param-
eters were significantly different, mostly during the
summer, except for dissolved oxygen, which was higher
during the winter.

Land-use and seasonal effects on CO, emissions
and concentrations

Streams draining native vegetation catchments showed
greater CO, concentrations and emissions than did
streams draining sugarcane fields (p < 0.05; Fig. 2a-b).
The median (standard deviation) CO, concentration
was 285 (109) umol L™ for streams draining native veg-
etation catchments and 180 (169) umol L™" for streams
draining catchments covered by sugarcane. The median
values of CO, emissions were 124 (87) mmol m™2 d™*
for streams draining native vegetation catchments and
38 (49) mmol m > d™* for streams draining catchments
covered by sugarcane. CO, emissions and
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Table 2. Physical, chemical, and structural characteristics of stream water draining catchments predominantly covered by either
native vegetation or sugarcane plantations during different seasons. LU: land-use. ** =p < 0.05, *** =p < 0.01. Season post hoc =
Dunn’s test for comparisons that were significantly different among seasons. Identical season post hoc letters indicate no
significant difference of water quality variables among seasons.

Water physical and chemical characteristics Season Native vegetation Sugarcane Season post hoc
Mean SD Mean SD
Water temperature Spring 17.45 1.51 19.42 1.76 a
(Temp) °C Summer 20.84 0.64 223 0.68 b
Winter 15.67 1.90 18.02 1.42 a
All samples 17.99 2.61 19.64 2.27
Comparisons temp Season X LU Frx
Dissolved oxygen Spring 67.40 11.65 82.61 11.89 a
(DO%) Saturation % Summer 65.97 9.14 83.20 2.75 a
Winter 80.00 7.83 90.96 7.06 b
All samples 71.12 11.61 86.36 9.01
Comparisons DO% Season *xx LU il
Dissolved oxygen Spring 6.49 0.97 7.46 1.1 a
(DO) mg L -1 Summer 5.90 0.80 7.28 0.28 a
Winter 7.67 0.69 8.60 0.71 b
All samples 6.69 1.12 7.90 0.99
Comparisons DO Season *rx LU i
Electrical conductivity Spring 1243 7.02 21.96 6.09 a
(Cond) ps cm™! Summer 7.56 3.97 13.83 5.11 b
Winter 14.45 6.83 18.47 6.71 a
All samples 11.48 6.80 18.14 6.90
Comparisons cond Season i LU il
pH Spring 4.98 0.79 6.15 0.38 a
Summer 4.66 0.76 5.65 0.40 b
Winter 5.40 0.83 6.36 0.46 a
All samples 5.01 0.86 6.10 0.52
Comparisons pH Season X LU b
Oxidation—reduction potential Spring 49491 127.22 407.25 157.80
(ORP) mV Summer 558.30 111.51 398.87 99.77
Winter 527.71 204.59 438.49 40.61
All samples 526.97 156.41 418.24 105.64
Comparisons ORP Season ns LU il
Streamflow Spring 12.03 5.78 9.92 4.53 a
(Flow) L s7" Summer 23.05 13.06 35.62 18.94 b
Winter 13.03 6.51 14.88 5.47 a
All samples 16.04 10.4 19.39 15.32
Comparisons flow Season *rx LU ns
Water velocity Spring 0.05 0.02 0.13 0.04
(Vel) ms™! Summer 0.05 0.02 0.18 0.05
Winter 0.05 0.01 0.12 0.05
All samples 0.05 0.02 0.14 0.05
Comparisons vel Season ns LU il
Dissolved inorganic carbon Spring 1.18 0.61 1.58 0.51 a
(DIC) mg L Summer 0.86 0.44 1.56 0.64 ab
Winter 0.82 0.48 13 0.51 b
All samples 0.95 0.55 1.45 0.57
Comparisons DIC Season *x LU o
Dissolved organic carbon Spring 1.03 0.43 0.36 0.19
(DOC) mg L™ Summer 1.47 0.91 0.45 0.39
Winter 1.38 0.85 0.68 0.72
All samples 1.29 0.79 0.53 0.55
Comparisons DOC Season ns LU il
Total dissolved carbon Spring 2.23 0.79 1.94 0.58
(TDC) mg L’ Summer 232 1.07 2.01 0.88
Winter 2.20 1.08 1.98 0.86
All samples 2.25 0.99 1.98 0.80
Comparisons TDC Season ns LU ns
Total dissolved nitrogen Spring 0.09 0.15 0.4 0.17
(TDN) mg L Summer 0.15 0.18 0.44 0.28
Winter 0.15 0.19 033 0.22
All samples 0.13 0.18 0.38 0.23
Comparisons TDN Season ns LU il

concentrations were significantly different among sea-

Variables affecting CO, concentrations in tropical

sons (p<0.01; Fig. 2c-d). The CO, concentrations
were higher during the summer and did not differ

between spring and winter. The CO, fluxes were higher

during summer.

streams

The most important variable affecting CO, concentra-

tions in tropical streams was stream water pH (Fig. 3);
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Figure 2. CO, emissions and concentrations in the studied streams across different land uses and seasons. (a) CO, fluxes across land-
uses; (b) CO, concentrations across land-uses; (e) CO, fluxes across seasons; and (f) CO, concentrations across seasons. **** = p <
0.001; *** = p < 0.01; ns = not significantly different. Green box plots represent streams draining native vegetation catchments

and orange box plots represent streams draining sugarcane fields.

other important variables included water conductivity,
season, CH, concentration, and total dissolved nitrogen
(Fig. 3). Partial dependence plots revealed a negative
relationship between CO, and pH and between water
conductivity and CO, concentrations during summer
and a positive relation between CO, and CH, (Fig. 4).

Discussion

Our first hypothesis was that streams draining sugar-
cane fields would show greater CO, emission and con-
centration because of the carbon input from sugarcane
crops and fertilizer application. Our results did not sup-
port this hypothesis; streams draining native vegetation
catchments showed higher CO, emissions and concen-
trations. The main explanation for these results is the
elevated soil respiration in native vegetation catchments
that delivers CO, through groundwater paths. Soil res-
piration is highly dependent on soil carbon, moisture,
and porosity, found especially in the riparian and catch-
ment areas of headwater streams because of the close
connection of the stream channel with the adjacent
land (Freeman et al. 2007). In these areas, aeration

induced by the riparian vegetation roots (Goodrick
et al. 2016) and constant deposition of above- and
below-ground organic matter is elevated, especially in
the tropics (Cusack et al. 2018). The amount of organic
matter input in soils from sugarcane cultivation is lower
than that from native vegetation (e.g., Cerrado vegeta-
tion), despite the input from sugarcane residues. In
addition, the use of heavy machinery causes soil aggre-
gate breakdown, which reduces the carbon content
(Coonan et al. 2020), and therefore less organic matter
is transferred and transformed in the soil and delivered
into headwater streams. A study comparing the soil car-
bon content in forests and sugarcane fields revealed that
the soil carbon content can be ~60% lower in sugarcane
fields than in native vegetation areas (Franco et al.
2015). For our streams, the median CO, concentrations
were ~60% lower in streams draining sugarcane fields
than in native catchments. When comparing soil respi-
ration between sugarcane fields and savannas in studies
conducted near the study site, CO, fluxes in sugarcane
fields averaged ~2umol CO,m™> s (Luiza et al.
2015), whereas soil respiration in savannas were much
higher, averaging 8 mol CO, m™> s~ (Da Rocha et al.
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Figure 3. Results from the random forest model showing the stabilization of the error rate across the number of trees in the model
(left) and the ranking of the variable importance (right, R? = 0.45) for explaining CO, concentrations (CO2¢) in the studied streams.
Cond = water conductivity; CH4c = methane concentration; TN = total dissolved nitrogen concentrations; DO = dissolved oxygen con-
centrations; ORP = oxidation reduction potential; Vel = water velocity; Flow = streamflow; Temp = water temperature; DIC = dissolved
inorganic carbon concentrations; DOC = dissolved organic carbon concentrations; LU_Native = percentage of native vegetation in the
catchment.
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Figure 4. Partial dependence plots showing the relationships between CO, concentrations and the physical and chemical variables con-
sidered in the model. CO, concentrations (vertical axis) and the physical and chemical variables considered in the model (horizontal axis).
Cond = water conductivity (mS cm™"); CH4c = methane concentration (mmol L™'); TDN = total dissolved nitrogen concentration (mg L
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sent the 95% confidence intervals of the model.



2002). The effects of liming can also be important for
CO, dynamics because it is used in sugarcane cultiva-
tion to correct soil acidity (Cherubin et al. 2015) and
can shift CO, emissions. Therefore, our results demon-
strate that sugarcane-dominated catchments may con-
tribute less CO, to their receiving headwaters than
native vegetation catchments, as also found in sub-
tropical streams (Andrews et al. 2021).

The second hypothesis of this study was that CO,
emissions would be greater during the summer because
of increased temperature and streamflow, which would
alter the gas transfer velocity. Our results corroborate
this hypothesis because CO, emissions were greater dur-
ing the summer in both land uses. These results can be
explained by the higher soil and water temperatures dur-
ing the summer, which accelerates the root and microbial
metabolic leading to a high decomposition rate in tropi-
cal soils and streams (Brown et al. 2004, Saltarelli et al.
2018, Marzolf and Arddén 2021, Peralta-Maraver et al.
2021). In addition, tropical summer is characterized by
a wet season with constant rains and storms, increasing
soil respiration, streamflow, water turbulence, gas trans-
fer velocity, and terrestrial organic carbon delivery into
stream channels because of high microbial activity,
organic matter accumulation, root metabolism, and
nutrient cycling (Tonin et al. 2017). Flushing events
can also deliver terrestrially derived carbon dioxide
that accumulates in the soil and groundwater into
streams (Bodmer et al. 2016). Together, these factors
contribute to higher CO, emissions during the tropical
summer, especially in native vegetation catchments.

The third hypothesis of this study was that the most
important variables controlling CO, concentrations
would be related to DOC and total dissolved nitrogen
in streams. Our results did not support this hypothesis
because the most important variables explaining CO,
concentrations were pH, conductivity, season, and
CH, concentration. Total dissolved nitrogen was the
fifth ranked variable in the random forest variable
importance analysis, and DOC concentration was
among the last variables regarding importance in
explaining the results. The relationship between CO,
and pH can be explained by the controlling capacity
of pH on soil microbial respiration (Sitaula et al. 1995,
Chen et al. 2016). In addition, soil pH can affect water
conductivity, considering that the soil acidification
and texture can also change the cationic characteristics
in belowground processes, especially in soils with poor
capacity in retaining cations and ions (Meng et al
2019). Therefore, we believe that the relation between
pH and water conductivity with CO, concentrations is
indicative of groundwater inputs. Tropical headwater
streams draining small catchments are dependent on
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groundwater inputs, which are rich in dissolved gases
because of soil respiration, representing ~77% of the
carbon transported from the landscape by streams
(Johnson et al. 2008).

Another interesting result was the relationship
between CO, and CH, concentrations in our study. A
recent study showed that approximately half of the dis-
solved CH, pool in streams is oxidized before emission
(Robison et al. 2022), indicating that this process may
be relevant for our studied streams, as shown by the ran-
dom forest model. In addition to not being an important
factor for CO, concentrations in the streams, the concen-
tration of DOC and DIC was much lower than the global
averages, but the studies that calculated the global aver-
ages do not include data from Brazil and the studied
region (Liu and Wang 2022, Cole and Prairie 2024). In
another study conducted in regions close to this study,
the concentrations of DOC and DIC were similar to
those found in this study (Taniwaki et al. 2017a).

This study was limited in understanding the nictem-
eral variations in CO, emissions and the effects of rains
and streamflow rises on CO, concentrations and emis-
sions. A study in temperate streams showed that CO,
emissions in streams are different during day and night
periods (Schelker et al. 2016). We are aware of this
finding and believe those studies would greatly enrich
the understanding the carbon cycle dynamics in tropical
catchments and headwaters, despite the difficulties in
terms of funds and security to conduct these studies.

Future studies analyzing the impacts of sugarcane
cultivation on carbon dynamics should evaluate several
gaps in the understanding of tropical stream carbon
cycles. For example, the effects of soil pH correction
through soil liming on CO, emissions in tropical
streams is unknown. Liming, a common practice in
sugarcane cultivation (Cherubin et al. 2015), is applied
at ~3 t ha™' every 2 years and can have direct impacts
on carbonate systems in freshwater ecosystems, thus
impacting CO, dynamics (Oh and Raymond 2006, Ray-
mond et al. 2008, Lauerwald et al. 2013). The effects of
soil texture can also be an important factor in determin-
ing CO, emissions, considering that different soils have
different capacities in retaining organic matter delivered
into the stream channels. Another missing piece is the
quantification of the contributions of CH, oxidation
to CO, emissions in tropical streams, considering that
tropical catchments are subjected to greater carbon
inputs from tropical forests and higher temperatures.
Because Brazil produces ~39% of the global sugarcane
in the world, understanding these gaps would provide
better comprehension of the effects of sugarcane pro-
duction on freshwater carbon cycles in (Zheng et al.
2022).
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Conclusion

Our study showed that CO, emissions and concentra-
tions are higher in streams draining native vegetation
catchments because of the greater soil respiration and
carbon stocks in the soil, resulting in higher CO, con-
centrations in groundwater subsequently delivered to
headwater streams. CO, emissions and concentrations
are higher during summer, primarily affected by higher
temperatures and rainfall, which are known to increase
metabolic rates and microbial activities in soil and
streams. Therefore, this study demonstrates the inter-
play between terrestrial and aquatic ecosystems in the
CO, dynamics in catchments and headwater streams.
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