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1 | INTRODUCTION

The main aim of this paper is to present criteria for a given =*-algebra, denoted in what follows by B (and defined purely
algebraically as in [27, p. 35]), to admit a unique C*-norm. Let us recall that existence of a C*-norm already imposes
restrictions, since there are examples of sx-algebras that do not admit any C*-norm at all. And even when C*-norms do
exist, there may “a priori” be many different ones—see the beginning of Section 2. It is true that any two C*-norms on
a x-algebra turning it into a C*-algebra are necessarily equal [27, Corollary 2.1.2, p. 37], but the conclusion breaks down
when we abandon the hypothesis of completeness.

Since our focus here will be on the question of uniqueness and not of existence, we shall in the sequel bypass the
latter by assuming that the *-algebra /3 in question is realized as a dense *-subalgebra of some C*-algebra .4. Within this
context, we formulate our first main theorem, which states that if 13 is closed under the C*-functional calculus of A (see
Definition 2.4), then the C*-norm on B induced from that of .4 is the only possible one (Theorem 2.5). In the unital case,
this can be seen as a noncommutative version of the statement that on a smooth compact manifold M, the algebra C* (M)
of smooth functions uniquely determines the algebra C(M) of continuous functions, which is the algebraic counterpart
of the idea that a smooth manifold is automatically also a topological space: The smooth structure uniquely determines
the topology [20, Chapter 2, pp. 22 & 23].

In our main applications, 3 will not be merely a x-algebra but rather a Fréchet %-algebra, that is, a «-algebra that is also
a metrizable and complete locally convex topological vector space such that both its multiplication and its involution are
continuous.! A particularly interesting situation appears when s a Fréchet x-algebra whose topology can be defined by a
differential seminorm, as originally introduced by B. Blackadar and J. Cuntz [5] and later modified by S. J. Bhatt, A. Inoue,
and H. Ogi [4, Definition 3.1]. In this case, there are important results [4, Theorems 3.3 & 3.4], which will guarantee the
validity of the hypotheses of Proposition 2.1, Theorem 2.3, and Theorem 2.5.

In Section 3, we consider the noncommutative function algebras SJC(R”) and BJC(IR{”) defined by M. A. Rieffel [29] via
a deformation quantization procedure, where C is a given C*-algebra of “coefficients” and J is a skew-symmetric linear
transformation on R” with respect to which the usual (commutative) pointwise product is “deformed” (Definition 3.1).
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Using Rieffel’s deformed product X; (see Equation (3.7)), together with the pointwise involution and with the choice of
standard systems of (semi)norms, which are familiar from the theory of distributions (there are several variants), these
are Fréchet x-algebras. However, we will substitute the initial system of norms on Bf(IR”) by a more convenient one,
resorting to a faithful representation of this function algebra as an algebra of bounded (pseudodifferential) operators on a
Hilbert C*-module [19]. More precisely, we first define an “operator C*-norm” on BE(R”) (see Definition 3.1) and, under
the assumption of a unital C, we will define a differential norm on BJC(R”), a construction that will require several steps.
In particular, we will need a version of the Calderon-Vaillancourt inequality for Hilbert C*-modules (see Theorem 3.2
and Equation (3.23)), as well as the “symbol map” S constructed in [23] that allows us to obtain an “inverse Calderdén-
Vaillancourt-type inequality” (see Equation (3.27)), which, in the scalar case (C = C), was proved by H. O. Cordes in [9,
Proposition 4.2, p. 262]. Besides showing that the natural topology of B]C(IR”) is, in particular, defined by a sequence of
submultiplicative %-norms, the fact that the topology on B]C(IR”) is generated by a differential norm (Theorem 3.5) also
implies, for a unital C, that this x-algebra is closed under the C*-functional calculus of its C*-completion (see Theo-
rem 3.8). This result will put us in a position to establish the uniqueness statement for C*-norms on BE(R”), by means of
Theorem 2.5, for any C*-algebra C (unital, or not—see Theorem 3.9). The analogous C*-norm uniqueness statement for
SJC(IR") will also be obtained as a corollary, in Theorem 3.10. Moreover, due to the spectral invariance results contained in
Theorems 3.8 and 3.11 (for a unital C), B]C(IR") and SJC(R”) have the same K-theory as their respective C*-completions.

At the end of Section 3, we provide a few other applications. We begin by showing that the Fréchet x-algebra of smooth
elements for a strongly continuous Lie group representation by x-automorphisms on a C*-algebra admits only one C*-
norm (Theorem 3.13), illustrating this result with two algebras of pseudodifferential operators with scalar-valued symbols.
Then, we prove that the “sup norm” and the “operator C*-norm” coincide on B]C(IR{”) when J = 0 (Proposition 3.15).
Finally, in Theorem 3.16, we use some of our results to give very simple proofs of three propositions of Rieffel’s monograph
[29]: Propositions 4.11, 5.4, and 5.6.

2 | UNIQUENESS OF C*-NORMS

As observed in the Introduction, some *-algebras may not admit any C*-norm at all. For a concrete example, denote
the Schwartz function space by S(R") (see Section 3), which is a dense subspace of L>(R"). Also, consider the alge-
bra End*(S(R")) of all linear operators T on L?(R") such that Dom T := S(R"), T[S(R™)] C S(R"), S(R") C Dom T*,
and T*[S(R™)] C S(R"), where T* denotes the adjoint operator on L>(R"). Then End*(S(R")) becomes a s-algebra
when equipped with the involution operation T +—— T+ := T*|ggn) [33, Lemma 3.2, p. 40]. Moreover, define 53 as the
x-subalgebra of End* (S(R")) generated by the set

d
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of linear operators on S(R"), in which x;, is the multiplication operator by the coordinate function x — Xx; and I is the
identity operator on L?(R"™). Then since
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we conclude, as a consequence of the fact that in a unital Banach algebra a commutator of two elements cannot be equal
to the identity [32, Theorem 13.6, p. 351], that neither End*(S(R™)) nor B can carry any submultiplicative norm, let alone
a C*-norm.

On the other hand, some -algebras can be equipped with more than one C*-norm (in fact, with many different ones).
For example, if S! :={z € C : |z| = 1} and C(S!) is the *-algebra of complex-valued continuous functions on S!, then
the x-subalgebra

n
B = {p:5132|—>p(z): Z akzk,akeC,neN}

k=—n
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of trigonometric polynomials admits infinitely many C*-norms: the C*-seminorms || - ||x : g — sup{|g(z)| : z € K}on

C(SY), in which K is an infinite compact subset of S', restrict to C*-norms on 3, as a consequence of the Identity Theorem
for holomorphic functions [28, The Identity Theorem, p. 228]. Tosee that || - g, # || - |k, if K; and K, are distinct infinite
compact subsets of S* first note that, if z, € K;\K,, then there exists a compactly supported continuous function 0 < f < 1
on S' such that f(z,) = 1and f]| k, = 0,80 || fllx, = 0and || f]lg, > 1; therefore, since the trigonometric polynomials form
a dense subalgebra of C(S') with respect to the C*-norm || - ||lg1 : g — sup {|g(z)| 1z € Sl} [31, Theorem 4.25, p. 91],
there must be an element p, in B such that || po|lx, # l|Pollx,-

In the discussion of the two examples above, we have already followed what we believe to be standard terminology
in the literature, according to which a seminorm p on a %-algebra 3 is just a seminorm on /3 as a vector space, so the
term “seminorm” in itself does not “a priori” include any requirement of compatibility with either the multiplication or
the involution on B. Correspondingly, we say that a seminorm p is submultiplicative if we have p(b1b,) < p(b;)p(b,), for
all by, b, € B, is a x-seminorm if p(b*) = p(b), for all b € B and is a C*-seminorm if it is a submultiplicative x-seminorm
satisfying p(b*b) = p(b)?,for all b € B. Finally, throughout the paper, we shall often employ the notation || - || 5 to denote
a C*-norm on a general *-algebra 3. When A is a C*-algebra, for example, || - || 4 will denote the unique C*-norm, which
may be defined on A.

The uniqueness theorem for C*-norms on certain x-algebras that we shall prove in this section (Theorem 2.5) depends on
just one essential condition, namely closure under the C* functional calculus. But in an intermediate step (Theorem 2.3),
it involves two technical conditions, one of which is a weakened form of spectral invariance (see Definition 2.2 below).

We begin by recalling the definition of spectrum of an element a of an algebra A: If A is unital with unit 1 4, it is the
set 0 4(a) C C of numbers A such that 11 4 — a is not invertible in .4, whereas if .4 is nonunital, it is defined to be the
spectrum of (a, 0) in the unitization A of A [27, pp. 6 & 12]. If o 4(a) # @, the corresponding spectral radius of a is defined
tober (a) :=sup{|i| : 1 € o4(a)}

Proposition 2.1. Let B be a dense x-subalgebra of a C*-algebra A with the property that rz3(b*b) = r ,(b*b), forall b € B.

Then every C*-seminorm on B is majorized by the restriction of || - || 4 to B.
Proof. For each x-representation o of /3 on a Hilbert space H, we may use the corresponding operator norm || - ||z to
define a C*-seminorm || - ||, on Bby ||bll, := llo(b)l| (3¢, for all b € B. Moreover, every C*-seminorm p on B3 is of this

form: The completion B/ker p of the quotient of B by the kernel of p (with respect to the C*-norm given by ||[b][|, := p(b),
for every [b] € B/ker p) is a C*-algebra, which, according to the Gelfand-Naimark Theorem [27, Theorem 3.4.1, p. 94]
has a faithful representation p’ on some Hilbert space; therefore, composition of o’ with the canonical projection from 3
to B/ker p produces a *-representation of 3 whose operator C*-seminorm is equal to p.

Now let p be a C*-seminorm on /3 and p be a *-representation of 3 on some Hilbert space H satisfying p = || - ||,. Then
by the hypothesis, for every fixed b € B,

p(b)? = 1Ibllg = le®)IIZ,,, = 16®)* el o) = 10Dl ety = T (P(B* b))
<rpb*b) = r4(b*b) = Ib*bll 4 = b O

Similarly as in [34], we shall adopt the following conventions: Let .4 be an algebra and 3 be a subalgebra of A. If A is
nonunital, we define A as A and B as B; if A and B are both unital and share the same unit, let A := A and B := B;
finally, if A is unital but the unit 1 4 of .A does not belong to 13, let A := A and /3 be the subalgebra of .A generated by 3
and 1 4. In any case, .A and /3 are unital algebras sharing the same unit. We now make the following

Definition 2.2. Let A be an algebra and 3 be a subalgebra of .A. We say that B is spectrally invariant in A if, for every
element of 53, its spectrum as an element of /3 coincides with its spectrum as an element of .A. Similarly, we say that 13 is
real spectrally invariant in A (respectively, positive spectrally invariant in A) if, for every element b of 13 satisfying b = b*
(respectively, for every element b of /3 satisfying b = c*c, for some ¢ € B), its spectrum as an element of 3 coincides with
its spectrum as an element of A.

Therefore, a sufficient condition for guaranteeing the hypothesis of “spectral radius invariance” for elements of the
form b*b, b € B, in Proposition 2.1, is obtained by requiring 5 to be positive spectrally invariant in .4, since in this case
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we have

rp(b*b) = rg(b*b) =r ;(b*b) =r 4(b*b).

Clearly, such a condition is also satisfied if the stronger hypothesis that 5 is spectrally invariant in A is fulfilled. A brief
discussion on the issue of spectral invariance may be found in Appendix A. As is well known, this condition is equivalent
to requiring that whenever an element of /3 has an inverse in .4, this inverse already belongs to 3. We should also mention
that concepts very similar to the properties of real spectral invariance and of spectral radius invariance for elements of the
form b*b, b € B, presented above, have been discussed in the literature before; compare, for instance, with the concept of
x-inverse closedness and with the spectral radius preserving (SRP) property in [1] and [2].

We will now see that if B bears a nice relationship with the closed ideals of .4 and satisfies the hypotheses of
Proposition 2.1, then it admits only one C*-norm.

Theorem 2.3. Let B be a dense x-subalgebra of a C*-algebra A satisfying the following two hypotheses:

(1) Forallb € B, the equality r3(b*b) = r 4(b*b) of spectral radii holds.
(2) For every closed ideal I of A, I N B is a dense x-subalgebra of I.

Then the only C*-norm that may possibly be defined on B is the restriction of || - | 4-

Proof. According to Proposition 2.1, any C*-norm || - ||5 on B is majorized by the restriction of || - || 4 to B. Therefore,
one can extend || - || uniquely to a C*-seminorm pgz on .4, whose kernel 7 will be a closed s*-ideal of .4; moreover, due
to the fact that || - ||3 is a norm on B, we have T N B = {0}. By hypothesis (2), it follows that {0} is dense in 7, so T = {0}:
In other words, pj is actually a C*-norm on .A. Since there exists only one C*-norm turning .4 into a C*-algebra, ps must
coincide with || - || 4 on A and, in particular, on /. This proves the claim. O

Our next objective will be to search for situations in which the requirements (1) and (2) of Theorem 2.3 are fulfilled in a
natural way. At this point, we find it appropriate to say a few words about the concept of closure under the C*-functional
calculus, taking into account the possibility that the larger algebra and its subalgebra may not share a unit:

Definition 2.4. Let B be a x-subalgebra of a C*-algebra .4. B is said to be closed under the C*-functional calculus [4,
p. 309], [5, p. 256, (1)], [17, Remark (1), p. 274], [21, p. 22] (or smooth functional calculus [10, p. 6]) of A if, for every
self-adjoint element b of B and every smooth function f on an open neighborhood U C R of ¢ ;(b), one has f(b) € B.

The following theorem shows that being closed under the C*-functional calculus of A is a sufficient hypothesis on the
dense *-subalgebra B in order to guarantee uniqueness of the C*-norm. Part of its proof adapts an argument, which may
be found in [5, Proposition 6.7(b)] (see also [3, Lemma 2]):

Theorem 2.5. Let 13 be a dense *-subalgebra of a C*-algebra A, closed under the C*°-functional calculus of A. Then the only
C*-norm that may possibly be defined on B is the restriction of || - || 4.

Proof. Let us show that hypotheses (1) and (2) of Theorem 2.3 are verified, beginning with (1). Let us prove that, forall b €
B, the equality o 5(b*b) = o ;(b*b) of spectra holds. Fixb € Band 1 € C\o ;(b*b). Then by compactness of the spectrum
oi(b*b), there must be an open set V' C C such that 1 € Vc C\o (b*b). Therefore, the function f : u+— (1 - W)t
is well-defined and smooth on the open subset U := R 0 (C\V) of R, which contains & _i(b*b). Hence, (11 ; — b*b)~! =
f(b*b) € B. This proves the inclusion oz(b*b) C o 1(b*b) and, since the reverse inclusion is automatic, we have proved
the desired statement. Since the equality o ;5(b*b) = o ;(b*b) of spectra trivially implies the equality r3(b*b) = r 4(b*b) of
spectral radii, we have shown that (1) holds.

To prove (2), we first assume that B and .4 are unital algebras sharing the same unit. To show that for every x € T
and every € > 0, there exists z € T N B such that ||x — z|| 4 < €, we may assume without loss of generality that x* = x
(otherwise, apply the following argument to (x + x*)/2 and (x — x*)/(2i), using that T is %-invariant [27, Theorem
3.1.3, p. 79]). Thus, fix an element x = x* in T and € > 0. By the denseness hypothesis, there exists an element y in
B, which once again without loss of generality may be assumed to be self-adjoint, such that ||x — y|| 4 < €/3. Now let
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0 < y <1 be a smooth function on R with support contained in the interval [—2¢/3,2¢/3] such that y(t) = 1, for all
t € [—€/3,¢/3]. Then the function f defined by f(¢) := t(1 — x(t)) satisfies sup,p | f(¢) — t| < 2¢/3, so the continuous
functional calculus of A implies that || f(¥) — y|| 4 < 2¢/3. Therefore, since B is closed under the C*-functional calcu-
lus of A, f(y) is a self-adjoint element of B such that || f(y) — x|| 4 < €. To see that f(y) also belongs to I, note that if
7 : A —> A/ is the canonical quotient map, then [|[z(V)|| 47 = |7y — 2)ll4/7 < Iy — xll4 < €/3. This shows, in par-
ticular, that o 4,7 (7(y)) C [—€/3,€/3], so we conclude that z(f(y)) = f(7(y)) = 0, since f vanishes on g 4,7(7(y)). This
proves that f(y) belongs to T N B3, establishing the density claim.

Now, we deal with the general case. By what we have proved, I N Bis dense in Z, since every closed ideal in A is a closed
ideal in A (here we are making the usual identification of Z with its image in .4 via the canonical inclusion A < A). Fix
x € T and let ((x,,,1,,))nen be a sequence in I N B converging to x, where x,, € Band 4,, € C, for all n € N. To establish
that Z N B is dense in 7 we shall prove that (x,,),cy also converges to x. By the definition of the C*-norm of A, it follows
that (4,,),en is a Cauchy sequence, so it converges to a certain A € C. This implies that (x,,),cn converges to some y € A,
from which it follows that (x,0) = (y, 4). Consequently, x = y and 1 = 0, which proves the desired claim.

Therefore, uniqueness of the C*-norm on B is a consequence of Theorem 2.3. O

Remark 2.6. We note that, if we substitute b*b € B by a self-adjoint element b = b* € Bin the first paragraph of the proof
of Theorem 2.5, we can establish, with an easy adaptation of the arguments, the following fact: If B is a dense x-subalgebra
of a C*-algebra A, closed under the C*-functional calculus of A, then B is real spectrally invariant in A.

Remark 2.7. Before carrying on, we would like to point out that, although the hypothesis of being closed under the C*-
functional calculus is sufficient to guarantee uniqueness of the C*-norm, it is by no means necessary. In fact, let A = C(T)
be the C*-algebra of (27)-periodic complex-valued continuous functions on R, equipped with the C*-norm

I lleo s f— Iflleo 1= sup [f ()],

te|-n,x|

and B = A(T) be the =x-subalgebra of C(T) consisting of functions having an absolutely convergent Fourier series. Then
A(T) is dense in C(T), because it contains the trigonometric polynomials, which form a dense =x-subalgebra of C(T).
Moreover, A(T) is, according to the terminology in [17, Definition (3), p. 269], locally normal in C(T) [17, Remark (1), p. 275],
so [17, Theorem 13(i), p. 274] shows that hypothesis (2) in Theorem 2.3 is satisfied. On the other hand, as a consequence of
Wiener’s theorem [22, Theorem 5.51, p. 140], A(T) is spectrally invariant in C(T), which immediately implies hypothesis
(1) of Theorem 2.3. Therefore, there exists only one C*-norm on A(T), which is obtained by restricting || - ||, to A(T).
However, as noted in [17, Remark (1), p. 275], A(T) is not closed under the C*-functional calculus of C(T) (see [15, pp. 80—
82], as well as [16] and [30]). This observation shows that the converse of Theorem 2.5 does not hold, in general.

Next, we would like to make a few comments about the families of seminorms we shall employ to define the topologies
of our Fréchet x-algebras. The topology of every Fréchet x-algebra B3 can be generated by an increasing sequence of -
seminorms (p,,)men [12, Theorem 3.7, p. 32], meaning that p,,, (b) < p,,,(b), for all b € B, whenever m;, m, € N satisfy
m; < m,. Sometimes, such a topology can even be generated by a family of submultiplicative x-seminorms, but not all
Fréchet *-algebras have this property: Those that do are often called Arens-Michael x-algebras [12, Definition 3.5, p. 30]
(see also the paragraph right before [26, Proposition 2.3]). Indeed, the continuity assumption on the multiplication of a
Fréchet x-algebra 3 whose topology is generated by an increasing sequence (p,,)men Of *-seminorms does not in itself
force these to be submultiplicative; rather, it only means that, for each m € N, there exist C,,, > 0 and m’ € N such that

pm(bl b2) < Cm pm+m’(b1)pm+m’(b2)» for all bl: b2 € B, (2-1)

and in order for the *-seminorm p,, to be submultiplicative, this property would have to hold with C,, = 1 and m’ = 0.
Now, we introduce a central notion for the investigations of this paper:

Definition 2.8. Let /3 be a unital C*-normed algebra—in other words, /3 is a (not necessarily complete) unital *x-algebra
whose topology is generated by the C*-norm || - || 3. According to [4, Definition 3.1], a differential seminorm on B is a
map T : b — (Tr(b))ren ON B assuming values in sequences of nonnegative real numbers such that: (1) each T} is a
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x-seminorm; (2) To(b) < c||b|| 5, for some ¢ > 0 and all b € B; (3) we have

Te(ab) < ) T{@)Ty(b),  abeB,
i+j=k

for all k € N—note that this forces the first seminorm, T, to be submultiplicative. If T(b) = 0 implies b = 0, then T is said
to be a differential norm.

In the examples of interest to us, Ty will always be equal to || - || 3, so T will be a differential norm and the underlying
topology generated by the sequence (T )ren Of *-seminorms will always be Hausdorff.
IfT : b —> (T (b))ren is a differential seminorm on 3, it is easy to see that setting

smd) = ) Te(b)  bEB, (2.2)
k=0

produces an increasing sequence (s,,),en Of submultiplicative *-seminorms on /3 generating the same topology as the
original sequence (T )ien-

With all of these preliminaries out of the way, let us now come to concrete realizations of the structures discussed in
this section by function algebras equipped with the deformed product.

3 | RIEFFEL’S FUNCTION ALGEBRAS

Let C be a C*-algebra. Define SC¢(R™) as the space of C-valued Schwartz functions or, in other words, the C-valued smooth
functions on R” which, together with all of their partial derivatives, are rapidly decreasing at infinity. Also, define B (R")
as the space of C-valued bounded smooth functions on R"” whose partial derivatives of all orders are also bounded (when
C = C, we will write simply S(R") and B(R"), respectively).

We can define two “L?-type” norms on S¢(R"), namely

1/2 1/2
||f||Lz:=< / ||f<x>||§dx> =< / IIf(x)*f(x)Ichx> . festmm, (3.0
Rn Rn
and
1/2
11l := / FQFfdx| . f e SCRM). (3.2)
Rn c

Clearly, || fll, < lIfllz2, forall f € S¢(R™). The Banach space completion E,, of S¢(R")with respect to thenorm || - ||, pos-
sesses the structure of a Hilbert C*-module [19], with subjacent C-valued inner product [19, p. 2] obtained as the continuous
extension of the map

() — 4 FOgt)d,  (f.g) € SCR™) X SCRM)

to E,, X E,,. This C-valued inner product will be denoted in what follows by ( -, - ) or, when there is no risk of confusion,
simply by (-, - ). Following [19, p. 9], we will denote the C*-algebra of (bounded) adjointable operators on the Hilbert
C-module E,,, equipped with the usual operator C*-norm || - ||, by L-(E,).

In order to say a few words about the Banach space completion of S¢(R") with respect to the norm || - ||;2, we first need
to fix some notations: If 1 denotes the Lebesgue measure on R”, we will say that a function f : R" — C is A-simple if
fx)= ZIJ.V:I 1 B; (x)cj, for some fixed N > 0 and all x € R", where c; are elements of C and lBj are indicator functions of
Borel-measurable subsets B I of R" such that A(B j) < +o0, for all 1 € j < N [14, Definition 1.1.13, p. 8]. Moreover, we will

say that a function f : R" — C is strongly A-measurable if it is the A-almost everywhere pointwise limit of a sequence
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of A-simple functions [14, Definition 1.1.14, p. 8]. With these terminologies in mind, we define L?(R", C) as the space
of equivalence classes of strongly A-measurable square-integrable C-valued functions on R" [14, Definition 1.2.15, p. 21],
which is the Banach space completion of S¢(R") with respect to the norm || - ||;2. In fact, as noted in Lemma D.1 of the
Appendix, one may adapt the proof of Lemma C.1 to show that S¢(R") is dense in (L*(R", C), || - ||;2)- The space L*(R", C)
is continuously embedded in E,, as a dense subspace, a fact that will play an important role in the proof of Theorem 3.2;
see Appendix D.

On the other hand, S¢(R") and B¢(R") become Fréchet spaces when equipped with the sequences of norms defined

by

Ifllscm = max sup (1+ |x|2)"2[18*f(O)llc,  f € SR, meN (33)
la|<m xeRrn
and
IIfllpe,m = max sup |0°f(X)le,  f€BR", meN, (3.4)
lalsm xeRrn
respectively (we shall use the simplified symbol | - | for the standard Euclidean norm and, below, a dot for the standard

Euclidean scalar product in R": |x| := (ZZ:1 x93, x -y 1= ZZ=1 Xk Vie)-
Now fix a skew-symmetric linear transformation J on R” and f € B(R"). Then it is shown in [29] that the linear
operator defined by the (iterated) integral

Le(g)(x) := / (/ fOx + Ju) g(x + v) e>™iuv dv)du, g € S¢(R"), x € R", (3.5)
R7 Rn

maps S¢(R") into S(R") [29, Proposition 3.3, p. 25], satisfies (L /(g), h) = (g, Ly«(h)), for all g, h € S¢(R™), [29, Propo-
sition 4.2, p. 30], and extends to a bounded operator on the Hilbert C-module E,, [29, Theorem 4.6 & Corollary 4.7, p. 34].
By the continuity of the C-valued inner product, we see that this extension, also denoted by Ly, is an adjointable operator
on E,, satisfying (Ly)* = Ly+. Moreover, for all f1, f, € B€(R™), we have the identity

Lflsz = Lf1><Jf2’ (3.6)

where X; is Rieffel’s deformed product [29, p. 23], defined by the (oscillatory) integral
(f1 %5 f2)(x) ::/ / f10x 4+ Ju) fo(x + v)e¥*? dv du, x € R™ (3.7
R JRn

Actually, as will be discussed in more detail below, the operator L is a pseudodifferential operator with symbol (x, §) —
f(x —J&/(2m)). The interplay given by Equation (3.6) between the algebra of pseudodifferential operators Lss and the
algebra B¢(R"), equipped with the product X;, motivates the following definition:

Definition 3.1. The function algebras obtained by equipping the Fréchet spaces S¢(R") and B¢(R") with the deformed
product X; above, instead of the usual pointwise product, and with the involution operation defined pointwise, via
the involution of C, will be denoted by S(R") and B¢ (R"), respectively. Also, Sf(R") and BS(R") will denote their
completions with respect to the operator C*-norms || - || s¢ and || - || BSs respectively, which are defined via the faithful

*-homomorphism f —— Ly [29, Definition 4.8, p. 35] of Bf(IR”) into L-(E,):

Ifllse := IILsl, for f € SER™ and [1fllze = IILsll, for f € BSR™;

note that || - || s¢ is just the restriction of || - || B to SJC(IR"). Accordingly, the =x-algebras of pseudodifferential operators

SJC and Bf with the usual multiplication given by composition, are defined by SJC 1= {L i fE S]C(R")} and Bf =
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Observe that all of the Fréchet x-algebras BJC(IR") are represented on the same module E,,, independently of the skew-
symmetric linear transformation J on R". We also caution the reader not to confuse the operator C*-norms || - || sc and
J
-1 B¢ with the “sup norms” || - |lscoand || - ||5c . In fact, nothing guarantees, for a general J, that these sup norms are

C*-norms with respect to the deformed product X;. Of course, they are when J = 0, because then the deformed product
reduces to the usual pointwise product given by (fg)(x) := f(x)g(x), for all x € R" [29, Corollary 2.8, p. 13] and, if in
addition, C is the field C of complex numbers, then SJC(IR”) and BJC(IR”) are just the usual commutative Fréchet x-algebras
of complex-valued functions, with || - || s¢ = Il - llscoand ]| - |l B = I - ll5c,0; later, in Proposition 3.15, we will extend
these equalities of norms to the case when C is replaced by a general C*-algebra C. But for a general J, we expect these
equalities to break down, and so one of our main concerns in what follows will be to construct a sequence of x-norms
generating the topology of BJC([R{”), which is well-behaved with respect to the deformed product X;.

In the remainder of this section, we will first construct a differential norm T : f — (T (f))ken ON Bf(IR”) generating
its natural Fréchet topology and satisfying Ty = || - || B As corollaries, we will show existence of a unique C*-norm on

Bf([R{”) and the property of spectral invariance of B?([R{”) in its C*-completion. These results will be derived under the
assumption that C is unital, but uniqueness of the C*-norm will then be shown to hold even when C is not unital. Once we
are done with the algebra BJC(IR”), we will adapt some of our results to obtain similar corollaries for the algebra SJC(R”).

3.1 | Pseudodifferential operators with C-valued symbols

Let C be a C*-algebra. In order to attain some of our goals, we will use features of Lie group representation theory for the
Heisenberg group of dimension 2n + 1, defined as

1 al ¢
Hy,, ;1 (R)=13]10 I, —-b|:abeR"ceRy,
0 O 1

where the product is just standard matrix multiplication and I,, denotes the identity matrix of M,,(R). It admits a strongly
continuous unitary representation U on the Hilbert C-module E,, given by

1 al ¢
Ui e(NX) :=U[0 I, —b|(f)x) :=eCe® f(x—a), f € S¢(R"), x € R",
0 O 1

where the term “unitary” is in the sense of Hilbert C*-modules [19, p. 24] from which we can construct a corresponding
“adjoint” representation of the Heisenberg group H,,,,1(R) on the C*-algebra of adjointable operators L(E,,) by

T

1 a c
AdU : |0 I, —b|r— (AdU)(a,b,c)(+) :=U.pe(-)(Uape)™t
0 0 1

Note that (Ad U)(a, b, ¢) does not depend on the real variable c—so we will simply write (Ad U)(a, b)—and that Ad U, in
contrast to U, is not strongly continuous; this means that the C*-subalgebra C(Ad U) of continuous elements for Ad U
is, in general, properly contained in L-(E,). Next, let C*°(Ad U) be the Fréchet *x-algebra of smooth elements for the
representation Ad U. Denoting by §; the jth infinitesimal generator of the representation Ad U, 1 < j < 2n, we have that
5;(A) = 9;[(Ad U)(a, b)(A)]|.=b=0, for all A belonging to C*(Ad U). The Fréchet topology on C*(Ad U) is defined by the
family

{om : me N} (3.8)
of norms, where

po(A) :=1All, &y :=1,
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and

pm(A) :=max {||(;, ...5; JAll : 0<i; <2n}, A€EC®(AdU), m > 1.

Working with pseudodifferential operators involves the Fourier transform F, sometimes also denoted by * and defined
by

F)(€) := (zﬂl)n/z /Rn eis€ g(s) ds, g € SC(RM), & € R™.

It is a continuous linear operator on the Fréchet space SC(R"). The same is true for the inverse Fourier transform 7~! on
SC(R™), which is defined by F~1(g)(x) := F(g)(—x). For more details about the Fourier transform, see [14, Proposition
2.4.22, p. 117]; for general facts about Bochner integrals, see [14, Chapter 1]. We shall also use the following generalized
version of Plancherel’s Theorem for E,, which follows from Fubini’s Theorem. For any u,v € S C(R"), we have

Q) (F (), v) = /

Rn

</ e~ XYu(y) dy> | v(x)dx (3.9)
Rn

=/ u(y)*</ eix'yv(X)dX>dy=(2ﬂ)”/2<u,7’_1(v)>,
n Rn

just as in [24, Proposicdo B.3]; substituting v = F(u) in the above equality shows that F uniquely extends by continuity
to an isometry on E,,. By the continuity of the C-valued inner product, we see that (F(u), v) = (u, F~!(v)) also holds for
u,v € E,. In particular, we get that F is an adjointable operator on E,, with F* = F~1,

Given a € B°(R?"), one may define a pseudodifferential operator Op(a) : S¢(R") — S¢(R") by

. 1 ix-&
Op@@00) 1= oy [ e at HE@)as (310)

or, more explicitly, by the (iterated) integral

OP(a)(g)(X)5=(271T)n /R < /R el a(x@)g(y)dy)d& (3.11)

for all x € R". A simple calculation shows that every Ly € Bf may be written this way, with a(x, §) = f(x —J&/(2n)).

To obtain some information about how the above pseudodifferential operators with C-valued symbols are related to
the adjoint action of the Heisenberg group, we need a version of the Calderén-Vaillancourt Theorem for the Hilbert C*-
module E,,. The proof of such a version is the content of [25, Theorem 2.1], but there seems to be a mistake in the proof,
more precisely in the integration by parts at the bottom of p. 1281. For this reason, we will give a new proof of that result
(which is Theorem 3.2, below), and with the additional benefit that we do not need to restrict ourselves to separable C*-
algebras C. The proof of Theorem 3.2 below is based on [35, Theorem 3.14] and on [24, Capitulo 3]. Just as in [35, p. 169],
for any given 8 € N and x € R", we adopt the notations

(+x)pf =[Ja+x)%, (+x0F:=[(+x)]"! and
j=1

)
e . . . 5.
Dy, := ’_axj’ (i+Dy)F := ]|=|1(1+ij) 7.

Theorem 3.2. Let C be a C*-algebra (unital, or not). Then Op(a) extends to a bounded operator on E,,, for every a € BE(R?*").
More precisely, denoting by & € N" the multi-index (1, ..., 1), there exists a constant C > 0 such that for every a € BE(RMM),
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we have the estimate ||Op(a)|| < Cx(a), where 7(a) is defined by
7(a) := max sup{ aﬁdya(x e : x, &€ IR"}. (3.12)
By<é

Proof. Write A := Op(a), in order to simplify the notation. Suppose first that a is a compactly supported smooth function
onR",and fixu,v € S¢(R"). Let us calculate (0, @) noting that, under these hypotheses, we can make free use of Fubini’s
Theorem and integrate by parts to get

0.20) = o [ [ [ [ e mmy 1G4 x -y Dot ate Huc) d dedydy

__ 1 CE L NG( & ix-(E=1)T o€V (i 4 v — V=& ri(m)*
oo | [ ] 16+ s =m e e ety o)
x [~ De)a(x, lu(y) df dxdy dy

/ / / / (i + £ — )% *EMe=EYp(n)* F(y, x, £) u(y) d€ dx dy d,

= (271—)3n/2
where F(y, x, &) 1= (i — D)% {(i + x — y)™¥[(i — D¢)*a(x, £)]}. From the formula

(i — D) (wz) = Z(—l)""[(i —D,)*"w]D!z, w e C®(R"), z € BE(RM),

y<é&

we see that

(0, Att) = ) / [ e, DD - DeYalx. D1, . 6 dt, (313)

(271)3"/2
with
£y 8) 1= (D [ 69 = D4 x - ) Hu) dy,
gnd) 1= [ eG4+ § =iy d.

Estimating the expression in Equation (3.13) will be based on the Cauchy-Schwarz inequality for Hilbert C*-modules [19,
Proposition 1.1, p. 3]. But first, we want to prove that the functions g and f, so defined all belong to L*(R?",C) (and hence
to E,,,), so we proceed just as in [24, Lema 3.17]. Fix (x, ) € R?". Using the equality

: aA-a)N -
—ixn — —ixn -
e _(1+|x|2)Ne s A,; = E . NeN,

for every 7 € R", and integrating by parts the expression which defines g gives, for every N € N, the formula

1

8D = T

[ =)+ § = mto1dn
Therefore, after successive applications of the Leibniz product rule, we may write g(x, £) as a linear combination of terms
of the form

1

W / e_ix'”(l' + g - 77)_565 15(77)* dn, ‘8,‘8, (S Nn, B Z 6{, ﬁ, Z 0.
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Using Peetre’s inequality [18, (3.6)]

n

_ ) 1 T Lt I
L E— Bl — l I < 21R1/2

we obtain, for each 3, 3’ € N", that the (C*-)norm || - || evaluated on the corresponding term is bounded from above by

218172

2\8k/2113F *
(1+|x|2>NH(1+|gk|z>ﬁ 5 [ @+ 0] s e

Since B > 1, for all 1 < k < n, we may choose N > n/4 to finally conclude that g belongs to L(R?", C). By an analogous
reasoning, one sees that the same conclusion holds for the functions f,. This implies that, for each y < &, the function
(x,8) —> [DL(i — De)*a(x, §)1f,(x, £) also belongs to L(R", C), so applying the Cauchy-Schwarz inequality for Hilbert
C*-modules yields

16, Aullc < Z llg*ll2 1Cx, €) — [D%(i — De)*alx, O, (x, Ol (3.14)

€)) (11)

( )3n/2

Let us first estimate (I). Define the function h(¢) := (i + )% and, for each fixed ¢ € R”", define he() 1= ({+§ - 74,
for all n € R", so that

g'n8)= [ e Thelnyot) dy = @)/ (g - 0)-3) =: Ge(x),
for every x, £ € R™. Then
/R n /R g, g0, " dxde = /R (Ge, G, d = (2" /R (g 0. o), € (315)
= @y /R n [ [ ﬁ(n)*ﬁ(n)dn] dt = )" /[R @) dg /R ROROLA

50 [lg*|l, = Cylvll,, where C; := (27)"/3( Joan |11(E )|2 d€)1/2. To estimate (II), note that for every positive linear functional
ponCandc,d € C,we have p(d*c*cd) < ||c*c||¢c p(d*d) [27, Theorem 3.3.7, p. 90], which implies

/ / o (f, (e, £ [DL( — De)a(x, E)]*IDL — De)eaCx, H)If, (x. ) dx dé
Rn Rn

< / DL — De)eaCx, OIF. p(f, (e, £ F, (x, £))dx dE
Rn J R

2
Slsup{IIch(i—Dg)&a(x,f)llc}] / / p(fy(x, &) f,(x,8))dx d&.
x,& Rn J R
Therefore [27, Theorem 3.4.3, p. 95],

/Rn . {IDL(i — D¢Ya(x, O)If,(x, )} [DLG — De)alx, I (x, E)dx dE

2
< [S;fg (1D —D@ﬁfa(x,s)uc}] /[R n /R 0,0 D dE,
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which finally gives us the estimate

DG — De)*alx, 1, (x, Ol < Crr @I £ ll2, (3.16)

where C, > 0 is independent of a. But
fy(x,8) = (=D / eV (i = DOFT (i 4+ x — y)*u(y) dy = (=DV1Qr)"?F((i — D) hy - u)(©),
for each fixed x, § € R". Analogously as in Equation (3.15), we get
Ifylla < Clinllallull,, € > 0. (3.17)
Finally, combining Equations (3.14), (3.15), (3.16), and (3.17) gives
v, Aw)lle = 11€6, Aw)lle < Ka(@)l[vll lull,, (3.18)

for some constant K > 0, which is independent of a, u, and v.
Now we turn to the general case where a € B¢(R?"). Let u,v € S¢(R"), 0 < ¢ < 1 be a compactly supported smooth
function on R?", which equals 1 on a neighborhood of 0 and define, for each m € N\ {0}, the function

an(x,§) : —¢<x §>a(x £), (x,&) € R™,

We are going to show that (v, Op(b,,)u) goes to 0 as m — +oo, where b,,, := a — a,,. Since an application of the Cauchy-
Schwarz inequality implies ||(v, Op(b,,, )u)|lc < |[VI[2||Op(b,,)ull,, it suffices to show that ||Op(b,,)ul|, converges to 0, as
m — +oo. First, note that since [|e*<b,,(x, )&l < sup {lla(x, Olic = (x, &) € R¥} [a()l|, for every fixed (x, &) €
R?", it follows from the Dominated Convergence Theorem that [Op(b,,,)u](x) converges to 0, as m — +co, for every fixed
x € R". Also, there exists a constant C’ > 0, which is independent of m and of a such that 7(a,,) < C'7(a), so we have
the estimates

I[0p(b,)ul(x)lle < (2m)™/2|(i + x)~%] / (i = De)*[ by (e, OOl d&
Rn
< Mrab)IG + x)7%] < (C' + DM7r(a)|(i + x)7¢],

where M > 0 depends on the numbers /R" ||D§ (&)l d&, with 8 < &, but does not depend on a, m, or x. Therefore,
another application of the Dominated Convergence Theorem finally establishes that (v, Op(b,,)u) goes to 0, as m — +oo.
Substituting A = Op(a,,,) on (3.18), we get

lI{v, Op(amw)lle < Km(am)llvlly llull, < KC'z(@)lvlly llull,.-

Taking the limit m — +oo on both sides of this inequality gives ||(v, Op(a)u)||c < KC'm(a)||v]|; ||lull,. Since u,v € S¢(R™)
are arbitrary, this actually shows that there exists C > 0 such that ||Op(a)u|l, < Cz(a)|lull,, for all a € B¢(R**) and u €
SERM). O

We note that not only does Op(a) extends to a bounded operator on E,,, but this extension is also an adjointable operator
on E, . For the convenience of the reader, we will now give a quick proof of this fact, which is inspired by the exposition
in [24, Capitulo 4]. This observation is important, because the representation Ad U of the Heisenberg group H,,,1(R) is
implemented by x-automorphisms on the C*-algebra of adjointable operators L.(E,), and later it will be convenient to
treat BJC (see Definition 3.1) as a %-subalgebra of L(E,,).
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Proposition 3.3. Let C be a C*-algebra (unital, or not) and let a € BS(R**). Then Op(a) is an adjointable operator on E,,
with [Op(a)]* = Op(p), for a certain p € BE(R>").

Proof. First, assume that a belongs to the space C°(R?", C) of C-valued compactly supported smooth functions on R?".

We are going to prove that there exists p € S¢(R?") satisfying (Op(a)u,v) = (u, Op(p)v), for every u,v € S¢(R"). An
application of Fubini’s Theorem shows that

(Op(ayu, v) = /[R n [% /[R n /R et a(x@)u(y)dydf] o(x) dx

- A1 iy—x)- * ]
[ [(zmn [ ety vz ax|ay,

for all u,v € SC(R"). Define ¢ € S¢(R?") by

c(0,2) = / ez a(y—z, £y dE,  y.zER",
Rn

(zﬂ)n/Z

and define the function p € S¢(R>") by p(y,z) := F(£ — c(y, £))(2), so that c(y,z) = F~1(& — p(y, £))(2), for all
v,z € R". Then

1
(271')”/2

1
(27'[)”/2

/ 04 a(x, £)* dE = c(y,y — x) = / eI p(y, £) dE,
n R~

SO

1
m)"

u(y)”* [

n

(OP(G)M,U)=/R u(y)*[(zjr)"/R /R el =8 (x, £)* v(x)dé'dx]dy
-/, R

/ 0= p(y, &) v(x) dx d§] dy = (u,Op(p)v),
Rn n

for all u,v € S¢(R™). Therefore, the equality (Op(a)u,v) = (u, Op(p)v), for every u,v € E,,, follows from a continuity
argument. An easy calculation gives the following identity:

- 1 —iz~§[ iz- _ * ]
r(y,§) @ /Rne /Rne Ta(y —z,m)"dn|dz

1 ; %
= Gy / e " Na(y —z,§ —n)*dzdy, . &) e R*,
Rn Rl’l

which will be useful in the next step of the proof.
Suppose, now, that a € B¢(R?"). Then employing the definition of oscillatory integrals in [9, pp. 66-69] (where they
are called finite part integrals), we define

1 )
- —iz-m _ — n)*
p(».9) : 50 /R ) /R e Taly —z,§ —n) dzdy (3.19)

= (2%)" / / e N (1+ |21 - An)N{(l + ) ™MQA - a)M [a(y gt 77)*] }dzdn,

where M, N are fixed positive integers which are chosen in order to turn the right-hand side integral into an absolutely
convergent one (it suffices to take M, N > n/2; also, the above definition is independent of M and N). Then differentiating
under the integral sign shows that p belongs to B (R?"). The above definition of oscillatory integral is essentially the same
as the one employed by Rieffel in his monograph [29, Proposition 1.6, p. 6].
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Let 0 < ¢ < 1 be a compactly supported smooth function on R", which equals 1 on a neighborhood of 0 and define, for
each a € B(R?") and j € N\ {0}, the C-valued compactly supported smooth functions on R>"

$;(x) 1= ¢<§> a;(x, ) 1= a(x, ) $;(x) $;(¢) and

pi».§) = ﬁ Jan Jgn €77 aj(y — 2, —n)* dzdy, for all (y,£) € R*". Then using the definition of oscillatory inte-
grals in Equation (3.19), we get, after an application of Fubini’s Theorem and of the Dominated Convergence Theorem,
the equality lim;_,, , p;(y,£) = p(y, §), for every (v, §) € R*". Hence,

wopp) = [y | = [ e tim pi o)t ay

1
(271-)11/2

n

— 1 1 s Hip-E 0 A — 1 .
= Jlim s [0y p0. 00 dEdy = tim (. 00(p ),

for all u, v € S¢(R"). By an analogous reasoning,

[ - / e—l’xfa(g)*aj<x,5)*d§]v<x>dx=<0p<a)u,v>,
Rn

lim (Op(a;)u,v) = lim
j%m( p(aju,v) jin G o

—>+00

so (Op(a@)u,v) =lim;_, ,,(Op(a;)u,v) = lim;_, . (u, Op(p;)v) = (u, Op(p)v), for all u,v € SC(R™). By a continuity
argument, (Op(a)u, v) = (u, Op(p)v), for all u, v € E,, so Op(a) is an adjointable operator on E,, for every a € BC(R?"),
as claimed. O

We finish this subsection by noting that {Op(a) a € BC(IRZ”)} is actually a *-subalgebra of L(E,,). In fact, using the
more suggestive notation a’ to denote the function p defined in Equation (3.19), we see that the restriction of the involution
and composition maps to {Op(a) a € BC(RZ")} are given, respectively, by Op(a) — Op(a®) and Op(a)oOp(b) —
Op(a x b), where

a’(x,€) := (2711)" /Rn /Rn e Za(x —z,& —n)*dzdy (3.20)

= om [ [ ez a- s+ - a)¥ ot - 2.8 -] fdzd,
Rn J R

and

1

(axb)(x,§) := 2y /Rn /Rn e Za(x, &£ —n)b(x —z,&)dzdy (3.21)

=Gy [ el a @ G - a0 aGe g —n b= 2.9)] Jazan,
Rn JRn

for all x, £ € R" (for the scalar case C = C, see [9, Proposition 4.2, p. 64] and [9, Theorem 4.7, p. 68]). Just as in (3.19), it
suffices to take integers M, N > n/2, with the above definitions also being independent of M and N;; differentiating under
the integral sign shows at once that a x b belongs to B¢(R?"*). Moreover, we see by the associativity of the composition
operation that Op((a X b) X ¢) = Op(a x (b x ¢)), for all a, b,c € B(R?"). We will now show that the linear map Op :
a — Op(a) on B(R?") is injective, from which it will follow that X is also an associative operation. Let (e, ) er be an
approximate identity for C. Then for every scalar-valued function g € S(R"), we have that the function g, :=g-e, :
x —> g(x) - e, belongs to S¢(R™), for every a € I. Hence, the hypothesis Op(a) = 0 implies

1
(zn)n/2

0 = p(Op(a)(g)(x)) = /[R ™% pla(x, §) eq) §(&) d§,
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for all g € S(R"), x € R" and every continuous linear functional p on C. But then injectivity of the map b — Op(b)
for scalar-valued symbols b € B(R") [23, p. 220] proves that the map (x, §) — p(a(x, &) e,) must be identically zero, for
every continuous linear functional p on C. Therefore, by Hahn-Banach’s Theorem, we obtain a(x, §) e, = 0, for every
fixed (x,£) € R?" and a €T, so taking the limit in a shows that a must be identically zero, as wanted. As a corollary,
since Op((a x b) x ¢ —a x (b x ¢)) = 0,foralla, b,c € B¢(R?"),itisalso truethat(a X b) X ¢ = a x (b x ¢),foralla, b,c €
BE(R2),

We can also use a similar argument to obtain the associativity of Rieffel’s deformed product, which we show next. In
fact, as noted in the remark following Equation (3.11), if J is a fixed skew-symmetric linear transformation on R”, then
every operator Ly, for f € B€(R™), may be written as Op(f), where f(x, §) := f(x —J&/(2x)),forall x, £ € R" (note that
the map* : f — f depends on the fixed J). Therefore,

N 1 —iz- 2y-N(1 _ A W
(fXg)(x,i)-—(zn)n/Rn/Rne T+ 12N -4y

x { W+ M = 8,0 | e = I =)/ @) gl — 2 = 1E/2m)| fdz

which shows that (i) (f x g)(x, £) = (f X; g)(x —J€/(27)) = (f X; g)(x, £) and, in particular, (i) (f x g)(x,0) = (f X,
2)(x) = (f x; g)(x,0), for all f,g € B°(R"), x,& € R". Note that for all f,g € B°(R") and ¢ € SC(R") we have the

equality
(f X7 8) X1 ¢ = Lyx,o($) = Op(f X; 8)(¢) = Op(f x £)($)
= [Op(f)oO0p(@)]($) = [LyoLgl($) = f x; (g %; $)

(since J is arbitrary, this incidentally gives an alternative proof for the relation (3.6)). Hence, since for all f, g, h € B(R")
and ¢ € SC(R"), we have f x; g € BS(R") and h x; ¢ € SC(R") (the former relation follows from (ii), while the latter is
a consequence of the equality Op(h)(¢) = h X; ¢), we obtain

Lipx,ax,n(@) = [(f X @) Xy hl Xy ¢ = (f X5 8) X5 (hX; ) = [ X; [g X7 (h X; $)]
=[xy [(gXxy h) Xy ¢l = [f X7 (X7 W)X ¢ = Ly, (gx,n)(#)-

Since J and ¢ are arbitrary and the map Op is injective, we have obtained the desired result. We note that, although
the formulas in these final two paragraphs will not be used as tools to derive any of our main results, they have
been included here to provide a more transparent link between Rieffel’s deformed product and the composition of
pseudodifferential operators.

3.2 | The algebra BS(R")
For every pseudodifferential operator Op(a), a € BS(R?"), and every a, 8 € N, one has

agaf[(Ad U)(a,b)(Op(a))] = (=1)I*HIEI(Ad U)(a, b)(Op(a;';a?a)), a,b e R". (3.22)
Indeed, by Theorem 3.2, we have the estimate

lop@Il <€ max sup{ligloaCx, Hlic : x.§ € R" |, (3:23)
Iylsi< §

I

where C > 0 is independent of a (see also [29, Corollary 4.7, p. 34] for a particular version of these inequalities adapted
for the operators Ly, f € BJC(IR")). Therefore, denoting by e; the jth element of the canonical basis of R", the equalities

T PR L i
a((x, &) + h(e,0) —a(x, &) han(x,f)—h /0 t/o axi((x,f)+tsh(ek,0))dsdt,
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and

1 1
a((x, &)+ h(0,er)) —a(x,&)—h %(x, &= hz/o t/o gz?g((x, &) + tsh(0, e;))ds dt,

h € R, 1 < k < n, combined with the estimate (3.23), give (3.22) in the case |a| + |8| = 1. The equality for general «, 8 €
N”" follows from an iteration of this procedure. It shows that the operator Op(a) belongs to the x-algebra C*°(Ad U) of
smooth elements for the representation Ad U, for every a € BC(R?"). In particular, every element of Bf is contained in
C*®(Ad U), so we may equip Bf with the subspace topology induced by the usual Fréchet topology of C*°(Ad U), which
will be denoted by B Coo- Also, injectivity of the map L : f — L allows us to equip Bf with a Fréchet space topology

75 induced by the natural topology of the function algebra Bf(IR”) defined by the family (3.4) of *-norms. Then (3.23)
combined with (3.22) shows that

Pm(Op(a)) £ C  max sup { Ilaiaga(x,ﬁllc tx,te R”}, a € BC(R*), m €N, (3.24)

[7l,18|<n+m

for the same constant C above (for the definition of p,,, see (3.8)). When specialized to the operators Ly (and to functions
f defined on R", instead of R?"), this gives

pm(Ly) < max sup {JLf()llc : x €ERY),  feBERY, meN, (3.25)
lyl<n+m

which implies that 7 is finer than t B Coo (note that C,, depends also on the linear transformation J).

It is not clear that B]C, when equipped with 7 5 o> is a closed subspace of C*°(Ad U). To see that this is indeed the case,
we are going to resort to the “symbol map” S constructed in [23]. Consequently, we will need to temporarily assume that
C is a unital C*-algebra. We make the important observation that the results of [23, Section 2], which will be invoked, in
what follows, are valid for any unital C*-algebra, and do not require the separability assumption made in that reference.
For a more explicit discussion on this issue, we refer the reader to Appendix C, where in particular we show that E,,
can be identified with an interior tensor product E,, ® E,, (see Lemma C.1); this is used in the definition of the map S
described next.

Consider the surjective map [23, Theorem 1]

S : C*®(AdU) — BE(R2")
given by
S(A)(x, &) 1= @)Y (u - 1c, {(D [(AdU)(—x, —E)A FH @I, } v+ 1¢c)p,,, (3.26)

for all A € C*(AdU) and (x, §) € R?", where D := H;lzl(l + ij)z(l + a,;j )? and u and v are (fixed) suitable scalar-
valued functions belonging to L?(R?*) n L'(R?"), which are independent of A (for the definitions of u and v, see the
statement of Lemma C.2; for a description of the embedding L?(R") < E,,, see Appendix D). Then the composition
SoOp is the identity operator on B“(R?") so that, in particular, S(L;) = f, where f(x, &) 1= f(x —J&/(27)). Applying
the Cauchy-Schwarz inequality for Hilbert C*-modules to (3.26) yields an estimate in the opposite direction of the one
given by the Calderén-Vaillancourt-type inequality (3.23), namely, for all A € C*®(Ad U) and a = S(A),

sup{llaCx, O)llc : x, & € R"} < )" [lull [l 1D [(Ad U)(=x, —E)(A)]| =g =oll, (3.27)
where we have used that ||[F~!|| = 1 and that Ad U is a representation by x-automorphisms on £(E,). So just as the

estimate (3.23) gives a bound for the operator norm of Op(a) in terms of sup-norms of derivatives of a, the estimate
(3.27) provides a bound for the sup-norm of a = S(A) in terms of operator norms of derivatives of A. Using (3.22) after
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substituting A = Op(b) on (3.27), where b := 6y6§a 7,6 € N, a € B(R>"), gives

sup { ||a§a§a(X, Olle : x,§ € R”} < (27r)”/2||u||2||v||2||(a§a§D) [(Ad U)(—x, =§)(Op(a)]lx=¢=oll- (3.28)

Noting that Ly = Op( £), (3.28) with § = 0 immediately implies

max sup {18 (®)llc : x R} = max sup {1857 (x,0)ll¢ = x € R} (3.29)

(3.28) _
< max sup {10, (x,Ollc : x,£ €R"} < Epypim(Ly),

forall f € BJC(IR"), m € N, and some constant E > 0, which does not depend on f or J (indeed, we may choose E =
16"Q)" 2 ||lull,lIvllL), showing that 75 is coarser than 7 4 ... Therefore, we conclude that 73 = T ;¢ (oo
J? J?

Remark 3.4. Note that there is a certain “uniformity” aspect in the estimate (3.29): The constant E that shows up does not
depend on the seminorms under consideration.

Having proved the equality of the topologies 73 and 7 ¢ .., We are in a good position to define an appropriate differential
it

norm on BE(R”) (see Definition 2.8):

Theorem 3.5. Let C be a unital C*-algebra and J be a skew-symmetric linear transformation on R". The topologies of the
pseudodifferential operator algebra BJC and the function algebra B]C(IR”) are generated by differential norms. In particular,
they are Arens—Michael x-algebras.

Proof. 1t is clear that defining

ToLp) 1= IILgll,  Tw(ly) 1= Z I8*@PI, Ly € BY, k>1,aeN™, (3.30)

|a|=k

where the 6%s are the monomials in the generators of the representation Ad U, yields a differential norm T : Ly —>
(T (Lf)ren on Bf, which generates the Fréchet topology t 5Ccoo = T Moreover, the family (s,,),en Of submultiplicative

x-norms defined in Equation (2.2) generates this same topology. Since the above differential norm on B]C may be pulled
back to a differential norm on BE(R”) by the *-isomorphism L : B]C(IR") — B¢, all of the conclusions just stated for Bf
are also true for BJC(IR"). O

Remark 3.6. Assume C is a nonunital C*-algebra. Since there exists a canonical inclusion Bf(R”) S Bf([R{”), we can equip
Bf([R”) with the subspace topology induced by 75 = T et But the subspace topology defined by the norms in (3.4) is

complete, so Bf(IR”) is also an Arens-Michael *-algebra in this case.

Before proving Theorem 3.8, we recall the concept of closure under the holomorphic functional calculus:
Definition3.7 ([34, p. 582]). Let B be a #-subalgebra of a C*-algebra A. B is said to be closed under the holomorphic
functional calculus of A if, for every element b of /3 and every holomorphic function f on an open neighborhood V C C
of o j(b), one has f(b) € B.

The next theorem shows some advantages of dealing with a topology, which is generated by a differential (semi)norm:
Theorem 3.8. Let C be a unital C*-algebra and J be a skew-symmetric linear transformation on R". Then the algebras

B]C and Bf(R”) are spectrally invariant and closed under the C*® and holomorphic functional calculi of their respective C*-
completions (which are clearly x-isomorphic). They also share the same K-theory of their C*-completions—more specifically,
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the inclusion maps induce K-theory isomorphisms. Finally, there exists only one C*-norm on each one of the algebras B]C and
BS(R™).
J

Proof. Spectral invariance follows from [4, Theorem 3.3(iii)] with 2, = B]C([R”) and ¢ being the identity map, noting that
the locally convex topology of Bf(IR”) isalready complete, while closure under the C*-functional calculus follows from [4,
Theorem 3.4]. Therefore, as a consequence of Theorem 2.5, the Fréchet x-algebra BE(R") can be equipped with only one
C*-norm, namely, || - || 5O while the only C*-norm on Bf is the operator norm || - || of £L.(E,) (see Definition 3.1). By [34,
Lemma 1.2}, spectral invariance of these algebras in their completions is equivalent to being closed under the holomorphic

functional calculus. To prove the statement about the isomorphism of K-theories of B : = BJC(IR”) and A := BJC(IR"), first
note that the group Inv(/3) of invertible elements of 53 coincides with Inv(.A) N B3, as a result of the spectral invariance
claim. Moreover, since the Fréchet topology Tj¢ oo on B is finer than the one induced by the C*-topology of A, the
inclusion map iz : B & A is continuous. Therefore, since Inv(/3) is the inverse image of the open set Inv(.A) of A under
i, it is open in B. Consequently, it follows from [36, Proposition 2, p. 113] that the inversion map on Inv(/) is continuous
with respect to the (induced) Fréchet topology of B. These arguments show that /3 is a Fréchet algebra with a continuous
inversion map on the open set Inv(/3) (thus, a “bonne algébre de Fréchet,” according to [6, A.1.2, p. 324]), so the existence
of the K-theory isomorphism follows from [6, Théoréme A.2.1, p. 328]. The conclusion for BJC is obtained in the same

way. O
We now extend the uniqueness result regarding C*-norms on B]C(IR") to any C*-algebra C (unital, or not).

Theorem 3.9. Let C be a C*-algebra (unital, or not) and J be a skew-symmetric linear transformation on R". Then the
algebras BJC and BJC(IR”) admit only one C*-norm.

Proof. 1t suffices to prove the result for Bf We begin by noting that BE(R”) is an ideal in Bf(R"): Write the function
fe B]C([R{”) as x —> (fo(x), A(x)), where f,(-) and A(-) have ranges in C and C, respectively. Then by the definition of
the C*-norm of C, the inequality

210 f()lle = max {[|0% fo(xX)llc, 8% A(x)1}

holds, for all x € R" and a € N", so f, and 1 belong to BJC(R”) and B}C(R"), respectively. Thus, for every g € Bf([R{”) and
x € R", we have

(f % Q) = /

/ flx +Ju) g(x + v) e?™™V dvdu
Rrr JRn

= / (folx +Ju), A(x + Ju)) (g(x + v),0) e dv du
Rrn JRn

= / (folx +Ju) g(x + v) + A(x + Ju) g(x + v),0) ™™V dv du,
Rrn JRn

so f X; g indeed belongs to B]C(IR") (analogously for g x; f). Therefore, BJC is indeed an ideal in Bf.

Now let || - || be any C*-norm on BJC Since we know that BJC is an ideal in Bf, the maps
I+ Il 2 Ly > sup {lILsoLgllo : Ly € B, |Lgllo < 1} (33D
and
Il - llg : Ly — sup {{ILgoLllo : Ly € B, ILgllo < 1} (3.32)

are well-defined on Bf. Let us show that ||L¢ ||, = [|Ly|lg, for all Ly € Bf. We will give a proof that adapts the strategy
of [27, Lemma 2.1.4, p. 38], which concerns basic facts about the norm of a double centralizer on a C*-algebra. For every
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Ly e Bf and Lg, Ly, € B¢, we have that ||(L goLr)oLpllo < IILgllolIL# IR IILn1los SO

ILroLyllo = sup {|ILgro(LroLy)llg : Ly € BY, ILgllo <1} < ILslIrILxllos

which implies the inequality ||L¢l; < [|Ly||- Similarly, [[Lgo(LgoLp)llo < lILgllolIL s lILlILplo, SO We obtain

||LgOLf||0 = sup {”(LgoLf)oLh’HO . Lh’ S B?, “Lh’HO < 1} < “Lg“()”Lf”L

and, consequently, ||L¢|lg < ||Ly|lz. Therefore, ||L¢||; = ||Ls|lr- Now, we will show that the map Ly — ||L¢ |l = [ILfllz
isa C*-norm on BC To see that the involution is isometric with respect to || - ||, note that ||L* lL < IILfllg = IILf |l and

ILrllz = ||(L*) [l < ||L* Iz = ||L‘||L,for everyLy € B On the other hand, to obtain the C*- propertyfor | - Ilz,first note
that taking the supremum on

ILoLgllg = IILgoL)o(LroLyllo < llLgllolI(L 7oL )oLgllo

over all L, satistying L, € BC and ||Lg|lo < 1, gives ”Lf”L L% oLf||L, forall Ly € BC, for the reverse inequality, note
that submultiplicativity of || - || implies ||L’ oLf||L ||L* ||L||Lf||L = ”Lf”L This proves that || - || is indeed a C*-norm
on BJC

By the uniqueness result proved in Theorem 3.8 (applied to BJC), we have that
LAl = ILpllL < Lglloy Ly € BS.

Moreover, if 0 # Ly € BC is fixed, then substituting L, byL /lILsllo in Equation (3.31) yields [|L¢|l; > |ILyllo. Therefore,

Ll =NLrll = IILsllo for all Ly e Bf. But|| - |lgis arbltrary, so this shows that the only C*-norm on Bf is obtained by
restricting the operator norm || - || of L#(E,). O

3.3 | The algebra S¢(R")

We first prove uniqueness of the C*-norm for S]C(IR”), for any C*-algebra C (unital, or not). Then, we prove the spectral
invariance property for SJC(R”) for a unital C.

Theorem 3.10. Let C be a C*-algebra (unital, or not) and J be a skew-symmetric linear transformation on R". Then there
exists only one C*-norm on SJC(IR”).

Proof. Let| - ||p be a C*-norm on SJC(R") and || - || B be the (unique) C*-norm of BJC(IR"). Our strategy will be to make

good use of the corresponding result already obtained for the algebra Bf(R”).
Just as in Theorem 3.9, define two maps on BJC(IR”) by

Il s f = sup {IIf xsgllo : & € S{R™), ligllo < 1}

and

Il s fe—sup{ligx; fllo : g € S;R™, liglo < 1}

(note that || - || and || - ||g are well-defined because SJC(R”) is an ideal in BJC([R”)). Then a repetition of the arguments
in Theorem 3.9 shows that the map f — || f|l. = ||f|lz is a C*-norm on Bf(lR”). Therefore, by the uniqueness result for
C*-norms on Bf([R{”) proved in Theorem 3.9, we have, in particular, ”f”BJC = |Ifll. = Iflo, for every f € S]C([R”). This

proves that restricting || - || zc is the only way to obtain a C*-norm on SJC(R”). In other words, || - || g¢ is the only C*-norm
J J
on S£(R™). O
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Theorem 3.11. Let C be a unital C*-algebra and J be a skew-symmetric linear transformation on R". Then the algebra

SJC(IR") is spectrally invariant in its C*-completion S]C(IR{").

Proof. As a consequence of [29, Proposition 5.2, p. 40], the completion A := SJC(R”) is a nonunital C*-algebra, so the

proof of spectral invariance of B := S]C(IR{”) inA:= S]C(IR") amounts to showing that 5 is spectrally invariant in A.
First note that, by the discussion in Appendix A, the unitization of B]C(IR{”) is spectrally invariant in the unitization of

BE(R”): In fact, if C is unital, then BJC(R”) has a unit element that coincides with that of its C*-completion (see also
Appendix B). If (f, u) € Bis invertible in A, where f € SJC(R") and 0 # u € C, then spectral invariance of Bf(IR") in its
respective C*-completion shows that the inverse (f, u)~! is equal to an element g in the unitization of BJC(IR") given by
x — (go(x), 1), with g, € BE(R”) and 0 # u’ € C. Hence, gy = —u ' (f X7 g&y) — u~2f. But because S]C(IR”) is an ideal
in BJC(IR”), this shows that g actually belongs to the unitization of SJC(IR”). This establishes the result. O

Remark 3.12. Clearly, the above two results remain valid if we substitute SJC(R”) by the operator algebra SJC.

3.4 | Other applications
We begin with another consequence of Theorem 2.5.

Theorem 3.13. Let A be a C*-algebra (unital, or not), G be a finite-dimensional Lie group with Lie algebra g,and o : g —
o, be a strongly continuous representation of G implemented by *-automorphisms on A. Then the x-algebra

C®(a) := {a €A :G> g+ aga)isofclass C°°}
of smooth elements for the representation a admits only one C*-norm, which is the restriction of || - || 4 to C®(«).

Proof. Fix an ordered basis B := (Xy), ¢, for ¢ and denote by & the infinitesimal generator of the one-parameter group
t — dexprx, (exp denotes the exponential map of the Lie group G). Suppose, for the moment, that A is unital. Equip
C*(a) with the topology defined by the sequence (T} )ien Of seminorms given by

d
TO(a) = ”a”A and Tk(a) = Z

i i =1

% 16, .8, all,, where k>1,a€C®().

Then T : a — (Ty(a))key is a differential norm on C*(«) [4, Example 6.2(i), (ii)], and turns it into a Fréchet *-algebra.
Therefore, since C*°(«) is dense in .4, we conclude just as in Theorem 3.8 via an application of [4, Theorem 3.4] that C*(«)
is closed under the C*-functional calculus of .4. But then Theorem 2.5 tells us that the restriction of || - || 4 is the only
C*-norm on C*(a).

If A is nonunital, then « : g — a, extends to a strongly continuous representation & of G by *-automorphisms on
the unitization (A, || - || 1), where &((a, 1)) 1= (ag(a),1), forallg € G, a € A, and 1 € C. Since we already know that
the only C*-norm on C*(&) is the restriction of || - || 4, the result follows at once from a repetition of the arguments of
Theorem 3.9, by observing that C*°(«) is an ideal in C*°(&) = C*(a) @ C. O

Example 3.14. In the scalar case C = C, when E,, is the usual Hilbert space L>(R"), H. O. Cordes proved [8] [9, Chapter 8]
that a bounded operator A on L*(R") is a smooth vector for the canonical action of the (2n + 1)-dimensional Heisenberg
group by conjugation if, and only if, A = Op(a) for some a € B(R?"). A similar result for the n-dimensional torus T" :=
R"/(2mZ)" is also available in the scalar case [7, Theorem 2]: If for each y € T", T, denotes the translation operator
on L?(T"), then a bounded operator A € L£(L*(T")) is such that the map T" 2 y —> T,AT_, is smooth if, and only if,
A = Op(a;) for some function (a;) ez~ of order zero, meaning that a; € C*(T"),

1

Au(x) = W
J

Y a0l Na;,  with @ 1= / el=h u( ),
ezn Tn
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for all ueC®(T"), xeT", and that, for every multi-index a € N, we have the finiteness condition
sup {|6°‘aj(x)|;j eZ" x T”} < +0o0. Therefore, as a consequence of Theorem 3.13, the algebras {Op(a) a € B(IRZ”)}
and {Op(a i) * (aj)jezn has order zero}, above, admit only one C*-norm.

Consider the *-algebra BOC(R”), with J = 0; in other words, BOC(R”) is just the space B¢(R") equipped with the usual
pointwise product and involution. We now prove a corollary of Theorem 3.9, which relates the “sup norm” (see (3.4))
Il - llpco & f = sup,cpn I/ (X)llc and the “operator norm” ||f||b,g :=|IL¢]l on BS(R”).

Proposition 3.15. Let C be a C*-algebra (unital, or not). Then the “sup norm” and the “operator norm” coincide on BOC([R”).

Proof. Thenorms|| - ||scpand || - || 5 are both C*-norms on Bg(R”), so by Theorem 3.9, we must have || f |l sc o = I| fll ¢,
0 0
for all f € BS(R™). O

Next, we apply our results to give an alternative proof to propositions [29, Proposition 4.11, p. 36], [29, Proposition 5.4,
p. 41], and [29, Proposition 5.6, p. 42] in a unified manner:

Theorem 3.16. Let C be a C*-algebra (unital, or not) and J be a skew-symmetric linear transformation on R". Then for every
Ly e BJC, we have the following properties:

(D NLgl = sup {ILys,gll : 8 € SCR™, L < 1},

(2) IfCis a C*-subalgebra of the C*-algebra A, so that f can be seen as an element ofo(IR”), then ||Ly € = ILs |4, where
Il - I€ and || - ||* denote the corresponding operator norms.

(3) If Ais a C*-algebra and 6 : C —> A is a *-homomorphism, then ||L9f||“4 < ||Lf||c, where (6f)(x) := 6(f(x)), forall
x € R". If 0 is injective A, then an equality holds.

Proof. The supremum on the right-hand side of Equation (1) and the map associating the number ||L; I”* to the element
Ly € B are both C*-norms on BY, so (1) and (2) follow from Theorem 3.9.

To see that (3) also holds, first consider the (unique) *-homomorphism 6 : ¢ — A between the unitizations of C and
A, which extends 6 and sends 1¢ to 1 ;. The map Ly — ||Lg f||“‘( is a C*-seminorm on BJC so Proposition 2.1 combined

with Theorem 3.8 imply the estimate ||Lg¢ ||“‘{ < Ly ||€, forallLy € BJC. In particular, if Ly belongs to the x-subalgebra BS,
then ||Lg/||** < |IL/|€, which proves our claim. If 6 is assumed to be injective, then Ly — ||Lg || is actually a C*-norm
on B]c so the desired equality follows again from Theorem 3.9. |

ORCID
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ENDNOTES

"'We recall that a separately continuous bilinear map from a Fréchet space to an arbitrary locally convex space is automatically (jointly)
continuous [13, Theorem 1, p. 357].

2We note that, as opposed to what is done in [23, Lemma 1], we do not impose the hypothesis that A € £L.(E,) must leave S¢(R") invari-
ant; in fact, we cannot impose such a restriction since, in the definition of the map S, in Equation (3.26), it is not clear that the operator
D[(AdU)(—x,—£)(A)] F~! leaves SC(R") invariant.
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APPENDIX A: A REMARK ON SPECTRAL INVARIANCE

When viewing a unital algebra as “not necessarily unital,” by forgetting about its unit, we face an apparent consistency
problem, since two different possible definitions of spectrum seem to be available: the spectrum with respect to the algebra
itself or with respect to its unitization. Fortunately, it turns out that they “almost” coincide. More specifically, suppose
that A is a unital algebra; then even though there is in this case no compelling reason to do so, we can still consider its
unitization A, which becomes isomorphic to the direct sum of algebras .A @ C, the isomorphism A— AC being
given by (a,a) — (a1l 4 + a, a). Using this fact, it is then easy to see that the two spectra of an element a of A, that in
A and that in A, are related by o 5(a) = o 4(a) U {0}. As a result, the spectral radius of an element a of A is independent
of which version is used: r ;(a) = r 4(a). Moreover, a is invertible in A if, and only if, (a — 14, 1) is invertible in A, their
inverses being related by (a — 14, Dl=(@!-1 4> 1) and, similarly, (a, «) is invertible in A if, and only if, « # 0 and
al 4 + a is invertible in A, their inverses being related by (a,a)™! = ((al4 + a) ™! —a~ 1 4,a7).
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We will now show that there is no ambiguity when dealing with the concept of spectral invariance. Let A be an algebra
and B be a subalgebra of A. If A and B happen to be unital algebras such that the inclusion of B into .4 takes the unit of 3
to the unit of .4, both denoted by 1, then we have in fact two potential definitions of spectral invariance and should check
that they agree. Indeed, let us prove that /3 is spectrally invariant in A if, and only if, /3 is spectrally invariant in A:

(1) If(b,B) € Bisinvertible in A, then 8 # 0 and 81 + b € Bis invertible in A4, so if /3 is spectrally invariant in A, (81 +
b)~! belongs to B and hence (b, 3)~! = ((81 + b)~! — 711, 87") belongs to B, proving that A3 is spectrally invariant
in A.

(2) If b € B is invertible in A, then (b — 1,1) € B is invertible in 4, so if /B is spectrally invariant in A, (b —1,1)"! =
(b=' —1,1) belongs to B and hence b~ belongs to B, proving that /3 is spectrally invariant in .A.

There remains one other situation where some kind of ambiguity might arise, namely when A is unital, but its unit
1 does not belong to B. In this case, even if 3 has a unit of its own, we shall discard it and regard B as a not necessarily
unital algebra, but need to understand that its unitization 3 now admits two different unit-preserving embeddings: one
embedding mapping the unit (0,1) of B to the unit (0, 1) of .4, and another embedding mapping the unit (0, 1) of 5 to
the unit 1 of A, whose image we shall denote by /3. Note that 3 is just the subalgebra of .4 generated by B and the unit 1
of A. We claim that A is spectrally invariant in A if, and only if, (i) 3 is spectrally invariant in .4 and (ii) no element of
B is invertible in A. First of all, it is clear that spectral invariance of Bin A implies condition (ii), because if there were
any element b of B with an inverse in A, spectral invariance would force this inverse to belong to J3. This, in turn, would
imply 1 € B, contradicting the hypothesis that 1 ¢ B. As for condition (i), suppose that (b, 3) € B C A is invertible in A.
Then 8 # 0 and 81 + b € Bis invertible in .4, so if /3 is spectrally invariant in .4, (81 + b)~! belongs to /3, which means it
can be written in the form (81 + b)~! = ’1 + b’ for some g’ € C, b’ € B; but multiplying this equation by 81 + b gives
1=6B'1+pb" + 'b + bb’, implying that 8’ = 87!, and hence (b, )~ = (81 + b)~! — f~11,871) = (b, 1) belongs to
B. This proves that 3 is spectrally invariant in .A. For the converse, suppose that 31 + b € Bis invertible in .A. Then 8 # 0,
due to condition (ii), and (b, B) € B C A is invertible in A, so if B is spectrally invariant in A, (81 + b)™! — g711,871) =
(b, B)~! belongs to /3. Hence, (81 + b)~! belongs to /3, proving that 13 is spectrally invariant in A.

APPENDIX B: WHEN ARE RIEFFEL ALGEBRAS UNITAL?

The main goal of this section is to discuss conditions under which the algebra Bf(R”) is unital. As a byproduct, we show
that SJC(R”) can never be unital. We will need, however, a version of the Fourier Inversion Formula for functions in
Bf([R”), which we quickly derive in what follows: Let f be a function in B(R"), 0 < ¢ < 1 be a compactly supported
smooth function on R”, which equals 1 on a neighborhood of 0, and define, for each m € N\ {0} and x € R", the function
fm(x) 1= ¢(x/m)f(x), x € R". Then for each m € N\ {0}, the formula

1
@m)"

[ e dudy = £ = [ @ g o) dudo

holds, and integration by parts on the right-hand side integral combined with an induction argument [29, p. 3] gives

/e27n'u~vfm(x +v)dudy = /ezm'wv l; Z B (u,0) 0% fr, (x + v)] du dv,

2 4 p2)k
(1 +u2+v2) || <2k

where k is an integer greater than n/2, each B, is a bounded function and the term between brackets is just the devel-

opment of [(1 — A/4w*)Mg |¥(f), with Mg being the multiplication operator by the function K(u,v) := (1 + u? + v?)¥
. o2n
andA := ijl
Theorem gives

(8/8;)*. Therefore, taking the limit m — +oo together with an application of the Dominated Convergence

. 1
= 1 2riv-o |~ B , ol + dud
feo = lim / e l T iR |a|§zk (1, 0) 9 f 1 (x u)] udv
- / e2minw lm Y Ba(u,v)a“f(x+v)] dudv = / 27UV £(x 4 v) du dv,
la|<2k
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for every fixed x € R", by the definition of oscillatory integrals on p. 3 of the monograph [29]. This establishes our result
(see also [29, Corollary 1.12, p. 9]).
Lemma B.1. The algebra B?([R{") is unital if, and only if, the C*-algebra C is unital.

Proof. If C is unital, then an application of the generalized Fourier Inversion Formula derived above shows that the
constant function 1 : x — 1. satisfies 1 x; f = f, for all f € Bf(IR”). Applying the involution on both sides of this
equality yields f x; I = f, for all f € B{(R"), so 1 is the unit of B} (R").

Conversely, suppose that BJC(R”) is unital, with unit element U : x — U(x) € C. Let us begin by showing that U must
be a constant function. Fix an approximate identity (e, )qer for C and consider the constant functions f, : x — e, for
all « € I'. Then by the generalized Fourier Inversion Formula, we obtain

eq = fa(X)=(foa X7 U)X) =€, / 2TV U(x + v)dudv = e, U(x),

for all x € R" and o € T. This shows that the limit e : = lim, e, exists and that e = U(x), for all x € R". Therefore, U
is the constant function U : x — e. But if ¢ € C is fixed and f, denotes the constant function x — ¢, we may use the
generalized Fourier Inversion Formula again to obtainc = f.(x) = (f. X; U)(x) =ceandc = f.(x) = (U X; f.)(x) =ec,
for all x € R", which proves that e is indeed the unit element of C. O

Remark B.2. We note that the proof of Lemma B.1 shows that the algebra S]C(IR”) can never be unital, for any C*-algebra
C. In fact, if SJC(IR”) were unital, with unit element U : x — U(x) € C, then a repetition of the argument above would
force C to be unital. Moreover, U would have to be the constant function x — 1., which does not belong to SJC(R”).

APPENDIX C: A FEW REMARKS REGARDING NONSEPARABILITY

In this section, we direct our efforts to give explicit proofs for two key lemmas found in [23, section 2], in order to show
that they still remain valid if we drop the requirement of separability on the C*-algebra C (Ref. [23] deals only with the
Hilbert C*-module E,, over a separable unital C*-algebra C). The first lemma, below, contains the proof of a nonseparable
version of [23, Lemma 1]. Also, we do not make the assumption that C is unital.

Lemma C.1. Let C be a C*-algebra (unital, or not). For every A € L(E,,), there exists a unique operator A Q I € L(E,,)
satisfying the property that (AQ I(f ® g) = (Af) ® g, forall f,g € SC(R").?

Proof. First, let us fix some notations. Denote by 4 the Lebesgue measure on R”, and by C°(R”, C) the space of C-valued
compactly supported smooth functions on R" (when C = C, we write simply C°(R")).

We begin by showing that the algebraic tensor product C°(R", C) ®,, CE(R”, C) is dense in LA(R*",C) in the L*-
topology, via an adaptation of the proof of [14, Lemma 1.2.31, p. 29]. If f belongs to L>(R?", C), then f can be approximated
by A-simple functions in the L?>-norm [14, Lemma 1.2.19 (1), p. 23], so it suffices to prove that the indicator func-
tion 15 of a fixed Borel-measurable subset B of R?" with finite measure can be L?-approximated by an element in
CZ(R™) ®alg C(R™). Since there exists a cube C := Hjil[cj, dj), Cjs dj € R, which properly contains B, we may con-
sider the (restricted) Borel o-algebra .4 on C and the subsequent algebra B C A of finite unions of cubes of the form
H?Zl[a j,b j), a j,b i ER, which generates .A. But, then, given any € > 0, an application of [14, Lemma A.1.2, p. 502]
shows that there exists a set B’ € B, which satisfies A(BAB') < ¢, where BAB’ is the symmetric difference BAB' :=
(BUB)\(BnB') = (B\B’) U (B'\B). This shows that 1 can be approximated by indicator functions 1z in the L?>-norm,
where B’ € B. On the other hand, since the indicator function of an interval [a, b), a,b € R, can be Lz-approxirnated
by a function in C2°(R), it follows that every indicator function of a cube in R?", being a product of indicator func-
tions of real intervals, can be L?-approximated by a function in C*°(R") ®alg Cc°(R™). This proves the desired claim that
CE(R",C) @qg C(R", €) is dense in L*(R?", C) implying, in particular, that S¢(R") ®,; S“(R") is dense in SE(R*") in
the L?>-norm.

Now, we treat the tensor product issue. If ¢ : C — L¢(E,) is a *-homomorphism, we denote by E,, ®¢ E, the inte-
rior tensor product of E,, with itself [19, p. 41], which is a Hilbert C*-module over C: let N be the vector space N :=
{z €EE, ®agEn 1 (2,2)¢ = 0} [19, Proposition 4.5, p. 40]; then the tensor product E,, ®4 E,, is the Banach space com-
pletion of the quotient (E, ®,); E,)/N equipped with the C-valued inner product acting on equivalence classes of simple
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tensors as

([f1 ®uag 811, [f2 ®aig 821)¢ 1= (&1, {{f1.f2)E, } &2)E,

For our purposes, we take ¢ as the x-homomorphism which sends an element ¢ € C to the left-multiplication operator
¢(c)(f) :=c f,where f € E,, (note that, indeed, ¢(c) belongs to L(E,,)). We will now show that the map

L (SCR™M ®ag SCRM, (-, +)p,,) — (SCR™M ®ag SCRM/N, (-, -)g),  Uf) :=[f],

extends to a linear isomorphism ¢ : E,, — E, ®¢ E,, which preserves the right C-module structure and satisfies
(U(z1),Uz2))¢ = (21,22)E,,, for all z, z, € E,,. First, note that the calculation

(U1 ®@utg 1) 2 ®uig g21)s = /R g1<s>*< /R f1(t)*fz(t)dt>gz(8)ds

= < - (f1(0)g1())* f2(t) g2(s) dt dS) = (f1 ®alg 815 f2 Bulg 82)E,,»

which holds for all f1,g;, f2,8 € SC(R"), shows that ¢ preserves the C-valued inner product, so it is an isometry. In
the previous paragraph we have proved, in particular, that SC(R") ®alg SC(R") is dense in S€(R?") with respect to the
norm || - [|5,50 SC(R™) ®uig S“(R")is|| - [|,-dense in E,,. On the other hand, ([ SC(R") ®,j, S¢(R™)]is dense in (E, ®ag
E,)/N with respect to the norm || - |4 induced by the C-valued inner product (-, - )4, since an application of the Cauchy-
Schwarz inequality for Hilbert C*-modules gives

I =~ @Al = IK(f =) ® h.(f =) ® h)glic = IKh, {{(f = ). (f = &)z, } Mg, llc

<If-gl2 InlZ . f.gheE,
(an analogous estimate holds for elements of the form [f ® (g — h)], f,g, h € E,,). Therefore, the map 1 is defined by a

standard extension-by-limits argument, so the conclusion of the lemma follows from the calculation in [19, (4.6), p. 42]: It
shows that, for any given A € L(E,,), there exists a unique operator A ® I € L(E, ®¢ E,) satisfying the property that

ABD(f®g =(Af)®g forall f,g € E,. O

Let ¥, and y, be the (scalar-valued) functions on R defined by

et, ift>0 te7t ift>0
t) = and )=
" 0, ift<o0 "2 0, ift<o.

Then it is clear that (1 +d/dt)y; = &, and (1 + d/dt)*y, = &, [11, Theorem 10.1, p. 351], [9, Proposition 2.3, p. 253]. The
functions y; and y, will play a central role in the following lemma. It provides, in particular, a proof for [23, Lemma 2].

Lemma C.2. Let C be a C*-algebra (unital, or not). For every b : (x,&) — b(x,&) in B?([Rz), there exists a unique a €

BE(RZ) such that D(a) = b, where D 1= (1 + 65)2(1 + 9,)? is considered as an (everywhere defined) operator on B?([Rz).
Moreover, such a is given by the formula

a(x, &) = / u(s,n)eb(s + x,t + &) v(t,n)dsdt dn, (C1
R3

where u(s,n) := (1 + 9,)[(A — in)*y2(—s) y2(—n) € and v(t,n) 1= y1(t —n)/(1 +it)? forall (x, &) € R?.
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Proof. An application of Fubini’s Theorem shows that the integrand on the right-hand side of (C1) is Bochner integrable
on R3. If we define

a(x, &) = / Y2(8) 72() b(x —5,€ —t)dsdt = e ¥e™¢ /( (x —s)(& —t)eSe! b(s,t)ds dt, (C2)
R2

—00.x]x(—00,{]

a straightforward calculation shows that D(a)(x, &) = b(x, &), for all (x,£) € R?, and that a € BE(RZ). This establishes
that D is a surjective operator on B]C(Rz).

To prove the injectivity of D, let us first show the injectivity of 1 + d, as an operator on B]C(IRz). Fix a continuous linear
functional ¢ on C and suppose that (1 + 3,)(f) = 0 for some f € Bf([Rz), so that (1 + 8, )(¢of) = ¢[(1 +3,)(f)] =0.
Then multiplying both sides by the exponential function x — e* and integrating from 0 to x gives (¢po f)(x, &) = e *g(&),
for a certain function g defined on R and all (x, £) € R2. Butif g(&,) # 0, for some &, € R, then taking the limit x - —co
on both sides of (po f)(x, &y) = e *g(&,) implies that lim,._,_,,($of)(x, &y) = +o0, contradicting the boundedness of o f.
Therefore, ¢of must be identically zero which, by a corollary of Hahn-Banach’s Theorem, implies that f must also be
identically zero. Since the same proof applies for the operator 1 + d: we have established, in particular, that D is injective.
Hence, D is a bijective operator on BJC(IRZ).

Finally, to prove formula (C1), consider the vector space of bounded continuous C-valued functions f on R whose
lateral derivatives exist but fail to match on at most a finite number of points of R. Then 1 + d/ds sends this space into
the space of all C-valued functions on R in an injective way (we make the convention that d/ds associates the right
lateral derivative of f on all of the points): Indeed, if (1 + d/ds)(f) = 0 for such a function and ¢ is a continuous linear

functional on C, we can adapt the argument of the previous paragraph to conclude that, if {x j } 1<k is the set of real points

(ordered in an increasing manner) where the lateral derivatives of f fail to match, then there exist constants {C I }0<j<k
such that (¢of)(x) = e *Cj, foreach 0 < j < k and all x € [}, where [, := (=00, %11, Iy := [xk,+0) and, when k > 1,
I; 1= [x s X j+1], 1< j<k-—1-if fis everywhere differentiable, then (¢of)(x) = e *C,, for some constant C, and all
x € R; but then repeating the boundedness argument of the previous paragraph yields C, = 0, and the continuity of f

forces C i =0, for every 1 < j < k. Therefore, the identity
@ = [ ne-9la+d/afiod= [ elard/dfod  xer
R (—o0,x]

holds for all such functions f, as can be seen by applying the (injective) operator 1 + d/dx to both sides of the equality.
We can use this identity to obtain

—  p(=9) I
/[R WGy = 2 /R (1 + 8L+ in)? ya(=m) e Ty (¢ — )

_ 72(=5)
(A +it)?

L+ (e S =y (=) y(—De ™, steR,
which, when substituted in Equation (C2), gives
a(x, &) = / [ya(=8)y2(=t) e S b(x + 5, & + 1) eSldsdt = / u(s,n)v(t,n) b(x +s,& + t)eStdy dsdt,
R2 R3

for all (x, £) € R2. This is exactly what we wanted. O

APPENDIX D: THE RELATIONSHIP BETWEEN L2%(R", C) and E,

In this final section of the Appendix, we will give a quick proof of the fact that L>(R", C) is continuously embedded in E,,
as a dense subspace. The proof of the lemma below was taken from [24, Proposi¢do 3.9].

Lemma D.1. Let C be a C*-algebra (unital, or not). There exists a continuous injective linear map I : L>(R",C) — E,, such
that I(f) = f, forall f € SC(R™).
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Proof. We shall denote the usual L?>-norm on L*(R",C) by || - ||;2. Analogously as in Lemma C.1, it can be proved that

SC(R™) is dense in (L?(R",C), || - |I;2). Therefore, the identity map i : (SC(R"), || - l|l;2) — (SC(R™),] - |I,) extends
by continuity to a map I : L>(R",C) — E,, such that ||I(g)|l, < lIgll 2, for all g € L2(R",C), and I(f) = f, for all f €
SE(RM).

We will now show that I is injective. Suppose I(f) = 0, for a fixed f € L*(R",C), and let (f,,)men be a sequence in
SC(R™) converging to f in (L?(R",C),|| - ||;2). An application of H6lder’s inequality shows that

/R (f = Fr)"(x) g() dx

< / 1 = Fo) ) g0Oe dx < I1f = Frnlliz llgllizs
[Rn

C

for all g € L>(R", C) and m € N. This implies, in particular, that

<<fm,g>En - /R fm(x)*g<x>dx> converges to /R FO* g(x) dx (D)

meN

in C, for all g € S¢(R™). But continuity of I implies the convergence of (f,,,)uen to I(f) = 0in (E,, || - |I5), so the estimate
1(fm> &, llc < Ifmll2 lIgll2 forallm € Nand g € S€(R"), shows thatlim,,_, ;o (fm.&)5, = 0, foreach fixed g € SC(R").
Combining this fact with (D1) (substituting g by f,,», m" € N), we obtain

JO frw(x)dx =0, m' eN.
Rn
Then another application of Holder’s inequality gives us
FG)* f(x)dx = lim / FOO frw(x)dx =0,
Rn m'>+c0 Jpn

from which it follows that f = 0. This establishes the injectivity of I. O

Remark D.2. If C is a unital C*-algebra, then the space L?(R") is continuously embedded in E,, as a subspace: In fact, the
mapJ : L>(R") — L2(R",C),J(f) := f - 1., embeds L?>(R") isometrically into L>(R", C), and the composition IoJ is an
isometric embedding of L?(R") into E,,.
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