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Abstract
We develop criteria to guarantee uniqueness of the C∗-norm on a ∗-algebra .
Nontrivial examples are provided by the noncommutative algebras of -valued
functions 

𝐽 (ℝ𝑛) and 
𝐽 (ℝ𝑛) defined by M.A. Rieffel via a deformation quan-

tization procedure, where  is a C∗-algebra and 𝐽 is a skew-symmetric linear
transformation on ℝ𝑛 with respect to which the usual pointwise product is
deformed. In the process, we prove that the Fréchet ∗-algebra topology of

𝐽 (ℝ𝑛)

can be generated by a sequence of submultiplicative ∗-norms and that, if  is uni-
tal, this algebra is closed under the C∞-functional calculus of its C∗-completion.
We also show that the algebras 

𝐽 (ℝ𝑛) and 
𝐽 (ℝ𝑛) are spectrally invariant in

their respective C∗-completions, when  is unital. As a corollary of our results,
we obtain simple proofs of certain estimates in 

𝐽 (ℝ𝑛).

1 INTRODUCTION

The main aim of this paper is to present criteria for a given ∗-algebra, denoted in what follows by  (and defined purely
algebraically as in [27, p. 35]), to admit a unique C∗-norm. Let us recall that existence of a C∗-norm already imposes
restrictions, since there are examples of ∗-algebras that do not admit any C∗-norm at all. And even when C∗-norms do
exist, there may “a priori” be many different ones—see the beginning of Section 2. It is true that any two C∗-norms on
a ∗-algebra turning it into a C∗-algebra are necessarily equal [27, Corollary 2.1.2, p. 37], but the conclusion breaks down
when we abandon the hypothesis of completeness.
Since our focus here will be on the question of uniqueness and not of existence, we shall in the sequel bypass the

latter by assuming that the ∗-algebra  in question is realized as a dense ∗-subalgebra of some C∗-algebra. Within this
context, we formulate our first main theorem, which states that if  is closed under the C∞-functional calculus of (see
Definition 2.4), then the C∗-norm on  induced from that of is the only possible one (Theorem 2.5). In the unital case,
this can be seen as a noncommutative version of the statement that on a smooth compact manifold𝑀, the algebra 𝐶∞(𝑀)

of smooth functions uniquely determines the algebra 𝐶(𝑀) of continuous functions, which is the algebraic counterpart
of the idea that a smooth manifold is automatically also a topological space: The smooth structure uniquely determines
the topology [20, Chapter 2, pp. 22 & 23].
In our main applications,will not be merely a ∗-algebra but rather a Fréchet ∗-algebra, that is, a ∗-algebra that is also

a metrizable and complete locally convex topological vector space such that both its multiplication and its involution are
continuous.1 A particularly interesting situation appears when is a Fréchet ∗-algebrawhose topology can be defined by a
differential seminorm, as originally introduced by B. Blackadar and J. Cuntz [5] and later modified by S. J. Bhatt, A. Inoue,
and H. Ogi [4, Definition 3.1]. In this case, there are important results [4, Theorems 3.3 & 3.4], which will guarantee the
validity of the hypotheses of Proposition 2.1, Theorem 2.3, and Theorem 2.5.
In Section 3, we consider the noncommutative function algebras 

𝐽 (ℝ𝑛) and 
𝐽 (ℝ𝑛) defined by M. A. Rieffel [29] via

a deformation quantization procedure, where  is a given C∗-algebra of “coefficients” and 𝐽 is a skew-symmetric linear
transformation on ℝ𝑛 with respect to which the usual (commutative) pointwise product is “deformed” (Definition 3.1).
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Using Rieffel’s deformed product ×𝐽 (see Equation (3.7)), together with the pointwise involution and with the choice of
standard systems of (semi)norms, which are familiar from the theory of distributions (there are several variants), these
are Fréchet ∗-algebras. However, we will substitute the initial system of norms on 

𝐽 (ℝ𝑛) by a more convenient one,
resorting to a faithful representation of this function algebra as an algebra of bounded (pseudodifferential) operators on a
Hilbert C∗-module [19]. More precisely, we first define an “operator C∗-norm” on 

𝐽 (ℝ𝑛) (see Definition 3.1) and, under
the assumption of a unital , we will define a differential norm on 

𝐽 (ℝ𝑛), a construction that will require several steps.
In particular, we will need a version of the Calderón–Vaillancourt inequality for Hilbert C∗-modules (see Theorem 3.2
and Equation (3.23)), as well as the “symbol map” 𝑆 constructed in [23] that allows us to obtain an “inverse Calderón-
Vaillancourt-type inequality” (see Equation (3.27)), which, in the scalar case ( = ℂ), was proved by H. O. Cordes in [9,
Proposition 4.2, p. 262]. Besides showing that the natural topology of 

𝐽 (ℝ𝑛) is, in particular, defined by a sequence of
submultiplicative ∗-norms, the fact that the topology on 

𝐽 (ℝ𝑛) is generated by a differential norm (Theorem 3.5) also
implies, for a unital , that this ∗-algebra is closed under the C∞-functional calculus of its C∗-completion (see Theo-
rem 3.8). This result will put us in a position to establish the uniqueness statement for C∗-norms on 

𝐽 (ℝ𝑛), by means of
Theorem 2.5, for any C∗-algebra  (unital, or not—see Theorem 3.9). The analogous C∗-norm uniqueness statement for


𝐽 (ℝ𝑛)will also be obtained as a corollary, in Theorem 3.10. Moreover, due to the spectral invariance results contained in
Theorems 3.8 and 3.11 (for a unital ), 

𝐽 (ℝ𝑛) and 
𝐽 (ℝ𝑛) have the same 𝐾-theory as their respective C∗-completions.

At the end of Section 3, we provide a few other applications. We begin by showing that the Fréchet ∗-algebra of smooth
elements for a strongly continuous Lie group representation by ∗-automorphisms on a C∗-algebra admits only one C∗-
norm (Theorem 3.13), illustrating this result with two algebras of pseudodifferential operators with scalar-valued symbols.
Then, we prove that the “sup norm” and the “operator C∗-norm” coincide on 

𝐽 (ℝ𝑛) when 𝐽 = 0 (Proposition 3.15).
Finally, in Theorem 3.16, we use some of our results to give very simple proofs of three propositions of Rieffel’s monograph
[29]: Propositions 4.11, 5.4, and 5.6.

2 UNIQUENESS OF 𝐂∗-NORMS

As observed in the Introduction, some ∗-algebras may not admit any C∗-norm at all. For a concrete example, denote
the Schwartz function space by (ℝ𝑛) (see Section 3), which is a dense subspace of 𝐿2(ℝ𝑛). Also, consider the alge-
bra End+((ℝ𝑛)) of all linear operators 𝑇 on 𝐿2(ℝ𝑛) such that Dom 𝑇 ∶= (ℝ𝑛), 𝑇[(ℝ𝑛)] ⊆ (ℝ𝑛), (ℝ𝑛) ⊆ Dom 𝑇∗,
and 𝑇∗[(ℝ𝑛)] ⊆ (ℝ𝑛), where 𝑇∗ denotes the adjoint operator on 𝐿2(ℝ𝑛). Then End+((ℝ𝑛)) becomes a ∗-algebra
when equipped with the involution operation 𝑇 ⟼ 𝑇+ ∶= 𝑇∗|(ℝ𝑛) [33, Lemma 3.2, p. 40]. Moreover, define  as the
∗-subalgebra of End+((ℝ𝑛)) generated by the set{

𝑎𝑘 ∶=
𝜕

𝜕𝑥𝑘

|||(ℝ𝑛)
, 𝑏𝑘 ∶= 𝑥𝑘|(ℝ𝑛), 𝐼|(ℝ𝑛) ∶ 1 ≤ 𝑘 ≤ 𝑛

}
of linear operators on (ℝ𝑛), in which 𝑥𝑘 is the multiplication operator by the coordinate function 𝑥 ⟼ 𝑥𝑘 and 𝐼 is the
identity operator on 𝐿2(ℝ𝑛). Then since

(𝑎𝑘◦𝑏𝑘 − 𝑏𝑘◦𝑎𝑘)(𝑓) =
𝜕(𝑥𝑘(𝑓))

𝜕𝑥𝑘
− 𝑥𝑘

𝜕𝑓

𝜕𝑥𝑘
= 𝑓, 𝑓 ∈ (ℝ𝑛), 1 ≤ 𝑘 ≤ 𝑛,

we conclude, as a consequence of the fact that in a unital Banach algebra a commutator of two elements cannot be equal
to the identity [32, Theorem 13.6, p. 351], that neither End+((ℝ𝑛)) nor  can carry any submultiplicative norm, let alone
a C∗-norm.
On the other hand, some ∗-algebras can be equipped with more than one C∗-norm (in fact, with many different ones).

For example, if 𝑆1 ∶= {𝑧 ∈ ℂ ∶ |𝑧| = 1} and 𝐶(𝑆1) is the ∗-algebra of complex-valued continuous functions on 𝑆1, then
the ∗-subalgebra

 ∶=

{
𝑝 ∶ 𝑆1 ∋ 𝑧 ⟼ 𝑝(𝑧) =

𝑛∑
𝑘=−𝑛

𝑎𝑘 𝑧𝑘, 𝑎𝑘 ∈ ℂ, 𝑛 ∈ ℕ

}
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of trigonometric polynomials admits infinitelymanyC∗-norms: theC∗-seminorms ‖ ⋅ ‖𝐾 ∶ 𝑔 ⟼ sup {|𝑔(𝑧)| ∶ 𝑧 ∈ 𝐾} on
𝐶(𝑆1), in which𝐾 is an infinite compact subset of 𝑆1, restrict toC∗-norms on, as a consequence of the Identity Theorem
for holomorphic functions [28, The Identity Theorem, p. 228]. To see that ‖ ⋅ ‖𝐾1

≠ ‖ ⋅ ‖𝐾2
if𝐾1 and𝐾2 are distinct infinite

compact subsets of 𝑆1 first note that, if 𝑧0 ∈ 𝐾1∖𝐾2, then there exists a compactly supported continuous function 0 ⩽ 𝑓 ⩽ 1

on 𝑆1 such that 𝑓(𝑧0) = 1 and 𝑓|𝐾2
= 0, so ‖𝑓‖𝐾2

= 0 and ‖𝑓‖𝐾1
⩾ 1; therefore, since the trigonometric polynomials form

a dense subalgebra of 𝐶(𝑆1) with respect to the C∗-norm ‖ ⋅ ‖𝑆1 ∶ 𝑔 ⟼ sup
{|𝑔(𝑧)| ∶ 𝑧 ∈ 𝑆1

}
[31, Theorem 4.25, p. 91],

there must be an element 𝑝0 in  such that ‖𝑝0‖𝐾1
≠ ‖𝑝0‖𝐾2

.
In the discussion of the two examples above, we have already followed what we believe to be standard terminology

in the literature, according to which a seminorm 𝑝 on a ∗-algebra  is just a seminorm on  as a vector space, so the
term “seminorm” in itself does not “a priori” include any requirement of compatibility with either the multiplication or
the involution on . Correspondingly, we say that a seminorm 𝑝 is submultiplicative if we have 𝑝(𝑏1𝑏2) ⩽ 𝑝(𝑏1)𝑝(𝑏2), for
all 𝑏1, 𝑏2 ∈ , is a ∗-seminorm if 𝑝(𝑏∗) = 𝑝(𝑏), for all 𝑏 ∈  and is a 𝐶∗-seminorm if it is a submultiplicative ∗-seminorm
satisfying 𝑝(𝑏∗𝑏) = 𝑝(𝑏)2, for all 𝑏 ∈ . Finally, throughout the paper, we shall often employ the notation ‖ ⋅ ‖ to denote
a C∗-norm on a general ∗-algebra. When is a C∗-algebra, for example, ‖ ⋅ ‖ will denote the unique C∗-norm, which
may be defined on.
The uniqueness theorem forC∗-norms on certain∗-algebras thatwe shall prove in this section (Theorem2.5) depends on

just one essential condition, namely closure under the C∞ functional calculus. But in an intermediate step (Theorem 2.3),
it involves two technical conditions, one of which is a weakened form of spectral invariance (see Definition 2.2 below).
We begin by recalling the definition of spectrum of an element 𝑎 of an algebra : If  is unital with unit 1, it is the

set 𝜎(𝑎) ⊆ ℂ of numbers 𝜆 such that 𝜆1 − 𝑎 is not invertible in , whereas if  is nonunital, it is defined to be the
spectrum of (𝑎, 0) in the unitization ̃ of [27, pp. 6 & 12]. If 𝜎(𝑎) ≠ ∅, the corresponding spectral radius of 𝑎 is defined
to be 𝑟(𝑎) ∶= sup {|𝜆| ∶ 𝜆 ∈ 𝜎(𝑎)}.

Proposition 2.1. Let  be a dense ∗-subalgebra of a C∗-algebra with the property that 𝑟(𝑏∗𝑏) = 𝑟(𝑏∗𝑏), for all 𝑏 ∈ .
Then every C∗-seminorm on  is majorized by the restriction of ‖ ⋅ ‖ to .
Proof. For each ∗-representation 𝜌 of  on a Hilbert space, we may use the corresponding operator norm ‖ ⋅ ‖() to
define a C∗-seminorm ‖ ⋅ ‖𝜌 on  by ‖𝑏‖𝜌 ∶= ‖𝜌(𝑏)‖(), for all 𝑏 ∈ . Moreover, every C∗-seminorm 𝑝 on  is of this
form: The completion∕ker 𝑝 of the quotient of by the kernel of𝑝 (with respect to theC∗-normgiven by ‖[𝑏]‖𝑝 ∶= 𝑝(𝑏),
for every [𝑏] ∈ ∕ker 𝑝) is a C∗-algebra, which, according to the Gelfand–Naimark Theorem [27, Theorem 3.4.1, p. 94]
has a faithful representation 𝜌′ on some Hilbert space; therefore, composition of 𝜌′ with the canonical projection from 
to ∕ker 𝑝 produces a ∗-representation of  whose operator C∗-seminorm is equal to 𝑝.
Now let 𝑝 be aC∗-seminorm on and 𝜌 be a ∗-representation of on someHilbert space satisfying 𝑝 = ‖ ⋅ ‖𝜌. Then

by the hypothesis, for every fixed 𝑏 ∈ ,
𝑝(𝑏)2 = ‖𝑏‖2

𝜌 = ‖𝜌(𝑏)‖2()
= ‖𝜌(𝑏)∗𝜌(𝑏)‖() = ‖𝜌(𝑏∗𝑏)‖() = 𝑟()(𝜌(𝑏∗𝑏))

⩽ 𝑟(𝑏∗𝑏) = 𝑟(𝑏∗𝑏) = ‖𝑏∗𝑏‖ = ‖𝑏‖2. □

Similarly as in [34], we shall adopt the following conventions: Let be an algebra and  be a subalgebra of. If is
nonunital, we define ̇ as ̃ and ̇ as ̃; if  and  are both unital and share the same unit, let ̇ ∶=  and ̇ ∶= ;
finally, if is unital but the unit 1 of does not belong to , let ̇ ∶=  and ̇ be the subalgebra of generated by 
and 1. In any case, ̇ and ̇ are unital algebras sharing the same unit. We now make the following

Definition 2.2. Let  be an algebra and  be a subalgebra of . We say that  is spectrally invariant in  if, for every
element of ̇, its spectrum as an element of ̇ coincides with its spectrum as an element of ̇. Similarly, we say that  is
real spectrally invariant in (respectively, positive spectrally invariant in) if, for every element 𝑏 of ̇ satisfying 𝑏 = 𝑏∗

(respectively, for every element 𝑏 of ̇ satisfying 𝑏 = 𝑐∗𝑐, for some 𝑐 ∈ ̇), its spectrum as an element of ̇ coincides with
its spectrum as an element of ̇.
Therefore, a sufficient condition for guaranteeing the hypothesis of “spectral radius invariance” for elements of the

form 𝑏∗𝑏, 𝑏 ∈ , in Proposition 2.1, is obtained by requiring  to be positive spectrally invariant in , since in this case
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we have

𝑟(𝑏∗𝑏) = 𝑟̇(𝑏∗𝑏) = 𝑟̇(𝑏∗𝑏) = 𝑟(𝑏∗𝑏).

Clearly, such a condition is also satisfied if the stronger hypothesis that  is spectrally invariant in  is fulfilled. A brief
discussion on the issue of spectral invariance may be found in Appendix A. As is well known, this condition is equivalent
to requiring that whenever an element of ̇ has an inverse in ̇, this inverse already belongs to ̇. We should also mention
that concepts very similar to the properties of real spectral invariance and of spectral radius invariance for elements of the
form 𝑏∗𝑏, 𝑏 ∈ , presented above, have been discussed in the literature before; compare, for instance, with the concept of
∗-inverse closedness and with the spectral radius preserving (SRP) property in [1] and [2].
We will now see that if  bears a nice relationship with the closed ideals of  and satisfies the hypotheses of

Proposition 2.1, then it admits only one C∗-norm.

Theorem 2.3. Let  be a dense ∗-subalgebra of a C∗-algebra satisfying the following two hypotheses:

(1) For all 𝑏 ∈ , the equality 𝑟(𝑏∗𝑏) = 𝑟(𝑏∗𝑏) of spectral radii holds.
(2) For every closed ideal  of,  ∩  is a dense ∗-subalgebra of .
Then the only C∗-norm that may possibly be defined on  is the restriction of ‖ ⋅ ‖.
Proof. According to Proposition 2.1, any C∗-norm ‖ ⋅ ‖ on  is majorized by the restriction of ‖ ⋅ ‖ to . Therefore,
one can extend ‖ ⋅ ‖ uniquely to a C∗-seminorm 𝑝 on, whose kernel  will be a closed ∗-ideal of; moreover, due
to the fact that ‖ ⋅ ‖ is a norm on , we have  ∩  = {0}. By hypothesis (2), it follows that {0} is dense in , so  = {0}:
In other words, 𝑝 is actually a C∗-norm on. Since there exists only one C∗-norm turning into a C∗-algebra, 𝑝 must
coincide with ‖ ⋅ ‖ on and, in particular, on . This proves the claim. □

Our next objective will be to search for situations in which the requirements (1) and (2) of Theorem 2.3 are fulfilled in a
natural way. At this point, we find it appropriate to say a few words about the concept of closure under the C∞-functional
calculus, taking into account the possibility that the larger algebra and its subalgebra may not share a unit:

Definition 2.4. Let  be a ∗-subalgebra of a C∗-algebra .  is said to be closed under the C∞-functional calculus [4,
p. 309], [5, p. 256, (1)], [17, Remark (1), p. 274], [21, p. 22] (or smooth functional calculus [10, p. 6]) of  if, for every
self-adjoint element 𝑏 of ̇ and every smooth function 𝑓 on an open neighborhood 𝑈 ⊆ ℝ of 𝜎̇(𝑏), one has 𝑓(𝑏) ∈ ̇.
The following theorem shows that being closed under the C∞-functional calculus of is a sufficient hypothesis on the

dense ∗-subalgebra  in order to guarantee uniqueness of the C∗-norm. Part of its proof adapts an argument, which may
be found in [5, Proposition 6.7(b)] (see also [3, Lemma 2]):

Theorem 2.5. Let be a dense ∗-subalgebra of aC∗-algebra, closed under theC∞-functional calculus of. Then the only
C∗-norm that may possibly be defined on  is the restriction of ‖ ⋅ ‖.
Proof. Let us show that hypotheses (1) and (2) of Theorem 2.3 are verified, beginning with (1). Let us prove that, for all 𝑏 ∈

, the equality 𝜎̇(𝑏∗𝑏) = 𝜎̇(𝑏∗𝑏) of spectra holds. Fix 𝑏 ∈  and 𝜆 ∈ ℂ∖𝜎̇(𝑏∗𝑏). Then by compactness of the spectrum
𝜎̇(𝑏∗𝑏), there must be an open set 𝑉 ⊆ ℂ such that 𝜆 ∈ 𝑉 ⊆ ℂ∖𝜎̇(𝑏∗𝑏). Therefore, the function 𝑓 ∶ 𝜇 ⟼ (𝜆 − 𝜇)−1

is well-defined and smooth on the open subset 𝑈 ∶= ℝ ∩ (ℂ∖𝑉) of ℝ, which contains 𝜎̇(𝑏∗𝑏). Hence, (𝜆1̇ − 𝑏∗𝑏)−1 =

𝑓(𝑏∗𝑏) ∈ ̇. This proves the inclusion 𝜎̇(𝑏∗𝑏) ⊆ 𝜎̇(𝑏∗𝑏) and, since the reverse inclusion is automatic, we have proved
the desired statement. Since the equality 𝜎̇(𝑏∗𝑏) = 𝜎̇(𝑏∗𝑏) of spectra trivially implies the equality 𝑟(𝑏∗𝑏) = 𝑟(𝑏∗𝑏) of
spectral radii, we have shown that (1) holds.
To prove (2), we first assume that  and  are unital algebras sharing the same unit. To show that for every 𝑥 ∈ 

and every 𝜖 > 0, there exists 𝑧 ∈  ∩  such that ‖𝑥 − 𝑧‖ < 𝜖, we may assume without loss of generality that 𝑥∗ = 𝑥

(otherwise, apply the following argument to (𝑥 + 𝑥∗)∕2 and (𝑥 − 𝑥∗)∕(2𝑖), using that  is ∗-invariant [27, Theorem
3.1.3, p. 79]). Thus, fix an element 𝑥 = 𝑥∗ in  and 𝜖 > 0. By the denseness hypothesis, there exists an element 𝑦 in
, which once again without loss of generality may be assumed to be self-adjoint, such that ‖𝑥 − 𝑦‖ < 𝜖∕3. Now let
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CABRAL et al. 2181

0 ⩽ 𝜒 ⩽ 1 be a smooth function on ℝ with support contained in the interval [−2𝜖∕3, 2𝜖∕3] such that 𝜒(𝑡) = 1, for all
𝑡 ∈ [−𝜖∕3, 𝜖∕3]. Then the function 𝑓 defined by 𝑓(𝑡) ∶= 𝑡(1 − 𝜒(𝑡)) satisfies sup𝑡∈ℝ |𝑓(𝑡) − 𝑡| ⩽ 2𝜖∕3, so the continuous
functional calculus of  implies that ‖𝑓(𝑦) − 𝑦‖ ⩽ 2𝜖∕3. Therefore, since  is closed under the C∞-functional calcu-
lus of , 𝑓(𝑦) is a self-adjoint element of  such that ‖𝑓(𝑦) − 𝑥‖ < 𝜖. To see that 𝑓(𝑦) also belongs to , note that if
𝜋 ∶  ⟶ ∕ is the canonical quotient map, then ‖𝜋(𝑦)‖∕ = ‖𝜋(𝑦 − 𝑥)‖∕ ⩽ ‖𝑦 − 𝑥‖ < 𝜖∕3. This shows, in par-
ticular, that 𝜎∕(𝜋(𝑦)) ⊆ [−𝜖∕3, 𝜖∕3], so we conclude that 𝜋(𝑓(𝑦)) = 𝑓(𝜋(𝑦)) = 0, since 𝑓 vanishes on 𝜎∕(𝜋(𝑦)). This
proves that 𝑓(𝑦) belongs to  ∩ , establishing the density claim.
Now, we deal with the general case. Bywhat we have proved,  ∩ ̃ is dense in , since every closed ideal in is a closed

ideal in ̃ (here we are making the usual identification of  with its image in ̃ via the canonical inclusion ↪ ̃). Fix
𝑥 ∈  and let ((𝑥𝑛, 𝜆𝑛))𝑛∈ℕ be a sequence in  ∩ ̃ converging to 𝑥, where 𝑥𝑛 ∈  and 𝜆𝑛 ∈ ℂ, for all 𝑛 ∈ ℕ. To establish
that  ∩  is dense in  we shall prove that (𝑥𝑛)𝑛∈ℕ also converges to 𝑥. By the definition of the C∗-norm of ̃, it follows
that (𝜆𝑛)𝑛∈ℕ is a Cauchy sequence, so it converges to a certain 𝜆 ∈ ℂ. This implies that (𝑥𝑛)𝑛∈ℕ converges to some 𝑦 ∈ ,
from which it follows that (𝑥, 0) = (𝑦, 𝜆). Consequently, 𝑥 = 𝑦 and 𝜆 = 0, which proves the desired claim.
Therefore, uniqueness of the C∗-norm on  is a consequence of Theorem 2.3. □

Remark 2.6. We note that, if we substitute 𝑏∗𝑏 ∈  by a self-adjoint element 𝑏 = 𝑏∗ ∈ ̇ in the first paragraph of the proof
of Theorem 2.5, we can establish, with an easy adaptation of the arguments, the following fact: If is a dense ∗-subalgebra
of a 𝐶∗-algebra, closed under the 𝐶∞-functional calculus of, then  is real spectrally invariant in.
Remark 2.7. Before carrying on, we would like to point out that, although the hypothesis of being closed under the C∞-
functional calculus is sufficient to guarantee uniqueness of theC∗-norm, it is by nomeans necessary. In fact, let = 𝐶(𝕋)

be the C∗-algebra of (2𝜋)-periodic complex-valued continuous functions on ℝ, equipped with the C∗-norm

‖ ⋅ ‖∞ ∶ 𝑓 ⟼ ‖𝑓‖∞ ∶= sup
𝑡∈[−𝜋,𝜋]

|𝑓(𝑡)|,
and  = 𝐴(𝕋) be the ∗-subalgebra of 𝐶(𝕋) consisting of functions having an absolutely convergent Fourier series. Then
𝐴(𝕋) is dense in 𝐶(𝕋), because it contains the trigonometric polynomials, which form a dense ∗-subalgebra of 𝐶(𝕋).
Moreover,𝐴(𝕋) is, according to the terminology in [17, Definition (3), p. 269], locally normal in𝐶(𝕋) [17, Remark (1), p. 275],
so [17, Theorem 13(i), p. 274] shows that hypothesis (2) in Theorem 2.3 is satisfied. On the other hand, as a consequence of
Wiener’s theorem [22, Theorem 5.51, p. 140], 𝐴(𝕋) is spectrally invariant in 𝐶(𝕋), which immediately implies hypothesis
(1) of Theorem 2.3. Therefore, there exists only one C∗-norm on 𝐴(𝕋), which is obtained by restricting ‖ ⋅ ‖∞ to 𝐴(𝕋).
However, as noted in [17, Remark (1), p. 275],𝐴(𝕋) is not closed under the C∞-functional calculus of 𝐶(𝕋) (see [15, pp. 80–
82], as well as [16] and [30]). This observation shows that the converse of Theorem 2.5 does not hold, in general.

Next, we would like to make a few comments about the families of seminorms we shall employ to define the topologies
of our Fréchet ∗-algebras. The topology of every Fréchet ∗-algebra  can be generated by an increasing sequence of ∗-
seminorms (𝑝𝑚)𝑚∈ℕ [12, Theorem 3.7, p. 32], meaning that 𝑝𝑚1

(𝑏) ⩽ 𝑝𝑚2
(𝑏), for all 𝑏 ∈ , whenever 𝑚1, 𝑚2 ∈ ℕ satisfy

𝑚1 ⩽ 𝑚2. Sometimes, such a topology can even be generated by a family of submultiplicative ∗-seminorms, but not all
Fréchet ∗-algebras have this property: Those that do are often called Arens-Michael ∗-algebras [12, Definition 3.5, p. 30]
(see also the paragraph right before [26, Proposition 2.3]). Indeed, the continuity assumption on the multiplication of a
Fréchet ∗-algebra  whose topology is generated by an increasing sequence (𝑝𝑚)𝑚∈ℕ of ∗-seminorms does not in itself
force these to be submultiplicative; rather, it only means that, for each 𝑚 ∈ ℕ, there exist 𝐶𝑚 > 0 and 𝑚′ ∈ ℕ such that

𝑝𝑚(𝑏1𝑏2) ⩽ 𝐶𝑚 𝑝𝑚+𝑚′(𝑏1) 𝑝𝑚+𝑚′(𝑏2), for all 𝑏1, 𝑏2 ∈ , (2.1)

and in order for the ∗-seminorm 𝑝𝑚 to be submultiplicative, this property would have to hold with 𝐶𝑚 = 1 and 𝑚′ = 0.
Now, we introduce a central notion for the investigations of this paper:

Definition 2.8. Let  be a unital C∗-normed algebra—in other words,  is a (not necessarily complete) unital ∗-algebra
whose topology is generated by the C∗-norm ‖ ⋅ ‖. According to [4, Definition 3.1], a differential seminorm on  is a
map 𝑇 ∶ 𝑏 ⟼ (𝑇𝑘(𝑏))𝑘∈ℕ on  assuming values in sequences of nonnegative real numbers such that: (1) each 𝑇𝑘 is a
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2182 CABRAL et al.

∗-seminorm; (2) 𝑇0(𝑏) ⩽ 𝑐‖𝑏‖, for some 𝑐 > 0 and all 𝑏 ∈ ; (3) we have
𝑇𝑘(𝑎𝑏) ⩽

∑
𝑖+𝑗=𝑘

𝑇𝑖(𝑎)𝑇𝑗(𝑏), 𝑎, 𝑏 ∈ ,

for all 𝑘 ∈ ℕ—note that this forces the first seminorm, 𝑇0, to be submultiplicative. If 𝑇(𝑏) = 0 implies 𝑏 = 0, then 𝑇 is said
to be a differential norm.

In the examples of interest to us, 𝑇0 will always be equal to ‖ ⋅ ‖, so 𝑇 will be a differential norm and the underlying
topology generated by the sequence (𝑇𝑘)𝑘∈ℕ of ∗-seminorms will always be Hausdorff.
If 𝑇 ∶ 𝑏 ⟼ (𝑇𝑘(𝑏))𝑘∈ℕ is a differential seminorm on , it is easy to see that setting

𝑠𝑚(𝑏) =

𝑚∑
𝑘=0

𝑇𝑘(𝑏) 𝑏 ∈ , (2.2)

produces an increasing sequence (𝑠𝑚)𝑚∈ℕ of submultiplicative ∗-seminorms on  generating the same topology as the
original sequence (𝑇𝑘)𝑘∈ℕ.
With all of these preliminaries out of the way, let us now come to concrete realizations of the structures discussed in

this section by function algebras equipped with the deformed product.

3 RIEFFEL’S FUNCTION ALGEBRAS

Let  be a C∗-algebra. Define (ℝ𝑛) as the space of -valued Schwartz functions or, in other words, the -valued smooth
functions onℝ𝑛 which, together with all of their partial derivatives, are rapidly decreasing at infinity. Also, define(ℝ𝑛)

as the space of -valued bounded smooth functions on ℝ𝑛 whose partial derivatives of all orders are also bounded (when
 = ℂ, we will write simply (ℝ𝑛) and (ℝ𝑛), respectively).
We can define two “𝐿2-type” norms on (ℝ𝑛), namely

‖𝑓‖𝐿2 ∶=

(
∫

ℝ𝑛

‖𝑓(𝑥)‖2 𝑑𝑥

)1∕2

=

(
∫

ℝ𝑛

‖𝑓(𝑥)∗𝑓(𝑥)‖ 𝑑𝑥

)1∕2

, 𝑓 ∈ (ℝ𝑛), (3.1)

and

‖𝑓‖2 ∶=
‖‖‖‖‖∫ℝ𝑛

𝑓(𝑥)∗𝑓(𝑥) 𝑑𝑥
‖‖‖‖‖

1∕2


, 𝑓 ∈ (ℝ𝑛). (3.2)

Clearly, ‖𝑓‖2 ⩽ ‖𝑓‖𝐿2 , for all𝑓 ∈ (ℝ𝑛). TheBanach space completion𝐸𝑛 of(ℝ𝑛)with respect to the norm ‖ ⋅ ‖2 pos-
sesses the structure of aHilbert𝐶∗-module [19], with subjacent -valued inner product [19, p. 2] obtained as the continuous
extension of the map

(𝑓, 𝑔) ⟼ ∫
ℝ𝑛

𝑓(𝑥)∗𝑔(𝑥) 𝑑𝑥, (𝑓, 𝑔) ∈ (ℝ𝑛) × (ℝ𝑛)

to 𝐸𝑛 × 𝐸𝑛. This -valued inner product will be denoted in what follows by ⟨ ⋅ , ⋅ ⟩𝐸𝑛
or, when there is no risk of confusion,

simply by ⟨ ⋅ , ⋅ ⟩. Following [19, p. 9], we will denote the C∗-algebra of (bounded) adjointable operators on the Hilbert
-module 𝐸𝑛, equipped with the usual operator C∗-norm ‖ ⋅ ‖, by (𝐸𝑛).
In order to say a fewwords about the Banach space completion of(ℝ𝑛)with respect to the norm ‖ ⋅ ‖𝐿2 , we first need

to fix some notations: If 𝜆 denotes the Lebesgue measure on ℝ𝑛, we will say that a function 𝑓 ∶ ℝ𝑛 ⟶  is 𝜆-simple if
𝑓(𝑥) =

∑𝑁

𝑗=1
1𝐵𝑗

(𝑥) 𝑐𝑗 , for some fixed𝑁 > 0 and all 𝑥 ∈ ℝ𝑛, where 𝑐𝑗 are elements of  and 1𝐵𝑗
are indicator functions of

Borel-measurable subsets 𝐵𝑗 of ℝ𝑛 such that 𝜆(𝐵𝑗) < +∞, for all 1 ⩽ 𝑗 ⩽ 𝑁 [14, Definition 1.1.13, p. 8]. Moreover, we will
say that a function 𝑓 ∶ ℝ𝑛 ⟶  is strongly 𝜆-measurable if it is the 𝜆-almost everywhere pointwise limit of a sequence
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CABRAL et al. 2183

of 𝜆-simple functions [14, Definition 1.1.14, p. 8]. With these terminologies in mind, we define 𝐿2(ℝ𝑛,) as the space
of equivalence classes of strongly 𝜆-measurable square-integrable -valued functions on ℝ𝑛 [14, Definition 1.2.15, p. 21],
which is the Banach space completion of (ℝ𝑛) with respect to the norm ‖ ⋅ ‖𝐿2 . In fact, as noted in Lemma D.1 of the
Appendix, onemay adapt the proof of LemmaC.1 to show that(ℝ𝑛) is dense in (𝐿2(ℝ𝑛,), ‖ ⋅ ‖𝐿2). The space 𝐿2(ℝ𝑛,)

is continuously embedded in 𝐸𝑛 as a dense subspace, a fact that will play an important role in the proof of Theorem 3.2;
see Appendix D.
On the other hand, (ℝ𝑛) and (ℝ𝑛) become Fréchet spaces when equipped with the sequences of norms defined

by

‖𝑓‖ ,𝑚 = max|𝛼|⩽𝑚
sup
𝑥∈ℝ𝑛

(1 + |𝑥|2)𝑚∕2‖𝜕𝛼𝑓(𝑥)‖ , 𝑓 ∈ (ℝ𝑛), 𝑚 ∈ ℕ (3.3)

and

‖𝑓‖ ,𝑚 = max|𝛼|⩽𝑚
sup

𝑥∈ℝ𝑛
‖𝜕𝛼𝑓(𝑥)‖ , 𝑓 ∈ (ℝ𝑛), 𝑚 ∈ ℕ, (3.4)

respectively (we shall use the simplified symbol | ⋅ | for the standard Euclidean norm and, below, a dot for the standard
Euclidean scalar product in ℝ𝑛: |𝑥| ∶= (

∑𝑛

𝑘=1
|𝑥𝑘|2)1∕2, 𝑥 ⋅ 𝑦 ∶=

∑𝑛

𝑘=1
𝑥𝑘 𝑦𝑘).

Now fix a skew-symmetric linear transformation 𝐽 on ℝ𝑛 and 𝑓 ∈ (ℝ𝑛). Then it is shown in [29] that the linear
operator defined by the (iterated) integral

𝐿𝑓(𝑔)(𝑥) ∶= ∫
ℝ𝑛

(
∫

ℝ𝑛

𝑓(𝑥 + 𝐽𝑢) 𝑔(𝑥 + 𝑣) 𝑒2𝜋𝑖𝑢⋅𝑣 𝑑𝑣

)
𝑑𝑢, 𝑔 ∈ (ℝ𝑛), 𝑥 ∈ ℝ𝑛, (3.5)

maps (ℝ𝑛) into (ℝ𝑛) [29, Proposition 3.3, p. 25], satisfies ⟨𝐿𝑓(𝑔), ℎ⟩ = ⟨𝑔, 𝐿𝑓∗(ℎ)⟩, for all 𝑔, ℎ ∈ (ℝ𝑛), [29, Propo-
sition 4.2, p. 30], and extends to a bounded operator on the Hilbert -module 𝐸𝑛 [29, Theorem 4.6 & Corollary 4.7, p. 34].
By the continuity of the -valued inner product, we see that this extension, also denoted by 𝐿𝑓 , is an adjointable operator
on 𝐸𝑛 satisfying (𝐿𝑓)∗ = 𝐿𝑓∗ . Moreover, for all 𝑓1, 𝑓2 ∈ (ℝ𝑛), we have the identity

𝐿𝑓1
𝐿𝑓2

= 𝐿𝑓1×𝐽𝑓2
, (3.6)

where ×𝐽 is Rieffel’s deformed product [29, p. 23], defined by the (oscillatory) integral

(𝑓1 ×𝐽 𝑓2)(𝑥) ∶= ∫
ℝ𝑛 ∫ℝ𝑛

𝑓1(𝑥 + 𝐽𝑢) 𝑓2(𝑥 + 𝑣) 𝑒2𝜋𝑖𝑢⋅𝑣 𝑑𝑣 𝑑𝑢, 𝑥 ∈ ℝ𝑛. (3.7)

Actually, as will be discussed in more detail below, the operator 𝐿𝑓 is a pseudodifferential operator with symbol (𝑥, 𝜉) ⟼

𝑓(𝑥 − 𝐽𝜉∕(2𝜋)). The interplay given by Equation (3.6) between the algebra of pseudodifferential operators 𝐿𝑓s and the
algebra (ℝ𝑛), equipped with the product ×𝐽 , motivates the following definition:

Definition 3.1. The function algebras obtained by equipping the Fréchet spaces (ℝ𝑛) and (ℝ𝑛) with the deformed
product ×𝐽 above, instead of the usual pointwise product, and with the involution operation defined pointwise, via
the involution of , will be denoted by 

𝐽 (ℝ𝑛) and 
𝐽 (ℝ𝑛), respectively. Also, 

𝐽 (ℝ𝑛) and 
𝐽 (ℝ𝑛) will denote their

completions with respect to the operator C∗-norms ‖ ⋅ ‖
𝐽
and ‖ ⋅ ‖

𝐽
, respectively, which are defined via the faithful

∗-homomorphism 𝑓 ⟼ 𝐿𝑓 [29, Definition 4.8, p. 35] of 
𝐽 (ℝ𝑛) into (𝐸𝑛):

‖𝑓‖
𝐽

∶= ‖𝐿𝑓‖, for 𝑓 ∈ 
𝐽 (ℝ𝑛) and ‖𝑓‖

𝐽
∶= ‖𝐿𝑓‖, for 𝑓 ∈ 

𝐽 (ℝ𝑛);

note that ‖ ⋅ ‖
𝐽
is just the restriction of ‖ ⋅ ‖

𝐽
to 

𝐽 (ℝ𝑛). Accordingly, the ∗-algebras of pseudodifferential operators


𝐽 and 
𝐽 , with the usual multiplication given by composition, are defined by 

𝐽 ∶=
{
𝐿𝑓 ∶ 𝑓 ∈ 

𝐽 (ℝ𝑛)
}
and 

𝐽 ∶={
𝐿𝑓 ∶ 𝑓 ∈ 

𝐽 (ℝ𝑛)
}
.
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2184 CABRAL et al.

Observe that all of the Fréchet ∗-algebras 
𝐽 (ℝ𝑛) are represented on the same module 𝐸𝑛, independently of the skew-

symmetric linear transformation 𝐽 on ℝ𝑛. We also caution the reader not to confuse the operator C∗-norms ‖ ⋅ ‖
𝐽
and‖ ⋅ ‖

𝐽
with the “sup norms” ‖ ⋅ ‖ ,0 and ‖ ⋅ ‖ ,0. In fact, nothing guarantees, for a general 𝐽, that these sup norms are

C∗-norms with respect to the deformed product ×𝐽 . Of course, they are when 𝐽 = 0, because then the deformed product
reduces to the usual pointwise product given by (𝑓𝑔)(𝑥) ∶= 𝑓(𝑥)𝑔(𝑥), for all 𝑥 ∈ ℝ𝑛 [29, Corollary 2.8, p. 13] and, if in
addition,  is the fieldℂ of complex numbers, then

𝐽 (ℝ𝑛) and
𝐽 (ℝ𝑛) are just the usual commutative Fréchet ∗-algebras

of complex-valued functions, with ‖ ⋅ ‖
𝐽

= ‖ ⋅ ‖ ,0 and ‖ ⋅ ‖
𝐽

= ‖ ⋅ ‖ ,0; later, in Proposition 3.15, we will extend
these equalities of norms to the case when ℂ is replaced by a general C∗-algebra . But for a general 𝐽, we expect these
equalities to break down, and so one of our main concerns in what follows will be to construct a sequence of ∗-norms
generating the topology of 

𝐽 (ℝ𝑛), which is well-behaved with respect to the deformed product ×𝐽 .
In the remainder of this section, we will first construct a differential norm 𝑇 ∶ 𝑓 ⟼ (𝑇𝑘(𝑓))𝑘∈ℕ on

𝐽 (ℝ𝑛) generating
its natural Fréchet topology and satisfying 𝑇0 = ‖ ⋅ ‖

𝐽
. As corollaries, we will show existence of a unique C∗-norm on


𝐽 (ℝ𝑛) and the property of spectral invariance of 

𝐽 (ℝ𝑛) in its C∗-completion. These results will be derived under the
assumption that  is unital, but uniqueness of theC∗-normwill then be shown to hold even when  is not unital. Once we
are done with the algebra 

𝐽 (ℝ𝑛), we will adapt some of our results to obtain similar corollaries for the algebra 
𝐽 (ℝ𝑛).

3.1 Pseudodifferential operators with -valued symbols

Let  be a C∗-algebra. In order to attain some of our goals, we will use features of Lie group representation theory for the
Heisenberg group of dimension 2𝑛 + 1, defined as

𝐻2𝑛+1(ℝ) =

⎧⎪⎨⎪⎩
⎡⎢⎢⎣
1 a𝑇 𝑐

0 𝐼𝑛 −b
0 0 1

⎤⎥⎥⎦ ∶ a, b ∈ ℝ𝑛, 𝑐 ∈ ℝ

⎫⎪⎬⎪⎭,

where the product is just standard matrix multiplication and 𝐼𝑛 denotes the identity matrix of𝑀𝑛(ℝ). It admits a strongly
continuous unitary representation 𝑈 on the Hilbert -module 𝐸𝑛 given by

𝑈a,b,𝑐(𝑓)(𝑥) ∶= 𝑈
⎡⎢⎢⎣
1 a𝑇 𝑐

0 𝐼𝑛 −b
0 0 1

⎤⎥⎥⎦ (𝑓)(𝑥) ∶= 𝑒𝑖𝑐𝑒𝑖b⋅𝑥𝑓(𝑥 − a), 𝑓 ∈ (ℝ𝑛), 𝑥 ∈ ℝ𝑛,

where the term “unitary” is in the sense of Hilbert C∗-modules [19, p. 24] from which we can construct a corresponding
“adjoint” representation of the Heisenberg group 𝐻2𝑛+1(ℝ) on the C∗-algebra of adjointable operators (𝐸𝑛) by

Ad𝑈 ∶
⎡⎢⎢⎣
1 a𝑇 𝑐

0 𝐼𝑛 −b
0 0 1

⎤⎥⎥⎦ ⟼ (Ad𝑈)(a, b, 𝑐)( ⋅ ) ∶= 𝑈a,b,𝑐 ( ⋅ ) (𝑈a,b,𝑐)
−1.

Note that (Ad𝑈)(a, b, 𝑐) does not depend on the real variable 𝑐—so we will simply write (Ad𝑈)(a, b)—and that Ad𝑈, in
contrast to 𝑈, is not strongly continuous; this means that the C∗-subalgebra 𝐶(Ad𝑈) of continuous elements for Ad𝑈

is, in general, properly contained in (𝐸𝑛). Next, let 𝐶∞(Ad𝑈) be the Fréchet ∗-algebra of smooth elements for the
representation Ad𝑈. Denoting by 𝛿𝑗 the 𝑗th infinitesimal generator of the representation Ad𝑈, 1 ⩽ 𝑗 ⩽ 2𝑛, we have that
𝛿𝑗(𝐴) = 𝜕𝑗[(Ad𝑈)(a, b)(𝐴)]|a=b=0, for all𝐴 belonging to 𝐶∞(Ad𝑈). The Fréchet topology on 𝐶∞(Ad𝑈) is defined by the
family

{𝜌𝑚 ∶ 𝑚 ∈ ℕ} (3.8)

of norms, where

𝜌0(𝐴) ∶= ‖𝐴‖, 𝛿0 ∶= 𝐼,
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CABRAL et al. 2185

and

𝜌𝑚(𝐴) ∶= max
{‖(𝛿𝑖1 … 𝛿𝑖𝑚)𝐴‖ ∶ 0 ⩽ 𝑖𝑗 ⩽ 2𝑛

}
, 𝐴 ∈ 𝐶∞(Ad𝑈), 𝑚 ⩾ 1.

Working with pseudodifferential operators involves the Fourier transform  , sometimes also denoted by ⋅̂ and defined
by

(𝑔)(𝜉) ∶=
1

(2𝜋)𝑛∕2 ∫
ℝ𝑛

𝑒−𝑖𝑠⋅𝜉 𝑔(𝑠) 𝑑𝑠, 𝑔 ∈ (ℝ𝑛), 𝜉 ∈ ℝ𝑛.

It is a continuous linear operator on the Fréchet space (ℝ𝑛). The same is true for the inverse Fourier transform −1 on
(ℝ𝑛), which is defined by −1(𝑔)(𝑥) ∶= (𝑔)(−𝑥). For more details about the Fourier transform, see [14, Proposition
2.4.22, p. 117]; for general facts about Bochner integrals, see [14, Chapter 1]. We shall also use the following generalized
version of Plancherel’s Theorem for 𝐸𝑛, which follows from Fubini’s Theorem. For any 𝑢, 𝑣 ∈ (ℝ𝑛), we have

(2𝜋)𝑛∕2⟨(𝑢), 𝑣⟩ = ∫
ℝ𝑛

(
∫

ℝ𝑛

𝑒−𝑖𝑥⋅𝑦𝑢(𝑦) 𝑑𝑦

)∗

𝑣(𝑥) 𝑑𝑥 (3.9)

= ∫
ℝ𝑛

𝑢(𝑦)∗

(
∫

ℝ𝑛

𝑒𝑖𝑥⋅𝑦𝑣(𝑥) 𝑑𝑥

)
𝑑𝑦 = (2𝜋)𝑛∕2⟨𝑢,−1(𝑣)⟩,

just as in [24, Proposição B.3]; substituting 𝑣 = (𝑢) in the above equality shows that  uniquely extends by continuity
to an isometry on 𝐸𝑛. By the continuity of the -valued inner product, we see that ⟨(𝑢), 𝑣⟩ = ⟨𝑢,−1(𝑣)⟩ also holds for
𝑢, 𝑣 ∈ 𝐸𝑛. In particular, we get that  is an adjointable operator on 𝐸𝑛 with ∗ = −1.
Given 𝑎 ∈ (ℝ2𝑛), one may define a pseudodifferential operator Op(𝑎) ∶ (ℝ𝑛) ⟶ (ℝ𝑛) by

Op(𝑎)(𝑔)(𝑥) ∶=
1

(2𝜋)𝑛∕2 ∫
ℝ𝑛

𝑒𝑖𝑥⋅𝜉 𝑎(𝑥, 𝜉) 𝑔(𝜉) 𝑑𝜉 (3.10)

or, more explicitly, by the (iterated) integral

Op(𝑎)(𝑔)(𝑥) ∶=
1

(2𝜋)𝑛 ∫
ℝ𝑛

(
∫

ℝ𝑛

𝑒𝑖(𝑥−𝑦)⋅𝜉 𝑎(𝑥, 𝜉) 𝑔(𝑦) 𝑑𝑦

)
𝑑𝜉, (3.11)

for all 𝑥 ∈ ℝ𝑛. A simple calculation shows that every 𝐿𝑓 ∈ 
𝐽 may be written this way, with 𝑎(𝑥, 𝜉) = 𝑓(𝑥 − 𝐽𝜉∕(2𝜋)).

To obtain some information about how the above pseudodifferential operators with -valued symbols are related to
the adjoint action of the Heisenberg group, we need a version of the Calderón–Vaillancourt Theorem for the Hilbert C∗-
module 𝐸𝑛. The proof of such a version is the content of [25, Theorem 2.1], but there seems to be a mistake in the proof,
more precisely in the integration by parts at the bottom of p. 1281. For this reason, we will give a new proof of that result
(which is Theorem 3.2, below), and with the additional benefit that we do not need to restrict ourselves to separable C∗-
algebras . The proof of Theorem 3.2 below is based on [35, Theorem 3.14] and on [24, Capítulo 3]. Just as in [35, p. 169],
for any given 𝛽 ∈ ℕ𝑛 and 𝑥 ∈ ℝ𝑛, we adopt the notations

(𝑖 + 𝑥)𝛽 ∶=

𝑛∏
𝑗=1

(𝑖 + 𝑥𝑗)
𝛽𝑗 , (𝑖 + 𝑥)−𝛽 ∶= [(𝑖 + 𝑥)𝛽]−1 and

𝐷𝑥𝑗
∶= −𝑖

𝜕

𝜕𝑥𝑗
, (𝑖 + 𝐷𝑥)𝛽 ∶=

𝑛∏
𝑗=1

(𝑖 + 𝐷𝑥𝑗
)𝛽𝑗 .

Theorem3.2. Let be aC∗-algebra (unital, or not). ThenOp(𝑎) extends to a bounded operator on𝐸𝑛, for every 𝑎 ∈ (ℝ2𝑛).
More precisely, denoting by 𝛼̊ ∈ ℕ𝑛 the multi-index (1, … , 1), there exists a constant 𝐶 > 0 such that for every 𝑎 ∈ (ℝ2𝑛),
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2186 CABRAL et al.

we have the estimate ‖Op(𝑎)‖ ⩽ 𝐶𝜋(𝑎), where 𝜋(𝑎) is defined by

𝜋(𝑎) ∶= max
𝛽,𝛾⩽𝛼̊

sup
{‖𝜕𝛽

𝑥𝜕
𝛾

𝜉
𝑎(𝑥, 𝜉)‖ ∶ 𝑥, 𝜉 ∈ ℝ𝑛

}
. (3.12)

Proof. Write𝐴 ∶= Op(𝑎), in order to simplify the notation. Suppose first that 𝑎 is a compactly supported smooth function
onℝ𝑛, and fix𝑢, 𝑣 ∈ (ℝ𝑛). Let us calculate ⟨𝑣, 𝐴𝑢⟩noting that, under these hypotheses,we canmake free use of Fubini’s
Theorem and integrate by parts to get

⟨𝑣, 𝐴𝑢⟩ =
1

(2𝜋)3𝑛∕2 ∫ ∫ ∫ ∫ 𝑒−𝑖𝑥⋅𝜂𝑣(𝜂)∗[(𝑖 + 𝑥 − 𝑦)−𝛼̊(𝑖 + 𝐷𝜉)𝛼̊𝑒𝑖𝜉⋅(𝑥−𝑦)] 𝑎(𝑥, 𝜉) 𝑢(𝑦) 𝑑𝜉 𝑑𝑥 𝑑𝑦 𝑑𝜂

=
1

(2𝜋)3𝑛∕2 ∫ ∫ ∫ ∫ [(𝑖 + 𝜉 − 𝜂)−𝛼̊(𝑖 + 𝐷𝑥)𝛼̊𝑒𝑖𝑥⋅(𝜉−𝜂)] 𝑒−𝑖𝜉⋅𝑦(𝑖 + 𝑥 − 𝑦)−𝛼̊𝑣(𝜂)∗

× [(𝑖 − 𝐷𝜉)𝛼̊𝑎(𝑥, 𝜉)]𝑢(𝑦) 𝑑𝜉 𝑑𝑥 𝑑𝑦 𝑑𝜂

=
1

(2𝜋)3𝑛∕2 ∫ ∫ ∫ ∫ (𝑖 + 𝜉 − 𝜂)−𝛼̊𝑒𝑖𝑥⋅(𝜉−𝜂)𝑒−𝑖𝜉⋅𝑦𝑣(𝜂)∗𝐹(𝑦, 𝑥, 𝜉) 𝑢(𝑦) 𝑑𝜉 𝑑𝑥 𝑑𝑦 𝑑𝜂,

where 𝐹(𝑦, 𝑥, 𝜉) ∶= (𝑖 − 𝐷𝑥)𝛼̊
{
(𝑖 + 𝑥 − 𝑦)−𝛼̊[(𝑖 − 𝐷𝜉)𝛼̊𝑎(𝑥, 𝜉)]

}
. From the formula

(𝑖 − 𝐷𝑥)𝛼̊(𝑤𝑧) =
∑
𝛾⩽𝛼̊

(−1)|𝛾|[(𝑖 − 𝐷𝑥)𝛼̊−𝛾𝑤]𝐷
𝛾
𝑥𝑧, 𝑤 ∈ 𝐶∞(ℝ𝑛), 𝑧 ∈ (ℝ𝑛),

we see that

⟨𝑣, 𝐴𝑢⟩ =
1

(2𝜋)3𝑛∕2

∑
𝛾⩽𝛼̊

∫ ∫ 𝑒𝑖𝑥⋅𝜉𝑔(𝑥, 𝜉)[𝐷
𝛾
𝑥(𝑖 − 𝐷𝜉)𝛼̊𝑎(𝑥, 𝜉)]𝑓𝛾(𝑥, 𝜉) 𝑑𝑥 𝑑𝜉, (3.13)

with

𝑓𝛾(𝑥, 𝜉) ∶= (−1)|𝛾| ∫ 𝑒−𝑖𝜉⋅𝑦(𝑖 − 𝐷𝑥)𝛼̊−𝛾(𝑖 + 𝑥 − 𝑦)−𝛼̊𝑢(𝑦) 𝑑𝑦,

𝑔(𝑥, 𝜉) ∶= ∫ 𝑒−𝑖𝑥⋅𝜂(𝑖 + 𝜉 − 𝜂)−𝛼̊𝑣(𝜂)∗ 𝑑𝜂.

Estimating the expression in Equation (3.13) will be based on the Cauchy–Schwarz inequality for Hilbert C∗-modules [19,
Proposition 1.1, p. 3]. But first, we want to prove that the functions 𝑔 and 𝑓𝛾 so defined all belong to 𝐿2(ℝ2𝑛,) (and hence
to 𝐸2𝑛), so we proceed just as in [24, Lema 3.17]. Fix (𝑥, 𝜉) ∈ ℝ2𝑛. Using the equality

𝑒−𝑖𝑥⋅𝜂 =
(1 − Δ𝜂)𝑁

(1 + |𝑥|2)𝑁
𝑒−𝑖𝑥⋅𝜂, Δ𝜂 ∶=

𝑛∑
𝑘=1

𝜕2

𝜕𝜂2
𝑘

, 𝑁 ∈ ℕ,

for every 𝜂 ∈ ℝ𝑛, and integrating by parts the expression which defines 𝑔 gives, for every 𝑁 ∈ ℕ, the formula

𝑔(𝑥, 𝜉) =
1

(1 + |𝑥|2)𝑁 ∫ 𝑒−𝑖𝑥⋅𝜂(1 − Δ𝜂)𝑁[(𝑖 + 𝜉 − 𝜂)−𝛼̊𝑣(𝜂)∗] 𝑑𝜂.

Therefore, after successive applications of the Leibniz product rule, we may write 𝑔(𝑥, 𝜉) as a linear combination of terms
of the form

1

(1 + |𝑥|2)𝑁 ∫ 𝑒−𝑖𝑥⋅𝜂(𝑖 + 𝜉 − 𝜂)−𝛽𝜕
𝛽′

𝜂 𝑣(𝜂)∗ 𝑑𝜂, 𝛽, 𝛽′ ∈ ℕ𝑛, 𝛽 ⩾ 𝛼̊, 𝛽′ ⩾ 0.
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CABRAL et al. 2187

Using Peetre’s inequality [18, (3.6)]

|(𝑖 + 𝜉 − 𝜂)−𝛽| =

𝑛∏
𝑘=1

1

(1 + |𝜉𝑘 − 𝜂𝑘|2)𝛽𝑘∕2
⩽ 2|𝛽|∕2

𝑛∏
𝑘=1

(1 + |𝜂𝑘|2)𝛽𝑘∕2

(1 + |𝜉𝑘|2)𝛽𝑘∕2
,

we obtain, for each 𝛽, 𝛽′ ∈ ℕ𝑛, that the (C∗-)norm ‖ ⋅ ‖ evaluated on the corresponding term is bounded from above by

2|𝛽|∕2 1

(1 + |𝑥|2)𝑁

𝑛∏
𝑘=1

1

(1 + |𝜉𝑘|2)𝛽𝑘∕2 ∫ (1 + |𝜂𝑘|2)𝛽𝑘∕2‖𝜕𝛽′

𝜂 𝑣(𝜂)∗‖ 𝑑𝜂.

Since 𝛽𝑘 ⩾ 1, for all 1 ⩽ 𝑘 ⩽ 𝑛, we may choose 𝑁 > 𝑛∕4 to finally conclude that 𝑔 belongs to 𝐿2(ℝ2𝑛,). By an analogous
reasoning, one sees that the same conclusion holds for the functions 𝑓𝛾. This implies that, for each 𝛾 ⩽ 𝛼̊, the function
(𝑥, 𝜉) ⟼ [𝐷

𝛾
𝑥(𝑖 − 𝐷𝜉)𝛼̊𝑎(𝑥, 𝜉)]𝑓𝛾(𝑥, 𝜉) also belongs to 𝐿2(ℝ2𝑛,), so applying the Cauchy–Schwarz inequality for Hilbert

C∗-modules yields

‖⟨𝑣, 𝐴𝑢⟩‖ ⩽
1

(2𝜋)3𝑛∕2

∑
𝛾⩽𝛼̊

‖𝑔∗‖2
⏟⏟⏟
(I)

‖(𝑥, 𝜉) ⟼ [𝐷
𝛾
𝑥(𝑖 − 𝐷𝜉)𝛼̊𝑎(𝑥, 𝜉)]𝑓𝛾(𝑥, 𝜉)‖2

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
(II)

. (3.14)

Let us first estimate (I). Define the function ℎ(𝜉) ∶= (𝑖 + 𝜉)−𝛼̊ and, for each fixed 𝜉 ∈ ℝ𝑛, define ℎ𝜉(𝜂) ∶= (𝑖 + 𝜉 − 𝜂)−𝛼̊,
for all 𝜂 ∈ ℝ𝑛, so that

𝑔∗(𝑥, 𝜉) = ∫ 𝑒𝑖𝑥⋅𝜂ℎ𝜉(𝜂)𝑣(𝜂) 𝑑𝜂 = (2𝜋)𝑛∕2(ℎ𝜉 ⋅ 𝑣)(−𝑥) =∶ 𝐺𝜉(𝑥),

for every 𝑥, 𝜉 ∈ ℝ𝑛. Then

∫
ℝ𝑛 ∫ℝ𝑛

𝑔(𝑥, 𝜉)𝑔(𝑥, 𝜉)∗ 𝑑𝑥 𝑑𝜉 = ∫
ℝ𝑛

⟨𝐺𝜉, 𝐺𝜉⟩𝐸𝑛
𝑑𝜉 = (2𝜋)𝑛 ∫

ℝ𝑛

⟨ℎ𝜉 ⋅ 𝑣, ℎ𝜉 ⋅ 𝑣⟩𝐸𝑛
𝑑𝜉 (3.15)

= (2𝜋)𝑛 ∫
ℝ𝑛

[
∫

ℝ𝑛

|ℎ𝜉|2(𝜂) 𝑣(𝜂)∗𝑣(𝜂) 𝑑𝜂

]
𝑑𝜉 = (2𝜋)𝑛 ∫

ℝ𝑛

|ℎ(𝜉)|2 𝑑𝜉 ∫
ℝ𝑛

𝑣(𝜂)∗𝑣(𝜂) 𝑑𝜂,

so ‖𝑔∗‖2 = 𝐶1‖𝑣‖2, where 𝐶1 ∶= (2𝜋)𝑛∕2(∫
ℝ𝑛 |ℎ(𝜉)|2 𝑑𝜉)1∕2. To estimate (II), note that for every positive linear functional

𝜌 on  and 𝑐, 𝑑 ∈ , we have 𝜌(𝑑∗𝑐∗𝑐𝑑) ⩽ ‖𝑐∗𝑐‖ 𝜌(𝑑∗𝑑) [27, Theorem 3.3.7, p. 90], which implies

∫
ℝ𝑛 ∫ℝ𝑛

𝜌
(
𝑓𝛾(𝑥, 𝜉)∗[𝐷

𝛾
𝑥(𝑖 − 𝐷𝜉)𝛼̊𝑎(𝑥, 𝜉)]∗[𝐷

𝛾
𝑥(𝑖 − 𝐷𝜉)𝛼̊𝑎(𝑥, 𝜉)]𝑓𝛾(𝑥, 𝜉)

)
𝑑𝑥 𝑑𝜉

⩽ ∫
ℝ𝑛 ∫ℝ𝑛

‖𝐷𝛾
𝑥(𝑖 − 𝐷𝜉)𝛼̊𝑎(𝑥, 𝜉)‖2 𝜌

(
𝑓𝛾(𝑥, 𝜉)∗𝑓𝛾(𝑥, 𝜉)

)
𝑑𝑥 𝑑𝜉

⩽

[
sup
𝑥,𝜉

{‖𝐷𝛾
𝑥(𝑖 − 𝐷𝜉)𝛼̊𝑎(𝑥, 𝜉)‖}]2

∫
ℝ𝑛 ∫ℝ𝑛

𝜌
(
𝑓𝛾(𝑥, 𝜉)∗𝑓𝛾(𝑥, 𝜉)

)
𝑑𝑥 𝑑𝜉.

Therefore [27, Theorem 3.4.3, p. 95],

∫
ℝ𝑛 ∫ℝ𝑛

{
[𝐷

𝛾
𝑥(𝑖 − 𝐷𝜉)𝛼̊𝑎(𝑥, 𝜉)]𝑓𝛾(𝑥, 𝜉)

}∗
[𝐷

𝛾
𝑥(𝑖 − 𝐷𝜉)𝛼̊𝑎(𝑥, 𝜉)]𝑓𝛾(𝑥, 𝜉)𝑑𝑥 𝑑𝜉

⩽

[
sup
𝑥,𝜉

{‖𝐷𝛾
𝑥(𝑖 − 𝐷𝜉)𝛼̊𝑎(𝑥, 𝜉)‖}]2

∫
ℝ𝑛 ∫ℝ𝑛

𝑓𝛾(𝑥, 𝜉)∗𝑓𝛾(𝑥, 𝜉)𝑑𝑥 𝑑𝜉,
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2188 CABRAL et al.

which finally gives us the estimate

‖[𝐷𝛾
𝑥(𝑖 − 𝐷𝜉)𝛼̊𝑎(𝑥, 𝜉)]𝑓𝛾(𝑥, 𝜉)‖2 ⩽ 𝐶2𝜋(𝑎)‖𝑓𝛾‖2, (3.16)

where 𝐶2 > 0 is independent of 𝑎. But

𝑓𝛾(𝑥, 𝜉) = (−1)|𝛾| ∫ 𝑒−𝑖𝜉⋅𝑦(𝑖 − 𝐷𝑥)𝛼̊−𝛾(𝑖 + 𝑥 − 𝑦)−𝛼̊𝑢(𝑦) 𝑑𝑦 = (−1)|𝛾|(2𝜋)𝑛∕2((𝑖 − 𝐷𝑥)𝛼̊−𝛾ℎ𝑥 ⋅ 𝑢)(𝜉),

for each fixed 𝑥, 𝜉 ∈ ℝ𝑛. Analogously as in Equation (3.15), we get

‖𝑓𝛾‖2 ⩽ 𝐶′
2‖ℎ‖2‖𝑢‖2, 𝐶′

2 > 0. (3.17)

Finally, combining Equations (3.14), (3.15), (3.16), and (3.17) gives

‖⟨𝑣, 𝐴𝑢⟩‖ = ‖⟨𝑣, 𝐴𝑢⟩‖ ⩽ 𝐾𝜋(𝑎)‖𝑣‖2 ‖𝑢‖2, (3.18)

for some constant 𝐾 > 0, which is independent of 𝑎, 𝑢, and 𝑣.
Now we turn to the general case where 𝑎 ∈ (ℝ2𝑛). Let 𝑢, 𝑣 ∈ (ℝ𝑛), 0 ⩽ 𝜙 ⩽ 1 be a compactly supported smooth

function on ℝ2𝑛, which equals 1 on a neighborhood of 0 and define, for each 𝑚 ∈ ℕ∖ {0}, the function

𝑎𝑚(𝑥, 𝜉) ∶= 𝜙

(
𝑥

𝑚
,

𝜉

𝑚

)
𝑎(𝑥, 𝜉), (𝑥, 𝜉) ∈ ℝ2𝑛.

We are going to show that ⟨𝑣,Op(𝑏𝑚)𝑢⟩ goes to 0 as𝑚 → +∞, where 𝑏𝑚 ∶= 𝑎 − 𝑎𝑚. Since an application of the Cauchy–
Schwarz inequality implies ‖⟨𝑣,Op(𝑏𝑚)𝑢⟩‖ ⩽ ‖𝑣‖2‖Op(𝑏𝑚)𝑢‖2, it suffices to show that ‖Op(𝑏𝑚)𝑢‖2 converges to 0, as
𝑚 → +∞. First, note that since ‖𝑒𝑖𝑥⋅𝜉𝑏𝑚(𝑥, 𝜉)𝑢̂(𝜉)‖ ⩽ sup

{‖𝑎(𝑥, 𝜉)‖ ∶ (𝑥, 𝜉) ∈ ℝ2𝑛
} ‖𝑢̂(𝜉)‖ , for every fixed (𝑥, 𝜉) ∈

ℝ2𝑛, it follows from the Dominated Convergence Theorem that [Op(𝑏𝑚)𝑢](𝑥) converges to 0, as𝑚 → +∞, for every fixed
𝑥 ∈ ℝ𝑛. Also, there exists a constant 𝐶′ > 0, which is independent of 𝑚 and of 𝑎 such that 𝜋(𝑎𝑚) ⩽ 𝐶′𝜋(𝑎), so we have
the estimates

‖[Op(𝑏𝑚)𝑢](𝑥)‖ ⩽ (2𝜋)−𝑛∕2|(𝑖 + 𝑥)−𝛼̊|∫
ℝ𝑛

‖(𝑖 − 𝐷𝜉)𝛼̊[𝑏𝑚(𝑥, 𝜉)𝑢̂(𝜉)]‖ 𝑑𝜉

⩽ 𝑀𝜋(𝑏𝑚)|(𝑖 + 𝑥)−𝛼̊| ⩽ (𝐶′ + 1)𝑀𝜋(𝑎)|(𝑖 + 𝑥)−𝛼̊|,
where 𝑀 > 0 depends on the numbers ∫

ℝ𝑛 ‖𝐷𝛽

𝜉
𝑢̂(𝜉)‖ 𝑑𝜉, with 𝛽 ⩽ 𝛼̊, but does not depend on 𝑎, 𝑚, or 𝑥. Therefore,

another application of the Dominated Convergence Theorem finally establishes that ⟨𝑣,Op(𝑏𝑚)𝑢⟩ goes to 0, as𝑚 → +∞.
Substituting 𝐴 = Op(𝑎𝑚) on (3.18), we get

‖⟨𝑣,Op(𝑎𝑚)𝑢⟩‖ ⩽ 𝐾𝜋(𝑎𝑚)‖𝑣‖2 ‖𝑢‖2 ⩽ 𝐾𝐶′𝜋(𝑎)‖𝑣‖2 ‖𝑢‖2.

Taking the limit𝑚 → +∞ on both sides of this inequality gives ‖⟨𝑣,Op(𝑎)𝑢⟩‖ ⩽ 𝐾𝐶′𝜋(𝑎)‖𝑣‖2 ‖𝑢‖2. Since 𝑢, 𝑣 ∈ (ℝ𝑛)

are arbitrary, this actually shows that there exists 𝐶 > 0 such that ‖Op(𝑎)𝑢‖2 ⩽ 𝐶𝜋(𝑎)‖𝑢‖2, for all 𝑎 ∈ (ℝ2𝑛) and 𝑢 ∈

(ℝ𝑛). □

Wenote that not only does Op(𝑎) extends to a bounded operator on 𝐸𝑛, but this extension is also an adjointable operator
on 𝐸𝑛. For the convenience of the reader, we will now give a quick proof of this fact, which is inspired by the exposition
in [24, Capítulo 4]. This observation is important, because the representation Ad𝑈 of the Heisenberg group 𝐻2𝑛+1(ℝ) is
implemented by ∗-automorphisms on the C∗-algebra of adjointable operators (𝐸𝑛), and later it will be convenient to
treat 

𝐽 (see Definition 3.1) as a ∗-subalgebra of (𝐸𝑛).
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CABRAL et al. 2189

Proposition 3.3. Let  be a C∗-algebra (unital, or not) and let 𝑎 ∈ (ℝ2𝑛). Then Op(𝑎) is an adjointable operator on 𝐸𝑛

with [Op(𝑎)]∗ = Op(𝑝), for a certain 𝑝 ∈ (ℝ2𝑛).

Proof. First, assume that 𝑎 belongs to the space 𝐶∞
𝑐 (ℝ2𝑛,) of -valued compactly supported smooth functions on ℝ2𝑛.

We are going to prove that there exists 𝑝 ∈ (ℝ2𝑛) satisfying ⟨Op(𝑎)𝑢, 𝑣⟩ = ⟨𝑢,Op(𝑝)𝑣⟩, for every 𝑢, 𝑣 ∈ (ℝ𝑛). An
application of Fubini’s Theorem shows that

⟨Op(𝑎)𝑢, 𝑣⟩ = ∫
ℝ𝑛

[
1

(2𝜋)𝑛 ∫
ℝ𝑛 ∫ℝ𝑛

𝑒𝑖(𝑥−𝑦)⋅𝜉 𝑎(𝑥, 𝜉) 𝑢(𝑦) 𝑑𝑦 𝑑𝜉

]∗

𝑣(𝑥) 𝑑𝑥

= ∫
ℝ𝑛

𝑢(𝑦)∗

[
1

(2𝜋)𝑛 ∫
ℝ𝑛 ∫ℝ𝑛

𝑒𝑖(𝑦−𝑥)⋅𝜉 𝑎(𝑥, 𝜉)∗ 𝑣(𝑥) 𝑑𝜉 𝑑𝑥

]
𝑑𝑦,

for all 𝑢, 𝑣 ∈ (ℝ𝑛). Define 𝑐 ∈ (ℝ2𝑛) by

𝑐(𝑦, 𝑧) ∶=
1

(2𝜋)𝑛∕2 ∫
ℝ𝑛

𝑒𝑖𝑧⋅𝜉 𝑎(𝑦 − 𝑧, 𝜉)∗ 𝑑𝜉, 𝑦, 𝑧 ∈ ℝ𝑛,

and define the function 𝑝 ∈ (ℝ2𝑛) by 𝑝(𝑦, 𝑧) ∶= (𝜉 ⟼ 𝑐(𝑦, 𝜉))(𝑧), so that 𝑐(𝑦, 𝑧) = −1(𝜉 ⟼ 𝑝(𝑦, 𝜉))(𝑧), for all
𝑦, 𝑧 ∈ ℝ𝑛. Then

1

(2𝜋)𝑛∕2 ∫
ℝ𝑛

𝑒𝑖(𝑦−𝑥)⋅𝜉𝑎(𝑥, 𝜉)∗ 𝑑𝜉 = 𝑐(𝑦, 𝑦 − 𝑥) =
1

(2𝜋)𝑛∕2 ∫
ℝ𝑛

𝑒𝑖(𝑦−𝑥)⋅𝜉𝑝(𝑦, 𝜉) 𝑑𝜉,

so

⟨Op(𝑎)𝑢, 𝑣⟩ = ∫
ℝ𝑛

𝑢(𝑦)∗

[
1

(2𝜋)𝑛 ∫
ℝ𝑛 ∫ℝ𝑛

𝑒𝑖(𝑦−𝑥)⋅𝜉𝑎(𝑥, 𝜉)∗ 𝑣(𝑥) 𝑑𝜉 𝑑𝑥

]
𝑑𝑦

= ∫
ℝ𝑛

𝑢(𝑦)∗

[
1

(2𝜋)𝑛 ∫
ℝ𝑛 ∫ℝ𝑛

𝑒𝑖(𝑦−𝑥)⋅𝜉𝑝(𝑦, 𝜉) 𝑣(𝑥) 𝑑𝑥 𝑑𝜉

]
𝑑𝑦 = ⟨𝑢,Op(𝑝)𝑣⟩,

for all 𝑢, 𝑣 ∈ (ℝ𝑛). Therefore, the equality ⟨Op(𝑎)𝑢, 𝑣⟩ = ⟨𝑢,Op(𝑝)𝑣⟩, for every 𝑢, 𝑣 ∈ 𝐸𝑛, follows from a continuity
argument. An easy calculation gives the following identity:

𝑝(𝑦, 𝜉) =
1

(2𝜋)𝑛 ∫
ℝ𝑛

𝑒−𝑖𝑧⋅𝜉

[
∫

ℝ𝑛

𝑒𝑖𝑧⋅𝜂 𝑎(𝑦 − 𝑧, 𝜂)∗ 𝑑𝜂

]
𝑑𝑧

=
1

(2𝜋)𝑛 ∫
ℝ𝑛 ∫ℝ𝑛

𝑒−𝑖𝑧⋅𝜂 𝑎(𝑦 − 𝑧, 𝜉 − 𝜂)∗ 𝑑𝑧 𝑑𝜂, (𝑦, 𝜉) ∈ ℝ2𝑛,

which will be useful in the next step of the proof.
Suppose, now, that 𝑎 ∈ (ℝ2𝑛). Then employing the definition of oscillatory integrals in [9, pp. 66–69] (where they

are called finite part integrals), we define

𝑝(𝑦, 𝜉) ∶=
1

(2𝜋)𝑛 ∫
ℝ𝑛 ∫ℝ𝑛

𝑒−𝑖𝑧⋅𝜂 𝑎(𝑦 − 𝑧, 𝜉 − 𝜂)∗ 𝑑𝑧 𝑑𝜂 (3.19)

∶=
1

(2𝜋)𝑛 ∫
ℝ𝑛 ∫ℝ𝑛

𝑒−𝑖𝑧⋅𝜂 (1 + |𝑧|2)−𝑁(1 − Δ𝜂)𝑁
{

(1 + |𝜂|2)−𝑀(1 − Δ𝑧)𝑀
[
𝑎(𝑦 − 𝑧, 𝜉 − 𝜂)∗

]}
𝑑𝑧 𝑑𝜂,

where 𝑀, 𝑁 are fixed positive integers which are chosen in order to turn the right-hand side integral into an absolutely
convergent one (it suffices to take𝑀, 𝑁 > 𝑛∕2; also, the above definition is independent of𝑀 and𝑁). Then differentiating
under the integral sign shows that 𝑝 belongs to(ℝ2𝑛). The above definition of oscillatory integral is essentially the same
as the one employed by Rieffel in his monograph [29, Proposition 1.6, p. 6].
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2190 CABRAL et al.

Let 0 ⩽ 𝜙 ⩽ 1 be a compactly supported smooth function onℝ𝑛, which equals 1 on a neighborhood of 0 and define, for
each 𝑎 ∈ (ℝ2𝑛) and 𝑗 ∈ ℕ∖ {0}, the -valued compactly supported smooth functions on ℝ2𝑛

𝜙𝑗(𝑥) ∶= 𝜙

(
𝑥

𝑗

)
, 𝑎𝑗(𝑥, 𝜉) ∶= 𝑎(𝑥, 𝜉) 𝜙𝑗(𝑥) 𝜙𝑗(𝜉) and

𝑝𝑗(𝑦, 𝜉) ∶=
1

(2𝜋)𝑛
∫

ℝ𝑛 ∫ℝ𝑛 𝑒−𝑖𝑧⋅𝜂 𝑎𝑗(𝑦 − 𝑧, 𝜉 − 𝜂)∗ 𝑑𝑧 𝑑𝜂, for all (𝑦, 𝜉) ∈ ℝ2𝑛. Then using the definition of oscillatory inte-
grals in Equation (3.19), we get, after an application of Fubini’s Theorem and of the Dominated Convergence Theorem,
the equality lim𝑗→+∞ 𝑝𝑗(𝑦, 𝜉) = 𝑝(𝑦, 𝜉), for every (𝑦, 𝜉) ∈ ℝ2𝑛. Hence,

⟨𝑢,Op(𝑝)𝑣⟩ = ∫
ℝ𝑛

𝑢(𝑦)∗

[
1

(2𝜋)𝑛∕2 ∫
ℝ𝑛

𝑒𝑖𝑦⋅𝜉 lim
𝑗→+∞

𝑝𝑗(𝑦, 𝜉) 𝑣(𝜉) 𝑑𝜉

]
𝑑𝑦

= lim
𝑗→+∞

1

(2𝜋)𝑛∕2 ∫
ℝ2𝑛

𝑢(𝑦)∗𝑒𝑖𝑦⋅𝜉 𝑝𝑗(𝑦, 𝜉) 𝑣(𝜉) 𝑑𝜉 𝑑𝑦 = lim
𝑗→+∞

⟨𝑢,Op(𝑝𝑗)𝑣⟩,
for all 𝑢, 𝑣 ∈ (ℝ𝑛). By an analogous reasoning,

lim
𝑗→+∞

⟨Op(𝑎𝑗)𝑢, 𝑣⟩ = lim
𝑗→+∞∫

ℝ𝑛

[
1

(2𝜋)𝑛∕2 ∫
ℝ𝑛

𝑒−𝑖𝑥⋅𝜉 𝑢̂(𝜉)∗𝑎𝑗(𝑥, 𝜉)∗ 𝑑𝜉

]
𝑣(𝑥) 𝑑𝑥 = ⟨Op(𝑎)𝑢, 𝑣⟩,

so ⟨Op(𝑎)𝑢, 𝑣⟩ = lim𝑗→+∞⟨Op(𝑎𝑗)𝑢, 𝑣⟩ = lim𝑗→+∞⟨𝑢,Op(𝑝𝑗)𝑣⟩ = ⟨𝑢,Op(𝑝)𝑣⟩, for all 𝑢, 𝑣 ∈ (ℝ𝑛). By a continuity
argument, ⟨Op(𝑎)𝑢, 𝑣⟩ = ⟨𝑢,Op(𝑝)𝑣⟩, for all 𝑢, 𝑣 ∈ 𝐸𝑛, so Op(𝑎) is an adjointable operator on 𝐸𝑛, for every 𝑎 ∈ (ℝ2𝑛),
as claimed. □

We finish this subsection by noting that
{
Op(𝑎) ∶ 𝑎 ∈ (ℝ2𝑛)

}
is actually a ∗-subalgebra of (𝐸𝑛). In fact, using the

more suggestive notation𝑎† to denote the function𝑝 defined inEquation (3.19), we see that the restriction of the involution
and composition maps to

{
Op(𝑎) ∶ 𝑎 ∈ (ℝ2𝑛)

}
are given, respectively, by Op(𝑎) ⟼ Op(𝑎†) and Op(𝑎)◦Op(𝑏) ⟼

Op(𝑎 × 𝑏), where

𝑎†(𝑥, 𝜉) ∶=
1

(2𝜋)𝑛 ∫
ℝ𝑛 ∫ℝ𝑛

𝑒−𝑖𝑧⋅𝜂 𝑎(𝑥 − 𝑧, 𝜉 − 𝜂)∗ 𝑑𝑧 𝑑𝜂 (3.20)

∶=
1

(2𝜋)𝑛 ∫
ℝ𝑛 ∫ℝ𝑛

𝑒−𝑖𝑧⋅𝜂 (1 + |𝑧|2)−𝑁(1 − Δ𝜂)𝑁
{

(1 + |𝜂|2)−𝑀(1 − Δ𝑧)𝑀
[
𝑎(𝑥 − 𝑧, 𝜉 − 𝜂)∗

]}
𝑑𝑧 𝑑𝜂,

and

(𝑎 × 𝑏)(𝑥, 𝜉) ∶=
1

(2𝜋)𝑛 ∫
ℝ𝑛 ∫ℝ𝑛

𝑒−𝑖𝑧⋅𝜂 𝑎(𝑥, 𝜉 − 𝜂) 𝑏(𝑥 − 𝑧, 𝜉) 𝑑𝑧 𝑑𝜂 (3.21)

∶=
1

(2𝜋)𝑛 ∫
ℝ𝑛 ∫ℝ𝑛

𝑒−𝑖𝑧⋅𝜂 (1 + |𝑧|2)−𝑁(1 − Δ𝜂)𝑁
{

(1 + |𝜂|2)−𝑀(1 − Δ𝑧)𝑀
[
𝑎(𝑥, 𝜉 − 𝜂) 𝑏(𝑥 − 𝑧, 𝜉)

]}
𝑑𝑧 𝑑𝜂,

for all 𝑥, 𝜉 ∈ ℝ𝑛 (for the scalar case  = ℂ, see [9, Proposition 4.2, p. 64] and [9, Theorem 4.7, p. 68]). Just as in (3.19), it
suffices to take integers𝑀, 𝑁 > 𝑛∕2, with the above definitions also being independent of𝑀 and𝑁; differentiating under
the integral sign shows at once that 𝑎 × 𝑏 belongs to (ℝ2𝑛). Moreover, we see by the associativity of the composition
operation that Op((𝑎 × 𝑏) × 𝑐) = Op(𝑎 × (𝑏 × 𝑐)), for all 𝑎, 𝑏, 𝑐 ∈ (ℝ2𝑛). We will now show that the linear map Op ∶

𝑎 ⟼ Op(𝑎) on (ℝ2𝑛) is injective, from which it will follow that × is also an associative operation. Let (𝑒𝛼)𝛼∈Γ be an
approximate identity for . Then for every scalar-valued function 𝑔 ∈ (ℝ𝑛), we have that the function 𝑔𝛼 ∶= 𝑔 ⋅ 𝑒𝛼 ∶

𝑥 ⟼ 𝑔(𝑥) ⋅ 𝑒𝛼 belongs to (ℝ𝑛), for every 𝛼 ∈ Γ. Hence, the hypothesis Op(𝑎) = 0 implies

0 = 𝜌(Op(𝑎)(𝑔𝛼)(𝑥)) =
1

(2𝜋)𝑛∕2 ∫
ℝ𝑛

𝑒𝑖𝑥⋅𝜉 𝜌(𝑎(𝑥, 𝜉) 𝑒𝛼) 𝑔(𝜉) 𝑑𝜉,
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CABRAL et al. 2191

for all 𝑔 ∈ (ℝ𝑛), 𝑥 ∈ ℝ𝑛 and every continuous linear functional 𝜌 on . But then injectivity of the map 𝑏 ⟼ Op(𝑏)

for scalar-valued symbols 𝑏 ∈ (ℝ𝑛) [23, p. 220] proves that the map (𝑥, 𝜉) ⟼ 𝜌(𝑎(𝑥, 𝜉) 𝑒𝛼) must be identically zero, for
every continuous linear functional 𝜌 on . Therefore, by Hahn–Banach’s Theorem, we obtain 𝑎(𝑥, 𝜉) 𝑒𝛼 = 0, for every
fixed (𝑥, 𝜉) ∈ ℝ2𝑛 and 𝛼 ∈ Γ, so taking the limit in 𝛼 shows that 𝑎 must be identically zero, as wanted. As a corollary,
sinceOp((𝑎 × 𝑏) × 𝑐 − 𝑎 × (𝑏 × 𝑐)) = 0, for all𝑎, 𝑏, 𝑐 ∈ (ℝ2𝑛), it is also true that (𝑎 × 𝑏) × 𝑐 = 𝑎 × (𝑏 × 𝑐), for all𝑎, 𝑏, 𝑐 ∈

(ℝ2𝑛).
We can also use a similar argument to obtain the associativity of Rieffel’s deformed product, which we show next. In

fact, as noted in the remark following Equation (3.11), if 𝐽 is a fixed skew-symmetric linear transformation on ℝ𝑛, then
every operator 𝐿𝑓 , for 𝑓 ∈ (ℝ𝑛), may be written as Op(𝑓), where 𝑓(𝑥, 𝜉) ∶= 𝑓(𝑥 − 𝐽𝜉∕(2𝜋)), for all 𝑥, 𝜉 ∈ ℝ𝑛 (note that
the map ⋅̃ ∶ 𝑓 ⟼ 𝑓 depends on the fixed 𝐽). Therefore,

(𝑓 × 𝑔)(𝑥, 𝜉) ∶=
1

(2𝜋)𝑛 ∫
ℝ𝑛 ∫ℝ𝑛

𝑒−𝑖𝑧⋅𝜂 (1 + |𝑧|2)−𝑁(1 − Δ𝜂)𝑁

×
{

(1 + |𝜂|2)−𝑀(1 − Δ𝑧)𝑀
[
𝑓(𝑥 − 𝐽(𝜉 − 𝜂)∕(2𝜋)) 𝑔(𝑥 − 𝑧 − 𝐽𝜉∕(2𝜋))

]}
𝑑𝑧 𝑑𝜂,

which shows that (i) (𝑓 × 𝑔)(𝑥, 𝜉) = (𝑓 ×𝐽 𝑔)(𝑥 − 𝐽𝜉∕(2𝜋)) = ˜(𝑓 ×𝐽 𝑔)(𝑥, 𝜉) and, in particular, (ii) (𝑓 × 𝑔)(𝑥, 0) = (𝑓 ×𝐽

𝑔)(𝑥) = ˜(𝑓 ×𝐽 𝑔)(𝑥, 0), for all 𝑓, 𝑔 ∈ (ℝ𝑛), 𝑥, 𝜉 ∈ ℝ𝑛. Note that for all 𝑓, 𝑔 ∈ (ℝ𝑛) and 𝜙 ∈ (ℝ𝑛) we have the
equality

(𝑓 ×𝐽 𝑔) ×𝐽 𝜙 = 𝐿𝑓×𝐽𝑔(𝜙) = Op(𝑓 ×𝐽 𝑔)(𝜙) = Op(𝑓 × 𝑔)(𝜙)

= [Op(𝑓)◦Op(𝑔)](𝜙) = [𝐿𝑓◦𝐿𝑔](𝜙) = 𝑓 ×𝐽 (𝑔 ×𝐽 𝜙)

(since 𝐽 is arbitrary, this incidentally gives an alternative proof for the relation (3.6)). Hence, since for all 𝑓, 𝑔, ℎ ∈ (ℝ𝑛)

and 𝜙 ∈ (ℝ𝑛), we have 𝑓 ×𝐽 𝑔 ∈ (ℝ𝑛) and ℎ ×𝐽 𝜙 ∈ (ℝ𝑛) (the former relation follows from (ii), while the latter is
a consequence of the equality Op(ℎ̃)(𝜙) = ℎ ×𝐽 𝜙), we obtain

𝐿(𝑓×𝐽𝑔)×𝐽ℎ(𝜙) = [(𝑓 ×𝐽 𝑔) ×𝐽 ℎ] ×𝐽 𝜙 = (𝑓 ×𝐽 𝑔) ×𝐽 (ℎ ×𝐽 𝜙) = 𝑓 ×𝐽 [𝑔 ×𝐽 (ℎ ×𝐽 𝜙)]

= 𝑓 ×𝐽 [(𝑔 ×𝐽 ℎ) ×𝐽 𝜙] = [𝑓 ×𝐽 (𝑔 ×𝐽 ℎ)] ×𝐽 𝜙 = 𝐿𝑓×𝐽(𝑔×𝐽ℎ)(𝜙).

Since 𝐽 and 𝜙 are arbitrary and the map Op is injective, we have obtained the desired result. We note that, although
the formulas in these final two paragraphs will not be used as tools to derive any of our main results, they have
been included here to provide a more transparent link between Rieffel’s deformed product and the composition of
pseudodifferential operators.

3.2 The algebra 

𝑱
(ℝ𝒏)

For every pseudodifferential operator Op(𝑎), 𝑎 ∈ (ℝ2𝑛), and every 𝛼, 𝛽 ∈ ℕ𝑛, one has

𝜕𝛼
a 𝜕

𝛽
b [(Ad𝑈)(a, b)(Op(𝑎))] = (−1)|𝛼|+|𝛽|(Ad𝑈)(a, b)(Op(𝜕𝛼

𝑥𝜕
𝛽

𝜉
𝑎)), a, b ∈ ℝ𝑛. (3.22)

Indeed, by Theorem 3.2, we have the estimate

‖Op(𝑎)‖ ⩽ 𝐶 max|𝛾|,|𝛿|⩽𝑛
sup

{‖𝜕𝛾
𝑥𝜕𝛿

𝜉
𝑎(𝑥, 𝜉)‖ ∶ 𝑥, 𝜉 ∈ ℝ𝑛

}
, (3.23)

where 𝐶 > 0 is independent of 𝑎 (see also [29, Corollary 4.7, p. 34] for a particular version of these inequalities adapted
for the operators 𝐿𝑓 , 𝑓 ∈ 

𝐽 (ℝ𝑛)). Therefore, denoting by 𝑒𝑗 the 𝑗th element of the canonical basis of ℝ𝑛, the equalities

𝑎((𝑥, 𝜉) + ℎ(𝑒𝑘, 0)) − 𝑎(𝑥, 𝜉) − ℎ
𝜕𝑎

𝜕𝑥𝑘
(𝑥, 𝜉) = ℎ2 ∫

1

0

𝑡 ∫
1

0

𝜕2𝑎

𝜕𝑥2
𝑘

((𝑥, 𝜉) + 𝑡𝑠ℎ(𝑒𝑘, 0))𝑑𝑠 𝑑𝑡,

 15222616, 2025, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.12019 by U
niversity O

f Sao Paulo - B
razil, W

iley O
nline L

ibrary on [21/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2192 CABRAL et al.

and

𝑎((𝑥, 𝜉) + ℎ(0, 𝑒𝑘)) − 𝑎(𝑥, 𝜉) − ℎ
𝜕𝑎

𝜕𝜉𝑘

(𝑥, 𝜉) = ℎ2 ∫
1

0

𝑡 ∫
1

0

𝜕2𝑎

𝜕𝜉2
𝑘

((𝑥, 𝜉) + 𝑡𝑠ℎ(0, 𝑒𝑘))𝑑𝑠 𝑑𝑡,

ℎ ∈ ℝ, 1 ⩽ 𝑘 ⩽ 𝑛, combined with the estimate (3.23), give (3.22) in the case |𝛼| + |𝛽| = 1. The equality for general 𝛼, 𝛽 ∈

ℕ𝑛 follows from an iteration of this procedure. It shows that the operator Op(𝑎) belongs to the ∗-algebra 𝐶∞(Ad𝑈) of
smooth elements for the representation Ad𝑈, for every 𝑎 ∈ (ℝ2𝑛). In particular, every element of 

𝐽 is contained in
𝐶∞(Ad𝑈), so we may equip 

𝐽 with the subspace topology induced by the usual Fréchet topology of 𝐶∞(Ad𝑈), which
will be denoted by 𝜏

𝐽
,C∞ . Also, injectivity of the map 𝐿 ∶ 𝑓 ⟶ 𝐿𝑓 allows us to equip 

𝐽 with a Fréchet space topology
𝜏 induced by the natural topology of the function algebra 

𝐽 (ℝ𝑛) defined by the family (3.4) of ∗-norms. Then (3.23)
combined with (3.22) shows that

𝜌𝑚(Op(𝑎)) ⩽ 𝐶 max|𝛾|,|𝛿|⩽𝑛+𝑚
sup

{‖𝜕𝛾
𝑥𝜕𝛿

𝜉
𝑎(𝑥, 𝜉)‖ ∶ 𝑥, 𝜉 ∈ ℝ𝑛

}
, 𝑎 ∈ (ℝ2𝑛), 𝑚 ∈ ℕ, (3.24)

for the same constant 𝐶 above (for the definition of 𝜌𝑚, see (3.8)). When specialized to the operators 𝐿𝑓 (and to functions
𝑓 defined on ℝ𝑛, instead of ℝ2𝑛), this gives

𝜌𝑚(𝐿𝑓) ⩽ 𝐶̃𝑚 max|𝛾|⩽𝑛+𝑚
sup

{‖𝜕𝛾
𝑥𝑓(𝑥)‖ ∶ 𝑥 ∈ ℝ𝑛

}
, 𝑓 ∈ 

𝐽 (ℝ𝑛), 𝑚 ∈ ℕ, (3.25)

which implies that 𝜏 is finer than 𝜏
𝐽
,C∞ (note that 𝐶̃𝑚 depends also on the linear transformation 𝐽).

It is not clear that
𝐽 , when equipped with 𝜏

𝐽
,C∞ , is a closed subspace of 𝐶∞(Ad𝑈). To see that this is indeed the case,

we are going to resort to the “symbol map” 𝑆 constructed in [23]. Consequently, we will need to temporarily assume that
 is a unital C∗-algebra. We make the important observation that the results of [23, Section 2], which will be invoked, in
what follows, are valid for any unital C∗-algebra, and do not require the separability assumption made in that reference.
For a more explicit discussion on this issue, we refer the reader to Appendix C, where in particular we show that 𝐸2𝑛

can be identified with an interior tensor product 𝐸𝑛 ⊗ 𝐸𝑛 (see Lemma C.1); this is used in the definition of the map 𝑆

described next.
Consider the surjective map [23, Theorem 1]

𝑆 ∶ 𝐶∞(Ad𝑈) ⟶ (ℝ2𝑛)

given by

𝑆(𝐴)(𝑥, 𝜉) ∶= (2𝜋)𝑛∕2⟨𝑢 ⋅ 1 ,
{
(𝐷 [(Ad𝑈)(−𝑥, −𝜉)(𝐴)]−1) ⊗ 𝐼𝐸𝑛

}
𝑣 ⋅ 1⟩𝐸2𝑛

, (3.26)

for all 𝐴 ∈ 𝐶∞(Ad𝑈) and (𝑥, 𝜉) ∈ ℝ2𝑛, where 𝐷 ∶=
∏𝑛

𝑗=1
(1 + 𝜕𝑥𝑗

)2(1 + 𝜕𝜉𝑗
)2 and 𝑢 and 𝑣 are (fixed) suitable scalar-

valued functions belonging to 𝐿2(ℝ2𝑛) ∩ 𝐿1(ℝ2𝑛), which are independent of 𝐴 (for the definitions of 𝑢 and 𝑣, see the
statement of Lemma C.2; for a description of the embedding 𝐿2(ℝ𝑛) ↪ 𝐸𝑛, see Appendix D). Then the composition
𝑆◦𝑂𝑝 is the identity operator on (ℝ2𝑛) so that, in particular, 𝑆(𝐿𝑓) = 𝑓, where 𝑓(𝑥, 𝜉) ∶= 𝑓(𝑥 − 𝐽𝜉∕(2𝜋)). Applying
the Cauchy–Schwarz inequality for Hilbert C∗-modules to (3.26) yields an estimate in the opposite direction of the one
given by the Calderón–Vaillancourt–type inequality (3.23), namely, for all 𝐴 ∈ 𝐶∞(Ad𝑈) and 𝑎 = 𝑆(𝐴),

sup {‖𝑎(𝑥, 𝜉)‖ ∶ 𝑥, 𝜉 ∈ ℝ𝑛} ⩽ (2𝜋)𝑛∕2‖𝑢‖2‖𝑣‖2‖𝐷 [(Ad𝑈)(−𝑥, −𝜉)(𝐴)]|𝑥=𝜉=0‖, (3.27)

where we have used that ‖−1‖ = 1 and that Ad𝑈 is a representation by ∗-automorphisms on (𝐸𝑛). So just as the
estimate (3.23) gives a bound for the operator norm of Op(𝑎) in terms of sup-norms of derivatives of 𝑎, the estimate
(3.27) provides a bound for the sup-norm of 𝑎 = 𝑆(𝐴) in terms of operator norms of derivatives of 𝐴. Using (3.22) after
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CABRAL et al. 2193

substituting 𝐴 = Op(𝑏) on (3.27), where 𝑏 ∶= 𝜕
𝛾
𝑥𝜕𝛿

𝜉
𝑎, 𝛾, 𝛿 ∈ ℕ𝑛, 𝑎 ∈ (ℝ2𝑛), gives

sup
{‖𝜕𝛾

𝑥𝜕𝛿
𝜉
𝑎(𝑥, 𝜉)‖ ∶ 𝑥, 𝜉 ∈ ℝ𝑛

}
⩽ (2𝜋)𝑛∕2‖𝑢‖2‖𝑣‖2‖(𝜕𝛾

𝑥𝜕𝛿
𝜉
𝐷) [(Ad𝑈)(−𝑥, −𝜉)(Op(𝑎))]|𝑥=𝜉=0‖. (3.28)

Noting that 𝐿𝑓 = Op(𝑓), (3.28) with 𝛿 = 0 immediately implies

max|𝛾|⩽𝑚
sup

{‖𝜕𝛾
𝑥𝑓(𝑥)‖ ∶ 𝑥 ∈ ℝ𝑛

}
= max|𝛾|⩽𝑚

sup
{‖𝜕𝛾

𝑥𝑓(𝑥, 0)‖ ∶ 𝑥 ∈ ℝ𝑛
}

(3.29)

⩽ max|𝛾|⩽𝑚
sup

{‖𝜕𝛾
𝑥𝑓(𝑥, 𝜉)‖ ∶ 𝑥, 𝜉 ∈ ℝ𝑛

} (3.28)
⩽ 𝐸̃ 𝜌2𝑛+𝑚(𝐿𝑓),

for all 𝑓 ∈ 
𝐽 (ℝ𝑛), 𝑚 ∈ ℕ, and some constant 𝐸̃ > 0, which does not depend on 𝑓 or 𝐽 (indeed, we may choose 𝐸̃ =

16𝑛(2𝜋)𝑛∕2‖𝑢‖2‖𝑣‖2), showing that 𝜏 is coarser than 𝜏
𝐽
,C∞ . Therefore, we conclude that 𝜏 = 𝜏

𝐽
,C∞ .

Remark 3.4. Note that there is a certain “uniformity” aspect in the estimate (3.29): The constant 𝐸̃ that shows up does not
depend on the seminorms under consideration.

Having proved the equality of the topologies 𝜏 and 𝜏
𝐽
,C∞ , we are in a good position to define an appropriate differential

norm on 
𝐽 (ℝ𝑛) (see Definition 2.8):

Theorem 3.5. Let  be a unital C∗-algebra and 𝐽 be a skew-symmetric linear transformation on ℝ𝑛. The topologies of the
pseudodifferential operator algebra 

𝐽 and the function algebra 
𝐽 (ℝ𝑛) are generated by differential norms. In particular,

they are Arens–Michael ∗-algebras.

Proof. It is clear that defining

𝑇0(𝐿𝑓) ∶= ‖𝐿𝑓‖, 𝑇𝑘(𝐿𝑓) ∶=
1

𝑘!

∑
|𝛼|=𝑘

‖𝛿𝛼(𝐿𝑓)‖, 𝐿𝑓 ∈ 
𝐽 , 𝑘 ⩾ 1, 𝛼 ∈ ℕ2𝑛, (3.30)

where the 𝛿𝛼s are the monomials in the generators of the representation Ad𝑈, yields a differential norm 𝑇 ∶ 𝐿𝑓 ⟼

(𝑇𝑘(𝐿𝑓))𝑘∈ℕ on
𝐽 , which generates the Fréchet topology 𝜏

𝐽
,C∞ = 𝜏. Moreover, the family (𝑠𝑚)𝑚∈ℕ of submultiplicative

∗-norms defined in Equation (2.2) generates this same topology. Since the above differential norm on 
𝐽 may be pulled

back to a differential norm on 
𝐽 (ℝ𝑛) by the ∗-isomorphism 𝐿 ∶ 

𝐽 (ℝ𝑛) ⟶ 
𝐽 , all of the conclusions just stated for 

𝐽

are also true for 
𝐽 (ℝ𝑛). □

Remark 3.6. Assume  is a nonunitalC∗-algebra. Since there exists a canonical inclusion
𝐽 (ℝ𝑛) ↪ ̃

𝐽 (ℝ𝑛), we can equip


𝐽 (ℝ𝑛) with the subspace topology induced by 𝜏 = 𝜏̃
𝐽
,C∞ . But the subspace topology defined by the norms in (3.4) is

complete, so 
𝐽 (ℝ𝑛) is also an Arens–Michael ∗-algebra in this case.

Before proving Theorem 3.8, we recall the concept of closure under the holomorphic functional calculus:

Definition3.7 ([34, p. 582]). Let  be a ∗-subalgebra of a C∗-algebra .  is said to be closed under the holomorphic
functional calculus of if, for every element 𝑏 of ̇ and every holomorphic function 𝑓 on an open neighborhood 𝑉 ⊆ ℂ

of 𝜎̇(𝑏), one has 𝑓(𝑏) ∈ ̇.
The next theorem shows some advantages of dealing with a topology, which is generated by a differential (semi)norm:

Theorem 3.8. Let  be a unital C∗-algebra and 𝐽 be a skew-symmetric linear transformation on ℝ𝑛. Then the algebras


𝐽 and 
𝐽 (ℝ𝑛) are spectrally invariant and closed under the C∞ and holomorphic functional calculi of their respective C∗-

completions (which are clearly ∗-isomorphic). They also share the same K-theory of their C∗-completions—more specifically,
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2194 CABRAL et al.

the inclusion maps induce K-theory isomorphisms. Finally, there exists only one C∗-norm on each one of the algebras
𝐽 and

𝐽 (ℝ𝑛).

Proof. Spectral invariance follows from [4, Theorem 3.3(iii)] with𝔄𝜏 = 
𝐽 (ℝ𝑛) and 𝜙 being the identity map, noting that

the locally convex topology of
𝐽 (ℝ𝑛) is already complete, while closure under theC∞-functional calculus follows from [4,

Theorem 3.4]. Therefore, as a consequence of Theorem 2.5, the Fréchet ∗-algebra 
𝐽 (ℝ𝑛) can be equipped with only one

C∗-norm, namely, ‖ ⋅ ‖
𝐽
, while the onlyC∗-norm on

𝐽 is the operator norm ‖ ⋅ ‖ of(𝐸𝑛) (see Definition 3.1). By [34,
Lemma 1.2], spectral invariance of these algebras in their completions is equivalent to being closed under the holomorphic
functional calculus. To prove the statement about the isomorphism of K-theories of ∶= 

𝐽 (ℝ𝑛) and ∶= 
𝐽 (ℝ𝑛), first

note that the group Inv() of invertible elements of  coincides with Inv() ∩ , as a result of the spectral invariance
claim. Moreover, since the Fréchet topology 𝜏̃

𝐽
,C∞ on  is finer than the one induced by the C∗-topology of , the

inclusion map 𝑖 ∶  ↪  is continuous. Therefore, since Inv() is the inverse image of the open set Inv() of under
𝑖, it is open in . Consequently, it follows from [36, Proposition 2, p. 113] that the inversion map on Inv() is continuous
with respect to the (induced) Fréchet topology of . These arguments show that  is a Fréchet algebra with a continuous
inversion map on the open set Inv() (thus, a “bonne algèbre de Fréchet,” according to [6, A.1.2, p. 324]), so the existence
of the K-theory isomorphism follows from [6, Théorème A.2.1, p. 328]. The conclusion for 

𝐽 is obtained in the same
way. □

We now extend the uniqueness result regarding C∗-norms on 
𝐽 (ℝ𝑛) to any C∗-algebra  (unital, or not).

Theorem 3.9. Let  be a C∗-algebra (unital, or not) and 𝐽 be a skew-symmetric linear transformation on ℝ𝑛. Then the
algebras 

𝐽 and 
𝐽 (ℝ𝑛) admit only one C∗-norm.

Proof. It suffices to prove the result for 
𝐽 . We begin by noting that 

𝐽 (ℝ𝑛) is an ideal in ̃
𝐽 (ℝ𝑛): Write the function

𝑓 ∈ ̃
𝐽 (ℝ𝑛) as 𝑥 ⟼ (𝑓0(𝑥), 𝜆(𝑥)), where 𝑓0( ⋅ ) and 𝜆( ⋅ ) have ranges in  and ℂ, respectively. Then by the definition of

the C∗-norm of ̃, the inequality
2‖𝜕𝛼𝑓(𝑥)‖̃ ⩾ max {‖𝜕𝛼𝑓0(𝑥)‖ , |𝜕𝛼𝜆(𝑥)|}

holds, for all 𝑥 ∈ ℝ𝑛 and 𝛼 ∈ ℕ𝑛, so 𝑓0 and 𝜆 belong to
𝐽 (ℝ𝑛) andℂ

𝐽 (ℝ𝑛), respectively. Thus, for every 𝑔 ∈ 
𝐽 (ℝ𝑛) and

𝑥 ∈ ℝ𝑛, we have

(𝑓 ×𝐽 𝑔)(𝑥) = ∫
ℝ𝑛 ∫ℝ𝑛

𝑓(𝑥 + 𝐽𝑢) 𝑔(𝑥 + 𝑣) 𝑒2𝜋𝑖𝑢⋅𝑣 𝑑𝑣 𝑑𝑢

= ∫
ℝ𝑛 ∫ℝ𝑛

(𝑓0(𝑥 + 𝐽𝑢), 𝜆(𝑥 + 𝐽𝑢)) (𝑔(𝑥 + 𝑣), 0) 𝑒2𝜋𝑖𝑢⋅𝑣 𝑑𝑣 𝑑𝑢

= ∫
ℝ𝑛 ∫ℝ𝑛

(𝑓0(𝑥 + 𝐽𝑢) 𝑔(𝑥 + 𝑣) + 𝜆(𝑥 + 𝐽𝑢) 𝑔(𝑥 + 𝑣), 0) 𝑒2𝜋𝑖𝑢⋅𝑣 𝑑𝑣 𝑑𝑢,

so 𝑓 ×𝐽 𝑔 indeed belongs to 
𝐽 (ℝ𝑛) (analogously for 𝑔 ×𝐽 𝑓). Therefore, 

𝐽 is indeed an ideal in ̃
𝐽 .

Now let ‖ ⋅ ‖0 be any C∗-norm on 
𝐽 . Since we know that 

𝐽 is an ideal in ̃
𝐽 , the maps

‖ ⋅ ‖𝐿 ∶ 𝐿𝑓 ⟼ sup
{‖𝐿𝑓◦𝐿𝑔‖0 ∶ 𝐿𝑔 ∈ 

𝐽 , ‖𝐿𝑔‖0 ⩽ 1
}

(3.31)

and

‖ ⋅ ‖𝑅 ∶ 𝐿𝑓 ⟼ sup
{‖𝐿𝑔◦𝐿𝑓‖0 ∶ 𝐿𝑔 ∈ 

𝐽 , ‖𝐿𝑔‖0 ⩽ 1
}

(3.32)

are well-defined on ̃
𝐽 . Let us show that ‖𝐿𝑓‖𝐿 = ‖𝐿𝑓‖𝑅, for all 𝐿𝑓 ∈ ̃

𝐽 . We will give a proof that adapts the strategy
of [27, Lemma 2.1.4, p. 38], which concerns basic facts about the norm of a double centralizer on a C∗-algebra. For every
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CABRAL et al. 2195

𝐿𝑓 ∈ ̃
𝐽 and 𝐿𝑔, 𝐿ℎ ∈ 

𝐽 , we have that ‖(𝐿𝑔◦𝐿𝑓)◦𝐿ℎ‖0 ⩽ ‖𝐿𝑔‖0‖𝐿𝑓‖𝑅‖𝐿ℎ‖0, so

‖𝐿𝑓◦𝐿ℎ‖0 = sup
{‖𝐿𝑔′◦(𝐿𝑓◦𝐿ℎ)‖0 ∶ 𝐿𝑔′ ∈ 

𝐽 , ‖𝐿𝑔′‖0 ⩽ 1
}

⩽ ‖𝐿𝑓‖𝑅‖𝐿ℎ‖0,

which implies the inequality ‖𝐿𝑓‖𝐿 ⩽ ‖𝐿𝑓‖𝑅. Similarly, ‖𝐿𝑔◦(𝐿𝑓◦𝐿ℎ)‖0 ⩽ ‖𝐿𝑔‖0‖𝐿𝑓‖𝐿‖𝐿ℎ‖0, so we obtain

‖𝐿𝑔◦𝐿𝑓‖0 = sup
{‖(𝐿𝑔◦𝐿𝑓)◦𝐿ℎ′‖0 ∶ 𝐿ℎ′ ∈ 

𝐽 , ‖𝐿ℎ′‖0 ⩽ 1
}

⩽ ‖𝐿𝑔‖0‖𝐿𝑓‖𝐿

and, consequently, ‖𝐿𝑓‖𝑅 ⩽ ‖𝐿𝑓‖𝐿. Therefore, ‖𝐿𝑓‖𝐿 = ‖𝐿𝑓‖𝑅. Now, we will show that the map 𝐿𝑓 ⟼ ‖𝐿𝑓‖𝐿 = ‖𝐿𝑓‖𝑅

is a C∗-norm on ̃
𝐽 . To see that the involution is isometric with respect to ‖ ⋅ ‖𝐿, note that ‖𝐿∗

𝑓
‖𝐿 ⩽ ‖𝐿𝑓‖𝑅 = ‖𝐿𝑓‖𝐿 and‖𝐿𝑓‖𝐿 = ‖(𝐿∗

𝑓
)∗‖𝐿 ⩽ ‖𝐿∗

𝑓
‖𝑅 = ‖𝐿∗

𝑓
‖𝐿, for every 𝐿𝑓 ∈ ̃

𝐽 . On the other hand, to obtain theC∗-property for ‖ ⋅ ‖𝐿, first note
that taking the supremum on

‖𝐿𝑓◦𝐿𝑔‖2
0 = ‖(𝐿∗

𝑔◦𝐿∗
𝑓
)◦(𝐿𝑓◦𝐿𝑔)‖0 ⩽ ‖𝐿𝑔‖0‖(𝐿∗

𝑓
◦𝐿𝑓)◦𝐿𝑔‖0

over all 𝐿𝑔 satisfying 𝐿𝑔 ∈ 
𝐽 and ‖𝐿𝑔‖0 ⩽ 1, gives ‖𝐿𝑓‖2

𝐿 ⩽ ‖𝐿∗
𝑓
◦𝐿𝑓‖𝐿, for all 𝐿𝑓 ∈ ̃

𝐽 ; for the reverse inequality, note
that submultiplicativity of ‖ ⋅ ‖𝐿 implies ‖𝐿∗

𝑓
◦𝐿𝑓‖𝐿 ⩽ ‖𝐿∗

𝑓
‖𝐿‖𝐿𝑓‖𝐿 = ‖𝐿𝑓‖2

𝐿. This proves that ‖ ⋅ ‖𝐿 is indeed a C∗-norm
on ̃

𝐽 .
By the uniqueness result proved in Theorem 3.8 (applied to ̃

𝐽 ), we have that

‖𝐿𝑓‖ = ‖𝐿𝑓‖𝐿 ⩽ ‖𝐿𝑓‖0, 𝐿𝑓 ∈ 
𝐽 .

Moreover, if 0 ≠ 𝐿𝑓 ∈ 
𝐽 is fixed, then substituting 𝐿𝑔 by 𝐿∗

𝑓
∕‖𝐿𝑓‖0 in Equation (3.31) yields ‖𝐿𝑓‖𝐿 ⩾ ‖𝐿𝑓‖0. Therefore,‖𝐿𝑓‖ = ‖𝐿𝑓‖𝐿 = ‖𝐿𝑓‖0, for all 𝐿𝑓 ∈ 

𝐽 . But ‖ ⋅ ‖0 is arbitrary, so this shows that the only C∗-norm on 
𝐽 is obtained by

restricting the operator norm ‖ ⋅ ‖ of ̃(𝐸𝑛). □

3.3 The algebra 

𝑱
(ℝ𝒏)

We first prove uniqueness of the C∗-norm for 
𝐽 (ℝ𝑛), for any C∗-algebra  (unital, or not). Then, we prove the spectral

invariance property for 
𝐽 (ℝ𝑛) for a unital .

Theorem 3.10. Let  be a C∗-algebra (unital, or not) and 𝐽 be a skew-symmetric linear transformation on ℝ𝑛. Then there
exists only one C∗-norm on 

𝐽 (ℝ𝑛).

Proof. Let ‖ ⋅ ‖0 be a C∗-norm on 
𝐽 (ℝ𝑛) and ‖ ⋅ ‖

𝐽
be the (unique) C∗-norm of 

𝐽 (ℝ𝑛). Our strategy will be to make
good use of the corresponding result already obtained for the algebra 

𝐽 (ℝ𝑛).
Just as in Theorem 3.9, define two maps on 

𝐽 (ℝ𝑛) by

‖ ⋅ ‖𝐿 ∶ 𝑓 ⟼ sup
{‖𝑓 ×𝐽 𝑔‖0 ∶ 𝑔 ∈ 

𝐽 (ℝ𝑛), ‖𝑔‖0 ⩽ 1
}

and

‖ ⋅ ‖𝑅 ∶ 𝑓 ⟼ sup
{‖𝑔 ×𝐽 𝑓‖0 ∶ 𝑔 ∈ 

𝐽 (ℝ𝑛), ‖𝑔‖0 ⩽ 1
}

(note that ‖ ⋅ ‖𝐿 and ‖ ⋅ ‖𝑅 are well-defined because 
𝐽 (ℝ𝑛) is an ideal in 

𝐽 (ℝ𝑛)). Then a repetition of the arguments
in Theorem 3.9 shows that the map 𝑓 ⟼ ‖𝑓‖𝐿 = ‖𝑓‖𝑅 is a C∗-norm on 

𝐽 (ℝ𝑛). Therefore, by the uniqueness result for
C∗-norms on 

𝐽 (ℝ𝑛) proved in Theorem 3.9, we have, in particular, ‖𝑓‖
𝐽

= ‖𝑓‖𝐿 = ‖𝑓‖0, for every 𝑓 ∈ 
𝐽 (ℝ𝑛). This

proves that restricting ‖ ⋅ ‖
𝐽
is the only way to obtain aC∗-norm on 

𝐽 (ℝ𝑛). In other words, ‖ ⋅ ‖
𝐽
is the onlyC∗-norm

on 
𝐽 (ℝ𝑛). □
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2196 CABRAL et al.

Theorem 3.11. Let  be a unital C∗-algebra and 𝐽 be a skew-symmetric linear transformation on ℝ𝑛. Then the algebra


𝐽 (ℝ𝑛) is spectrally invariant in its C∗-completion 
𝐽 (ℝ𝑛).

Proof. As a consequence of [29, Proposition 5.2, p. 40], the completion  ∶= 
𝐽 (ℝ𝑛) is a nonunital C∗-algebra, so the

proof of spectral invariance of  ∶= 
𝐽 (ℝ𝑛) in  ∶= 

𝐽 (ℝ𝑛) amounts to showing that ̃ is spectrally invariant in ̃.
First note that, by the discussion in Appendix A, the unitization of 

𝐽 (ℝ𝑛) is spectrally invariant in the unitization of


𝐽 (ℝ𝑛): In fact, if  is unital, then 

𝐽 (ℝ𝑛) has a unit element that coincides with that of its C∗-completion (see also
Appendix B). If (𝑓, 𝜇) ∈ ̃ is invertible in ̃, where 𝑓 ∈ 

𝐽 (ℝ𝑛) and 0 ≠ 𝜇 ∈ ℂ, then spectral invariance of 
𝐽 (ℝ𝑛) in its

respective C∗-completion shows that the inverse (𝑓, 𝜇)−1 is equal to an element 𝑔 in the unitization of 
𝐽 (ℝ𝑛) given by

𝑥 ⟼ (𝑔0(𝑥), 𝜇′), with 𝑔0 ∈ 
𝐽 (ℝ𝑛) and 0 ≠ 𝜇′ ∈ ℂ. Hence, 𝑔0 = −𝜇−1(𝑓 ×𝐽 𝑔0) − 𝜇−2𝑓. But because 

𝐽 (ℝ𝑛) is an ideal
in 

𝐽 (ℝ𝑛), this shows that 𝑔 actually belongs to the unitization of 
𝐽 (ℝ𝑛). This establishes the result. □

Remark 3.12. Clearly, the above two results remain valid if we substitute 
𝐽 (ℝ𝑛) by the operator algebra 

𝐽 .

3.4 Other applications

We begin with another consequence of Theorem 2.5.

Theorem 3.13. Let be aC∗-algebra (unital, or not),𝐺 be a finite-dimensional Lie group with Lie algebra 𝔤, and 𝛼 ∶ 𝑔 ⟼

𝛼𝑔 be a strongly continuous representation of 𝐺 implemented by ∗-automorphisms on. Then the ∗-algebra

𝐶∞(𝛼) ∶=
{
𝑎 ∈  ∶ 𝐺 ∋ 𝑔 ⟼ 𝛼𝑔(𝑎) is of class C∞

}
of smooth elements for the representation 𝛼 admits only one C∗-norm, which is the restriction of ‖ ⋅ ‖ to 𝐶∞(𝛼).

Proof. Fix an ordered basis ∶= (𝑋𝑘)1⩽𝑘⩽𝑑 for 𝔤 and denote by 𝛿𝑘 the infinitesimal generator of the one-parameter group
𝑡 ⟼ 𝛼exp 𝑡𝑋𝑘

(exp denotes the exponential map of the Lie group 𝐺). Suppose, for the moment, that  is unital. Equip
𝐶∞(𝛼) with the topology defined by the sequence (𝑇𝑘)𝑘∈ℕ of seminorms given by

𝑇0(𝑎) ∶= ‖𝑎‖ and 𝑇𝑘(𝑎) ∶=

𝑑∑
𝑖1,…,𝑖𝑘=1

1

𝑘!
‖𝛿𝑖1 … 𝛿𝑖𝑘 𝑎‖, where 𝑘 ⩾ 1, 𝑎 ∈ 𝐶∞(𝛼).

Then 𝑇 ∶ 𝑎 ⟼ (𝑇𝑘(𝑎))𝑘∈ℕ is a differential norm on 𝐶∞(𝛼) [4, Example 6.2(i), (ii)], and turns it into a Fréchet ∗-algebra.
Therefore, since𝐶∞(𝛼) is dense in, we conclude just as in Theorem 3.8 via an application of [4, Theorem 3.4] that𝐶∞(𝛼)

is closed under the C∞-functional calculus of . But then Theorem 2.5 tells us that the restriction of ‖ ⋅ ‖ is the only
C∗-norm on 𝐶∞(𝛼).
If  is nonunital, then 𝛼 ∶ 𝑔 ⟼ 𝛼𝑔 extends to a strongly continuous representation 𝛼̃ of 𝐺 by ∗-automorphisms on

the unitization (̃, ‖ ⋅ ‖̃), where 𝛼̃𝑔((𝑎, 𝜆)) ∶= (𝛼𝑔(𝑎), 𝜆), for all 𝑔 ∈ 𝐺, 𝑎 ∈ , and 𝜆 ∈ ℂ. Since we already know that
the only C∗-norm on 𝐶∞(𝛼̃) is the restriction of ‖ ⋅ ‖̃, the result follows at once from a repetition of the arguments of
Theorem 3.9, by observing that 𝐶∞(𝛼) is an ideal in 𝐶∞(𝛼̃) = 𝐶∞(𝛼) ⊕ ℂ. □

Example 3.14. In the scalar case  = ℂ, when 𝐸𝑛 is the usual Hilbert space 𝐿2(ℝ𝑛), H. O. Cordes proved [8] [9, Chapter 8]
that a bounded operator 𝐴 on 𝐿2(ℝ𝑛) is a smooth vector for the canonical action of the (2𝑛 + 1)-dimensional Heisenberg
group by conjugation if, and only if, 𝐴 = Op(𝑎) for some 𝑎 ∈ (ℝ2𝑛). A similar result for the 𝑛-dimensional torus 𝕋𝑛 ∶=

ℝ𝑛∕(2𝜋ℤ)𝑛 is also available in the scalar case [7, Theorem 2]: If for each 𝑦 ∈ 𝕋𝑛, 𝑇𝑦 denotes the translation operator
on 𝐿2(𝕋𝑛), then a bounded operator 𝐴 ∈ (𝐿2(𝕋𝑛)) is such that the map 𝕋𝑛 ∋ 𝑦 ⟼ 𝑇𝑦𝐴𝑇−𝑦 is smooth if, and only if,
𝐴 = Op(𝑎𝑗) for some function (𝑎𝑗)𝑗∈ℤ𝑛 of order zero, meaning that 𝑎𝑗 ∈ 𝐶∞(𝕋𝑛),

𝐴𝑢(𝑥) =
1

(2𝜋)𝑛

∑
𝑗∈ℤ𝑛

𝑎𝑗(𝑥)𝑒𝑖⟨𝑗,𝑥⟩𝑢𝑗, with 𝑢𝑗 ∶= ∫
𝕋𝑛

𝑒𝑖⟨−𝑗, ⋅ ⟩𝑢( ⋅ ),
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CABRAL et al. 2197

for all 𝑢 ∈ 𝐶∞(𝕋𝑛), 𝑥 ∈ 𝕋𝑛, and that, for every multi-index 𝛼 ∈ ℕ𝑛, we have the finiteness condition
sup

{|𝜕𝛼𝑎𝑗(𝑥)|; 𝑗 ∈ ℤ𝑛, 𝑥 ∈ 𝕋𝑛
}

< +∞. Therefore, as a consequence of Theorem 3.13, the algebras
{
Op(𝑎) ∶ 𝑎 ∈ (ℝ2𝑛)

}
and

{
Op(𝑎𝑗) ∶ (𝑎𝑗)𝑗∈ℤ𝑛 has order zero

}
, above, admit only one C∗-norm.

Consider the ∗-algebra 
0 (ℝ𝑛), with 𝐽 = 0; in other words, 

0 (ℝ𝑛) is just the space (ℝ𝑛) equipped with the usual
pointwise product and involution. We now prove a corollary of Theorem 3.9, which relates the “sup norm” (see (3.4))‖ ⋅ ‖ ,0 ∶ 𝑓 ⟼ sup𝑥∈ℝ𝑛 ‖𝑓(𝑥)‖ and the “operator norm” ‖𝑓‖

0
∶= ‖𝐿𝑓‖ on 

0 (ℝ𝑛).

Proposition 3.15. Let  be aC∗-algebra (unital, or not). Then the “sup norm” and the “operator norm” coincide on
0 (ℝ𝑛).

Proof. The norms ‖ ⋅ ‖ ,0 and ‖ ⋅ ‖
0
are bothC∗-norms on

0 (ℝ𝑛), so by Theorem 3.9, wemust have ‖𝑓‖ ,0 = ‖𝑓‖
0
,

for all 𝑓 ∈ 
0 (ℝ𝑛). □

Next, we apply our results to give an alternative proof to propositions [29, Proposition 4.11, p. 36], [29, Proposition 5.4,
p. 41], and [29, Proposition 5.6, p. 42] in a unified manner:

Theorem 3.16. Let  be aC∗-algebra (unital, or not) and 𝐽 be a skew-symmetric linear transformation onℝ𝑛. Then for every
𝐿𝑓 ∈ 

𝐽 , we have the following properties:

(1) ‖𝐿𝑓‖ = sup
{‖𝐿𝑓×𝐽𝑔‖ ∶ 𝑔 ∈ (ℝ𝑛), ‖𝐿𝑔‖ ⩽ 1

}
.

(2) If  is a C∗-subalgebra of the C∗-algebra, so that 𝑓 can be seen as an element of
𝐽 (ℝ𝑛), then ‖𝐿𝑓‖ = ‖𝐿𝑓‖, where‖ ⋅ ‖ and ‖ ⋅ ‖ denote the corresponding operator norms.

(3) If is a C∗-algebra and 𝜃 ∶  ⟶  is a ∗-homomorphism, then ‖𝐿𝜃𝑓‖ ⩽ ‖𝐿𝑓‖ , where (𝜃𝑓)(𝑥) ∶= 𝜃(𝑓(𝑥)), for all
𝑥 ∈ ℝ𝑛. If 𝜃 is injective, then an equality holds.

Proof. The supremum on the right-hand side of Equation (1) and the map associating the number ‖𝐿𝑓‖ to the element
𝐿𝑓 ∈ 

𝐽 are both C∗-norms on 
𝐽 , so (1) and (2) follow from Theorem 3.9.

To see that (3) also holds, first consider the (unique) ∗-homomorphism 𝜃̃ ∶ ̃ ⟶ ̃ between the unitizations of  and
, which extends 𝜃 and sends 1̃ to 1̃. The map 𝐿𝑓 ⟼ ‖𝐿𝜃̃𝑓‖̃ is a C∗-seminorm on ̃

𝐽 , so Proposition 2.1 combined
with Theorem 3.8 imply the estimate ‖𝐿𝜃̃𝑓‖̃ ⩽ ‖𝐿𝑓‖̃ , for all 𝐿𝑓 ∈ ̃

𝐽 . In particular, if 𝐿𝑓 belongs to the ∗-subalgebra
𝐽 ,

then ‖𝐿𝜃𝑓‖ ⩽ ‖𝐿𝑓‖ , which proves our claim. If 𝜃 is assumed to be injective, then 𝐿𝑓 ⟼ ‖𝐿𝜃𝑓‖ is actually a C∗-norm
on 

𝐽 , so the desired equality follows again from Theorem 3.9. □

ORCID
RodrigoA.H.M.Cabral https://orcid.org/0000-0002-6778-8635

ENDNOTES
1We recall that a separately continuous bilinear map from a Fréchet space to an arbitrary locally convex space is automatically (jointly)
continuous [13, Theorem 1, p. 357].

2We note that, as opposed to what is done in [23, Lemma 1], we do not impose the hypothesis that 𝐴 ∈ (𝐸𝑛) must leave (ℝ𝑛) invari-
ant; in fact, we cannot impose such a restriction since, in the definition of the map 𝑆, in Equation (3.26), it is not clear that the operator
𝐷 [(Ad𝑈)(−𝑥, −𝜉)(𝐴)]−1 leaves (ℝ𝑛) invariant.
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APPENDIX A: A REMARK ON SPECTRAL INVARIANCE
When viewing a unital algebra as “not necessarily unital,” by forgetting about its unit, we face an apparent consistency
problem, since two different possible definitions of spectrum seem to be available: the spectrumwith respect to the algebra
itself or with respect to its unitization. Fortunately, it turns out that they “almost” coincide. More specifically, suppose
that  is a unital algebra; then even though there is in this case no compelling reason to do so, we can still consider its
unitization ̃, which becomes isomorphic to the direct sum of algebras  ⊕ ℂ, the isomorphism ̃ ⟶  ⊕ ℂ being
given by (𝑎, 𝛼) ⟼ (𝛼1 + 𝑎, 𝛼). Using this fact, it is then easy to see that the two spectra of an element 𝑎 of , that in
 and that in ̃, are related by 𝜎̃(𝑎) = 𝜎(𝑎) ∪ {0}. As a result, the spectral radius of an element 𝑎 of is independent
of which version is used: 𝑟̃(𝑎) = 𝑟(𝑎). Moreover, 𝑎 is invertible in if, and only if, (𝑎 − 1, 1) is invertible in ̃, their
inverses being related by (𝑎 − 1, 1)−1 = (𝑎−1 − 1, 1) and, similarly, (𝑎, 𝛼) is invertible in ̃ if, and only if, 𝛼 ≠ 0 and
𝛼1 + 𝑎 is invertible in, their inverses being related by (𝑎, 𝛼)−1 = ((𝛼1 + 𝑎)−1 − 𝛼−11, 𝛼−1).
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Wewill now show that there is no ambiguity when dealing with the concept of spectral invariance. Let be an algebra
and be a subalgebra of. If and happen to be unital algebras such that the inclusion of into takes the unit of
to the unit of, both denoted by 1, then we have in fact two potential definitions of spectral invariance and should check
that they agree. Indeed, let us prove that  is spectrally invariant in if, and only if, ̃ is spectrally invariant in ̃:
(1) If (𝑏, 𝛽) ∈ ̃ is invertible in ̃, then 𝛽 ≠ 0 and 𝛽1 + 𝑏 ∈  is invertible in, so if  is spectrally invariant in, (𝛽1 +

𝑏)−1 belongs to  and hence (𝑏, 𝛽)−1 = ((𝛽1 + 𝑏)−1 − 𝛽−11, 𝛽−1) belongs to ̃, proving that ̃ is spectrally invariant
in ̃.

(2) If 𝑏 ∈  is invertible in , then (𝑏 − 1, 1) ∈ ̃ is invertible in ̃, so if ̃ is spectrally invariant in ̃, (𝑏 − 1, 1)−1 =

(𝑏−1 − 1, 1) belongs to ̃ and hence 𝑏−1 belongs to , proving that  is spectrally invariant in.
There remains one other situation where some kind of ambiguity might arise, namely when  is unital, but its unit

1 does not belong to . In this case, even if  has a unit of its own, we shall discard it and regard  as a not necessarily
unital algebra, but need to understand that its unitization ̃ now admits two different unit-preserving embeddings: one
embedding mapping the unit (0, 1) of ̃ to the unit (0, 1) of ̃, and another embedding mapping the unit (0, 1) of ̃ to
the unit 1 of, whose image we shall denote by ̇. Note that ̇ is just the subalgebra of generated by  and the unit 1
of . We claim that ̇ is spectrally invariant in  if, and only if, (i) ̃ is spectrally invariant in ̃ and (ii) no element of
 is invertible in . First of all, it is clear that spectral invariance of ̇ in  implies condition (ii), because if there were
any element 𝑏 of  with an inverse in, spectral invariance would force this inverse to belong to ̇. This, in turn, would
imply 1 ∈ , contradicting the hypothesis that 1 ∉ . As for condition (i), suppose that (𝑏, 𝛽) ∈ ̃ ⊆ ̃ is invertible in ̃.
Then 𝛽 ≠ 0 and 𝛽1 + 𝑏 ∈ ̇ is invertible in, so if ̇ is spectrally invariant in, (𝛽1 + 𝑏)−1 belongs to ̇, which means it
can be written in the form (𝛽1 + 𝑏)−1 = 𝛽′1 + 𝑏′ for some 𝛽′ ∈ ℂ, 𝑏′ ∈ ; but multiplying this equation by 𝛽1 + 𝑏 gives
1 = 𝛽𝛽′1 + 𝛽𝑏′ + 𝛽′𝑏 + 𝑏𝑏′, implying that 𝛽′ = 𝛽−1, and hence (𝑏, 𝛽)−1 = ((𝛽1 + 𝑏)−1 − 𝛽−11, 𝛽−1) = (𝑏′, 𝛽−1) belongs to
̃. This proves that ̃ is spectrally invariant in ̃. For the converse, suppose that 𝛽1 + 𝑏 ∈ ̇ is invertible in. Then 𝛽 ≠ 0,
due to condition (ii), and (𝑏, 𝛽) ∈ ̃ ⊆ ̃ is invertible in ̃, so if ̃ is spectrally invariant in ̃, ((𝛽1 + 𝑏)−1 − 𝛽−11, 𝛽−1) =

(𝑏, 𝛽)−1 belongs to ̃. Hence, (𝛽1 + 𝑏)−1 belongs to ̇, proving that ̇ is spectrally invariant in.
APPENDIX B: WHEN ARE RIEFFEL ALGEBRAS UNITAL?
The main goal of this section is to discuss conditions under which the algebra 

𝐽 (ℝ𝑛) is unital. As a byproduct, we show
that 

𝐽 (ℝ𝑛) can never be unital. We will need, however, a version of the Fourier Inversion Formula for functions in


𝐽 (ℝ𝑛), which we quickly derive in what follows: Let 𝑓 be a function in (ℝ𝑛), 0 ⩽ 𝜙 ⩽ 1 be a compactly supported
smooth function onℝ𝑛, which equals 1 on a neighborhood of 0, and define, for each𝑚 ∈ ℕ∖ {0} and 𝑥 ∈ ℝ𝑛, the function
𝑓𝑚(𝑥) ∶= 𝜙(𝑥∕𝑚)𝑓(𝑥), 𝑥 ∈ ℝ𝑛. Then for each 𝑚 ∈ ℕ∖ {0}, the formula

1

(2𝜋)𝑛 ∫ 𝑒𝑖𝑣⋅(𝑥−𝑢)𝑓𝑚(𝑢) 𝑑𝑢 𝑑𝑣 = 𝑓𝑚(𝑥) = ∫ 𝑒2𝜋𝑖𝑢⋅𝑣 𝑓𝑚(𝑥 + 𝑣) 𝑑𝑢 𝑑𝑣

holds, and integration by parts on the right-hand side integral combined with an induction argument [29, p. 3] gives

∫ 𝑒2𝜋𝑖𝑢⋅𝑣𝑓𝑚(𝑥 + 𝑣) 𝑑𝑢 𝑑𝑣 = ∫ 𝑒2𝜋𝑖𝑢⋅𝑣

[
1

(1 + 𝑢2 + 𝑣2)𝑘

∑
|𝛼|⩽2𝑘

𝐵𝛼(𝑢, 𝑣) 𝜕𝛼𝑓𝑚(𝑥 + 𝑣)

]
𝑑𝑢 𝑑𝑣,

where 𝑘 is an integer greater than 𝑛∕2, each 𝐵𝛼 is a bounded function and the term between brackets is just the devel-
opment of [(1 − Δ∕4𝜋2)𝑀𝐾]𝑘(𝑓), with 𝑀𝐾 being the multiplication operator by the function 𝐾(𝑢, 𝑣) ∶= (1 + 𝑢2 + 𝑣2)−𝑘

and Δ ∶=
∑2𝑛

𝑗=1
(𝜕∕𝜕𝑗)

2. Therefore, taking the limit𝑚 → +∞ together with an application of the Dominated Convergence
Theorem gives

𝑓(𝑥) = lim
𝑚→+∞∫ 𝑒2𝜋𝑖𝑢⋅𝑣

[
1

(1 + 𝑢2 + 𝑣2)𝑘

∑
|𝛼|⩽2𝑘

𝐵𝛼(𝑢, 𝑣) 𝜕𝛼𝑓𝑚(𝑥 + 𝑣)

]
𝑑𝑢 𝑑𝑣

= ∫ 𝑒2𝜋𝑖𝑢⋅𝑣

[
1

(1 + 𝑢2 + 𝑣2)𝑘

∑
|𝛼|⩽2𝑘

𝐵𝛼(𝑢, 𝑣) 𝜕𝛼𝑓(𝑥 + 𝑣)

]
𝑑𝑢 𝑑𝑣 =∶ ∫ 𝑒2𝜋𝑖𝑢⋅𝑣 𝑓(𝑥 + 𝑣) 𝑑𝑢 𝑑𝑣,
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2200 CABRAL et al.

for every fixed 𝑥 ∈ ℝ𝑛, by the definition of oscillatory integrals on p. 3 of the monograph [29]. This establishes our result
(see also [29, Corollary 1.12, p. 9]).
Lemma B.1. The algebra 

𝐽 (ℝ𝑛) is unital if, and only if, the C∗-algebra  is unital.
Proof. If  is unital, then an application of the generalized Fourier Inversion Formula derived above shows that the
constant function 1̃ ∶ 𝑥 ⟼ 1 satisfies 1̃ ×𝐽 𝑓 = 𝑓, for all 𝑓 ∈ 

𝐽 (ℝ𝑛). Applying the involution on both sides of this
equality yields 𝑓 ×𝐽 1̃ = 𝑓, for all 𝑓 ∈ 

𝐽 (ℝ𝑛), so 1̃ is the unit of 
𝐽 (ℝ𝑛).

Conversely, suppose that
𝐽 (ℝ𝑛) is unital, with unit element𝑈 ∶ 𝑥 ⟼ 𝑈(𝑥) ∈ . Let us begin by showing that𝑈 must

be a constant function. Fix an approximate identity (𝑒𝛼)𝛼∈Γ for  and consider the constant functions 𝑓𝛼 ∶ 𝑥 ⟼ 𝑒𝛼, for
all 𝛼 ∈ Γ. Then by the generalized Fourier Inversion Formula, we obtain

𝑒𝛼 = 𝑓𝛼(𝑥) = (𝑓𝛼 ×𝐽 𝑈)(𝑥) = 𝑒𝛼 ∫ 𝑒2𝜋𝑖𝑢⋅𝑣 𝑈(𝑥 + 𝑣) 𝑑𝑢 𝑑𝑣 = 𝑒𝛼 𝑈(𝑥),

for all 𝑥 ∈ ℝ𝑛 and 𝛼 ∈ Γ. This shows that the limit 𝑒 ∶= lim𝛼 𝑒𝛼 exists and that 𝑒 = 𝑈(𝑥), for all 𝑥 ∈ ℝ𝑛. Therefore, 𝑈

is the constant function 𝑈 ∶ 𝑥 ⟼ 𝑒. But if 𝑐 ∈  is fixed and 𝑓𝑐 denotes the constant function 𝑥 ⟼ 𝑐, we may use the
generalized Fourier Inversion Formula again to obtain 𝑐 = 𝑓𝑐(𝑥) = (𝑓𝑐 ×𝐽 𝑈)(𝑥) = 𝑐 𝑒 and 𝑐 = 𝑓𝑐(𝑥) = (𝑈 ×𝐽 𝑓𝑐)(𝑥) = 𝑒 𝑐,
for all 𝑥 ∈ ℝ𝑛, which proves that 𝑒 is indeed the unit element of . □

Remark B.2. We note that the proof of Lemma B.1 shows that the algebra 
𝐽 (ℝ𝑛) can never be unital, for any C∗-algebra

. In fact, if 
𝐽 (ℝ𝑛) were unital, with unit element 𝑈 ∶ 𝑥 ⟼ 𝑈(𝑥) ∈ , then a repetition of the argument above would

force  to be unital. Moreover, 𝑈 would have to be the constant function 𝑥 ⟼ 1 , which does not belong to 
𝐽 (ℝ𝑛).

APPENDIX C: A FEWREMARKS REGARDING NONSEPARABILITY
In this section, we direct our efforts to give explicit proofs for two key lemmas found in [23, section 2], in order to show
that they still remain valid if we drop the requirement of separability on the C∗-algebra  (Ref. [23] deals only with the
Hilbert C∗-module 𝐸𝑛 over a separable unital C∗-algebra ). The first lemma, below, contains the proof of a nonseparable
version of [23, Lemma 1]. Also, we do not make the assumption that  is unital.
Lemma C.1. Let  be a C∗-algebra (unital, or not). For every 𝐴 ∈ (𝐸𝑛), there exists a unique operator 𝐴 ⊗ 𝐼 ∈ (𝐸2𝑛)

satisfying the property that (𝐴 ⊗ 𝐼)(𝑓 ⊗ 𝑔) = (𝐴𝑓) ⊗ 𝑔, for all 𝑓, 𝑔 ∈ (ℝ𝑛).2

Proof. First, let us fix some notations. Denote by 𝜆 the Lebesgue measure on ℝ𝑛, and by 𝐶∞
𝑐 (ℝ𝑛,) the space of -valued

compactly supported smooth functions on ℝ𝑛 (when  = ℂ, we write simply 𝐶∞
𝑐 (ℝ𝑛)).

We begin by showing that the algebraic tensor product 𝐶∞
𝑐 (ℝ𝑛,) ⊗alg 𝐶∞

𝑐 (ℝ𝑛,) is dense in 𝐿2(ℝ2𝑛,) in the 𝐿2-
topology, via an adaptation of the proof of [14, Lemma 1.2.31, p. 29]. If 𝑓 belongs to 𝐿2(ℝ2𝑛,), then 𝑓 can be approximated
by 𝜆-simple functions in the 𝐿2-norm [14, Lemma 1.2.19 (1), p. 23], so it suffices to prove that the indicator func-
tion 1𝐵 of a fixed Borel-measurable subset 𝐵 of ℝ2𝑛 with finite measure can be 𝐿2-approximated by an element in
𝐶∞

𝑐 (ℝ𝑛) ⊗alg 𝐶∞
𝑐 (ℝ𝑛). Since there exists a cube 𝐶 ∶=

∏2𝑛

𝑗=1
[𝑐𝑗, 𝑑𝑗), 𝑐𝑗, 𝑑𝑗 ∈ ℝ, which properly contains 𝐵, we may con-

sider the (restricted) Borel 𝜎-algebra  on 𝐶 and the subsequent algebra  ⊆  of finite unions of cubes of the form∏2𝑛

𝑗=1
[𝑎𝑗, 𝑏𝑗), 𝑎𝑗, 𝑏𝑗 ∈ ℝ, which generates . But, then, given any 𝜖 > 0, an application of [14, Lemma A.1.2, p. 502]

shows that there exists a set 𝐵′ ∈ , which satisfies 𝜆(𝐵Δ𝐵′) < 𝜖, where 𝐵Δ𝐵′ is the symmetric difference 𝐵Δ𝐵′ ∶=

(𝐵 ∪ 𝐵′)∖(𝐵 ∩ 𝐵′) = (𝐵∖𝐵′) ∪ (𝐵′∖𝐵). This shows that 1𝐵 can be approximated by indicator functions 1𝐵′ in the 𝐿2-norm,
where 𝐵′ ∈ . On the other hand, since the indicator function of an interval [𝑎, 𝑏), 𝑎, 𝑏 ∈ ℝ, can be 𝐿2-approximated
by a function in 𝐶∞

𝑐 (ℝ), it follows that every indicator function of a cube in ℝ2𝑛, being a product of indicator func-
tions of real intervals, can be 𝐿2-approximated by a function in 𝐶∞

𝑐 (ℝ𝑛) ⊗alg 𝐶∞
𝑐 (ℝ𝑛). This proves the desired claim that

𝐶∞
𝑐 (ℝ𝑛,) ⊗alg 𝐶∞

𝑐 (ℝ𝑛,) is dense in 𝐿2(ℝ2𝑛,) implying, in particular, that (ℝ𝑛) ⊗alg (ℝ𝑛) is dense in (ℝ2𝑛) in
the 𝐿2-norm.
Now, we treat the tensor product issue. If 𝜙 ∶  ⟶ (𝐸𝑛) is a ∗-homomorphism, we denote by 𝐸𝑛 ⊗𝜙 𝐸𝑛 the inte-

rior tensor product of 𝐸𝑛 with itself [19, p. 41], which is a Hilbert C∗-module over : let 𝑁 be the vector space 𝑁 ∶={
𝑧 ∈ 𝐸𝑛 ⊗alg 𝐸𝑛 ∶ ⟨𝑧, 𝑧⟩𝜙 = 0

}
[19, Proposition 4.5, p. 40]; then the tensor product 𝐸𝑛 ⊗𝜙 𝐸𝑛 is the Banach space com-

pletion of the quotient (𝐸𝑛 ⊗alg 𝐸𝑛)∕𝑁 equipped with the -valued inner product acting on equivalence classes of simple
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CABRAL et al. 2201

tensors as

⟨[𝑓1 ⊗alg 𝑔1], [𝑓2 ⊗alg 𝑔2]⟩𝜙 ∶= ⟨𝑔1,
{⟨𝑓1, 𝑓2⟩𝐸𝑛

}
𝑔2⟩𝐸𝑛

.

For our purposes, we take 𝜙 as the ∗-homomorphism which sends an element 𝑐 ∈  to the left-multiplication operator
𝜙(𝑐)(𝑓) ∶= 𝑐 𝑓, where 𝑓 ∈ 𝐸𝑛 (note that, indeed, 𝜙(𝑐) belongs to (𝐸𝑛)). We will now show that the map

𝜄 ∶ ((ℝ𝑛) ⊗alg (ℝ𝑛), ⟨ ⋅ , ⋅ ⟩𝐸2𝑛
) ⟶ (((ℝ𝑛) ⊗alg (ℝ𝑛))∕𝑁, ⟨ ⋅ , ⋅ ⟩𝜙), 𝜄(𝑓) ∶= [𝑓],

extends to a linear isomorphism 𝜄 ∶ 𝐸2𝑛 ⟶ 𝐸𝑛 ⊗𝜙 𝐸𝑛 which preserves the right -module structure and satisfies⟨𝜄(𝑧1), 𝜄(𝑧2)⟩𝜙 = ⟨𝑧1, 𝑧2⟩𝐸2𝑛
, for all 𝑧1, 𝑧2 ∈ 𝐸2𝑛. First, note that the calculation

⟨[𝑓1 ⊗alg 𝑔1], [𝑓2 ⊗alg 𝑔2]⟩𝜙 = ∫
ℝ𝑛

𝑔1(𝑠)
∗

(
∫

ℝ𝑛

𝑓1(𝑡)
∗𝑓2(𝑡) 𝑑𝑡

)
𝑔2(𝑠) 𝑑𝑠

=

(
∫

ℝ2𝑛

(𝑓1(𝑡)𝑔1(𝑠))∗𝑓2(𝑡) 𝑔2(𝑠) 𝑑𝑡 𝑑𝑠

)
= ⟨𝑓1 ⊗alg 𝑔1, 𝑓2 ⊗alg 𝑔2⟩𝐸2𝑛

,

which holds for all 𝑓1, 𝑔1, 𝑓2, 𝑔2 ∈ (ℝ𝑛), shows that 𝜄 preserves the -valued inner product, so it is an isometry. In
the previous paragraph we have proved, in particular, that (ℝ𝑛) ⊗alg (ℝ𝑛) is dense in (ℝ2𝑛) with respect to the
norm ‖ ⋅ ‖2, so(ℝ𝑛) ⊗alg (ℝ𝑛) is ‖ ⋅ ‖2-dense in𝐸2𝑛. On the other hand, 𝜄[(ℝ𝑛) ⊗alg (ℝ𝑛)] is dense in (𝐸𝑛 ⊗alg
𝐸𝑛)∕𝑁 with respect to the norm ‖ ⋅ ‖𝜙 induced by the -valued inner product ⟨ ⋅ , ⋅ ⟩𝜙, since an application of the Cauchy–
Schwarz inequality for Hilbert C∗-modules gives

‖[(𝑓 − 𝑔) ⊗ ℎ]‖2
𝜙

= ‖⟨(𝑓 − 𝑔) ⊗ ℎ, (𝑓 − 𝑔) ⊗ ℎ⟩𝜙‖ = ‖⟨ℎ,
{⟨(𝑓 − 𝑔), (𝑓 − 𝑔)⟩𝐸𝑛

}
ℎ⟩𝐸𝑛

‖
⩽ ‖𝑓 − 𝑔‖2

𝐸𝑛
‖ℎ‖2

𝐸𝑛
, 𝑓, 𝑔, ℎ ∈ 𝐸𝑛

(an analogous estimate holds for elements of the form [𝑓 ⊗ (𝑔 − ℎ)], 𝑓, 𝑔, ℎ ∈ 𝐸𝑛). Therefore, the map 𝜄 is defined by a
standard extension-by-limits argument, so the conclusion of the lemma follows from the calculation in [19, (4.6), p. 42]: It
shows that, for any given 𝐴 ∈ (𝐸𝑛), there exists a unique operator 𝐴 ⊗ 𝐼 ∈ (𝐸𝑛 ⊗𝜙 𝐸𝑛) satisfying the property that
(𝐴 ⊗ 𝐼)(𝑓 ⊗ 𝑔) = (𝐴𝑓) ⊗ 𝑔, for all 𝑓, 𝑔 ∈ 𝐸𝑛. □

Let 𝛾1 and 𝛾2 be the (scalar-valued) functions on ℝ defined by

𝛾1(𝑡) =

{
𝑒−𝑡, if 𝑡 ⩾ 0

0, if 𝑡 < 0
and 𝛾2(𝑡) =

{
𝑡 𝑒−𝑡, if 𝑡 ⩾ 0

0, if 𝑡 < 0.

Then it is clear that (1 + 𝑑∕𝑑𝑡)𝛾1 = 𝛿𝑡 and (1 + 𝑑∕𝑑𝑡)2𝛾2 = 𝛿𝑡 [11, Theorem 10.1, p. 351], [9, Proposition 2.3, p. 253]. The
functions 𝛾1 and 𝛾2 will play a central role in the following lemma. It provides, in particular, a proof for [23, Lemma 2].

Lemma C.2. Let  be a C∗-algebra (unital, or not). For every 𝑏 ∶ (𝑥, 𝜉) ⟼ 𝑏(𝑥, 𝜉) in 
𝐽 (ℝ2), there exists a unique 𝑎 ∈


𝐽 (ℝ2) such that 𝐷(𝑎) = 𝑏, where 𝐷 ∶= (1 + 𝜕𝜉)2(1 + 𝜕𝑥)2 is considered as an (everywhere defined) operator on 

𝐽 (ℝ2).
Moreover, such 𝑎 is given by the formula

𝑎(𝑥, 𝜉) = ∫
ℝ3

𝑢(𝑠, 𝜂) 𝑒𝑖𝑠𝑡𝑏(𝑠 + 𝑥, 𝑡 + 𝜉) 𝑣(𝑡, 𝜂) 𝑑𝑠 𝑑𝑡 𝑑𝜂, (C1)

where 𝑢(𝑠, 𝜂) ∶= (1 + 𝜕𝜂)[(1 − 𝑖𝜂)2𝛾2(−𝑠) 𝛾2(−𝜂) 𝑒𝑖𝑠𝜂] and 𝑣(𝑡, 𝜂) ∶= 𝛾1(𝑡 − 𝜂)∕(1 + 𝑖𝑡)2, for all (𝑥, 𝜉) ∈ ℝ2.
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2202 CABRAL et al.

Proof. An application of Fubini’s Theorem shows that the integrand on the right-hand side of (C1) is Bochner integrable
on ℝ3. If we define

𝑎(𝑥, 𝜉) ∶= ∫
ℝ2

𝛾2(𝑠) 𝛾2(𝑡) 𝑏(𝑥 − 𝑠, 𝜉 − 𝑡) 𝑑𝑠 𝑑𝑡 = 𝑒−𝑥𝑒−𝜉 ∫
(−∞,𝑥]×(−∞,𝜉]

(𝑥 − 𝑠) (𝜉 − 𝑡) 𝑒𝑠𝑒𝑡 𝑏(𝑠, 𝑡) 𝑑𝑠 𝑑𝑡, (C2)

a straightforward calculation shows that 𝐷(𝑎)(𝑥, 𝜉) = 𝑏(𝑥, 𝜉), for all (𝑥, 𝜉) ∈ ℝ2, and that 𝑎 ∈ 
𝐽 (ℝ2). This establishes

that 𝐷 is a surjective operator on 
𝐽 (ℝ2).

To prove the injectivity of 𝐷, let us first show the injectivity of 1 + 𝜕𝑥 as an operator on
𝐽 (ℝ2). Fix a continuous linear

functional 𝜙 on  and suppose that (1 + 𝜕𝑥)(𝑓) = 0 for some 𝑓 ∈ 
𝐽 (ℝ2), so that (1 + 𝜕𝑥)(𝜙◦𝑓) = 𝜙[(1 + 𝜕𝑥)(𝑓)] = 0.

Thenmultiplying both sides by the exponential function 𝑥 ⟼ 𝑒𝑥 and integrating from 0 to 𝑥 gives (𝜙◦𝑓)(𝑥, 𝜉) = 𝑒−𝑥𝑔(𝜉),
for a certain function 𝑔 defined onℝ and all (𝑥, 𝜉) ∈ ℝ2. But if 𝑔(𝜉0) ≠ 0, for some 𝜉0 ∈ ℝ, then taking the limit 𝑥 → −∞

on both sides of (𝜙◦𝑓)(𝑥, 𝜉0) = 𝑒−𝑥𝑔(𝜉0) implies that lim𝑥→−∞(𝜙◦𝑓)(𝑥, 𝜉0) = +∞, contradicting the boundedness of 𝜙◦𝑓.
Therefore, 𝜙◦𝑓 must be identically zero which, by a corollary of Hahn-Banach’s Theorem, implies that 𝑓 must also be
identically zero. Since the same proof applies for the operator 1 + 𝜕𝜉 we have established, in particular, that 𝐷 is injective.
Hence, 𝐷 is a bijective operator on 

𝐽 (ℝ2).
Finally, to prove formula (C1), consider the vector space of bounded continuous -valued functions 𝑓 on ℝ whose

lateral derivatives exist but fail to match on at most a finite number of points of ℝ. Then 1 + 𝑑∕𝑑𝑠 sends this space into
the space of all -valued functions on ℝ in an injective way (we make the convention that 𝑑∕𝑑𝑠 associates the right
lateral derivative of 𝑓 on all of the points): Indeed, if (1 + 𝑑∕𝑑𝑠)(𝑓) = 0 for such a function and 𝜙 is a continuous linear
functional on , we can adapt the argument of the previous paragraph to conclude that, if {𝑥𝑗

}
1⩽𝑗⩽𝑘

is the set of real points
(ordered in an increasing manner) where the lateral derivatives of 𝑓 fail to match, then there exist constants

{
𝐶𝑗

}
0⩽𝑗⩽𝑘

such that (𝜙◦𝑓)(𝑥) = 𝑒−𝑥𝐶𝑗 , for each 0 ⩽ 𝑗 ⩽ 𝑘 and all 𝑥 ∈ 𝐼𝑗 , where 𝐼0 ∶= (−∞, 𝑥1], 𝐼𝑘 ∶= [𝑥𝑘, +∞) and, when 𝑘 > 1,
𝐼𝑗 ∶= [𝑥𝑗, 𝑥𝑗+1], 1 ⩽ 𝑗 ⩽ 𝑘 − 1 – if 𝑓 is everywhere differentiable, then (𝜙◦𝑓)(𝑥) = 𝑒−𝑥𝐶0, for some constant 𝐶0 and all
𝑥 ∈ ℝ; but then repeating the boundedness argument of the previous paragraph yields 𝐶0 = 0, and the continuity of 𝑓

forces 𝐶𝑗 = 0, for every 1 ⩽ 𝑗 ⩽ 𝑘. Therefore, the identity

𝑓(𝑥) = ∫
ℝ

𝛾1(𝑥 − 𝑠) [(1 + 𝑑∕𝑑𝑠)𝑓](𝑠) 𝑑𝑠 = ∫
(−∞,𝑥]

𝑒𝑥−𝑠[(1 + 𝑑∕𝑑𝑠)𝑓](𝑠) 𝑑𝑠, 𝑥 ∈ ℝ,

holds for all such functions 𝑓, as can be seen by applying the (injective) operator 1 + 𝑑∕𝑑𝑥 to both sides of the equality.
We can use this identity to obtain

∫
ℝ

𝑢(𝑠, 𝜂) 𝑣(𝑡, 𝜂) 𝑑𝜂 =
𝛾2(−𝑠)

(1 + 𝑖𝑡)2 ∫
ℝ

(1 + 𝜕𝜂)[(1 + 𝑖𝜂)2 𝛾2(−𝜂) 𝑒−𝑖𝑠𝜂]𝛾1(𝑡 − 𝜂) 𝑑𝜂

=
𝛾2(−𝑠)

(1 + 𝑖𝑡)2
⋅ (1 + 𝑖𝑡)2 𝛾2(−𝑡) 𝑒−𝑖𝑠𝑡 = 𝛾2(−𝑠) 𝛾2(−𝑡) 𝑒−𝑖𝑠𝑡, 𝑠, 𝑡 ∈ ℝ,

which, when substituted in Equation (C2), gives

𝑎(𝑥, 𝜉) = ∫
ℝ2

[𝛾2(−𝑠) 𝛾2(−𝑡) 𝑒−𝑖𝑠𝑡] 𝑏(𝑥 + 𝑠, 𝜉 + 𝑡) 𝑒𝑖𝑠𝑡𝑑𝑠 𝑑𝑡 = ∫
ℝ3

𝑢(𝑠, 𝜂) 𝑣(𝑡, 𝜂) 𝑏(𝑥 + 𝑠, 𝜉 + 𝑡) 𝑒𝑖𝑠𝑡𝑑𝜂 𝑑𝑠 𝑑𝑡,

for all (𝑥, 𝜉) ∈ ℝ2. This is exactly what we wanted. □

APPENDIX D: THE RELATIONSHIP BETWEEN 𝑳𝟐(ℝ𝒏,) and 𝑬𝒏

In this final section of the Appendix, we will give a quick proof of the fact that 𝐿2(ℝ𝑛,) is continuously embedded in 𝐸𝑛

as a dense subspace. The proof of the lemma below was taken from [24, Proposição 3.9].
LemmaD.1. Let  be aC∗-algebra (unital, or not). There exists a continuous injective linearmap 𝐼 ∶ 𝐿2(ℝ𝑛,) ⟶ 𝐸𝑛 such
that 𝐼(𝑓) = 𝑓, for all 𝑓 ∈ (ℝ𝑛).
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Proof. We shall denote the usual 𝐿2-norm on 𝐿2(ℝ𝑛,) by ‖ ⋅ ‖𝐿2 . Analogously as in Lemma C.1, it can be proved that
(ℝ𝑛) is dense in (𝐿2(ℝ𝑛,), ‖ ⋅ ‖𝐿2). Therefore, the identity map 𝑖 ∶ ((ℝ𝑛), ‖ ⋅ ‖𝐿2) ⟶ ((ℝ𝑛), ‖ ⋅ ‖2) extends
by continuity to a map 𝐼 ∶ 𝐿2(ℝ𝑛,) ⟶ 𝐸𝑛 such that ‖𝐼(𝑔)‖2 ⩽ ‖𝑔‖𝐿2 , for all 𝑔 ∈ 𝐿2(ℝ𝑛,), and 𝐼(𝑓) = 𝑓, for all 𝑓 ∈

(ℝ𝑛).
We will now show that 𝐼 is injective. Suppose 𝐼(𝑓) = 0, for a fixed 𝑓 ∈ 𝐿2(ℝ𝑛,), and let (𝑓𝑚)𝑚∈ℕ be a sequence in

(ℝ𝑛) converging to 𝑓 in (𝐿2(ℝ𝑛,), ‖ ⋅ ‖𝐿2). An application of Hölder’s inequality shows that

‖‖‖‖‖∫ℝ𝑛

(𝑓 − 𝑓𝑚)∗(𝑥) 𝑔(𝑥) 𝑑𝑥
‖‖‖‖‖ ⩽ ∫

ℝ𝑛

‖(𝑓 − 𝑓𝑚)∗(𝑥) 𝑔(𝑥)‖ 𝑑𝑥 ⩽ ‖𝑓 − 𝑓𝑚‖𝐿2 ‖𝑔‖𝐿2 ,

for all 𝑔 ∈ 𝐿2(ℝ𝑛,) and 𝑚 ∈ ℕ. This implies, in particular, that(⟨𝑓𝑚, 𝑔⟩𝐸𝑛
= ∫

ℝ𝑛

𝑓𝑚(𝑥)∗ 𝑔(𝑥) 𝑑𝑥

)
𝑚∈ℕ

converges to ∫
ℝ𝑛

𝑓(𝑥)∗ 𝑔(𝑥) 𝑑𝑥 (D1)

in , for all 𝑔 ∈ (ℝ𝑛). But continuity of 𝐼 implies the convergence of (𝑓𝑚)𝑚∈ℕ to 𝐼(𝑓) = 0 in (𝐸𝑛, ‖ ⋅ ‖2), so the estimate‖⟨𝑓𝑚, 𝑔⟩𝐸𝑛
‖ ⩽ ‖𝑓𝑚‖2 ‖𝑔‖2, for all𝑚 ∈ ℕ and 𝑔 ∈ (ℝ𝑛), shows that lim𝑚→+∞⟨𝑓𝑚, 𝑔⟩𝐸𝑛

= 0, for each fixed 𝑔 ∈ (ℝ𝑛).
Combining this fact with (D1) (substituting 𝑔 by 𝑓𝑚′ , 𝑚′ ∈ ℕ), we obtain

∫
ℝ𝑛

𝑓(𝑥)∗ 𝑓𝑚′(𝑥) 𝑑𝑥 = 0, 𝑚′ ∈ ℕ.

Then another application of Hölder’s inequality gives us

∫
ℝ𝑛

𝑓(𝑥)∗ 𝑓(𝑥) 𝑑𝑥 = lim
𝑚′→+∞∫

ℝ𝑛

𝑓(𝑥)∗ 𝑓𝑚′(𝑥) 𝑑𝑥 = 0,

from which it follows that 𝑓 = 0. This establishes the injectivity of 𝐼. □

Remark D.2. If  is a unital C∗-algebra, then the space 𝐿2(ℝ𝑛) is continuously embedded in 𝐸𝑛 as a subspace: In fact, the
map 𝐽 ∶ 𝐿2(ℝ𝑛) ⟶ 𝐿2(ℝ𝑛,), 𝐽(𝑓) ∶= 𝑓 ⋅ 1 , embeds 𝐿2(ℝ𝑛) isometrically into 𝐿2(ℝ𝑛,), and the composition 𝐼◦𝐽 is an
isometric embedding of 𝐿2(ℝ𝑛) into 𝐸𝑛.
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