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ABSTRACT Layer pruning offers a promising alternative to standard structured pruning, effectively
reducing computational costs, latency, and memory footprint. While notable layer-pruning approaches aim
to detect unimportant layers for removal, they often rely on single criteria that may not fully capture the
complex, underlying properties of layers. We propose a novel approach that combines multiple similarity
metrics for neural network internal representation. Our criterion, called Consensus, leverages shape and
stochastic metrics, such as adaptations of the Bures and Procrustes distances, to create a single expressive
measure of low-importance layers. Our technique delivers a triple-win solution: low accuracy drop, high
performance improvement, and increased robustness to adversarial attacks. With up to 78.80% Floating-
Point Operations (FLOPs) reduction and performance on par with state-of-the-art methods across different
benchmarks, our approach reduces energy consumption and carbon emissions by up to 66.99% and 68.75%,
respectively. Additionally, it avoids shortcut learning and improves robustness by up to 4 percentage points
under various adversarial attacks. Overall, the Consensus criterion demonstrates its effectiveness in creating
robust, efficient, and environmentally friendly pruned models.

INDEX TERMS Deep learning, GreenAI, layer pruning, robustness, similarity metrics, sustainable AI.

I. INTRODUCTION
Deep Learning is advancing machine learning toward
human-level performance in many cognitive tasks such as
computer vision and natural language processing [1]. In this
direction, over-parameterized models have gained popularity
for their ability to represent highly complex patterns in data,
making it easier to solve non-convex problems. On the other
hand, such models suffer from high computational costs
and memory consumption, hindering their applicability in
low-resource and infrastructure-less scenarios. Additionally,
if not properly trained, models are prone to making incorrect
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predictions under adversarial attacks – small perturbations
in the input that force a model to make mistakes in its
predictions –making them unreliable for safety- and security-
critical tasks [2], [3], [4]. These issues pose the following
dilemma: how to obtain high predictive ability, low-cost and
robust models?

Existing studies confirm that pruning strategies emerge
as promising solutions to address the aforementioned
dilemma [5], [6], [7], [8]. For example, state-of-the-
art pruning techniques remove more than 75% of
FLOPs and parameters without compromising model
accuracy [9], [10]. This family of techniques also exhibits
positive results in improving adversarial robustness, even
when training only on clean images or adversarial
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FIGURE 1. Left: Comparison with state-of-the-art on the popular ResNet56 + CIFAR-10 setting. Our Consensus technique achieves one
of the best trade-offs between accuracy and computational reduction (estimated by FLOPs). Compared to state-of-the-art pruning
techniques, our method reduces FLOPs by up to 71% without compromising model accuracy. Right: Comparison between our method
and a recent state-of-the-art layer-pruning criterion: CKA [9]. In this evaluation, we report the mean accuracy delta between multiple
pruning iterations and the original, unpruned, model. We evaluate the models on well-known adversarial and Out-Of-Distribution
(OOD) benchmarks, as well as on clean images to assess generalization. Our Consensus criterion exhibits increased robustness to
adversarial attacks and OOD samples, while maintaining generalization on clean images.

samples [5], [6], [7], [8]. Such benefits have attracted
intense research on pruning techniques and confirm that
it occupies an important place in the era of foundation
models [11], [12].

The spectrum of pruning techniques includes unstructured
and structured approaches [10], [13]. While the first focuses
on removing individual weights, the latter removes entire
neurons (i.e., filters) from the model. Structured pruning is
widely recognized as being more hardware-friendly [8], [14],
as its unstructured counterpart often requires technologies
capable of handling sparse matrix computations to achieve
practical gains.

Recent efforts in structured pruning have focused on
eliminating large structures, such as layers or entire building
blocks [9], [15], [16], [17], [18], [19], [20]. It turns out that
the removal of small structures, such as neurons or filters,
is less effective in reducing the latency (inference time) of
a model [9], [17], [19], [20]. In particular, according to
early studies [21], [22], common metrics such as FLOPs
and the number of parameters exhibit a weak correlation
with latency. Conversely, layer pruning maintains all the
benefits of small structure pruning and also offers additional
advantages [9], [17].

In the context of layer pruning, modern techniques
frequently extend simple filter criteria (e.g., averaging
ℓ1-norm) to assign layer importance, and then remove the
least important ones [15], [23]. Pons et al. [9] confirmed that
these strategies do not adequately capture the underlying
properties of layers and, hence, hurt model accuracy during
pruning (mainly at high compression rates). To address this
problem, the authors proposed applying the Centered Kernel
Alignment (CKA) metric as a pruning criterion. Despite
positive results in generalization (i.e., evaluation on clean
images – i.i.d. samples), the pruned models obtained by

the CKA criterion exhibit suboptimal robustness against
adversarial samples.

Our method, called Consensus, is built upon the ideas
by Pons et al. [9], but here, instead of relying solely on
CKA, we integrate multiple similarity metrics. Our main
motivation relies on the fact that CKA does not satisfy
the triangle inequality, which leads to pitfalls in capturing
representational differences [24], [25]. Additionally, using a
single criterion can result in models that appear to perform
well on i.i.d samples but fail in more challenging situations,
such as adversarial attacks and Out-of-Distribution (OOD)
data. This is because relying on a single criterion can lead
to similar and potentially biased patterns in ranking the
importance of structures, making it difficult to differentiate
between truly important and less important structures.
Consequently, this undermines confidence in these rankings,
as the single criterion may not provide a comprehensive and
accurate assessment of layer importance [26].

Additionally, following the shortcut learning phe-
nomenon [27], [28], we believe that pruned models of a
single criterion may exploit shortcut opportunities from clean
images, learning discriminative representations that struggle
to generalize on more challenging scenarios (i.e., adversarial
attacks and OOD samples). Shortcut learning occurs when
models rely on unintended features or shortcuts that work
well on standard benchmarks but fail under different
conditions [27], [28]. This discrepancy between the intended
and actual learning strategies often leads to suboptimal
predictive ability in OOD scenarios. In this direction, our
results suggest that our criterion yields pruned models that
avoid shortcut opportunities better than the most promising
criterion for layer pruning, as our models achieve superior
trade-offs in generalization and robustness (see Figure 1,
right).
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To compose our Consensus criterion, we use similarity
metric spaces for stochastic neural networks proposed by
Duong et al. [24]. Following Pons et al. [9], we also include
CKA in our criterion. Furthermore, we consider the Wasser-
stein distance to strengthen our metric. Powered by this
set of metrics, the primary contribution of this paper is
to demonstrate that combining multiple similarity metrics
(details in Subsection III-C) as a single pruning criterion
results in more robust and trustworthy pruned models.
Thus, the combination of multiple similarity metrics as a
pruning criterion offers several benefits. The following triad
stands out:

A. LOW ACCURACY DROP
By integrating multiple similarity metrics, our pruning
method maintains high accuracy even at high compression
rates. The comprehensive evaluation of layer importance
reduces the risk of removing critical layers that are essential
for maintaining performance on clean images.

B. HIGH PERFORMANCE IMPROVEMENT
Our approach significantly reduces computational costs by
effectively pruning the less important layers. This leads to
substantial improvements in inference time and memory con-
sumption, making the models more suitable for deployment
in low-resource environments.

C. INCREASED ROBUSTNESS TO ADVERSARIAL ATTACKS
The use of multiple similarity metrics provides a more
robust assessment of layer importance, enhancing themodel’s
resilience against adversarial attacks. By avoiding depen-
dence on a single metric, our method ensures that pruned
models can withstand various adversarial perturbations,
improving their reliability in safety-critical applications.

By combining multiple similarity metrics, our approach
provides a more reliable and robust measure of layer
importance, addressing the limitations of single-metric meth-
ods. Although our method is versatile for other forms of
pruning, we focus on removing layers as previous works
have confirmed its benefits across all standard computational
metrics and beyond [9], [17], [19], [20], as illustrates
Figure 1.

Extensive experiments demonstrate the effectiveness of
our approach. Specifically, on CIFAR-10 and ImageNet,
our method achieves state-of-the-art performance in terms
of accuracy drop and FLOPs reduction. For example, at a
FLOP reduction of up to 78.8%, our method exhibits
low accuracy drop, outperforming existing techniques (see
Figure 1). Additionally, our approach significantly enhances
adversarial robustness, as evidenced by its superior perfor-
mance on multiple adversarial benchmarks, such as CIFAR-
10.2, CIFAR-C, Fast Gradient Sign Method (FGSM), and
ImageNet-C [2], [29].

In summary, our layer-pruning technique 1 surges as a
triple-win solution: low accuracy drop, high performance
improvement, and increased robustness to adversarial attacks.

II. RELATED WORK
Researchers have intensely focused on pruning meth-
ods to reduce model complexity and computational
resources. These techniques are crucial for making high-
performance models more accessible in low-resource
environments [10], [13].

A. UNSTRUCTURED PRUNING METHODS
Out-of-the-shelf pruning methods often rely on criteria
such as the magnitude of weights to identify and zero
out unimportant weights (unstructured pruning) [30], [31].
While effective in reducing model size, these methods face
limitations, such as low variance in importance scores and
difficulties in comparing norms across different regions of the
architecture [23], [26], [32].

Additionally, in the context of Large Language Models,
Sun et al. [12] observed that ℓp-norm criteria fail to capture
unimportant structures when the input varies significantly
in scale. To mitigate this, the authors proposed projecting
a few samples into the norm to measure prunable weights.
Their method belongs to unstructured pruning; therefore,
it requires specialized hardware for sparse computing. For
this purpose, the authors extended their algorithm to employ
N:M structured pruning and leverage NVIDIA’s sparse tensor
cores, which are specialized units within modern GPUs
(i.e., A100) that accelerate computations on models with
structured sparsity [33].

Efforts have been dedicated to the study of more elaborated
criteria for unstructured pruning. For example, Frantar and
Alistarh [34] use a sparse regression solver to remove weights
based on row-wise Hessian reconstruction.

In contrast to the above efforts, our layer-pruning method
offers computational benefits without requiring specific
hardware or software. In addition, due to the similarity
metrics our criterion employs, it can compare LLM represen-
tations; therefore, our Consensus criterion is adaptable to this
family of models. However, this exploration is beyond our
current scope.

B. STRUCTURED PRUNING METHODS
Apart from the unstructured pruning, recent advancements
have shifted focus toward eliminating large structures like
layers [15], [16], [17], [18], [35], [36]. Pruning layers
not only retains the benefits of structural pruning but also
reduces latency [9], [17]. For example, Dror et al. [35] and
Fu et al. [36] use structural reparameterization to merge
layers, reducing model depth and addressing the issue of low
variance in importance scores. The method by Liu et al. [37]
combines a progressive training strategy with block pruning,

1Code is available at: https://github.com/CarolinaTavaresDuarte/
Consensus-Layer-Pruning/
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balancing the trade-offs between depth reduction and perfor-
mance. However, their technique strongly relies on neural
architecture search, making it less directly comparable to
existing layer pruning methods, including our own.

More similar to our work, Pons et al. [9] observed that
extending weights or pruning criteria for scoring layers
is inadequate since they do not capture the underlying
properties of large structures composing the network. For
this purpose, the authors proposed employing the Centered
Kernel Alignment (CKA) metric to identify and remove
unimportant layers. While Pons et al. [9] demonstrated the
effectiveness of CKA in maintaining model generalization,
the CKA criterion exhibits suboptimal robustness against
adversarial samples.

Unlike the aforementioned approaches that rely on a
single metric, our method combines several similarity metrics
to form a comprehensive criterion for identifying low-
importance layers. This approach addresses the limitations
of single-metric methods and enhances the overall perfor-
mance of pruned models. Therefore, our novel criterion
effectively identifies unimportant layers, surpassing existing
layer-pruning methods and other state-of-the-art pruning
techniques.

C. PRUNING AS A FORM OF ADVERSARIAL DEFENSE
Besides computational challenges, another major concern
with deep models is adversarial attacks. These attacks pose
a threat to the reliability of deep learning models, especially
for safety- and security-critical tasks [3], [13].

Techniques such as adversarial training and data augmen-
tation methods aim to enhance robustness but often come
with substantial computational overhead, particularly in the
training phase [38]. Surprisingly, early works confirmed that
pruned models exhibit adversarial robustness under certain
conditions [5], [6], [7], [8].

Particularly, structured pruning enhances robustness
against adversarial attacks by simplifying model complexity.
Mitra et al. [39] explored robustness to natural corruption and
uncertainty calibration in post-hoc pruned models, finding
that pruning significantly enhances uncertainty calibration
and can maintain or improve robustness to natural corruption
compared to unpruned models. Furthermore, Li et al. [40]
demonstrated that pruning enhances certified robustness
by reducing neuron instability and tightening verification
bounds. These evidences underscore that pruning and
adversarial defense mechanisms are orthogonal, allowing
for their combination to yield even more robust models,
improving the safety and reliability of neural networks in
practical tasks. The Consensus technique fosters this field by
combining multiple similarity metrics to identify and remove
low-importance layers. Our approach not only enhances
computational efficiency but also improves robustness
against adversarial attacks, addressing the limitations of
existing pruning methods and contributing significantly to

the development of more efficient and reliable deep learning
models.

III. METHODOLOGY
A. PROBLEM STATEMENT
Following previous works [9], [15], [17], [18], our goal
is to identify and eliminate non-essential layers while
maintaining the model’s predictive ability, even at high
compression rates. This approach is grounded in two key
principles: (I) the residual connections within residual-based
architectures enable information to flow through multiple
paths within the network [41], [42], [43], suggesting that
layers may not always strongly depend on each other,
thus reinforcing the idea of redundancy between structures;
(II) a limited subset of layers is critical to the overall
performance of the network [23], [44]. Based on these
principles, given a network F composed of a layer set L,
our goal is to remove layers to derive a shallower network
F ′ with a reduced set L ′, where |L ′| ≪ |L|. Compared
to the unpruned network F , we expect the pruned network
F ′ to exhibit three key characteristics: low accuracy drop,
high performance improvement, and increased robustness to
adversarial attacks.

B. DEFINITIONS
Let X denote training samples, such as images, and Y
their corresponding class labels. We denote F as a dense,
unpruned, network trained using supervised learning on X
and Y . AssumeM (·,X ) is a function that extracts the feature
representations from a given model using the samples X .
Following Evci et al. [45], [46],M extracts featuremaps from
the layer directly before the classification layer. These feature
maps encapsulate both the spurious and relevant features [46],
corresponding to a high-fidelity representation of the entire
network. Let l ∈ L denote a potential layer for pruning and
S a set of similarity metrics. We denote the pruned network
resulting from the removal of layer l from F , using the
similarity metric s (s ∈ S), as F s

l .

C. SIMILARITY METRICS
The work of Pons et al. [9] introduces a layer pruning
criterion based on the CKA metric to measure the similarity
between the representations of the original neural network
and a candidate layer for pruning. Their study, however,
is limited to the CKA metric while our Consensus criterion
adopts a more comprehensive approach by integrating a set
S of similarity metrics to guide the layer-pruning process.
Our empirical analysis suggests that using this set avoids
the limitations of relying on a single metric, such as the
potential for shortcut learning opportunities. For this purpose,
we consider the metrics developed by Duong et al. [24].
The authors leverage common distance measures, such as
the Procrustes and Bures distances, to create a new set
of metrics capable of comparing stochastic representations
of neural networks. When using these metrics, we take
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into account the structure and scale of noise in neural
responses, an important detail that deterministic metrics
often overlook. Our method also inherits key properties
from these shape metrics, making it invariant to rotations
and effective at measuring distances in high-dimensional
spaces, thus overcoming the limitations of traditional distance
metrics. We also explore interpolated versions of these
metrics that balance the penalization of differences in mean
or covariance, offering a more comprehensive view of neural
representations [26], [47]. Furthermore, we consider the
Wasserstein distance to measure the similarity between the
output distributions of the original and pruned models.

To sum up, we consider the following metrics: Gaussian
Stochastic (α = {0, 1, 2}), Linear (α = {0, 1}), Permutation,
Wasserstein distance, andCKA. Together, thesemetrics allow
us to create a unified and robust measure of low-importance
layers, as we explain below.

D. PROPOSED METHOD
For each similarity metric s ∈ S and layer l ∈ L, we obtain
F s
l as previously defined, and apply M (F s

l ,X ) to extract
its representation, denoted by Rsl . The metric s(·, ·) takes R
and Rsl , where R ← M (F ,X ) (i.e., the representation from
the unpruned model), and outputs the score of l.

Since the similarity metrics have different score mag-
nitudes, for a fair comparison between the importance of
metrics, we sort the layers using the score and assign each
layer a numerical ranking based on its position. In this
scenario, the first layer is the most similar (receiving a
ranking of 1) and the last layer is the least similar (receiving
a ranking of |L|). Then, for each l ∈ L, we sum the respective
rankings from each metric and use the result as the final
Consensus score. Finally, we remove the layer with the lowest
score fromF . In other words, we remove the layer that yields
a representation with the highest similarity compared with
the unpruned network representation. The intuition behind
this process is that by removing the most similar layer,
we preserve the internal representation of themodel and, thus,
retain the underlying information.

Following the layer pruning literatures [9] and [15],
we conduct an iterative process to obtain pruned models
with varying compromises between accuracy drop and
FLOP reduction. After each pruning iteration, we conduct
the common approach of fine-tuning the model in order
to preserve its predictive ability [9], [48]. Algorithm 1
summarizes the process of a single pruning iteration using
the Consensus criterion.

We highlight that the Consensus criterion also works for
filter pruning. However, previous works demonstrated the
benefits of layer pruning over filter pruning [9], [15], [17].
It turns out that layer pruning reduces network depth, directly
addressing model latency and significantly speeding up the
training/fine-tuning stages. Additionally, it also provides the
benefits of filter pruning, such as reductions in FLOPs,
memory footprint, and carbon emission. Therefore, we focus

Algorithm 1 Layer Pruning Iteration Using Our Consensus
Criterion

Input: Trained Neural NetworkF , Candidate Layers l ∈
L Training Samples X , Similarity Metrics S
Output: Pruned Version of F

1: R← M (F ,X ) ▷ Representation extraction of F
2: for s in S do
3: for l in L do
4: F s

l ← F \ l ▷ Removes layer l from F
5: Rsl ← M (F s

l ,X ) ▷ Representation extraction of F
s
l

6: D← D∪ s(R,Rsl ) ▷ Similarity value of layer l w.r.t
the similarity metric s

7: end for
8: D ← ranked(D) ▷ Adds the ranking information for

each layer using the similarity value
9: D← sorted(D) ▷ Sorts the layers using the layer index

10: Ts← D
11: end for
12: for l in L do
13: for s in T do
14: Vl = Vl+Vls[ranking] ▷ Sums the ranking value from

each metric s for the layer l
15: end for
16: end for
17: V ← sorted(V ) ▷ Sorts the layers using the ranked

similarity values
18: n ← argmin(V ) ▷ Gets the first layer in the sorted

ranking (most similar layer)
19: F ← Fln ▷ F becomes its pruned version without layer

l
20: Update F via standard supervised paradigm on X

on this form of pruning and leave exploring our method in
filter pruning for future research.

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
We conduct experiments on CIFAR-10 and ImageNet using
different versions of the ResNet architecture in order to
evaluate the pruning effectiveness of the Consensus criterion.
Throughout both training and fine-tuning phases, we follow
Pons et al. [9] and apply random crop and horizontal flip
as data augmentation. This approach ensures that improve-
ments stem from pruning itself, rather than from additional
techniques such as adversarial training or powerful data
augmentations. We conduct the fine-tuning process for
200 epochs after each pruning iteration using SGD with
momentum 0.9, and a step learning-rate schedule: 0.01 for
epochs 1–100, 0.001 for epochs 101–150, and 0.0001 for
epochs 151–200.

Following previous works [6], [9], we employ model-
specific and agnostic attacks to evaluate the adversar-
ial robustness of the Consensus criterion. For the first,
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we employ the FGSM. For the latter, we use the CIFAR-10.2,
CIFAR-C and ImageNet-C datasets [2], [29]. We consider the
highest level of severity to the semantic-preserving attacks
(severity = 4 to CIFAR-C and severity = 5 to ImageNet-C)
and ϵ = 16/255 to FGSM.
To assess the predictive ability of the unpruned models (F)

against their pruned versions (F ′), we adhere to standard
practices by reporting the difference in accuracy [10], [48]:

1 Accuracy = AccuracyF ′ − AccuracyF (1)

For the semantic-preserving attacks CIFAR-C and
ImageNet-C, we report the average across all possible attacks
as suggested by previous work [2]. Regardless of the dataset,
negative values mean a decrease in accuracy, while positive
values denote an improvement, both measured in percentage
points (pp).

Furthermore, following standard procedures in the pruning
literatures [9] and [48], we define FLOP reduction as the
percentage decrease in FLOPs between the pruned model and
its unpruned counterpart:

FLOP reduction = (1−
FLOPsF ′

FLOPsF
) ∗ 100 (%) (2)

To enable direct comparison with other pruning tech-
niques, we perform the pruning process to achieve spe-
cific FLOP-reduction levels. Specifically, for ResNet32,
ResNet44, and ResNet56, we perform the pruning process
until we reach a FLOP reduction beyond 65.00%. For
ResNet50, we achieve a FLOP reduction of up to 45.28%.
Above these compression rates, the accuracy of the models
drop, and the models collapse. For all experiments, we use an
NVIDIA RTX 4070 GPU.

B. COMPARISON WITH THE STATE OF THE ART
We start our experiments by comparing the proposed method
against top-performing pruning techniques. For this purpose,
we consider representative filter and layer pruning methods
based on the survey by He et al. [10]. For a fair comparison,
we report the results of each method according to the
original paper.

Tables 1 and 2 summarize the results. On CIFAR-10 with
ResNet56, our method achieves state-of-the-art performance
in both terms of accuracy drop and FLOPs reduction.
For example, at a FLOP reduction of up to 60%, our
method obtains one of the best tradeoffs between delta
in accuracy and FLOP reduction. Notably, it achieves a
FLOPs reduction twice as large as other criteria while
simultaneously improving accuracy. At FLOP reduction
above 70%, we observe a similar behavior jointly with CKA.
Figure 1 (left) reinforces these results, showing that our
method is on par with (and often outperforms) existing state-
of-the-art techniques. Finally, at the highest FLOP reduction
achievable by pruning layers (78.80%), our method preserves
accuracy better than CKA [9].

While our method obtained comparable performance with
CKA on CIFAR-10, on the more challenging ImageNet

TABLE 1. Comparison with state-of-the-art pruning methods on CIFAR-10
using ResNet56. The symbols (+) and (−) denote increase and decrease in
accuracy regarding the original (unpruned) network, respectively. For
each level of FLOP reduction (%), we highlight the best results in bold
and underline the second-best results.

TABLE 2. Comparison with state-of-the-art pruning methods on
ImageNet using ResNet50. The symbols (+) and (−) denote increase and
decrease in accuracy regarding the original (unpruned) network,
respectively. For each level of FLOP reduction (%), we highlight the best
results in bold and underline the second-best results.

dataset, we outperformed it by a good margin. We believe
the reason for these results is that, although CIFAR-10 is a
popular dataset for benchmarking pruning methods, it is not
as challenging as ImageNet. Table 2 confirms this, where we
outperform it by up to 0.93 pp with a FLOP reduction of
22.64%. Compared to other pruning techniques, our method
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FIGURE 2. Effectiveness of Consensus vs. Single Similarity Criteria on
ResNet32 for different benchmarks. Overall, Consensus achieves the best
mean accuracy results. Differently from most metrics, our approach
shows improvements in every adversarial attack benchmark while
maintaining the predictive ability on clean images. This highlights that
relying on multiple criteria to make a decision of what layers to prune
results in a superior trade-off in generalization and robustness.

exhibits a behavior similar to that on CIFAR-10: we obtain
one of the best compromises between accuracy drop and
FLOPs reduction.

C. EFFECTIVENESS OF THE PROPOSED
CONSENSUS CRITERION
To confirm our intuition that a Consensus criterion is more
effective than single similarity criteria, we conduct the
following experiment. First, we perform a single pruning
iteration on ResNet32 using the individual metrics that
compose our Consensus. Then, for each criterion, we evaluate
the accuracy of the obtained models on different adver-
sarial attacks (CIFAR-10.2, CIFAR-C, and FGSM) and
clean images.

Following previous works [6], for each criterion, we report
the mean accuracy across all benchmarks. Figure 2 shows the
results. We observe that our Consensus technique achieves
the highest mean accuracy, outperforming the individual
metrics by up to 0.60 pp. We highlight that, in some
scenarios, individual metrics may surpass the performance of
the Consensus criterion, but they are not consistent across all
benchmarks compared to our method. These results reinforce
that combining the strengths of multiple similarity metrics
into a single criterion to guide the pruning process is a robust
and reliable technique, offering many advantages, including
mitigating shortcut opportunities that hinder generalization in
more challenging scenarios such as adversarial attacks and
out-of-distribution (OOD) samples [27], [28].

The reason for the previous results is that our criterion care-
fully selects which structures, particularly layers, to eliminate
from the architecture. To confirm this statement, we compare
our criterion with existing layer pruning methods ranging
from evolutionary algorithms [17], projection methods [15],
Taylor expansion [18], meta-learning [16] and single similar-
ity representation metrics [9].

Tables 3 and 4 show the results. The Consensus technique
is either on par with or surpasses the performance of
state-of-the-art layer pruning methods. Particularly at higher
reduction levels, our method is able to maintain the predictive

TABLE 3. Comparison with state-of-the-art layer-pruning methods on
CIFAR-10 using ResNet56. The symbols (+) and (−) denote increase and
decrease in accuracy regarding the original (unpruned) network,
respectively. For each level of FLOP reduction (%), we highlight the best
results in bold and underline the second-best results.

TABLE 4. Comparison with state-of-the-art layer-pruning methods on
ImageNet using ResNet50. The symbols (+) and (−) denote increase and
decrease in accuracy regarding the original (unpruned) network,
respectively. For each level of FLOP reduction (%), we highlight the best
results in bold and underline the second-best results.

performance with low accuracy drop and, in some cases, even
improve it compared to the unpruned model.

D. ADVERSARIAL ROBUSTNESS OF THE PROPOSED
CONSENSUS CRITERION
To demonstrate the efficacy of our proposed Consensus cri-
terion in adversarial scenarios, we conduct a comprehensive
evaluation focusing on the robustness of the pruned models.
To this end, we utilize four widely recognized benchmarks:
CIFAR-10.2, CIFAR-C, ImageNet-C, and the FGSM attack.
These benchmarks encompass a variety of adversarial attacks
and perturbation scenarios, providing a thorough assessment
of the pruned models’ robustness.

Figure 3 (top-left) shows the results of the Out-
of-Distribution scenario, CIFAR-10.2. Our method out-
performed CKA in most cases, including the highest
compression rate (i.e., above 70%). In particular, at a com-
pression rate of 67.54%, we obtain a notable improvement
of 1.20 pp.
On the FGSM attack (Figure 3, bottom-left), our method

surpasses CKAby a largemargin.More concretely, at a FLOP
reduction of 41.28% and 56.29%, CKA underperformed ours
by 4.14 and 4.29 pp, respectively. We observe a similar
behavior when comparing the methods on the semantic-
preserving attacks, CIFAR-C (Figure 3, top-right) and
ImageNet-C (Figure 3, bottom-right). We reinforce that on
ImageNet without adversarial attacks (Table 2), our criterion
also provides better results in terms of accuracy drop.
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FIGURE 3. Trade-offs between predictive accuracy and computational
performance (FLOP reduction) of pruned models under different types of
adversarial attacks and out-of-distribution (OOD) samples. The figures
show the change in accuracy (indicated as 1 in Accuracy) compared to
the original, unpruned, model as a function of FLOP reduction for four
different benchmarks: CIFAR-10.2 (OOD samples, top-left), CIFAR-C
(semantic-preserving attack, top-right), FGSM (adversarial perturbation
attack, bottom-left) and ImageNet-C (semantic-preserving attack,
botton-right). Blue curves indicate the accuracy at different compression
rates using our Consensus method. The red curves represent the accuracy
using CKA by Pons et al. [9], a promising layer-pruning technique.

Overall, the previous discussion confirms that by inte-
grating multiple similarity criteria, our method effectively
mitigates the limitations of single-metric approaches, leading
to enhanced robustness against adversarial examples.

Even though our method outperforms CKA, it is important
to observe that CKA promotes pruned models less sensitive
to attacks compared to the original, unpruned, model. This
evidence suggests that the similaritymetric is a promising line
of research in the context of pruning.

We also evaluate the adversarial robustness of the
Consensus method against the pruned models defined by
Jordao et al. [6]. In their work, the authors investigated
the effectiveness of pruned models as adversarial defense
mechanisms. The goal is to verify changes in the adversarial
robustness of pruned models after a single pruning iteration.
Compared to the results by Jordao et al. [6], for a FLOP
reduction of 3.75% on ResNet56 (the removal of a single
layer), our Consensus technique exhibits an improvement of
1.48 pp and 0.84 pp on the FGSM and CIFAR-C bench-
marks, respectively. On challenging ImageNet-C, Consensus
demonstrates an improvement of 1 pp for a FLOP reduction
of 5.66% on ResNet50. Although filter pruning is beyond
the scope of this work, when we compare the pruned
models obtained through a filter pruning process, our method
achieves an accuracy improvement of up to 1.18 pp, showing
gains on all available benchmarks. These results confirm that
our Consensus technique delivers remarkable performance,
outperforming filter pruningmethods while also inheriting all
the benefits of layer pruning.

E. EFFECTIVENESS IN SHALLOW ARCHITECTURES
Although modern models rely on the we need to go deeper
paradigm, shallow models still play an important role in
downstream tasks [1]. Particularly, shallow models are more

TABLE 5. Comparison of state-of-the-art pruning methods on CIFAR-10
using ResNet32 and ResNet44. The symbols (+) and (−) denote increase
and decrease in accuracy regarding the original (unpruned) network,
respectively. For each level of FLOP reduction (%), we highlight the best
results in bold and underline the second best results.

attractive in low-resource scenarios, and applying pruning
to them leads to even better performance. On the other
hand, due to their low capacity, shallow models may be
more sensitive to pruning. In this experiment, we assess
the effectiveness of our method in pruning shallow models.
For this purpose, we compare our method with state-of-
the-art pruning techniques on the ResNet32 and ResNet44
architectures. Table 5 summarizes the results.

From Table 5, we highlight the following key observations:
On both architectures, our method notably outperforms CKA
as we increase the FLOP reduction, except for ResNet32 at
the lower compression rate. For ResNet32, the Consensus
method achieves an accuracy improvement of 0.56 with a
47.78% reduction in FLOPs. For ResNet44, it achieves an
improvement of 0.63 with a 53.27% reduction in FLOPs.
Such a finding reinforces that, besides achieving superior
robustness (see Figure 3), a consensus of criteria favors
identifying unimportant layers in shallow architectures.
Moreover, our results are on par with or superior to
top-performing approaches for shallow architectures.

F. GREENAI AND COMPUTATIONAL COSTS
The concept of GreenAI has gained significant attention
in the research community, emphasizing the need for
more environmentally friendly AI practices by reducing the
computational resources required for training and deploying
models [65], [66]. Our layer-pruning technique aligns with
this vision by significantly improving the computational costs
associated with largemodels. Specifically, our prunedmodels
achieve substantial reductions in latency and FLOPs, thereby
decreasing the energy consumption during model training
and inference. These improvements directly translate into
lower carbon emissions, as our (pruned) models require
fewer computational resources for training and fine-tuning
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FIGURE 4. Performance of the Consensus criterion on Transformer
architecture for human activity recognition based on wearable sensors
(tabular data). The blue curves denote the performance of the pruned
models. Positive values indicate an improved accuracy compared to the
original, unpruned, model.

processes [67]. As a concrete example, on ResNet56,
we achieve a reduction of approximately 68.75% in carbon
emissions and 66.99% in financial costs.2

We emphasize that running the Consensus criterion itself
takes less than 2 minutes, while the bulk of computation
and cost arises from the necessary fine-tuning stage to
recover performance, with an average of over one hour per
pruning iteration – an overhead independent of any specific
metric. These findings reinforce the potential of advanced
pruning techniques in promoting sustainable AI practices,
minimizing environmental impact, and contributing to the
GreenAI initiative [67], [68].

G. EFFECTIVENESS IN TRANSFORMER ARCHITECTURES
Recent progress in foundation models frequently relies
on Transformer architectures and their variations [1]. Our
study investigates the effectiveness of the Consensus method
on the widely adopted Transformer architecture. Due to
limited computational resources, we follow Pons et al. [9]
and limit our analysis to tabular data, as Visual Transformers
typically require larger datasets to achieve results on par with
convolutional networks. It is important to mention that our
goal here is not to advance the state-of-the-art but rather
to verify the effectiveness of our layer-pruning technique in
Transformer architectures.

Our Transformer consists of 10 layers, each with 128 heads
and a projection dimension of 64. As in previous experiments,
we conduct a fine-tuning process after each pruning iteration.
We evaluate the effectiveness of our layer-pruning technique
on Transformers for human activity recognition based on
wearable sensors, a popular application involving tabular
data. Details about these datasets are available in the work
by Sena et al. [69].

Figure 4 shows the results. The solid black line indicates
the point where the accuracy drop is zero; thus, pruned

2For reproducibility purposes, we estimate these values using the
MachineLearning Impact calculator [68] and the vast.ai GPU usage prices.

models above or below this line exhibit an improvement
or deterioration in accuracy, respectively. We observe that
our pruning technique reduces FLOPs by up to 80% with a
negligible drop in accuracy, thus confirming its effectiveness
in the Transformers architectures. Furthermore, as the
Consensus technique extracts features usingM (·,X ), pruning
effectiveness varies across datasets, showing dependence on
data nature and Transformer model architecture.

In summary, our Consensus criterion enhances the effi-
ciency of Transformer models in human activity recognition
based on tabular data, with effects depending on the degree
of pruning and the specific dataset.

V. CONCLUSION
Layer pruning is a technique that excels in model compres-
sion and acceleration. However, existing criteria for layer
selection may not fully capture the underlying properties
of these structures. Our approach advances the field by
more comprehensively addressing the limitations of existing
pruning techniques that employ single metrics. These metrics
often struggle to effectively capture the underlying properties
of layers and are prone to the phenomenon of shortcut
learning, where models tend to exploit undesirable shortcuts
in training data that poorly generalize to new situations.
Our Consensus technique preserves model accuracy even
at high compression rates, significantly improves computa-
tional performance by reducing inference time and memory
consumption, and increases robustness to adversarial attacks,
providing a more robust evaluation of layer importance.
Extensive experiments on standard benchmarks and archi-
tectures confirm the effectiveness of our method, achieving
state-of-the-art performance in terms of preserving accu-
racy, FLOPs reduction, and adversarial robustness, thereby
achieving a triple-win outcome. Specifically, we reduce
FLOPs by up to 78.8% with minimal accuracy loss and
improve adversarial robustness by up to 4 percentage points
compared to state-of-the-art methods. Additionally, our
results highlight the benefits for GreenAI, with a significant
reduction of 68.75% in carbon emissions required for the
training and fine-tuning of modern architectures. Since our
Consensus criterion leverages only the similarity of internal
model representations, it is model-agnostic and applicable to
different residual-based architectures. Thereby, we plan to
test the effectiveness of the Consensus criterion in different
architectures, such as recurrent neural networks, graph neural
networks, andmodern Large LanguageModels. Furthermore,
because Consensus currently aggregates per-layer metrics via
a naive (unweighted) sum, we intend to explore alternative
aggregation schemes – such as scale-normalized or rank-
based combinations and learned, data-adaptive weights – to
determine whether they further improve performance and
robustness across datasets and architectures.
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