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1.  Introduction

The first observational evidence that the universe entered a 
period of accelerated expansion was obtained when super-
novae type Ia (SNIa) were found to be fainter than expected 
[281, 282, 313, 314]. This fact has been confirmed by many 
independent observations such as temperature anisotropies of 
the cosmic microwave background (CMB) [286, 292, 351], 
inhomogeneities in the matter distribution [104, 361], the inte-
grated Sachs–Wolfe (ISW) effect [73], baryon acoustic oscilla-
tions (BAO) [128], weak lensing (WL) [106], and gamma-ray 
bursts [206]. Within the framework of general relativity (GR), 
the accelerated expansion is driven by a new energy density 
component with negative pressure, termed dark energy (DE). 
The nature of this unknown matter field has given rise to a 
great scientific effort in order to understand its properties.

The observational evidence is consistent with a cos-
mological constant Λ driving the present epoch of the 

accelerated expansion and a dark matter (DM) component 
giving rise to galaxies and their distributions [230, 288, 
292]. The DM is assumed to have negligible pressure and 
temperature and is termed Cold. Thanks to the agreement 
with observations the model is commonly known as Λ
CDM, to indicate the nature of its main components. While 
favored by the observations, the model is not satisfactory 
from the theoretical point of view: the value of the cosmo-
logical constant is many orders of magnitude smaller than 
what it was estimated in Particle Physics [388]. It was sug-
gested soon that DE could be dynamic, evolving with time 
[84, 232, 276]. This new cosmological model also suffers 
from a severe fine-tune problem known as coincidence prob-
lem [418] that can be expressed with the following simple 
terms: if the time variation of matter and DE are very differ-
ent why are their current values so similar? Cosmological 
models where DM and DE do not evolve separately but 
interact with each other were first introduced to justify the 
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currently small value of the cosmological constant [392, 
393] but they were found to be very useful to alleviate the 
coincidence problem. In this review we will summarize the 
theoretical developments and the observational evidence on 
the reality and nature of a DM/DE interaction and the forth-
coming observational facilities that could eventually lead 
to its detection.

The emergence of galaxies and large scale structure (LSS) 
is driven by the growth of matter density perturbations which 
themselves are connected to the anisotropies of the CMB 
[273]. An interaction between the components of the dark 
sector will affect the overall evolution of the universe and 
its expansion history. The growth of matter and baryon den-
sity perturbations, the pattern of temperature anisotropies of 
the CMB and the evolution of the gravitational potential at 
late times would be different than in the concordance model. 
These observables are directly linked to the underlying theory 
of gravity [192, 389] and, consequently, the interaction could 
be constrained with observations of the background evolution 
and the emergence of LSS.

This review is organized as follows: in this introduction 
we describe the concordance model and its theoretical limi-
nations that motivates the introduction of interacting models. 
Since the nature of DE and DM are currently unknown, in 
section 2 we introduce two possible and different approaches 
to describe the DE and the DM: fluids and scalar fields. Based 
on general considerations like the holographic principle, we 
discuss why the interaction within the dark sector is to be 
expected. In section 3 we review the influence of the inter-
action on the background dynamics. We find that a DM/DE 
interaction could solve the coincidence problem and satisfy 
the second law of thermodynamics. In section 4 the evolution 
of matter density perturbations is described for the phenom-
enological fluid interacting models. In section 5 we discuss 
how the interaction modifies the non-linear evolution and the 
subsequent collapse of density perturbations. In section 6 we 
describe the main observables that are used in section  7 to 
constrain the interaction. Finally, in section 8 we describe the 
present and future observational facilities and their prospects 
to measure or constrain the interaction. In table 1 we list the 
acronyms used in this review.

1.1. The concordance model

The current cosmological model is described by the 
Friedmann–Robertson–Walker (FRW) metric, valid for a 
homogeneous and isotropic universe [387]
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where a(t) is the scale factor at time t, the present time is 
denoted by t0 and the scale factor is normalized to a(t0)  =  1; K 
is the Gaussian curvature of the space-time. We have chosen 
units c  =  1 but we will reintroduce the speed of light when 
needed. A commonly used reparametrization is the conformal 
time, defined implicitly as ( )τ τ=t ad d . In terms of this coor-
dinate, the line element is
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If we describe the matter content of the universe as a perfect 
fluid with mean energy density ρ and pressure p, Friedmann’s 
equations are [212]
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where /=H a a˙  is the Hubble function and ρ p,i i are the energy 
density and pressure of the different matter components, related 
by an equation of state (EoS) parameter /ω ρ= pi i i. In terms 
of the conformal time, the expression ( / )τ= =−H a a aHd d1  
is used. Usually densities are measured in units of the criti-
cal density: /ρ ρΩ = cr with /( )ρ π= H G3 8cr

2 . The curvature 
term can be brought to the right hand side (RHS) by defining 

/( )ρ π= − K Ga3 8K
2 . As a matter of convention, a sub-index 

‘0’ denotes the current value of any given quantity. Due to the 
historically uncertain value of the Hubble constant, its value is 
usually quoted as H0  =  100h kms−1 Mpc−1 so the parameter h 
encloses the observational uncertainty.

The cosmological constant provides the simplest explana-
tion of the present period of accelerated expansion. When Λ 
is positive and dominates the RHS of equation (4) then >ä 0 
and the expansion is accelerated. The accelerated expan-
sion can also be described by the deceleration parameter 

Table 1.  List of commonly used acronyms.

Acronym Meaning

A–P Alcock–Paczynski
BAO Baryon accoustic oscillations
CDM Cold dark matter
CL Confidence level
CMB Cosmic microwave background
DE Dark energy
DETF Dark energy task force
DM Dark matter
EoS Equation of state
EISW Early integrated Sachs–Wolfe
FRW Friedman–Robertson–Walker
ISW Integrated Sachs–Wolfe
KSZ Kinematic Sunyaev–Zeldovich
LBG Lyman break galaxies
LHS Left hand side (of an equation)
LISW Late integrated Sachs–Wolfe
LSS Large scale structure
MCMC Monte Carlo Markov chain
RHS Right hand side (of an equation)
RSD Redshift space distortions
SL Strong lensing
SNIa Supernova type Ia
SW Sachs–Wolfe
TSZ Thermal Sunyaev–Zeldovich
WL Weak lensing
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/( )= − <q a aH¨ 02 . If we set the cosmological constant to 
zero in equations (3) and (4), it can be reintroduced as a fluid 
with energy density /( )ρ π= ΛΛ G8  and an EoS parameter 
ω = −Λ 1. In addition to the cosmological constant and the 
curvature terms the concordance model includes other energy 
density components: Baryons (b), Cold DM (c), and Radiation 
(r), characterized by the EoS parameters ω ω= = 0b c  and 

/ω = 1 3r , respectively. Then, equation  (4) can be expressed 
as ∑Ω = 1i  where the sum extends over all energy densities, 

( )= Λi b c K r, , , , .
If the source of the accelerated expansion is DE (d), its EoS  

parameter could be constant or vary with time but has to sat-
isfy /ω <−1 3d . The ΛCDM refers to the specific case when 
ω = −1d .

In table 2 we present the most recent values given by the 
Planck Collaboration derived by fitting the ΛCDM model to 
the measured CMB anisotropies and other external data sets 
[292]. The quoted errors are given at the 68% confidence level 
(CL). When more general models with 1-parameter extensions 
to the base ΛCDM model are fit to the same data, it is possible 
to derive constraints on the curvature and a constant DE EoS 
parameter. In these two cases, the quoted error bars are at the 
95% CL. The table shows that in the ΛCDM model the energy 
density budget is dominated by ρΛ and ρc. Other components 
like massive neutrinos or the curvature ρK are not dynamically 
important and will not be considered in this review.

1.2.  Observational magnitudes

The first evidence of the present accelerated expansion came 
when comparing the measured brightness of SNIa at redshifts 

⩾z 0.4 to their flux expected in different cosmological models 
[281, 313]. The method relies on measuring distances using 
standard candles, sources with well known intrinsic proper-
ties. In Cosmology, distances are measured very differently 
than in the Minkowski space-time, they are parametrized in 
terms of the time travelled by the radiation from the source to 
the observer by magnitudes such as the redshift and look-back 
time. Depending on the observational technique, distances are 
numerically different and their comparison provides impor-
tant information on the parameters defining the metric. The 

most commonly used distance estimators are luminosity and 
angular diameter distances.

1.2.1.  Redshift z.  If νe and ν0 are the frequencies of a line 
at the source and at the observer, the redshift of the source 
is defined as ( / )ν ν= −z 1e 0 . In Cosmology, the redshift is 
directly related to the expansion factor at the time of emission 
te and observation t0 as [387]

( )
( )

+ =z
a t

a t
1 .

e

0
� (5)

Due to the expansion of the universe, spectral lines are shifted 
to longer wavelengths from the value measured in the labora-
tory. The redshift measures the speed at which galaxies recede 
from the observer but it is not a measure of distance; the inho-
mogeneities in the matter distribution generate peculiar veloc-
ities that add to the velocity due to the Hubble expansion. 
Objects with the same redshift could be at different distances 
from the observer if they are not comoving with the Hubble 
flow. The redshift can be used to define the time variation of 
cosmological magnitudes. For instance, equation  (3) can be 
written in terms of the EoS parameter as
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where the sum extends over all energy density components, 
i  =  (b, c, d, r).

1.2.2.  Luminosity distance DL.  The distance obtained by 
comparing the luminosity L of a standard candle to its mea-
sured flux F is known as luminosity distance / π=D L F4L . 
For the flat universe, the luminosity distance is given in terms 
of the cosmological parameters in the form [387]

∫= +
′
′

−D z cH
z

E z
1

d
,

z

L 0
1

0
( )

( )� (7)

The Hubble function (see equation (6)) encodes the informa-
tion on the time evolution of the different energy components.

1.2.3.  Angular diameter distance DA.  The distance resulting 
from the ratio of the intrinsic size of a standard ruler x to the 
angle θ subtended in the sky is /θ=D xA . It can be expressed 
in terms of the Hubble function as

( ) ( )∫=
+

′
′

−

D
cH
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z

E z1

d
,

z
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0

1

0
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From equations  (7) and (8) these distances verify =DL  
+ z D1 2

A( ) .

1.2.4.  Look-back time tL and age of cosmological sources.  
The look-back time is defined as the difference between the 
age of the universe today and its age at some redshift z

( )
( ) ( )
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+

≡ − −
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′ ′

−t z H
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z E z
t t z d f

d

1
,

z

L 0
1
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Table 2.  Cosmological parameters of the ΛCDM model, derived 
from the CMB temperature fluctuations measured by Planck with 
the addition of external data sets.

H0/(kms−1 Mpc−1) ±67.74 0.46

Ω hb,0
2 ±0.022 30 0.000 14

Ω hc,0
2 ±0.1188 0.0010

ΩΛ,0 ±0.6911 0.0062

ΩK ,0 −
+0.0008 0.0039

0.0040

ωd − −
+1.019 0.080

0.075

Note: Error bars are given at the 68% confidence level. The data for 
curvature and EoS parameter are constraints on 1-parameter extensions to 
the base ΛCDM model for combinations of Planck power spectra, Planck 
lensing and external data. The errors are at the 95% confidence level. Data 
taken from [293].
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where ( ) ( ) ( )= −t z t z t zage L F L  and zF is the redshift of the  
formation of a source observed. If t0 is the age of the universe  
today, then the look-back time is ( ) ( ) ( )= − =t z t z t zL L F age  
− −t t z d f0 age( ) , with = −d f t t z0 L F( ). From stellar popula-

tion synthesis one can estimate the age of a particular galaxy 
and compute its look-back time. Since the redshift of forma-
tion of the object is not directly observable, look-back time as 
tests of cosmological models can only be applied when many 
similar objects are observed at different redshifts in order to 
marginalize over the nuisance parameter d f [87].

1.3.  Problems with the concordance model

Although the concordance model fits reasonably well all the 
available data, it suffers from two fine-tune initial value prob-
lems: the cosmological constant and the coincidence problem.

1.3.1. The cosmological constant problem.  Table 2 shows that 
today Ω ∼Λ 1 which implies that Λ∼ H3 0

2. The corresponding 
energy density is a constant of amplitude  ( )ρ =Λ

−10 GeV47 4. 
The cosmological constant can be interpreted as the energy 
density of the vacuum. At the Planck scale, the contribution to 
the quantum vacuum of the ground state of all known matter 
fields is  ( )ρ = 10 GeVvac

74 4, 121 orders of magnitude larger 
[388]. Therefore, the initial conditions for the concordance 
model requires setting a value of ρΛ that is several orders of 
magnitude smaller than the theoretical expectation.

1.3.2. The coincidence problem.  The energy density associ-
ated to the cosmological constant, ρΛ, is constant in time but 
the DM density varies as ( )ρ ∝ −a tc

3. The CMB blackbody 
temperature, that today is = × −T 2.5 100

4 eV and scales as 
T  =  T0 /a(t), can be used to relate the current ratio of the mat-
ter to cosmological constant energy density to its value at the 
Planck energy scale, =T 10Planck

19 GeV, as

( )
⎛
⎝
⎜

⎞
⎠
⎟

ρ
ρ

ρ
ρ

=Λ Λ
−

−�
t

T

T
10 .

m mPlanck ,0

Planck

0

3
95� (10)

This expression shows that the initial values of the energy den-
sities associated to matter and cosmological constant would 
not be very likely fixed by random processes. At the Planck 
time, the initial conditions are heavily tuned by 95 orders of 
magnitude [418].

The problem of the initial conditions in the ‘concordance’ 
model has led to study different alternatives such as scalar 
fields, fluids with negative pressure and different EoS [4, 84, 
232, 306]; these models are termed quintessence if ω >−1d  
and phantom if ω <−1d . Other popular alternatives are 
k-essence, a scalar field with a non-canonical kinetic energy 
term [33, 94, 96, 332] and the Chaplygin gas, a fluid with EoS 
ρ∝ α−p  (α> 0) [194, 341]. Yet, these models suffer similar 

fine-tune problems [97] and do not fit the observations better 
than the ‘concordance’ model. Furthermore, the cosmological 
constant enjoys a solid motivation since it can be interpreted 
as the vacuum energy density while the alternative models do 
not.

1.4.  Why interacting DM/DE models?

Most cosmological models implicitly assume that matter and 
DE only interact gravitationally. In the absence of further 
interactions, energy is conserved for each component,

( )
ρ

ω ρ+ + =
t

H
d

d
3 1 0.i

i i� (11)

where i  =  (b, c, d, r). In view of the unknown nature of both 
DE and DM, it is difficult to describe these components in 
term of a well established theory. Since DE and DM domi-
nate the energy content of the universe today, it is equally rea-
sonable to assume that these dark components could interact 
among themselves [75] and with other components. A few 
properties can be derived from observations: (A) The DE must 
contribute with a negative pressure to the energy budget while 
the DM pressure is small, possibly zero. (B) The DE coupling 
with baryons is probably negligible, being tightly constrained 
by local gravity measurements [159, 276]. (C) Coupling with 
radiation is also very difficult since photons will no longer 
follow a geodesic path and light deflection of stellar sources 
during solar eclipses would contradict the observations. (D) 
The coupling between DE and DM must also be small since 
the concordance model, where the DE is a cosmological con-
stant and by definition non-interacting, is an excellent fit to 
the data. Of all these possibilities, a DM/DE interaction is the 
most attractive since it can either solve the coincidence prob-
lem by allowing solutions with a constant DM/DE ratio at late 
times or alleviate it, if the ratio varies more slowly than in the 
concordance model.

Modified gravity models can be expressed in terms of the 
DE/DM interaction in the Einstein frame (see section  2.8). 
This equivalence to a DM/DE interaction could be inter-
preted as an extension of the gravitational theory beyond the 
scope of GR, which gives further motivation to our study. 
Unfortunately, since we neither have a clear understanding 
of the nature of DM nor of DE, the nature of their interac-
tion is also an unsolved problem. There is no clear consensus 
on what interaction kernel is the most adequate and differ-
ent versions, based on multiple considerations, coexist in the 
literature. Ultimately, this is a question that must be resolved 
observationally.

2.  Interacting DM/DE models

The present observational data is insufficient to determine the 
nature of the DE, leaving a great freedom to construct models. 
The cosmological constant can be interpreted as a fluid with 
an EoS parameter ω = −Λ 1 (see section 1.1) or, equivalently, 
it can be seen as a scalar field with a vanishing kinetic energy 
[212]. Following this example, it is often assumed that the DE 
is part of the field theory description of Nature, an approach 
that has been extremely successful when applied to the early 
universe. Such an effort is not just a pure theoretical attempt 
of understanding, but also a step towards a general character-
ization of the dark sector.

Rep. Prog. Phys. 79 (2016) 096901
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The lack of information on the nature and dynamics of DM 
and DE makes it difficult to describe these components from 
first principles, in terms of well established physical theories. 
The DE can be treated as a fluid, a scalar field, a vector field, 
etc, and assumptions like the holographic principle can be 
made to construct models. We will review these approaches 
and further we will include the interactions between these DE 
descriptions with DM to show how they can be used to solve 
some of the shortcomings of the concordance model. More 
details can be found in [72].

2.1.  Phenomenological fluid models

In the concordance model the energy density of each fluid 
component i  =  (r, b, c, d), radiation, baryons, CDM and DE, 
respectively, is conserved separately: ( )ρ ω ρ+ + =H˙ 3 1 0i i i  
(equation (11)). In interacting models, the total energy density 
of the dark sector is conserved, but the DM and DE densities 
evolve as

ρ ρ+ =H Q˙ 3 ,c c� (12)

( )ρ ω ρ+ + = −H Q˙ 3 1 ,d d d� (13)

where Q represents the interaction kernel. In the absence of 
a fundamental theory the quantity Q cannot be derived from 
first principles. The interaction introduces only a small cor-
rection to the evolution history of the universe; if | |�Q 0, 
then either the universe would have remained in the matter 
dominated regime (if Q  >  0) or the universe would have not 
experienced a matter dominated period, altering the formation 
of galaxies and large scale structure (if Q  <  0). As in particle 
physics, one would expect the kernel to be a function of the 
energy densities involved, ρ ρ,d c and of time, H−1. The Taylor 
expansion of the interaction terms at first order would be: 

( )ξ ρ ξ ρ= +Q H d c2 1 , where the coefficients ξ ξ,1 2 are constants 
to be determined observationally. Given the lack of informa-
tion, it is convenient to use a single parameter instead of two. 
Three choices can be made here: ξ = 01 , ξ = 02  and ξ ξ=1 2. 
This leads to the following kernels

( )ξ ρ ξ ρ ξ ρ ρ= = = +Q H Q H Q H; ; .c d d c1 2� (14)

In table 3 we present the phenomenological models that will 
be considered in this review. We distinguish phantom and 
quintessence EoS parameters and we analyze only those mod-
els with stable density perturbations (see section 4).

The underlying reason why the interaction alleviates the 
coincidence problem is simple to illustrate. Due to the inter-
action, the ratio of energy densities /ρ ρ=r c d evolves with the 
scale factor as ∝ ζ−r a , where ζ is a constant parameter in the 
range [0, 3]. The deviation of ζ from zero quantifies the sever-
ity of the coincidence problem. When ζ = 3 the solution cor-
responds to the ΛCDM model with ω = −Λ 1 and Q  =  0. If 
ζ = 0 then =r const. and the coincidence problem is solved 
[416]. As examples, let us now consider two specific kernels.

2.1.1.  A solution of the coincidence problem.  The interest  
of model IV is that it has attractor solutions with a constant 
DM/DE ratio, /ρ ρ= =r const.c d . In fact, the past attractor 

solution is unstable and evolves towards the future attractor 
solution. To verify this behavior, we write the equation of the 
DM/DE ratio

( )
ω ξ

ρ ρ
ρ ρ

= − Γ Γ = − −
+r

t
Hr

d

d
3 ,

3
,d

c d

c d

2
2

� (15)

and stationary solutions are obtained imposing ( )Γ =r r 0s s . If, 
to simplify, we hold ωd constant, then

( ) ω
ξ

= − + ± − = − >±r b b b b1 2 2 1 ,
3

4
1.s

d
� (16)

Of these two stationary solutions, the past solution +rs  is unsta-
ble while the future solution −rs  is stable [98, 414]. As the uni-
verse expands, r(t) will evolve from +rs  to the attractor solution 
−rs  avoiding the coincidence problem. This DE fluid model can 

also be seen as a scalar field with a power law potential at early 
times followed by an exponential potential at late times [261]. 
In figure 1 we represent the energy densities of the model with 
kernel ( )ξ ρ ρ= +Q H c d . In (a) the value of the coupling con-
stant ξ = 0.1 was chosen to show that the universe undergoes a 
baryon domination period, altering the sequence of cosmolog-
ical eras. This value of ξ would not fit the observations since 
during most of the matter dominated period baryons would 
dominate the formation of galaxies and this process would 
proceed more slowly within shallower potential wells. The 
matter-radiation equality would occur after recombination so 
that the anisotropies of the CMB would be altered. In (b) the 
smaller value gives rise to the correct sequence of cosmologi-
cal eras.

Model III has also been extensively studied in the literature 
[20, 85, 157, 386]. In this case the ratio evolves as

[ ( ) ]ξ ω= + +r H r˙ 1 3 ;d1� (17)

ω ξ ξ ξ ω= − + − + + +ω ξ− +r r r z r3 1 1 3 ,d d1 0 1 0
3

1 0
d 1( ) /{ ( ) [ ( ) ]}( )

� (18)
where ( )=r r t0 0  is the current DM/DE density ratio. 
Equation  (18) does not have future attractor solutions with 
=r const.; the interaction alleviates the coincidence problem 

but does not solve it. The time evolution of the ratio for differ-
ent kernels is illustrated in figure 2 for a DE EoS ω = −1.1d . 
In (a) the ratio in model IV is constant both in the past and 
in the future. In (b) model III the ratio is constant in the past 
but in the future it will evolve with time, but the variation is 
( / ) ⩽| |r r H˙ 0 0, slower than in ΛCDM, alleviating the coinci-
dence problem.

2.1.2.  Statefinder parameters and the coincidence problem.  
At the background level, it is possible to choose models with 

Table 3.  Phenomenological interacting models considered in this 
review.

Model Q DE EoS

I ξ ρH d2 ω− < <1 0d

II ξ ρH d2 ω <−1d

III ξ ρH c1 ω <−1d

IV ( )ξ ρ ρ+H c d ω <−1d
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a varying EoS parameter such that it reproduces the same 
Hubble function H(z) as the DM/DE interaction models. 
Then, observables such as angular and luminosity distances 
or look-back time can not be used to test the interaction. One 
exception is when DE decays into DM, since ( )ω zd  would take 
imaginary values [86]. At the background level, the dimen-
sionless parameters

( )
χ

χ
= =

−

−aH

a

t
s

q

1 d

d
,

1

3
,

3

3

3 1

2

� (19)

first introduced in [320], are more useful to discriminate cosmo-
logical models. For instance, if ω = const.d  and the energy den-
sity ratio scales as a power law of the scale factor, ∝ ζ−r a  then

( )
( )

( )
χ

ω
ω ω

ζ
= +

+ +
+ − +

+
+ +ζ

ζ

ζ
⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥r z

r z

r z
1

9

2 1 1
1

3

1

1 1
,d

d d
0

0

0

�

(20)
( )

( )
⎜ ⎟
⎛
⎝

⎞
⎠ω ω
ζ

= + − +
+

+ +

ζ

ζ
s

r z

r z
1

3

1

1 1
,d d

0

0
� (21)

and as indicated in section 2.1, a lower value of ζ corresponds 
to a model with a less severe coincidence problem. In figure 3 

we represent the function ( )χ s  for three values of ζ to dem-
onstrate that lower values of ζ correspond to lower curves 
in the χ−s . Hence, for any specific model, the statefinder 
parameters are useful to determine the severity of the coin-
cidence problem. In the particular case of the concordance 
model, these parameters are constants: χ = 1 and s  =  0 and 
any deviation for those values would be an observational evi-
dence against the concordance model. Similar conclusions 
have been reached by [114].

2.2.  More forms of the interaction kernels from 
phenomenology

Here we briefly consider further phenomenological proposals 
of interaction kernels, not included in table 3, that have also 
been discussed in the literatures:

	 (i)	 /( )ξ ρ ρ ρ ρ= +Q H c d c d . At early times (ρ ρ�c d) it is seen 
that r diverges as →a 0, see figure  23 in [86]. Further, 
using equation (4) in [86] and that the above expression 
approaches (in that limit) to ξ ρ≈Q H d, it follows that ξ is 
constrained to be ξ ω≈ −−ar dr da 3 d

1 ( / ) .

Figure 1.  Evolution of energy densities on an interacting DM/DE model with kernel ( )ξ ρ ρ= +Q H d c . Lines correspond to: baryons (solid), 
DM (dashed), DE (dot–dashed) with an EoS parameter ω = −1.1d  and radiation (triple dot–dashed). In (a) ξ = 0.1 and in (b) ξ = 0.01.

Figure 2.  Evolution of the ratio of DM to DE densities for different model parameters. (a) corresponds to model IV and (b) to model III. 
The solid line, common to both panels, corresponds to the concordance model, while the dashed lines correspond to different interaction 
kernel parameters.
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	(ii)	 ( )ξ ρ ρ= − +Q ˙ ˙c d  [325]. This model interpolates between 
radiation dominance and a far future de Sitter phase and 
is in good agreement with observational data; however, 
the DM component is not exactly cold, ω = −

+0.049c 0.460
0.181.

	(iii)	 ( )ρ ρ= Γ + ΓQ 3 d d c c  this interaction term was motivated 
by models in reheating, curvaton, and decay of DM into 
radiation. In order to alleviate the coincidence problem 
and allow the ratio r to be positive and finite at early and 
late times, the constant coefficients Γ must have opposite 
signs and satisfy Γ >Γd c. In this kind of models the matter 
perturbations stay finite at all times. However, with these 
models we are unable to solve the coincidence problem 
and, simultaneously, ensure that ρc and ρd never become 
negative [82]. In the particular case that Γc vanished these 
constraints can be met, but the DE dominated phase 
would be transitory and the universe would revert to DM 
domination in contradiction to the second law of thermo-
dynamics [305]. Further, r would diverge irrespectively 
of whether both Γ coefficients were different from zero or 
just one of them.

	(iv)	 ρ φ= ω− +Q a ḟn0
3 1 n ( )( ) , this interaction term is not given 

a priori but ascertained from the cosmic dynamics [375]. 
Here ( )φf  is a function of the scalar field, φ, which 
interacts with the dominant background fluid (matter or 
radiation) and plays the role of a cosmological constant 
since the corresponding EoS is set to −1. This function 
obeys ∝f t3, and the subindex n stands for matter and 
radiation in the dust and radiation eras, respectively. In 
this scenario Q is fixed to zero in the early inflation phase 
and the last de Sitter expansion but it differs from zero in 
both the radiation and matter eras.

	(v)	In the scenario proposed in [376] DE (in the form of a 
cosmological constant), DM and radiation arise from 
the action of a Higgs-like mechanism on an underlying 
tachyon field. A small time dependent perturbation in the 
EoS of the cosmological constant, so that ( )ω ε= − + t1d , 
leads to a small shift in the EoS of radiation and matter. 
The pressure of the latter results slightly negative whence 

it contributes to drive the acceleration. The three comp
onents interact non-gravitationally with each other via two 
interaction terms, namely, ¯αρ=Q ḋ1  and ¯βρ=Q ṙ2  (the 
over-bars indicates that we are dealing with the shifted 
energy densities). Different dynamics follow depending 
on whether | | > | |Q Q1 2  or | | > | |Q Q2 1  or =Q Q1 2.

	(vi)	In [342] the interaction was taken in the form αρ=Q ċ, 
βρ=Q ḋ, and also ( )σ ρ ρ= +Q ˙ ˙c d . In all three instances 

no baryonic matter is considered and ω >−1d . In each 
case the analysis of the corresponding autonomous 
system reveals the existence of a late time stable attractor 
such that the ratio between both energy densities is of the 
order of unity, thus solving the coincidence problem.

Other linear and nonlinear kernels and their background evol
ution have been extensively studied in [99].

2.3.  Scalar fields in cosmology

From the observational point of view, phenomenological 
fluid models are viable candidates of DM and DE; they fit 
the observational data with realistic interaction kernels [378, 
381], although they are not motivated by a dynamical prin-
ciple. Alternative formulations are usually based on a particle 
field approach. This choice not only has been very useful to 
describe the physics of the early universe, but in this context 
it also defines what physical principles are involved. The situ-
ation is somewhat clearer for the DM, with several candidates 
defined in terms of extensions of the Standard model. The 
first DM candidate were massive neutrinos, ruled out since 
they failed to explain the formation of Large Scale Structure 
(LSS) [71, 360]. Alternative candidates were sterile neutrinos 
[122] and axions, introduced to explain CP violation [272]. 
Similarly, supersymmetry produces candidates such as the 
axino, the s-neutrino, the gravitino and the neutralino. These 
particles need to be stable so they must be the lightest super-
symmetric particle. This leaves a small number of candidates, 
basically the neutralino and the gravitino [63]. The situation 
could be more complex if the DM is not described by a single 
field but by a whole particle sector with nontrivial structure. In 
string theory, the second piece of the symmetry ⊗E E8 8 could 
describe a sector that would interact with baryonic matter only 
via gravity [116, 155]. However, in spite of the many candi-
dates that have been proposed and the exhaustive searches that 
have been carried out in the last decades, no concrete evidence 
of the particle nature of the DM has emerged.

The nature of DE is an even more troubling question. 
When the theoretical description of DE is made very general, 
models can be constructed using a wide variety of choices 
at the expense of loosing predictability. This great freedom 
indicates that the description of DE is more a scenario than 
a physical theory, similarly to what happens with inflation-
ary models. The best guiding principles are simplicity and 
the consistency of the theoretical foundation. Let us assume 
that DE can be described in terms of quantum fields. Its pres
sure should be negative to generate a period of accelerated 
expansion (ω −1 3d ⩽ / , see equation (3)). Even in this simpli-
fied approach, quantum field theory already imposes severe 

Figure 3.  Selected curves ( )χ s  for a DE EoS parameter ω = −1.1d  
and r0  =3/7 and three different values of ξ. The thick lines 
correspond to the past evolution in the interval z  =  [0, 20] and the 
thin lines to the future evolution in z  =  [−0.9, 0].
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restrictions if ω <−1d  [378]. The difficulty of constructing 
suitable quantum field models is illustrated by the fact that 
several models correspond to non-renormalizable Lagrangians 
[19, 40, 245]. There are also models with fermionic [311, 312, 
319] and vectorial DE [34, 210, 385, 420]. Although grav-
ity and other fields are purely classical and in spite of grav-
ity being itself non-renormalizable, the need to consider 
non-renormalizable models is a clear indication that, at the 
moment, the description of DE must be phenomenological.

2.4.  Field description and the DM/DE interaction

The simplest DM description is in terms of fermions with pres
sure vanishing at decreasing momenta (small energy). Let us 
consider the following canonical fermionic field Lagrangian, 
see [409]

¯ ( ⧸ )    = − ϒ − ϒ+L Dg mi non derivative interactions.� (22)

The energy-momentum tensor is defined as ( / )δ δ≡µν µ
ν− LT e e ea a1  

where µe a is the vierbein and e the corresponding determinant. 
For a fermion field ϒ, it is given by

( )γ γ γ γ= ϒ ∇ϒ+ ϒ ∇ ϒ−∇ϒ ϒ−∇ϒ ϒµν µ ν ν µ µ ν ν µT
i

4
.� (23)

For a homogeneous universe the spatial part of the energy-
momentum tensor vanishes and so does the pressure. This is 
not correct for relativistic fermions since the average momen-
tum does not vanish and originates a pressure that, like in the 
case of massive neutrinos, would alter the formation of LSS. 
If we consider that DM and DE interact, then this constraint 
can be evaded since the pressure of each component is not 
well defined. An interaction gives the freedom to choose what 
fraction of the pressure corresponds to the DM or to the DE. A 
natural choice is to take the interaction term to be in the fermi-
onic component, then the corresponding background pressure 
vanishes and matter behaves as a pressureless fluid. Therefore, 
hereafter we will describe the DM as a non-relativistic fer-
mion with zero pressure, i.e. the DM is ‘cold’. A discussion 
on what models are compatible with observational constraints 
is given in [72, 269].

Scalar fields are the quantum fields that provide the sim-
plest description of DE. If K is the kinetic and V the potential 
energy of the field ϕ, the energy density and pressure associ-
ated to the field would be ρ ∼ +K Vd  and ∼ −p K Vd , respec-
tively. If | | >V K, it is possible to find configurations where 
the EoS is negative enough (i.e. /ω <−1 3d ) to give rise to a 
cosmological period of accelerated expansion. In a field theo-
retic formulation, the interaction is not only allowed but is 
actually inevitable. In this section we discuss scalar fields with 
renormalizable Lagrangians and defer to the next section a 
non-renormalizable case. 

A fermionic DM and a renormalizable DE model can be 
described by the Lagrangian

ϕ ϕ= ϒ ϒ+ + ϒϒL L Fi .s( ∂̸) ( ) ( )� (24)

where ( )ϕ≡F F  is an effective interaction. Any generic 
Lagrangian would contain an interaction term except if such 
term is forbidden by a given symmetry [392]. To continue 

further, let us assume that the DE can be described as an 
uncharged scalar ϕ obeying the Lagrangian

( ) ( )ϕ ϕ ϕ ϕ= ∂ ∂ −µ
µ�L V

1

2
,s� (25)

where ( )ϕV  is the scalar field potential (of arbitrary shape). 
The sign = −� 1 describes a phantom field. For simplicity, we 
will restrict our study to = +� 1 (see [269] for details) and to 
the linear relation ( )ϕ βϕ= −F M . Then M is the usual fer-
mion mass and β a Yukawa coupling constant.

The interaction term in equation (24) couples DM and DE. 
The Hubble function (equation (3)) for a FRW universe that 
also includes baryons and radiation becomes [212]

( )⎜ ⎟
⎛
⎝

⎞
⎠

π
ρ ρ ρ ϕ ϕ= + + + +H

G
V

8

3

1

2
˙ .r b c

2 2� (26)

In this simplified model, the different components evolve 
separately and their energy densities are independently con-
served except for DM and DE. For these two components, the 
energy-momentum conservation equations are

/( )ρ ρ ρ ϕ ϕ+ = − −� �H˙ 3 ˙ 1 ,c c c� (27)

ϕ ϕ ϕ ρ ϕ+ + = −′ � �H V¨ 3 ˙ 1 ,c( ) /( )� (28)

where /β=� M; dots correspond to time derivatives and 
primes to derivatives with respect to the scalar field ϕ. 
Equations (27) and (28) show that if DM and DE are members 
of a unified quantum field description, they interact.

Although from the theoretical point of view, quantum field 
models constitute an improvement over the simpler phenom-
enological interaction [111], the coupling is still undetermined. 
Several attempts have been tried, including modifications 
of the space-time dimensions [408]. Alternative exponential 
forms of ( )ϕF  have been extensively considered in the lit-
erature giving different coupling kernels [19, 40, 245, 403].  
The field description is a possible understanding on the interac-
tion between dark sectors, however it brings another hidden fine 
tuning problem which needs to be carefully dealt with.

2.5.  Scalar fields as k-essence and tachyons

When renormalizability is not required, models become 
increasingly more complex. For example, k-essence is a 
model of a scalar field defined by a non-standard kinetic term

( ) ( )ϕ ϕ ϕ= = µ
µL p X X D D, ,

1

2
.� (29)

If the kinetic term is separable in its variables ϕ and X, then 
the k-essence field can be transformed from a tracking back-
ground into an effective cosmological constant at the epoch 
of matter domination [32]. We will restrict our study to this 
particular Lagrangian because of its simplicity. Our interest 
is driven by string theory and supergravity where such non-
standard kinetic terms appear quite often. The Lagrangian of 
equation (29) generalizes the simplest scalar field models. In 
the limit of small spatial derivatives the Lagrangian is equiva-
lent to that of a canonical field.

Rep. Prog. Phys. 79 (2016) 096901



Review

9

Another non-renormalizable class of models is related to 
tachyons in string theory. The tachyon Lagrangian, derived 
from brane developments is given by [175, 335–340]

( ) ( )ϕ α ϕ ϕ= − − ∂ ∂µ µL V 1 .tach
� (30)
This Lagrangian has the form discussed by [32] and has been 
used to give general descriptions of the components of the 
dark sector [56, 57]. It can be implemented in models with 
interaction. One such interacting Lagrangian is

[ ] ( )γ γ ϕ= + ϒ ∇ ϒ− ϒ
←
∇ ϒ − ϒϒµ

µ µ
µL L F

i

2
,tach� (31)

where ϒ is a fermionic field for DM and ϕ a bosonic field 
for DE. The linear (for canonical renormalizable bosons) 
model ( )ϕ βϕ= −F M  has been studied in detail (see sec-
tion 2.4) and shown to be compatible with the observational 
constraints, although it is not renormalizable because of the 
bosonic non-linearities [248]. The equations of motion can 
be derived from equation  (31) and for the linear case they 
read

( )γ βϕ∇ϒ− − ϒ =µ
µ Mi 0,� (32)

( ) ( )

¯
( )

α ϕ α
ϕ ϕ ϕ
α ϕ ϕ

ϕ
ϕ

β
ϕ

α ϕ ϕ

∇ ∂ +
∂ ∇ ∂ ∂

− ∂ ∂
+

=
ϒϒ

− ∂ ∂

µ
µ

µ
µ σ

σ

µ
µ

µ
µ

V

V

1

d ln

d

1 .

2

�

(33)

Neglecting spatial gradients, the motion of the scalar field 
becomes

( ) ( ) ¯
( )

⎡
⎣⎢

⎤
⎦⎥

ϕ αϕ
α

ϕ
ϕ

ϕ
β
α ϕ

αϕ= − − + −
ϒϒ

−
V

H
V

¨ 1 ˙
1 d ln

d
3 ˙ 1 ˙ ,2 2

� (34)

where /=H a a˙  is the Hubble function. Fermionic current con-
servation implies

( ¯ ) ¯ ¯ϒϒ
= ⇒ ϒϒ = ϒ ϒ −a

t
a

d

d
0, .

3

0 0
3� (35)

Let us now show that the Lagrangian of equation (31) gives 
rise to a cosmological model with an interaction in the dark 
sector. To that purpose, we compute the energy-momentum 
tensor (see [248] for details). The energy density and pressure 
of each component is given by

( ) ( )ρ
ϕ

αϕ
ϕ αϕ=

−
= − −ϕ ϕ

V
p V

1 ˙
, 1 ˙ ,

2

2
� (36)

ρ βϕ= − ϒϒ =ϒ ϒM p, 0.( ) ¯� (37)

An important consequence of equation  (36) is that the 
EoS parameter of the fluid associated to the DE field is 

/ ( )ω ρ αϕ≡ = − −ϕ ϕ ϕp 1 ˙2 . If αϕ �˙ 12 , then the DE acts as 
an effective cosmological constant. In addition, from equa-
tions  (36) and (37) the time evolution of the DM and DE 
energy densities are

( ) ¯ρ ρ ω βϕ+ + = ϒ ϒϕ ϕ ϕ
−H a˙ 3 1 ˙ ,0 0

3� (38)

¯ρ ρ βϕ+ = − ϒ ϒϒ ϒ
−H a˙ 3 ˙ .0 0

3� (39)

and the Friedmann equation (3) becomes

( ) ¯ ( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

π
ρ ρ βϕ

ϕ

αϕ
= + + − ϒ ϒ +

−
−H

G
M a

V8

3 1 ˙
.r b

2
0 0

3

2

� (40)
Together with the equations of evolution of baryons and radia-
tion, equations (38)–(40) fully describe the background evol
ution of the universe. These equations are very similar to the 
ones used in phenomenological models [133, 164, 165, 381].  
The RHS of equations  (38) and (39) does not contain the 
Hubble parameter H explicitly, but it does contain the time 
derivative of the scalar field, which should behave as the 
inverse of the cosmological time, thus replacing the Hubble 
parameter in the phenomenological models.

Analytic solutions have been found in [9, 131, 267] in the 
pure bosonic case with the potential ( )ϕ ϕ= + −V m n n4 , with 
m a dimensional constant and n a positive integer. Choosing 
n  =  2, leads to a power law expansion of the universe. This 
model has been shown to be compatible with the observa-
tional data [248].

2.6.  Holographic DE models

Another set of models are loosely based on heuristic argu-
ments taken from particle physics. The concept of holography 
[356, 362] has been used to fix the order of magnitude of the 
DE [227]. To explain the origin of these ideas, let us consider 
the world as three-dimensional lattice of spin-like degrees of 
freedom and let us assume that the distance between every 
two neighboring sites is some small length �. Each spin can 
be in one of two states. In a region of volume L3 the num-
ber of quantum states will be ( ) =N L 2n3 , with ( / )= �n L 3 
the number of sites in the volume, whence the entropy will 
be ( / )∝ �S L ln 23 . One would expect that if the energy den-
sity does not diverge, the maximum entropy would vary as 
L3, i.e. λ∼S L3

UV
3 , where λ ≡ −�UV

1 is to be identified with 
the ultraviolet cut-off. Even in this case, the energy is large 
enough for the system to collapse into a black hole larger 
than L3. Bekenstein suggested that the maximum entropy of 
the system should be proportional to its area rather than to 
its volume [54]. In the same vein ‘t Hooft conjectured that it 
should be possible to describe all phenomena within a volume 
using only the degrees of freedom residing on its boundary. 
The number of degrees of freedom should not exceed that of a 
two-dimensional lattice with about one binary degree of free-
dom per Planck area.

Elaborating on these ideas, an effective field theory that 
saturates the inequality ⩽λL S3

UV
3

BH necessarily includes 
many states with >R Ls , where Rs is the Schwarzschild radius 
of the system under consideration [103]. Therefore, it seems 
reasonable to propose a stronger constraint on the infra-
red cutoff L that excludes all states lying within Rs, namely, 

⩽λL m LPl
3

UV
4 2  (clearly, λUV

4  is the zero–point energy density 
associated to the short-distance cutoff) and we can conclude 
that λ∼ −L UV

2  and /�S Smax BH
3 4. Saturating the inequality and 
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identifying λUV
4  with the holographic DE density is given by 

[227]

ρ
π

=
℘
GL

3

8
,d 2� (41)

where ℘ is a positive, dimensionless parameter, either constant 
or very slowly varying with the expansion.

Suggestive as they are, the above ideas provide no indica-
tion about how to choose the infrared cutoff in a cosmological 
context. Different possibilities have been tried with varying 
degrees of success, namely, the particle horizon [91, 136], the 
future event horizon [152, 153, 156, 187, 227, 378, 379] and 
the Hubble horizon. The first choice fails to produced an accel-
erated expansion. The second presents a circularity problem: 
for the cosmological event horizon to exist the universe must 
accelerate (and this acceleration must not stop), i.e. it needs 
the existence of DE. The third option is the most natural, but 
L  =  H−1 corresponds to an energy density with ρ∝ −a 3, i.e. to 
dust and not to DE. Nevertheless, as we shall see below, if the 
holographic DE interacts with pressureless matter then it can 
drive a period of accelerated expansion and alleviate, or even 
solve, the coincidence problem [271, 417].

2.6.1.  Interacting holographic DE.  An effective theory based 
on the holographic principle that produces a period of accel-
erated expansion requires the following assumptions: (a) the 
DE density is given by equation (41), (b) L  =H−1, and (c) DM 
and holographic DE interact with each other obeying equa-
tions (12) and (13). As an example, we will consider the kernel 
Q  =  ξρd where ξ > 0 is a rate (model not listed in table 3). In 
a spatially flat universe, the EoS parameter of the DE for this 
kernel can be expressed in terms of the interaction ξ  param
eter and the ratio /ρ ρ=r c d, namely, ω ξ=− + r rH1 3d ( ) /( ). As 
the DE decays into pressureless DM, it gives rise to a neg-
ative ωd and the ratio of the energy densities is a constant, 

( )/= − ℘ ℘r 10 , irrespectively of the value of ξ  [271]. When 
ξ ∝H then ρ ρ,c d ∝ −a m3  with ( )/( )ω= + + +m r r1 1d0 0  
and /( )∝a t m2 3 . Then, the universe will be accelerating if 

( )/ω <− + r1 3d 0  but if ξ = 0, the choice L  =  H−1 does not 
lead to acceleration.

In conclusion, the interaction will simultaneously solve 
the coincidence problem and produce a late period of acceler-
ated expansion. Prior to the current epoch the universe had to 
undergo a period of radiation and matter domination to preserve 
the standard picture of the formation of cosmic structure. The 
usual way to introduce these epochs is to assume that the ratio 
r has not been constant but was (and possibly still is) decreas-
ing. In the present context, a time dependence of r can only be 
achieved if ℘ varies slowly with time, i.e. /<℘ ℘�H0 ˙ . This 
hypothesis is not only admissible but it is also reasonable since 
it is natural to expect that the holographic bound only gets fully 
saturated in the very long run or even asymptotically [304]. 
There is, however, a different way to recover an early matter 
dominated epoch. It is straightforward to show that

⎡
⎣⎢

⎤
⎦⎥ω

ξ
= +

+
r Hr

r

r H
˙ 3

1

3
.d� (42)

Then, if �/ξ H 1 then ω| |� 1d  and the DE itself behaves as 
pressureless matter, even if �r const.. If we neglect the dynam-
ical effect of curvature, baryons and radiation, from equa-
tion (42) and /( )ρ π= ℘H G3 8d

2  we obtain ( ) /( ( ))℘ = +t r t1 1 . 
At late times, →r r0 and →℘ ℘0. In this scenario wd would 
depend on the fractional change of ℘ according to

⎜ ⎟
⎛
⎝

⎞
⎠
⎡
⎣⎢

⎤
⎦⎥

ω
ξ

=− + +
℘
℘r H H

1
1

3

˙

3
.d� (43)

Holographic DE must satisfy the dominant energy condition 
and it is not compatible with a phantom EoS [39] and this 
additional restriction ⩾ω −1d  sets further constraints on ξ  
and ℘ that need to be fulfilled when confronting the model 
with observations [127, 380, 413]. The model is a simple and 
elegant option to account for the present era of cosmic accel-
erated expansion within the framework of standard gravity. 
Finally, its validity will be decided observationally.

2.6.2. Transition to a new decelerated era?  It has been spec-
ulated that the present phase of accelerated expansion is just 
transitory and the universe will eventually revert to a fresh 
decelerated era. This can be achieved by taking as DE a scalar 
field whose energy density obeys a suitable ansatz. The EoS 
parameter ωd would evolve from values above but close to  −1 
to much less negative values; the deceleration parameter 
increases to positive values [89] and the troublesome event 
horizon that afflicts superstring theories disappears. Interact-
ing holographic models that provide a transition from the 
deceleration to the acceleration can be shown to be compat-
ible with such a transition, reverting to a decelerating phase. 
Inspection of equation (43) reveals that −w 1 3d ⩽ /  when either 
any of the two terms in the square parenthesis (or both) reach 
sufficiently small values or the first term is nearly constant 
and the second becomes enough negative. These possibilities 
are a bit contrived, especially the second one since -contrary 
to intuition- the saturation parameter would be decreasing 
instead of increasing. This counterintuitive behavior is the 
result of requiring that a decelerated phase follows the period 
of accelerated expansion for the sole purpose of eliminating 
the event horizon. But even if data does not suggest existence 
of a future period of decelerated expansion, we cannot dismiss 
this possibility offhand. In any case, it should be noted that 
holographic dark energy proposals that identify the infrared 
cutoff L with the event horizon radius are unable to produce 
such transition.

2.7.  On the direction of the interaction

An important open question in interacting DM/DE models is 
in which direction is transferred the energy; does DE decays 
into DM (ξ> 0) or is the other way around (ξ< 0)? Although 
this question will be eventually settled observationally, at 
present we can explore different options based on physical 
principles.

Thermodynamic considerations suggest that DE must decay 
into DM. If the interaction is consistent with the principles of 
thermodynamics, their temperatures will evolve according to 
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/ ( / )ρ= − ∂ ∂T T H p˙ 3 n, where n is the the number density of par-
ticles. Then, the temperature of the DM and the DE fluids will 
evolve differently due to the different time evolution of their 
energy densities. When a system is perturbed out of thermo-
dynamic equilibrium it will react to restore it or it will evolve 
to achieve a new equilibrium [310]. Then, if both DM and DE 
are amenable to a phenomenological thermo-fluid description 
and follow the Le Châtelier–Braun principle, the transfer of 
energy-momentum from DE to DM will increase their temper
ature difference more slowly than if there were no interac-
tion ( =Q 0) or if it is transferred in the opposite direction, the 
temperature difference will increase faster [270]. Thus, both 
components, DM and DE, will stay closer to thermal equilib-
rium if energy transfers from DE to DM than otherwise.

Even if the DE field is non-thermal, i.e. it corresponds to a 
scalar field in a pure quantum state, a transfer of energy from 
DM to DE involves an uncompensated decrease of entropy. By 
contrast, a transfer in the opposite direction creates entropy by 
producing DM particles. The former process violates the sec-
ond law of thermodynamics while the latter does not. This 
is also true if the DM particles are fermions and the DE is 
described as a scalar field. Due to the conservation of quantum 
numbers, DM decaying into DE would violate the second law 
while the inverse process would not. This latter process is 
similar to the production of particles in warm inflation [59] 
and the production of particles by the gravitational field acting 
on the quantum vacuum [268]. In section 7, we will discuss 
which is the direction of the energy flow that is favored by the 
observations. We will show that the data marginally favors a 
flow consistent with the second law of thermodynamics and is 
such that alleviates the coincidence problem.

2.8. The connection between modified gravity  
and interacting DM/DE

A DM/DE interaction is closely related to modified theories 
of gravity. One example is f (R) gravity. In this theory matter 
is minimally coupled to gravity in the Jordan frame, while 
after carrying out a conformal transformation to the Einstein 
frame, the non-relativistic matter is universally coupled to a 
scalar field that can play the role of DE [119]. Interestingly, it 
was found that a general f (R) gravity in the Jordan frame can 
be systematically and self-consistently constructed through 
conformal transformation in terms of the mass dilation rate 
function in the Einstein frame [170]. The mass dilation rate 
function marks the coupling strength between DE and DM 
(see detailed discussions in [170]). The new f (R) model con-
structed in this way can generate a reasonable cosmic expan-
sion. For this f (R) cosmology, the requirement to avoid the 
instability in high curvature regime and to be consistent with 
CMB observations is exactly equivalent to the requirement 
of an energy flow from DE to DM in the interaction model 
to ensure the alleviation of the coincidence problem in the 
Einstein frame [119, 170]. This result shows the conformal 
equivalence between the f (R) gravity in the Jordan frame 
and the interacting DM/DE model in the Einstein frame. 
Furthermore, this equivalence is also present at the linear per-
turbation level [171]. The f (R) model constructed from the 

mass dilation rate can give rise to a matter dominated period 
and an effective DE equation of state in consistent with the 
cosmological observations [171, 172]. The equivalence of 
the Einstein and Jordan frames has also been discussed in 
[300]. In [95] it was argued that there exists a correspondence 
between the variables in the Jordan frame and those in the 
Einstein frame in scalar-tensor gravity and that the cosmo-
logical observables/relations (redshift, luminosity distance, 
temperature anisotropies) are frame-independent. Other dis-
cussions on the connection between modified gravity and 
interacting DM/DE can also be found, for example, in [207].

In addition to a conformal transformation, one can con-
sider whether there are more general transformations with 
similar properties. These new transformations could provide 
more general couplings between matter and gravity through a 
scalar field. The question was first studied in [53] where a new 
class of transformations, called disformal transformations, 
were proposed. The idea behind such transformations is that 
matter is coupled to a metric which is not just a rescaling of 
the gravitational metric but it is stretched in a particular direc-
tion, given by the gradient of a scalar field. Disformal trans-
formations can be motivated from brane world models and 
from massive gravity theories [74, 419]. Interactions between 
DM and DE allowing disformal couplings have also been 
studied in the background evolution, anisotropies in the cos-
mic microwave background and LSS [77, 211]. Recently the 
idea of the disformal transformation has also been extended to 
study more general theories of gravity such as the Horndeski 
theory [118, 204]. Similarly to the conformal transformation, 
in the disformal transformation, physics must be invariant and 
such cosmological disformal invariance exists [123]. All these 
results could provide further insight on how Cosmology can 
test gravity at the largest scales and provide evidence of gen-
eralized theories of gravity.

3.  Background dynamics

In this section we will consider the evolution of a flat universe 
in DM/DE interacting models. The evolution of the main 
cosmological parameters will differ from that of the concor-
dance model and their comparison with observations could, 
in principle, prove the existence of DM/DE interactions. To 
illustrate the background evolution we will choose a particle 
field description of the dark sectors. For the phenomenologi-
cal fluid model, the discussions are more simplified and the 
readers can refer to [98, 133, 134, 414].

3.1.  Attractor solutions of Friedmann models

The action describing the dynamics of a fermion DM field ϒ 
coupled to a scalar DE field ϕ evolving within an expanding 
universe is

∫ ϕ ϕ ϕ

γ γ ϕ

= − − + ∂ ∂ −

+ ϒ ∇ ϒ− ϒ
←
∇ ϒ − ϒϒ

µ
µ

µ
µ µ

µ

⎜

⎟

⎛
⎝

⎞
⎠

S x g
R

V

F

d
4

1

2
i

2
.

4 ( )

[ ¯ ¯ ] ( ) ¯
�

(44)
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The metric is the Friedmann–Robertson–Walker metric given 
by equation (1) with K  =  0, R is the Ricci scalar, ( )ϕV  is the 
scalar field potential and ( )ϕF  is the interaction term. The 
Lagrangian is slightly more general than equation (25) since 

( )ϕF  is an arbitrary function to be specified. From the action 
of equation (44) we can derive the equations that describe the 
background evolution of the universe

ϕ ϕ+ + = − ϒϒ′ ′H V F¨ 3 ˙ ,¯� (45)

( ) ( ) ¯⎧
⎨
⎩

⎫
⎬
⎭

ϕ
ϕ ϕ= + + ϒϒH

M
V F

1

3

˙

2
,

p

2
2

2

� (46)

{ ( ) ¯ }ϕ ϕ= − + ϒϒH
M

F˙ 1

2
˙ ,

p
2

2
� (47)

where / π=M G1 8p
2  is the reduced Planck mass. Primes repre-

sent derivatives with respect to the scalar field ϕ. The fermion 
equation of motion can be exactly solved to describe the DM 
sector in terms of the scale factor as given by equation (35).

To construct analytic solutions we define W such that 
( ) ( ( ))ϕ=H t W t . This definition restricts the search of solu-

tions to smooth and monotonic functions ( )ϕ t  that are invert-
ible; it does not solve the general case. Then, ϕ= ϕH W˙ ˙, where 

/ ϕ≡∂ ∂ϕW W  and equation (47) can be rewritten as

    ( )
¯

ϕ ϕ ϕ− = +
ϒ ϒ

ϕW M F
a

˙ 2 ˙ .p
2 2 0 0

3
� (48)

Further, we choose ( )     ( )σ ϕ ϕ=−a t J˙n3 , where σ is a real con-
stant, n an integer and ( )ϕJ  an arbitrary function of the scalar 
field. This expression is general enough to allow us to obtain 
a large class of exact solutions with interacting DM/DE; by 
choosing conveniently n and ( )ϕJ  we can reduce the order 
of the equations of motion. Introducing this notation in equa-
tion (48) we obtain

[ ]
( ) ¯   ( )

ϕ
ϕ

ϕ σ ϕ
+

+

ϒ ϒ
=

ϕ−
M W

F J
˙

˙ 2
0,n p1

2

0 0
� (49)

which can be solved as an algebraic equation for ϕ̇ for each 
value of n. Let us consider two examples:

3.1.1.  Example I.  If we take ( )ϕ βϕ= −F M  and choose 
the de-Sitter solution ( / = =a a H˙ const. 0) then equation (35) 
allows us to write equation (45) as

ϕ ϕ
β

+ + =
ϒ ϒ

′H V
a

¨ 3 ˙ .0
0 0
3

¯
� (50)

that has the following solution

( )ϕ = + +− −t K K Ke e ,H t H t
1 2

3
3

3
20 0� (51)

where K1, K2 and K3 are constants.
For a power-law scale factor a  =  K t p, with K and p posi-

tive constants, we have for ( )ϕ t

( ) ( )⎡
⎣⎢

⎤
⎦⎥

ϕ = + +t Y Y
t

Y t
ln

2
ln ,1 2

2

3� (52)

where Y1, Y2 and Y3 are constants. This solution is clearly non-
invertible and, therefore, outside the subset of solutions we 
are considering. Several other solutions have been obtained, 
though most of them turn out to be unphysical [269].

3.1.2.  Example II.  If we choose n  =  3, σ = 1, ϕ =W ( )  
/( )µ ϕMP

4 2  and ( ) /( ¯ ( ))ϕ ϕ µ ϕ= − ϒ ϒJ F42
0 0

4 , where μ is a 
parameter with dimensions of mass, then

( ) ( )
( / )

ϕ
ϕ

ϕ
µ
ϕ

= − =
ϕ

F C V
M

e
,

3

4
,

M

p
1

3 8

4 3

8

2 2

p
2 2

� (53)

( ) ( ) ( )
¯/

/
( ) //⎛

⎝
⎜

⎞
⎠
⎟ϕ µ

µ
= =

ϒ ϒ µt t a t
C

6 ,
2

e .t M4 1 3 0 0 1
8

1 3
6 8 p

4 2 3 2

� (54)

This solution corresponds to a massless fermionic DM inter-
acting with DE. The interaction kernel ( )ϕF  is the product 
of an exponential and an inverse power-law; the coefficient 
C1 measures the strength of the coupling. Notice that if 

( / )µ>t M2 2 6p
3 4  the expansion is accelerated.

In this model, equations (45)–(47) can be solved analyti-
cally. The energy density, pressure and EoS parameter for DE 
are given by [269]

( )
( ) ( )

( ( ))ρ
µ

γ
γ= +a

M a
a

32

1

ln
1 3 ln ,d

p

8

4 2� (55)

( )
( ) ( ( ))

( ( ))µ
γ

γ= −p a
M a

a
32

1

ln
1 3 ln ,d

p

8

4 2� (56)

( ) ( )
( )
γ
γ

=
−
+

w a
a

a

1 3 ln

1 3 ln
,d� (57)

where ( / ¯ ) /γ µ= ϒ ϒC2 8
1 0 0

1 3. For illustration, in figure 4 we plot 
the solution of equations  (53)–(57) describing the evolution 
of the universe in the limit that baryons and radiation are not 
dynamically important. In the left panel we represent the frac-
tional energy densities and in the right panel the deceleration 
and the EoS parameters. We also plotted the interaction term 
and the DM density and equation of state, respectively. Notice 
that DM and DE densities have similar amplitude today, at 
a  =  1 when the deceleration parameter changes sign. This 
solution presents a transition from a decelerated to an acceler-
ated expansion in agreement with observations.

The measured values of DM and DE energy densities from 
table 2 indicate that ( )∼ −P O 10 7  and γ≈ 2.06. This gives the 
coupling constant | | ∼ −C 101

17, i.e. the interaction is very weak 
[269].

This example shows that even with very simplifying 
assumptions, exact solutions can be found that display cosmo-
logically viable DM and DE evolutions. The only requirement 
is that the coupling constant must be very small, an indication 
that, observationally, the model does not differ significantly 
from the concordance model while it retains all the conceptual 
advantages of a field description. Other studies on the dynam-
ics of coupled quintessence can be found in [219, 342].
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3.2.  Challenges for scaling cosmologies

The purpose of the interacting models is to generate cosmo-
logical solutions where the radiation epoch is followed by a 
period of matter domination and a subsequent accelerated 
expansion, as in the concordance model. To solve or allevi-
ate the coincidence problem, an almost constant DM to DE 
ratio is also required. For the idea to be of interest, the final 
accelerating phase must be an attractor otherwise we would 
have a new coincidence problem. Such a sequence of cos-
mological eras: radiation, matter and DE dominated periods, 
poses a fundamental restriction to viable models. The canoni-
cal scalar-tensor model with an exponential scalar potential is 
ruled out since it does not lead to a matter dominated period 
[16] but even more general k-essence models have difficulties 
to generate viable cosmologies. As described in section 2.5, 
in these models, the Lagrangian density is ( )ϕ=L p X, , with 

ϕ ϕ= − ∂ ∂µν
µ νX g1

2
. To obtain scaling solutions, it is nec-

essary that ( ) ( )ϕ =p X X f Y,  where = λϕY Xe  and f (Y) is a 
generic function [298, 367].

For the above Lagrangian the equations of motion are

[ ( ) ]π
ρ ρ= + + +H

G
X f f

8

3
2 ,c r

2
1� (58)

( )
⎡
⎣⎢

⎤
⎦⎥π ρ ρ= − + + +H G X f f˙ 4 2

4

3
,c r1� (59)

( ) ( ( ))ϕ ϕ λ ρ= − + − − + −AH f f X A f f AQ¨ 3 ˙ 1 2 ,c1 1� (60)

where = + + −A f f f5 21 2
1( ) , = ∂

∂
f Yn

n f

Y

n

n and Q is the interac-
tion kernel given by

L

ρ ϕ
=−

−
∂
∂

Q
g

1
,

c

m
� (61)

where g is the determinant of the metric µνg . The equa-
tions above can be simplified by introducing the dimension-
less variables

/π ϕ π π ρ
= = =

λϕ−
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( )
π ρ

Ω = = −Ω − Ω = +ϕ ϕ
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H
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8

9
1 , 2 .c

c
2

2 2
1� (63)

The corresponding equations  have been analyzed in [25] 
where it was shown that a large class of coupled scalar field 
Lagrangins with scaling solutions do not give rise to a suf-
ficiently long matter-dominated epoch before the onset  
of acceleration as to give rise to galaxies and LSS. As a result, 
DM/DE interacting models based on a scalar field description 
are strongly constrained at the background level. This reflects 
our lack of a solid physical foundation of the nature of DE. 
Particular examples of scalar field models that are not limited 
by the background evolution exist and are discussed in sec-
tion 7, but are not generic. Therefore, in the next section we 
will particularize the study of perturbation theory to the phe-
nomenological fluid models.

4.  Perturbation theory

Models with non-minimally coupled DM and DE can suc-
cessfully describe the accelerated expansion of the universe. 
Currently DE and DM have only been detected via their gravita-
tional effects and any change in the DE density is conventionally 
attributed to its equation of state ωd. This leads to an inevitable 
degeneracy between the signature of the interaction within the 
dark sector and other cosmological parameters. Since the cou-
pling modifies the evolution of matter and radiation perturba-
tions and the clustering properties of galaxies, to gain further 
insight we need to examine the evolution of density perturbations 
and test model predictions using the most recent data on CMB 
temperature anisotropies and large scale structure. Our purpose is 
to identify the unique signature of the interaction on the evolution 
of density perturbations in the linear and non-linear phases.

In this section we discuss linear perturbation theory. We pre-
sent a systematic review on the first order perturbation equations, 
discuss the stability of their solutions and examine the signature 
of the interaction in the CMB temperature anisotropies. Finally, 
we study the growth of the matter density perturbations. Details 
can be found in [165, 167–169, 400]. Alternative formulations 
are described in [17, 37, 51, 52, 81, 100, 109, 144, 188, 209, 
215, 217, 239, 241, 262, 284, 331, 368, 369, 374].

Figure 4.  Density parameter Ω (left panel) and equation of state parameter ω and deceleration parameter (right panel) for the model given 
by equations (53)–(57). The interaction term has been explicitly separated.
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4.1.  First order perturbation equations

The space-time element of equation (2) perturbed at first order 
reads

τ ψ τ τ
φ δ

= − + + ∂
+ + +

s a B x

x x D E x x

d 1 2 d 2 d d

1 2 d d d d ,
i

i

ij
i j

ij
i j

2 2 2( )[ ( )
( ) ]

�
(64)

where τ is the conformal time defined by /τ = t ad d , ψ φB E, , ,  
represent the scalar metric perturbations, a is the cosmic scale 
factor and ( )δ= ∂∂− ∇Dij i j ij

1

3
2 .

4.1.1.  Energy-momentum balance.  We work with the energy-
momentum tensor ( )ρ= + +µν µ ν µν µ νT u u p g u u , for a two-
component system consisting of DE and DM. The covariant 
energy-momentum transfer between DE and DM is given by 

( ) ( )∇ =µ λ
µν

λ
νT Q  where ( )λ

νQ  is a four vector governing the 
energy-momentum transfer between the different components 
[205]. The subindex λ refers to DM and DE respectively. For 
the whole system, DM plus DE, the energy and momentum 
are conserved, and the transfer vector satisfies ( )∑ =λ λ

νQ 0.
The perturbed energy-momentum tensor reads,
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where θ=∇v, v is the potential of the three velocity and 
primes denote derivatives with respect to the conformal time τ.  
At first order, the perturbed Einstein equations are
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where δρ δρ= ∑λ λ and ( ) ( )ρ θ ρ θ+ = ∑ +λ λ λ λp p  is the total 
energy density perturbation.

4.1.2. The general perturbation equations.  Considering an 
infinitesimal transformation of the coordinates [205]
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where ∂ =∗v 0i
i . The perturbed quantities behave as
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Inserting equation (68) in equation (65), we obtain

δ δ ξ ξ δ δ β= − + = + ′′ ′Q Q Q Q Q Q Q˜ , ˜ ,p p
0 0 0 0 0 0 0� (69)

where δQp denotes the potential of three vector δQi and verifies

δ δ δ= ∂ + ∗Q Q Q ,i i
p

i� (70)

with δ∂ =∗Q 0i
i . This is consistent with the results obtained 

using Lie derivatives,
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which shows that νQ  is covariant.
We expand metric perturbations in Fourier space by using 

scalar harmonics,
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and the perturbed conservation equations of equation (65) read
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Introducing the gauge invariant quantities [205]
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we obtain the gauge invariant linear perturbation equa-
tions  for the dark sector. λD  is the gauge invariant density 
perturbation of DM or DE, and λV  is the gauge invariant 
velocity perturbation for DM and DE respectively. For the 
DM they are
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while for the DE we have
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in these expressions we have introduced

( )
δ
ρ

δ
ρ

ρ
= − −

+′p
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v B
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d
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e d e a

d

d

d2 2 2� (77)

with Ce
2 is the effective sound speed of DE at the rest frame 

and Ca
2 is the adiabatic sound speed [370].

To alleviate the singular behavior caused by ωd cross-
ing  −1, we substitute λV  into λU  in the above equations where

( )ω= +λ λU V1 .d� (78)

Thus we can rewrite equations (75) and (76) as

ρ

ρ

ρ ρ ρ ρ

ρ
δ
ρ ρ ρ

ρ

δ

ρ

+ + Φ+ + Φ

= − + Ψ + + Φ−
Φ

+ = Ψ− +

′
′ ′

′

′

′

′

⎜ ⎟

⎪ ⎪

⎪ ⎪
⎧
⎨
⎩

⎛

⎝
⎜

⎞

⎠
⎟

⎫
⎬
⎭

⎛
⎝

⎞
⎠

H H H

H H

H

D
a Q a Q a Q

D
a Q

kU
a Q a Q a Q a Q

U U k
a Q

U
a Q

2 ,

,

c
c

c

c

c

c

c

c

c
c

c

c

c
c

c

c
I

c

c

c

c

c

c c
c

c
c

pc
I

c

2 0 2 0 2 0 2 0

2 0 2 0 2 0 2 0

2 0 2

�

(79)

ρ
ω ω

ρ

ρ

ρ

ρ ρ

ω
ρ ρ

ρ

ρ ω

ρ
δ
ρ ρ ρ

+ − + − + Φ

+ − + + Φ = −
+

− + Ψ + + Φ−
Φ

′
′

′
′ ′

′
′

′′

⎜ ⎟

⎪ ⎪

⎪ ⎪
⎧
⎨
⎩

⎛

⎝
⎜

⎞

⎠
⎟

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

⎛
⎝

⎞
⎠

H H

H
H

H

H H

D
a Q

C
a Q

C
a Q

D
a Q

C C
U

k

kU
a Q a Q a Q a Q

3 3

3 3
1

2 ,

d
d

d
d e d

d

d

d

d

d

d

e d
d

d
d

d

d
e a

d

d

d

d

d
d

d

d
I

d

d

d

d

d

2 0
2

2 0

2
2 0 2 0

2 2

2 0 2 0 2 0 2 0

( )

( ) ( )
( )

�

(80)
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The quantity Φ is given by

π ρ
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Φ =
∑ +
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Equations (79) and (80) are the most generic form of the lin-
ear perturbation equations for the DM and the DE, regardless 
of the specific form of the interaction ( )λ

νQ . The transfer of 
energy-momentum between DM and DE has to be specified in 
a covariant form. In the next section we will specify ( )λ

νQ  for 
each particular coupling.

4.1.3.  Covariant couplings.  The four vector ( )λ
νQ  can be phe-

nomenologically decomposed into two parts with respect to a 
given observer η with four velocity ( )η

µU ,

( ) ( ) ( ) ( )= +λ
µ

λη η
µ

λη
µQ Q U F ,� (83)

where ( ) ( ) ( )= −λη η ν λ νQ U Q  is the energy transfer rate of the 
λ component observed by λ′ observer; ( ) ( ) ( )=λη

µ
η
µ
ν λ

νF h Q  is 
the corresponding momentum transfer and ν

µh  is the projection 
operator. In [169] it has been probed that such a decomposi-
tion of ( )λ

νQ  and its perturbed form are covariant. As discussed 
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in [169], we can specify the coupling vector ( )λ
νQ  in the co-

moving frame as

( )
( )⎡

⎣⎢
⎤
⎦⎥=λ

ν λ
Q

Q

a
, 0, 0, 0

T

� (84)

where ( )λQ  is the module of the four vector ( )λ
νQ . The per-

turbed form ( )δ λQ0  can be uniquely determined from the back-
ground energy-momentum transfer ( )λ

µQ . From

( )( ) ( ) ( ) ( )= = −λ
µ
λ µ λ λQ Q g Q Q ,00

0 2 2� (85)

where ( ) ( )=λ λQ aQ 0 is a scalar in the FRW space and the 
minus sign indicates that ( )λ

µQ  is time-like, we can obtain the 
form of the perturbed part of the energy-momentum transfer

( ) ( ) ( )δ
ψ

δ= − +λ λ λQ
a

Q
a

Q
1

.0� (86)

The coupling vector defined by equation (83) is independent 
of the choice of observers. Although it is decomposed in 
two parts that depend on the observer η and its four velocity 

( )η
µU , the decomposition cannot bring substantial physics since 

equation  (83) is an identity. The perturbed forms, including 
the 0th component and the spatial component are also identi-
ties. The 0th component of the perturbed form can be uniquely 
determined by the background ( )λ

µQ . The spatial component of 
the perturbed energy-momentum transfer ( )δ λQi  is independent 
of the 0th component. It refers to the non-gravitational force 
and is composed of two parts,

( )δ δ= | +λ λ λQ Q Q v ,p p
I

t t
0� (87)

where δ λQp  is the potential of the perturbed energy-momen-

tum transfer ( )δ λQi , δ |λQp
I

t is the external non-gravitational 
force density and vt is the average velocity of the energy 
transfer, that needs to be specified. In [370], vt was allowed 
to follow the peculiar velocity of the DM or the DE respec-
tively. In fact, =v vt c or =v vt d reproduce the results of [370]. 
In our analysis we will consider that there are no other inter-
actions than gravity acting on the coupled DM/DE system; 
only the inertial drag effect due to the stationary energy 
transfer between DE and DM appears [346]. Thus, we set 

vt  =  0 and δ | =λQ 0p
I

t , which leads to a vanishing perturba-

tion, δ =Q 0i .
When constructing the four vector defined by equa-

tion (84), the module λQ  can be chosen to be any combina-
tion of scalars in the FRW space, such as the energy density 

( ) ( ) ( ) ( )ρ ν=λ λ
µν

λ µ λT U U , expansion ( ) ( )= ∇λ µ λ
µH U1

3
, or any 

other scalar function. Considering that λQ  is independent of 
the observer so is the energy density as well as its perturbed 
form, we require H to be a global quantity invariant under 
change of observers. In a general phenomenological descrip-
tion, we can assume the DM/DE coupling is

( )ξ ρ ξ ρ= − = +Q Q H3 .c d c d1 2� (88)

The perturbed forms read

( )δ δ ξ δρ ξ δρ= − = +Q Q H3 ,c d c d1 2� (89)
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The gauge invariant quantities δQc

I0  and δQd
I0  in equations (79) 

and (80) are given by [167]
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where as before /ρ ρ=r c d is the DM to DE ratio.

4.1.4.  Phenomenological gauge-invariant perturbation equa-
tions.  Inserting the phenomenological interaction equa-
tions  (88)–(92) into equations  (79) and (80) and neglecting 

the spatial perturbations δ =λQ 0p
I , we obtain the phenomeno-

logical general gauge-invariant perturbation equations for DM 
and DE, respectively,
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(94)

The general gauge invariant formalism fully removes the 
ambiguity of gauge choice. However, numerical solutions 
can be obtained after choosing a gauge without loosing gen-
erality (see section  III of [205] for details). The results will 
be the same for different gauges if the gauge is fully fixed 
[169]. Following [165], in our subsequent discussion we will 
choose the conformal Newtonian gauge with adiabatic initial 
conditions.

4.2.  Stability analysis

Models with a background evolution characterized by adiabatic 
initial conditions were studied in perturbation theory and found 
to have unstable growing modes when the interaction couplings 
were much larger than the gravitational strength [51]. In paral-
lel, [370] the authors have considered models with an interacting 
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DE component and a constant equation of state; they found that 
perturbations were unstable for couplings proportional to the 
DM energy density; these models exhibited extremely rapid 
growth of DE fluctuations on superhorizon scales in the early 
universe. While this result would appear to rule out all couplings 
of the above form and with constant ωd, the explicit examples 
in [370] did not include models where the interaction rate was 
proportional to the density of DE or the DE EoS varied with 
time that have been shown to have stable solutions [109, 165, 
188, 400]. Also, the results of [370] do not rule out models with 
dynamical DE or DM or models where the coupling depends 
on elementary fields [111, 248], so the stability of the solutions 
have to be considered on the remaining cases.

In the above phenomenological gauge-invariant linear 
perturbation equations, ω= <C 0a d

2 . However, it is not clear 
what expression should we have for Ce

2. In [370] it has been 
argued in favor of =C 1e

2 . This is correct for scalar fields, but 
it is not obvious for other cases, especially for a fluid with a 
constant equation of state. From the stability point of view, 
the most dangerous possibility is ω= ≠ = <C C1 0e a d

2 2  since 
the term in equation (94) can lead to a run away solution when 
the constant DE EoS is ω −� 1d . Hereafter, in equation (94) 
we will assume =C 1e

2 , ω=Ca d
2 . Using the gauge-invariant 

quantity ζ φ δτ= −H  and letting ζ ζ ζ= =c d , we obtain the 
adiabatic initial condition

/ξ ξ ω ξ ξ− −
=
+ + +

D

r

D

r1 1
.c d

d1 2 1 2
� (95)

The curvature perturbation given in equation (82) can be com-
puted using the CMBFAST code [334]. First, let us consider 
the interaction proportional to the DM energy density, ξ = 02 , 
with an DE EoS verifying ω ≠−1d . If ω >−1d  is constant, 
we observe that ξ r1  exhibits a scaling behavior, which remains 
constant both at early and late times. This behavior is not 
changed when ξ ≠ 02 .

The scaling behavior of ξ r1  influences the curvature pertur-
bation Φ. When ω >−1d  and ξ ≠ 01 , Φ blows up, what agrees 
with the result obtained in [370]. The instability starts at an 
earlier time when ωd approaches  −1 from above and it hap-
pens regardless of the value of ξ2. Let us now demonstrate that 
this instability disappears when the constant EoS is ω <−1d . 
The study can be made analytic if in equation (94) we neglect 
all contributions except those terms that give rise to the insta-
bility. The approximate equations are
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If ξ ≠ 01  and ξ = 02 , assuming that ξ ω≈−r d1 , we can simplify 
the above equations to obtain
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A second order differential equation for Dd is
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In the radiation dominated period, we have τ τ∼ ∼−′− −H H, ,1 2  
τ∼−′ −H H 1( / )  and equation  (98) can be approximated as  
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It is easy to check that when ω <−1d , both r1 and r2 are nega-
tive; this results in the decay of the perturbation of Dd. The 
solution is stable, regardless of the value of ξ1.

To conclude, we have demonstrated that when the DE 
EoS is constant, ω >−1d  and the coupling is proportional to 
ρc (ξ ≠ 01 ) the curvature perturbation diverges; however, the 
divergence does not exist when ω <−1d . When the interaction 
is proportional to ρd (ξ ≠ 02 ), the solutions of the perturbation 
equations are stable in both cases, ω >−1d  and ω <−1d . Those 
terms in equation (96) that give rise to the unstable growth dis-
cussed above now reduce to
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We can rewrite the second order differential equation for Dd 
in the form
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which, in the radiation dominated era, reduces to
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Introducing the auxiliary quantities ω ω ξΓ = + + −3 6 2d d
2

2   

and ω ω ω ξ ω ξ∆= + + + − + + +9 30 13 28 12 36d d d d
4 3 2

2 2
2( )  

ξ −12 202  [165], when ∆> 0 we find
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while, for ∆< 0, it becomes
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It has been shown in [165] that ∆ can be positive only in the 
vicinity of ω = −1d . When ξ � 12  then ∆� 1. The singularity 
occurs when ω = −1d  since it will lead to the divergence of 
r1 that translates into a divergence in the density perturbation 
solution equation (102). When ω >−1d  and ∆> 0, the blow-
up in the density perturbation can also occur since / ( )ωΓ +2 1 d  
is also positive. But when ωd grows further above  −1, ∆ will 
become negative and so does / ( )ωΓ +2 1 d , which will lead 
to the convergent result of equation  (104). When ω <−1d , 

/ ( )ωΓ +2 1 d  is always negative, the density perturbation will 
decay even when ωd is close to  −1 from below and ∆ is small 
and positive.

In summary, when the interaction ξ ≠ 02 , the system is sta-
ble for any constant ω <−1d . For ω >−1d , when the coupling 
is ξ � 12 , in the range of values of ωd compatible with obser-
vations, the instability is also avoided. However, the system 
could become unstable in the observationally allowed range 
ω >−1d  when the interaction parameter is ξ ∼ 12 .

The interaction kernel ξ ρ ξ ρ= +Q m d1 2  was shown to be 
unstable when ω >−1d  is constant and ξ ≠ 01  [165], in agree-
ment with [370]. For phantom case with constant EoS para
meter, ω <−1d , the perturbation is stable regardless of the 
value of the coupling. These conclusions were confirmed by 
[190].

When the time dependence of the DE EoS is of the 
Chevallier–Polarski–Linder type [93, 235], the stability of the 
linear perturbation have also been studied [400] who found 
that the evolution of density perturbations at linear order is 
stable. Similar stability analysis for interacting scalar fields 
have been described by [109]. For field theory models (such as 
canonical bosons and fermions as DE and DM, respectively) 
the perturbations are also well defined, at least for a small 
range of parameters [111].

4.3.  Cosmic microwave background temperature  
anisotropies

The formalism developed in section 4.1 can be used to study 
the evolution of matter and radiation perturbations that can 
then be tested against observations [264]. CMB temperature 
anisotropies provide a wealth of information that over-
shadows observables of the Hubble expansion. SNIa data 
are rather insensitive to the coupling between dark sectors  
[262, 263], while the integrated Sachs–Wolfe (ISW) comp
onent is a more sensitive probe [264, 415]. CMB observations 
are expected to break the degeneracy between the coupling 
and other cosmological parameters, such as ωd and the DM 
abundance, providing tighter constraints on the interaction 
within the dark sector. Many interacting models have been 
studied in the literature. See for example [23, 110, 129, 133, 
134, 157, 180, 244, 321, 322, 371, 381, 398–401] among oth-
ers. In this section we will discuss the effect of the interaction 
in the pattern of CMB temperature anisotropies. The formal-
ism reviewed here is mainly based on [167] and [169].

The temperature anisotropy power spectrum can be calcu-
lated by [318]

( ) ( )∫π τ= |∆ |χ� �PC
k

k
k k4

d
, ,0

2� (105)

where ∆� gives the transfer function for each �, χP  is the pri-
mordial power spectrum and τ0 is the conformal time at pres-
ent. On large scales the transfer functions are

( ) ( ) ( )τ∆ = ∆ +∆� � �k k k, ,0
SW ISW� (106)

where ( )∆� kSW  is the contribution from the last scattering 
surface given by the ordinary Sachs–Wolfe (SW) effect and 

( )∆� kISW  is the contribution due to the change of the gravita-
tional potential when photons passing through the universe on 
their way to the observer [318]. The ISW contribution can be 
written as

( [ ]) [ ]( ) ( )∫ τ τ τ∆ = − Ψ − Φ′ ′
τ

τ
κ τ κ τ−

� �j kd e ,ISW
0

i

0
0� (107)

where �j  is the spherical Bessel function and κ is the optical 
depth due to Thompson scattering. From Einstein equations, 
we obtain,

/( )∑π ρΨ − Φ = Φ+ + −′ ′ ′
⎡

⎣
⎢

⎤

⎦
⎥H H T TGa U k2 4 ,
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where
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and Π is the anisotropic stress of relativistic components 
which can be neglected in the following discussion.

In figure  5 we illustrate the effect of the DE EoS para
meter ωd and the fraction of DM, parametrized as the com-
monly used variable ω = Ω hccdm

2, on the CMB radiation 
power spectrum for a cosmological model without interac-
tion. We shall see that the interaction also alters the height and 
location of the acoustic peaks and draughts, and this effect 
needs to be distinguished from that of other parameters. For 
comparison, in figure 6 we plot the CMB power spectrum of 
temperature anisotropies for different interaction models. Let 
us first concentrate on models with constant ωd and a constant 
speed of sound. For simplicity, we limit our study to the three 
commonly studied phenomenological interaction kernels of 
table 3. In figure 6 we fixed the energy densities to the val-
ues given in table 2. Solid lines correspond to variations in 
the EoS parameter. Figure 6(a) shows that the power at low-� 
increases with increasing value of ωd, but the effect on the 
acoustic peaks is negligible. In figures 6(b)–(d) the variation 
is in the same direction but the effect of changing ωd is smaller 
than when ω >−1d .

The effect of the interaction, represented in figure  6 by 
dashed lines, is more evident. The interaction changes the 
spectrum at low multipoles through its effect on the gravi-
tational potentials and the ISW effect. When the coupling 
increases, the low-� spectrum is further suppressed. When the 
interaction between dark sectors is proportional to the DM or 
total dark sector energy density, the low-� spectrum is more 
sensitive to the change of the coupling than that of the DE 
EoS. The effects on the low multipoles due to the ISW effect 
and on the acoustic peaks are important since they could help 
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to break the degeneracy between the interaction, the DE EoS 
and other cosmological parameters as illustrated by figure 5.

The ISW effect has two components: early and late time 
effects. The early ISW effect occurs when the gravitational 
potentials evolve in time since matter–radiation equality to the 
moment when the radiation is no longer dynamically signifi-
cant. Its contribution is largest around the first acoustic peak 
and below [184]. The late time ISW effect arises when the 
DE becomes important and the gravitational potentials decay. 
When a photon passes through a decaying potential well, it will 
have a net gain in energy. Consequently, the ISW effect can be 
used to probe the dynamical effect of the DE. This component 
has a significant contribution to the large scale CMB radiation 
power spectrum. Since galaxies trace the large scale gravita-
tional field, cross-correlating matter templates constructed 
from galaxy catalogs with CMB temperature anisotropy maps 
can be used to isolate the ISW contribution [107, 113] and test 
the effect of the interaction [240, 264, 331, 398].

In the absence of interaction, the late ISW effect depends 
on the EoS parameter ωd and sound speed Ce

2. For constant 
�C 1e

2  and ω >−1d , the spectrum of CMB temperature aniso-
tropies on large scales is larger than in the concordance model 
[50, 391]. Increasing Ce

2 leads to further suppression of DM 
perturbations, increasing the contribution to the ISW effect 
[50]. However, when ω <−1d  the effect is the contrary, the 
contribution to the ISW effect increases as the sound speed of 
DE decreases [391].

The interplay between perturbations in the DE and DM and 
the ISW effect is very subtle and can not be disentangled eas-
ily from the radiation power spectrum. A more direct probe 
is to cross-correlate the late ISW effect to its source term, 
the time variation of the gravitational potential [391]. Both 
the power spectrum due to the late ISW effect and the cross-
correlation with a matter template constructed from a galaxy 
catalog can be expressed in terms of quadratures [113]. The 
auto- and cross-correlation power spectra are given by

( ) ( ) ( )∫π= χPC
k

k
k I k I k4

d
l
gg

l
g

l
g

�
(109)

( ) ( ) ( )∫π= ∆χPC
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k I k k4

d
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gI
l
g

l
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where the projected density of galaxies is given by 

( ) ( ) ( )( ) [ ( )]∫ χ= +I k zb z n z D D j k zd ,l
g

g c b l  where n(z) is the 
number density of objects at a given redshift and ( ) ( )D z D z,c b  
are the growth function of CDM and baryons respectively. 
Here bg(z) is the galaxy bias and ( )χ z  is the conformal distance, 

or equivalently the look-back time from the observer at red-

shift z  =  0, ∫ ∫χ τ τ τ= = = −
τ

τ′z zd
z z

H z z i0

d
0

i

0( ) ( )
( ) ( )

 (see section 

1.2.4). We assume ( )∼b z 1 for simplicity and adopt the red-

shift distribution of the form [222] ( ) ( ) /⎡
⎣

⎤
⎦= −n z A exp ,z

z

z

z

3

2
3 2

2

0
3

0
 

the normalization constant A is fixed by setting ( )∫ =n z zd 1. 
This expression has a maximum near the median redshift 
=z z1.4m 0. For illustrative purpose, we choose zm  =  0.1 and 

zm  =  0.4. The first value would correspond to a shallow survey 

like 2MASS [70] while the second would correspond to the 
SDSS photo-z galaxy sample [384] (see section 6 for details).

The late ISW effect is a promising tool to measure the EoS 
and sound speed of DE. Let us now analyze if it can provide 
useful evidence of the interaction. First, we will analyze the 
case of ξ ξ≠ =0, 01 2  with constant EoS parameter ω <−1d  
(model III in table 3) and sound speed =C 1e

2 . The radiation 
power spectrum is given in figure 7(a). In the figure, the lower 
set of dashed lines correspond to the late ISW (LISW) and the 
upper set of dotted lines correspond to the early ISW (EISW) 
plus SW effect. Solid lines correspond to the total anisotropy. 
For this coupling the SW  +  EISW effect shows a larger varia-
tion than the LISW. The results show that larger the coupling 
bigger suppression of CMB anisotropies. This behavior can be 
expected since as shown in the figure 7(b) the potentials evolve 
more slowly when the interaction is larger. In figure 7(c) we 
illustrate the variation of the radiation power spectrum with 
sound speed. The figure shows that a smaller DE sound speed 
increases the LISW effect. The effect of the interaction in 
models IV is similar to model III and is not explicitly shown.

The results for model I (see table  3) are presented in 
figure  8. Lines in (a) and (c) follow the same conventions 
than figures 7(a) and (c). For this model the interaction does 
not modify the SW  +  EISW effect but it changes the LISW 
significantly. In this case, a positive coupling increases the 
amplitude of the LISW and a negative coupling decreases it 
compared with the uncoupled case. The behavior follows the 
evolution of the ISW source term shown in figure 8(b) that 
demonstrates how the change of the gravitational potential 
increases with increasing value of the coupling. In figure 8(c) 
we present the effect of the sound speed. When DM and 
DE interact, a variation on the sound speed from =C 1e

2  to 
=C 0.01e

2  does not lead to significant variations on the LISW. 
Finally, in model II with =C 1e

2  the effect of the interaction 
produces the same behavior as in model I.

Since the influence of the interaction in the LISW effect 
is relatively strong, it is interesting to discuss if the cross-
correlation with templates constructed from the large scale 
matter distribution can measure how the potentials evolve 

Figure 5.  Variation of the CMB radiation power spectrum with 
cosmological parameters.
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with time. Progress in CMB and LSS surveys have enabled 
detections of the ISW-LSS cross correlation at  ∼ σ3  level [11, 
73, 80, 257]. The signal-to-noise ratio (S/N) can be further 
improved by a factor of a few for future all sky LSS surveys 
(see sections 6 and 8). The main advantage of cross-correlat-
ing temperature maps and matter density templates is that the 
primary CMB does not correlate with the LSS and does not 
bias the ISW measurement, it only contributes to the error bar. 
Then, using several traces of the matter distribution at differ-
ent redshifts, it is possible to reconstruct the redshift evolution 
of the gravitational potential.

Although the ISW-LSS cross correlation is potentially 
powerful probe of the interaction between dark sectors, due 
to the low S/N of the current ISW-LSS measurements and 
the complexities of the theoretical interpretation (e.g. galaxy 
bias), we will not confront the model predictions against the 
existing ISW-LSS cross-correlation measurements. Instead, 
we will just calculate the expected cross-correlation signal 
between the ISW effect and galaxies given by equation (110) 
for some representative cases to show how the cross-correla-
tion is modified due to the interaction. The results for model 
III are shown in figures 7(d) and 8(d). The top panels show 
the cross-correlation with two galactic templates of different 
depth and the low panels show the auto correlation power of 
the LISW traced by those templates. In both cases, a positive 
coupling decreases the auto-correlation and the cross-corre-
lation spectra compared with the ΛCDM model while nega-
tive couplings increase them. The effect is more important for 

the shallow galaxy survey (zm  =  0.1) than for the deep one 
(zm  =  0.4).

Finally, the study of models with a variable DE EoS para
meter have been discussed in [400]. DE perturbation are not 
longer negligible and contribute to the ISW effect. The effect 
on models based on a field theory description have also been 
discussed in [302].

4.4.  Matter density perturbations

The interaction also modifies the evolution of matter den-
sity perturbations. If the DE couples to the DM, it must be 
dynamical and fluctuate in space and in time. In these mod-
els structure formation would be different than in the con-
cordance model [28, 43, 154, 262, 364, 365], changing the 
growth index [81, 168, 242]. The collapse and subsequent 
dynamical equilibrium of clusters is modified compared to 
the concordance model [2, 3, 61]. Comparing virial masses 
with masses estimated from x-ray and weak lensing data of 
a large sample of clusters, [2, 3] found a small positive cou-
pling in agreement with the results derived in [167, 169] from 
CMB data.

In this section we will analyze the effect of the interaction 
on the growth of DM density perturbations. First we restrict 
our attention to models with constant sound speed and con-
stant DE EoS parameter. We will show that the effect of the 
interaction is larger than the effect of DE perturbations, pro-
viding another test of interacting models.

Figure 6.  The CMB TT power spectrum for the phenomenological kernels given in table 3. Solid lines are for models without interactions 
between dark sectors. Dashed lines are for different strengths of interacting models.
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Let us first derive the equations of evolution of DM density 
perturbations. From equation (74) and defining

δρ δρ ρ δ δ

δ
ρ

ρ
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+
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the perturbed Einstein equations equation (66) become
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where we have neglected the pressure perturbation of 

DE, Π = 0j
i . The gravitational potential is consistent with 

equation  (82) when we combine equation  (111) and equa-
tion (74) with equations (112) and (82).

Using the gauge invariant quantities of equation (111), we 
can obtain the linear perturbation equations for the DM,

ρ
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Considering the pressure perturbation of DE equation  (77), 
we obtain the gauge invariant form of DE perturbation 
equations [370]

Figure 7.  Different magnitudes for phenomenological fluid model III. (a) CMB radiation power spectra for small �. (b) Evolution of the 
gravitational potentials. (c) Evolution of the integrated Sachs–Wolfe component. (d) Upper panel ISW and galaxy cross-spectra as given  
by equation (111); the lower panel shows the galaxy power spectra of equation (110).
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In the subhorizon approximation �k aH, the above perturba-
tion equations reduce to
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Eliminating Vc, in the subhorizon approximation �k aH, we 
obtain the second order equation for the DM perturbation

″
ρ ρ

δ
ρ ρ

ρ
δ
ρ

δ

ρ

∆ = − + ∆ + −∆ + +

−∆ + − − Ψ

′

′ ′

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

H H
a Q a Q a Q a Q

a Q a Q a k Q
k

2

.

c
c

c
c c

c

c

c
I

c

c

c

c
c

c

c
I

c

pc
I

c

2 0 2 0 2 0 2 0

2 0 2 0 2
2

�

(119)

Similarly for the DE perturbation we have

″
ρ

ω
ω
ω

ρ

ρ ρ
ω

ρ

ω
ρ

ω
ω

ρ

ρ

δ

ρ
ω ω ω

δ
ρ

ω
ω
ω

ρ

ρ ρ
δ
ρ

∆ = − ∆ − ∆ + − −
+

+ × − + − ∆

− + − + −
+

∆

− − ∆ − + Ψ+ + ∆

+ − −
+

+ +

′
′ ′

′
′

′ ′

′ ′

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟

H H H H

H H H

H H

H

C
a Q a Q

C
a Q

C
a Q

k
a Q

k C k

a Q a Q a Q

3 1 3
1

3 3

3 6
2

1

1 3

1 3
1

.

d e d
d

d
d d

d

d

d

d

d

d
e d

d

d
d

e d
d

d

d

d

d

d
d

pd
I

d
e d d d d d

d
I

d
d

d

d

d

d

d

d

d
I

d

2
2 0 2 0

2
2 0

2
2 0

2
2 2 2

2 0 2 0 2 0

( )

( ) ( )

( )

�

(120)

From the perturbed Einstein equation  (112) we obtain the 
‘Poisson equation’ in the subhorizon approximation,
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which relates the matter inhomogeneities to the metric per-
turbations. Finally, using the results of section 4.1.3, we can 
obtain the perturbation equations  for the dark sector with a 
constant DE EoS.

The stability of the growth function depends on the type 
of coupling and on whether ωd is constant in time or not. 
When the interaction is proportional to the DM energy density 
(ξ = 02 ) the growth of matter density perturbations is unstable. 
The unstable solution can disappear when ωd varies with time. 
The growth is stable when the interaction is proportional to the 
energy density of DE (ξ = 01 ). These results are consistent with 

the conclusions of the evolution of curvature perturbations on 
superhorizon scales in the early universe [165]. Hereafter we 
will restrict our analysis to the case ξ = 01  since in this case all 
the solution are stable. We will consider adiabatic initial condi-
tions at matter-radiation equality (z  =  3200). We assume that 
the time derivatives of DM and DE perturbations are zero. To 
simplify the discussion, we restrict the analysis to a constant 
EoS parameter with ω <−1d  and to those scales of the matter 
power spectrum that have been measured, i.e.  > −k h0.01 Mpc 1 

[43]. Also, the DE sound speed, Ce
2, will be positive and 

smaller than unity. In figure 9 we plot the behavior of DE and 
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DE perturbations for different effective sound speed, DE EoS 
parameter, wave number and coupling. The adiabatic initial 
conditions are /( / ) /( )δ ξ ξ δ ω ξ ξ− − = + + +r r1 1c d d1 2 1 2 . 
Solid lines represent DM perturbations and dotted lines DE 
perturbations. The solutions largely overlap, except in the 
encircled region in panel (d).

In models without interaction, DE perturbations have an 
effect on the evolution of DM density pertubations, more 
important when the sound speed is ∼C 0e

2  and ωd is signifi-
cantly different from  −1. Figure 9(a) illustrates this behavior: 
a smaller the value of Ce

2 corresponds to a larger growth of DE 
perturbation; larger the difference of ωd from  −1 larger the 
growth of DE perturbations. The effect is even more impor-
tant on the DM perturbations. In figure 9(b) we illustrate the 
behavior for a constant sound speed. In this case, the DE per-
turbation grows larger when the difference of ω + 1d  from zero 
increases, consistent with [43]. However, when �C 1e

2  and 
ω −� 1d  the effect of DE is suppressed. Figure 9(c) illustrates 
that the effect of DE perturbations is smaller at large than at 
small scales. The previous results do not change qualitatively 

in the presence of an interaction as illustrated by figure 9(d). 
Only at very recent epochs, indicated in the figure by a red 
circle, there is an obvious difference due to the coupling.

An alternative probe of the evolution of DM perturbations 
is the growth index γ, related to the dimensionless growth rate 

/= ∆f ad ln d lnc  as /γ = Ωfln ln c (see section  6.2.1). This 
index is rather sensitive to cosmological parameters [299], the 
underline theory of gravity [142, 143] and a DM/DE coupling 
[43]. In figure  10 we plot this magnitude for model I with 
different values of the interaction parameter. Solid lines cor-
respond to models with DE perturbations, while dotted lines 
correspond to models with a DE density homogeneously dis-
tributed. When there is no interaction and ω = const.d  the mat-
ter growth index deviates from the value of the concordance 
model more when there are DE density perturbations than 
when the DE is distributed homogeneously. The deviation 
is more important when ωd differs significantly from  −1 and 
when Ce

2 decreases. The difference in γ with and without DE 
perturbations can reach γ∆ = 0.03. The differences between 
large and small scales in the subhorizon approximation, is not 

Figure 8.  Same as in figure 7 but for model I.
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as large as the effect of ωd and Ce
2, in agreement with [43]. 

Detailed discussions on the matter growth index in the case of 
no interaction can be found in [168]. The effect of the interac-
tion on the growth index is more important than the presence 
or absence of DE perturbations. For instance, if �ξ −102

2, 
value compatible with the expansion history of the universe 
[133, 164], the interaction dominates the variation on the 
growth index over the effect of DE perturbations. This result 
opens the possibility that future measurements of the growth 
factor could prove the existence of the interaction irrespec-
tively of the DE distribution.

5. The DM/DE interaction beyond perturbation 
theory

5.1.  Layzer–Irvine equation

In an expanding universe, the Layzer–Irvine equation describes 
how a collapsing system reaches a state of dynamical equilib-
rium [221, 275]. The final state will be altered if there exists 
a DM/DE interaction [2, 3, 61, 62, 120, 166, 277]. In this sec-
tion we will derive the Layzer–Irvine equation in the presence of 
such an interaction. We start by redefining the perturbed gauge 
invariant couplings of equations (91) and (92) as [165, 167]

( / ) ( )
δ
ρ

ξ ξ
δ
ρ

ξ ξ≈ ∆ + ∆ ≈− ∆ + ∆H H
a Q

r
a Q

r3 , 3 ,c
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c
c d

d
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d
c d

2 0

1 2

2 0

1 2

� (122)
where /δρ ρ δ∆ ≈ =c c c c, /δρ ρ δ∆ ≈ =d d d d and /ρ ρ=r c d. It is 
useful to rewrite equations (117) and (118) in real space
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(124)
where ¯ = −x a x1  and ¯∇ = ∇−ax x

1 . Defining σ δρ=c c, σ δρ=d d, 
and assuming that the DE EoS is constant, we can rewrite equa-
tions (123) and (124) as

( ) ( )

( ) ( ) ( / )( )
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The dot denotes the derivative with respect to the coordi-
nate time. The gravitational potential Ψ can be decomposed 
as ψ ψΨ = +c d, each component satisfying the following 
Poisson equation [252],

( )ψ π ω σ∇ = +λ λ λG4 1 3 .2� (127)

The subscript ( )λ = c d,  denotes DM and DE, respectively and 
σλ represents the inhomogeneous fluctuation field. In a homo-
geneous and isotropic background 〈 〉ψ =λ 0, since σ =λ 0. 
The corresponding gravitational potentials are [252]

( )
∫ ∫ψ π

σ
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ω σ
= −

| − |
= −

+
| − |

′
′

′
′

G V
x x

G V
x x
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d
d d
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(128)
For the DM, the rate of change of the peculiar velocity (equa-
tion (125)) can be recast as

( ) ( ) ( / )( )ψ ψ ξ ξ
∂
∂

= −∇ + − +
t

aV a a H r aV3 .c x c d c1 2� (129)

Neglecting the influence of DE and the couplings, equa-
tion (129) represents the rate of change of the peculiar veloc-
ity of the DM particle in an expanding universe described 
by the Newton’s law; this was the starting point of [221]. 
To derive the energy equation for the local inhomogeneities,  
we multiply equation (129) by ˆρ εaVc c  and integrate over the 
volume [221]. Here ˆ ¯ ¯ ¯ε = ∧ ∧a x y zd d d3  is the volume element 

which satisfies ˆ ˆε ε=∂
∂

H3
t

. Considering the continuity equa-

tion, the LHS of equation (129) can be multiplied by aVm and 
integrated to yield

( ) ( / )ξ ξ
∂
∂

− +
t

a T a H r T3 .2
c

2
1 2 c� (130)

where ˆ∫ ρ ε=T Vc cc
1

2
2  is the kinetic energy of DM associated 

with peculiar motions of DM particles.
The RHS of equation (129) can be transformed in a simi-

lar manner. Using partial integration, the potential part can be 
changed to

( ) ˆ ( ) ˆ

( ) ˆ

∫ ∫
∫
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(131)

Taking into account the first equation  in (125), it can trans-
formed to

( ) ˆ ( ) ( ˆ)

{ }

∫ ∫ψ ψ ρ ε ψ σε
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2
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(132)

where ˆ∫ σψ ε=Ucc c c
1

2
, ˆ∫ σ ψ ε=Udc d c , ˆ∫ σψ ε=Ucd c d , and =Udd  

ˆ∫ σ ψ εd d
1

2
.

The second term in the RHS of equation  (129) can be 
rewritten as

( ) ( / ) ˆ ( / )∫ ξ ξ ρ ε ξ ξ− + = − +aV H r a H r T3 6 .c c
2

1 2
2

1 2 c� (133)

Combining equations (130), (132) and (133), one obtains
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∫ ψ σε ξ ξ

ξ ξ ξ ξ
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T U H T U
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(134)

This equation  describes how the DM reaches a dynamical 
equilibrium in a collapsing system within an expanding uni-
verse. If the DE is distributed homogeneously then σ = 0d  and 
equation (134) reduces to

( ) ( / )ξ ξ ξ+ + + = − + +T U H T U H r T H U˙ ˙ 2 3 6 .c cc cc ccc 1 2 c 1
� (135)
For a system in equilibrium, = =T U˙ ˙ 0c cc  and we obtain the 
virial condition ( / / ) ( / )ξ ξ ξ+ + + − =r T U2 3 1 3 2 0cc1 2 c 1  [2]. 
Neglecting the interaction ¯ ¯ξ ξ= = 01 2 , we reach the virial 

condition first derived by [221]. Let us remark that even when 
the DM is homogeneously distributed the coupling changes 
both the time required by the system to reach equilibrium and 
the equilibrium configuration itself [2].

Let us now consider the case when DE is not homogeneous. 
The rate of change of the peculiar velocity of DE is described 
by the second equation of equation  (126). Multiplying both 
sides of this equation by ˆρ εaVd d  and integrating over the vol-
ume, on the LHS we have

( ) ( )ω ξ ξ
∂
∂

+ + +
t

a T a H r T3 .d d d
2 2

1 2� (136)

On the RHS the first term reads,

Figure 9.  Behavior of DE and DE perturbations for different effective sound speed Ce, dark energy EoS parameter ωd, wave number k and 
coupling. Solid lines represent DM perturbation and dotted lines DE perturbation.
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For the remaining terms, we have
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Combining equations (136)–(138), we arrive at

Figure 10.  Growth index for interacting models. Solid lines are for the result with DE perturbation, while dotted lines are for the result 
without DE perturbation.
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which describes how in an expanding universe collapsing DE 
perturbations reach dynamical equilibrium.

In the non-interacting case (ξ ξ= = 01 2 ) when =C 0e
2  the 

DE would cluster just like CDM (compare (134) and (139)). 
Examples of DE models with this property were investi-
gated in [112]. In the interacting case, the time and dynamics 
required by the DE and the DM to reach equilibrium in a col-
lapsing system are different. This result was derived in linear 
theory. It would be more interesting to examine what occurs 
with the DE at the non-linear perturbation level to obtain a 

clearer picture of the dynamical evolution of the DE during the 
formalism of structure galactic halos and large scale structure.

5.2.  Spherical collapse model

Let us now consider how the interaction between DE and DM 
affects the evolution of collapsing systems. The spherical col-
lapse model is the simplest analytical model of structure for-
mation. At the background level, the universe expands with 
the Hubble rate /=H a a˙  and DE and DM satisfy the conti-
nuity equations (equations 12) and (13). A spherically sym-

metric region of radius R with energy density ρ ρ σ= +λ λ λ
cl  

(as before, ( )λ = c d,  and cl indicates clustering), will eventu-
ally collapse due to its self-gravity provided that σ >λ 0. The 
equation of motion for the collapsing system is governed by 
Raychaudhuri equation.

( )∑θ θ π ρ= − − +
λ

λ λG p˙ 1

3
4 32

� (140)

where ( / )θ = R R3 ˙ . Equation (140) can be written as,

∑π
ρ= − +

λ
λ λ

R

R

G
p

¨ 4

3
3( )� (141)

where R is the local expansion scale factor, to be distinguished 
from a the global (average) scale factor. Its evolution is deter-
mined by the matter inside the spherical volume and is not 
affected by the matter outside.

Assuming that the DE is homogeneously distributed 
(σ = 0d ), the evolution of its energy density in an spherical 
volume is
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( )ρ ρ ξ ρ ξ ρ+ = +
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c
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d1 2� (142)

The Raychaudhuri equation applied to a spherical region has 
the form

[ ( ) ]π
ρ ω ρ= − + +R

G
R¨ 4

3
1 3 ,c

cl
d d� (143)

where ρd is the background DE energy density. Changing 
variables from time t to the scale factor a, we can write 

( ) ( / ) ( / )= +R a R a a R a¨ ˙ d d ¨ d d2 2 2  and change the Raychaudhuri 
equation to

[ ( )/ ] [( )/ ]ω ω ζ+ − + + = − + +
⎛
⎝
⎜

⎞
⎠
⎟a

r

R

a

R

a
r a R r2 1

1 d

d

d

d
1 3 1 3 1 ,d d

2
2

2

�

(144)
where /ζ ρ ρ= c

cl
c. Therefore, we have
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d

d

3
1 3

1 d

d

3
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In order to solve equations  (144) and (145) we set the 
initial conditions ∼R a and dR/da  =  1 at matter-radiation 
equality, when we can consider that the spherical region is 
comoving with the background expansion. In the subhorizon 
limit, by neglecting DE inhomogeneities we can combine 
equations  (144) and (145) and integrate the resulting equa-
tion  from the initial moment ζ = ∆ + 1i ci  till the spherical 
region collapses, at ( )≈R a 0coll  [168] to obtain the critical 
over density δc that determines which halos collapse. This lin-
early extrapolated density threshold will fix the abundances of 
collapsed halos at each redshift and mass scale.

If the DE distribution is not homogeneous, it will not fully 
trace the DM. Their four velocities will be different, ( ) ( )≠u ud

a
c

a , 
and

( )( ) ( )γ= +u u vd
a

c
a

d
a

� (146)

where ( ) /γ = − −v1 d
2 1 2 is Lorentz-boost factor and vd

a is the 
relative velocity of DE fluid with respect to the DM rest 
frame. If the DE follows the DM distribution, =v 0d

a . For non-
comoving perfect fluids we have [364]
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d
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where = +h g u uab ab a b is the projection operator. Inserting 
equation  (146) into the second equation  (147) and denoting 

( )u c
a  by ua, the energy momentum tensor for DE reads,

( ) ( )ρ= + +T u u p h u q2 ,d
ab

d
a b

d
ab a

d
b

� (148)

where ( )ρ= +q p va
d d d

a is the energy-flux of DE seen in the 
DM rest frame. In the above equation, we neglect the sec-
ond order terms in vd

a and assume that the energy-flux velocity 
is much smaller than the speed of light γ∼�v 1, 1d

a . In the 
spherical model, we define the top-hat radius as the radius of 
the boundary of the DM halo. When the DE does not trace the 
DM it will not be bounded inside the top-hat radius and will 
be stretched outside the spherical region. If we assume that the 
DE leakage is still spherically symmetric, the Birkhoff theo-
rem guarantees that in the spherical region the Raychaudhuri 

equation takes the same form as in (141). For the energy den-
sity conservation law we have

( ) ( )∇ =λ λT Q ,a
ab b� (149)

where Qb is the coupling vector and ‘λ’ denotes DE and 
DM respectively. The time-like part of the above equation, 

( ) ( )∇ =λ λu T u Qb a
ab

b
b , gives
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where ϑ = ∇ vx d. The external term incorporating ϑ in the DE 
density evolution corresponds to the energy loss caused by the 
leakage of DE out of the spherical region.

For the space-like part, ( ) ( )∇ =λ λh T h Qb
a

a
ab

b
a b , only the DE 

has a non-zero spatial component and

( ) ( )+ =q hq˙ 4 0,d
a

d
a

� (151)

where ( )q d
a  is the DE flux. Assuming that the energy and pres

sure are distributed homogeneously, we obtain

( ) ( )ϑ ω ϑ ξ ξ ϑ+ − = Γ+h H˙ 1 3 3 .d 1 2� (152)

In this expression, /ρ ρΓ = c
cl

d
cl is the ratio of the DM and DE 

density in the collapsed region. We kept only the linear terms 
of ϑ in equation (150). In equation (152), if ϑ vanishes ini-
tially, it will remain so during the subsequent evolution and 
the DE will fully trace the DM. However, in most cases, even 
at the linear level there is a small difference between vd and vc, 
so that the initial condition for ϑ is not zero. For illustration, 
we took the initial condition ( )ϑ δ∼ − ∼− × −k v v 5 10d c ci

3 , 
which is obtained from the prediction of linear equation with 

 = −k 1 Mpc 1 at zi  =  3200. We have chosen ϑ| |� 1; the nega-
tive sign indicates that at the initial moment DM expanded 
faster than that of DE. Taking ϑ δ∼− −10 ci

3  did not change 
the results.

Defining /ζ ρ ρ=c c
cl

c, /ζ ρ ρ=d d
cl

d and converting the time 

derivative from 
t

d

d
 to 
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d

d
 we have the evolution of DM and DE 

in the spherical region described by
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When DE fully traces along DM, ϑ = 0, only the last two equa-
tions are needed. The Raychaudhuri equation now becomes
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(154)

Taking for the spherical region of radius R the same initial con-
ditions as above and adopting the adiabatic initial conditions: 
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( )ω∆ = + ∆1di d ci, ζ = ∆ + 1ci ci  and ζ = ∆ + 1di di , which 
lead to ( )ζ ω ζ ω= + −1di d ci d, we can study the spherical col-
lapse of both the DM and the DE. However, it is important 
to note that due to the coupling, ζd may be negative at some 
moment during the collapse which would be unphysical. To 
avoid reaching this point, we remove the coupling when ζd 
becomes negative. In this way, we guarantee ⩾ζ 0d . In the 
linear evolution limit we assume the subhorizon approx
imation of the DM and DE perturbation equations to be valid. 
Even in this limit the DE and DM perturbations are coupled. 
Fortunately, the effect of DE perturbations is small compared 
with that of the DM [168]. Using the linear perturbation equa-
tions for DM and DE together with equations (153) and (154), 
in the spherical model with an inhomogeneous DE distribu-
tion we can obtain the linearly extrapolated density threshold 

( ) ( )δ δ= =z z zc c coll  above which the structure collapses.

5.3.  Press–Schechter formalism and galaxy cluster number 
counts

The variation of the cluster number counts with redshift has 
been studies as a promising tool to discriminate different DE 
models [7, 8, 76, 252, 254, 258, 349, 382, 395] and to test 
coupled quintessence models [242, 253, 259]. In these studies, 
DM and DE were assumed to be conserved separately at the 
background level; the models only included energy loss due to 
the DE inside a DM halo and mass conservation implied that 
the DM density evolved as ρ ∼ −Rc

3. By contrast, in our study 
we will consider that the interaction within the dark sector 
exists at all scales.

Press and Schechter [301] designed a formalism to predict 
the number density of collapsed objects using the spherical 
collapse model. Although this formalism is a crude approx
imation and it is not precise enough to predict the exact num-
ber of clusters [189], it can be useful to understand how the 
interaction and the clustering of DE influence the threshold 
density of cluster collapse and, consequently, the cluster num-
ber counts as a function of mass and redshift.

In the Press–Schechter formalism, the comoving number 
density of collapsed DM halos of mass [ ]+M M M, d  at red-
shift [ ]+z z z, d  is [301]
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where ρ ρ ρ= +m c b is the comoving mean matter density at 
each particular redshift. In most cases, it is a constant and 
equals the present mean matter density, but this is not true 
when DE interacts with DM [242]. The quantity ( )σ σ= R z,  
represents the root mean square density fluctuation on a sphere 
of radius R. It has the explicit form [377],
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where σ8 has been evaluated on a sphere of radius 
 = −R h8 Mpc1  and D(z) is the growth function defined by 

( ) ( )/ ( )δ δ=D z z 0c c . The index ε is a function of the mass scale 
and the shape parameter Γ of the matter power spectrum [377],
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To simplify, we will use the value of Γ = 0.3 throughout the 
analysis. The radius R at given M can be calculated by the 
relation [377],
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where the mass is given in − �h M1 . The Press–Schechter for-
malism gives the comoving number density of halos, which 
can be compared with astronomical data. To this purpose, we 
calculate the all sky number of halos per unit of redshift
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where the comoving volume element per unit redshift is 
/ ( )/ ( )Ω =V z r z H zd d d 2  and r(z) is the comoving distance 

∫=
′r z

z z

H z0

d( )
( )

.

In the subsequent discussion we do not aim for a precise 
comparison with data, that would require computationally 
expensive N-body simulations, but to see in which direction 
the interaction modifies the cluster number counts. We will 
study the effect of a homogeneous and an inhomogeneous 
DE distribution. We will show that when the DE is distributed 
inhomogeneously, it plays an important role in the formation 
of structure.

5.3.1.  Interaction proportional to the energy density of DE 
(ξ ξ= ≠0, 01 2 ).  When the interaction is proportional to the 
DE energy density, we have shown in section 4 that the cur-
vature perturbation is always stable for both quintessence and 
phantom DE EoS. In figure 11 we present the results with a 
constant DE EoS with ω >−1d . Solid lines correspond to the 
case when the DE is distributed homogeneously. Figure 11(a) 
corresponds to ξ > 02 , i.e. DE decays into DM). In this case, 
the critical mass density decreases compared with the ΛCDM 
model; clusters collapse more rapidly than in the concordance 
model. When DM decays into DE, the threshold of collapse 
δc is higher than in the concordance model, so it is more dif-
ficult for an overdensity to collapse. The effect of the coupling 
is significant and changes cluster number counts. This can be 
seen in figures 11(b)–(d). For a positive coupling (ξ > 02 ) clus-
ter number counts are larger than in the ΛCDM model but the 
opposite is true when the coupling is negative (ξ < 02 ).

When the DE is distributed inhomogeneously, we need to 
consider DE perturbations and their effect in structure forma-
tion. In figure 11 these results are shown as dotted lines. In this 
case, the critical threshold δc is slightly larger than the results 
without DE perturbations. The differences due to the effect of 
DE inhomogeneities is negligible compared with that of the 
interaction.

When the DE EoS is ω <−1d  and the DE distribution is 
homogeneous, the effect of the interaction on the evolution of 
critical threshold δc and the galaxy number counts is similar to 
when ω >−1d . However, when the DE clusters and ω <−1d , 
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the number counts are slightly larger than in the homogene-
ous case, although the differences are negligible, especially at 
low masses.

Compared with the effect of the interaction, the clustering 
properties of the DE have a negligible effect in the thresh-
old of collapse δc and consequently also in cluster number 
counts. This is an indication that the fluctuation of DE field 
σd is small. In equation  (139), a small value of σd leads to 

→∼ ∼ ∼U U U T 0md dm dd d , implying that the DE plays a very 
small role in the virialization of the structure. The small effect 
is a consequence of subhorizon DE perturbations being much 
smaller than those of the DM [168].

5.3.2. The interaction proportional to the energy density of 
DM (ξ ξ> =0, 01 2 ).  In this case, we will only consider sta-
ble perturbations, ω <−1d  since perturbations are unstable if 
ω >−1d  (see section 4). We also restrict the coupling to be 
positive to avoid having DE with a negative energy density at 
early times [164]. In figure 12 we present our results. Solid 
lines correspond to homogeneous and dotted lines to inhomo-
geneous DE distributions. The figure  shows that the results 
for small couplings are similar to ΛCDM; figure 12(c) shows 
that larger positive coupling leads to higher number of clus-
ters, as expected since δc and the ratio ( )/ ( )δ σz D zc 8  are smaller 
at high redshift for a larger (positive) ξ1 than for the concor-
dance model. The behavior is consistent with the case when 
the interaction is proportional to the DE.

When the DE clusters, we need to consider the effect of its 
perturbations. In this case δc is more suppressed at low redshift 
than in the case of homogeneous DE. The ratio δ σz D zc 8( )/ ( ), 
shown in figure 12(b), is also smaller than in the case of homo-
geneous DE, leading to a larger number of clusters as shown 
in figure 12(c).

6.  Observational tests

As discussed in section 3.2, general constraints on the form of 
the interaction can be obtained by imposing that at the back-
ground level the universe underwent a radiation and a matter 
dominated periods that lasted long enough as to allow the for-
mation of CMB temperature anisotropies and the emergence 
of large scale structure, followed by the present period of 
accelerated expansion. Similar restrictions apply to models of 
modified gravity [27]. It is more informative to test theoretical 
predictions with observations. In models without interaction, 
the effects of DE are more significant at redshifts ⩽z 2 [140], 
while the interaction extends the effect to larger redshifts and 
could even alter the sequence of cosmological eras. In this 
section  we will summarize the magnitudes and data most 
commonly used to constraint DM/DE interacting models.

6.1.  Data on the expansion history

Most models are usually too complex to be studied in detail 
and their viability is first established at the background level. 
Even at zero order one could expect significant differences 
on the Hubble expansion between DM/DE interacting models 

and the concordance model. In interacting models, the DM 
has an effective equation  of state different from zero; the 
effect of the interaction is not equivalent to an EoS varying 
arbitrarily with time and the differences on the background 
evolution is usually first tested to verify the viability of any 
given model. In this section  we will briefly summarize the 
most common observables, data sets used to this purpose and 
the constraints imposed on the models described in sections 2 
and 3. In table 4 we list the acronyms of the current and future 
observational facilities that provide the most commonly used 
data sets.

6.1.1.  Luminosity distance tests: constraints from superno-
vae.  Supernovae type Ia (SN Ia) are still the most direct 
probe of the expansion and of the existence of DE. They are 
accurate standard candles [326] and have been used to estab-
lish that the universe is accelerating at present [281, 313]. By 
comparing their intrinsic luminosity to the measured flux one 
obtains a direct estimate of the physical distance to the object. 
Many SN samples such as ESSENCE [396] SDSS-II [200], 
CfA3 [178] union-2 [15] are publicly available and continue 
to be updated. The data tests models at ⩽z 1, where most SNIa 
have been found. Nevertheless, future surveys will provide 
SNIa to higher redshifts, like the Wilson SN, the furtherest 
SNIa to date with a redshift z  =  1.914, providing stronger 
constraints on model parameters. In figure  13 we represent 
the luminosity distances obtained from union-2 sample with 
their error bars. For comparison, we show the standard ΛCDM 
model with the cosmological parameters measured by the 
Planck Collaboration (see table 2) and two fluid models with 
the same cosmological parameters except an EoS and interac-
tion parameters ω = −0.9 and ξ = 0.01, 0.1 (see the definition 
in equation (14)). The differences between models are rather 
small, a clear indication of the difficulty of determining the 
interaction using only luminosity distances.

6.1.2.  Angular diameter distance tests.  Angular diameter 
distances, ( )= + −D D z1A L

2, have also been used to constrain 
the rate of expansion. This distance is computed by measuring 
the angular size subtended by a standard ruler of known size. 
In models where the fraction of DE is negligible at recombi-
nation, the particle and sound horizons at last scattering [394] 
are such rulers. The pressure waves that propagate in the pre-
recombination photo-baryon plasma imprint oscillations in 
both the matter and radiation power spectra. The angular scale 
subtended by the first acoustic peak in the radiation power 
spectrum has been used to determine the spatial flatness of the 
universe [184, 185]. The effect of this baryon acoustic oscil-
lations (BAOs) of the matter power spectrum is to imprint a 
characteristic scale in the clustering of matter and galaxies, 
which appears in the galaxy correlation function as a local-
ized peak at the sound horizon scale rs. The angular scale of 

the comoving sound horizon is ∫=∗
∞ −
∗

r z c H zds z S
1( )  where 

cS(z) is the sound speed of the photon-baryon plasma. The 
CMB acoustic scale is ( ) ( )/ ( )π= + ∗ ∗ ∗l z D z r z1 sA A , but this 
distance prior is applicable only when the model in question 
is based on the standard FRW [214]. The interaction changes 
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the expansion history and the distance to the last scattering 
surface and the angular scale of the acoustic peaks and the 
application of the BAO scale to interacting DM/DE models is 
not straight-forward.

The Planck Collaboration has determined the sound hori-
zon at the drag scale (zd  =  1020), assuming a ΛCDM cos-
mology. The scale relevant for the BAO which is slightly 
different from the decoupling of the photon-baryon plasma 
(z*  =  1090), is = ±r 147.60 0.43drag  Mpc [288, 292] (Notice 
that this magnitude is independent of the Hubble constant). 
This scale can be measured in the correlation function using 
galaxy surveys of large volume like the sloan digital sky sur-
vey (SDSS) [128]. Since the observed galaxy coordinates are 
angles and redshifts, the conversion of coordinate separations 
to comoving distances will depend on the angular diameter 
distance ( )d zA  and the expansion rate H(z). Errors on the two 
quantities are correlated, and in the existing galaxy surveys 

the best determined combination is approximately an average 
of the radial and angular dilation scale, DV(z), defined in [128] 
as [( ) / ( )] /= +D z D zc H z1V

2
A
2 1 3. BAO data have been used by 

[169] to constrain DM/DE models. In figure 14 we represent 
the distance scale / ( )r D zVdrag  obtained from different data sets: 
2dFGRS [278], 6dFGRS [64, 66], SDSS-III [279, 323], SDSS 
MGS [317], BOSS ‘low-z’ and CMASS surveys [30, 90] and 
WiggleZ [65, 68, 198]. In addition, we represent the concord-
ance LCDM model and two interacting DM/DE fluid models 
as in figure 13.

As an alternative to the sound horizon, the CMB shift 

parameter ( )∫= Ω ′ ′−R E z zdm
z

0
1ls

 has been used a standard 

ruler. In this expression zls is the redshift of the last scattering 
surface and E(z) is given in equation (6). This parameter has 
been measure to be = ±R 1.725 0.018 [383] from WMAP 
[179, 214] and has been applied in the literature to test inter-
acting models. [133, 134, 164, 248, 249].

Figure 11.  Cluster number counts for an interaction kernel ξ ρ=Q d2  and DE EoS with ω >−1d . Solid lines correspond to a DE distributed 
homogeneously and dotted lines to an inhomogeneous distribution.
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6.1.3.  Expansion rate, look-back time and age.  The inter-
action modifies the rate of expansion of the universe and 
changes the Hubble parameter and the age of astronomical 
objects as a function of redshift compared with the concor-
dance model. Data on the Hubble expansion has been derived 
from the differential ages of old, passively evolving, galax-
ies [345] or from the spectra of red galaxies [353]. The data 
provide a measurement of the expansion rate of the universe 
in an almost model independent way [173]. A direct measure-
ment of H(z) was obtained by [145] using the 2-point cor-
relation of sloan digital sky survey luminous red galaxies and 
taking the BAO peak position as a standard ruler in the radial 
direction and is independent of the BAO measurements of 
[279]. In [163] the age of a quasar at z  =  3.91 was estimated 
to be ⩽t 2.1quasar  Gyr and this value has been used to constrain 

cosmological models [138]. In [381] and [127] it was argued 
the age of this quasar favors the existence of an interaction.  
In figure 15 we represent the value of the Hubble expansion 
as a function of redshift measured from different data from 
BOSS [101, 260, 324] and WiggleZ [69]. These data has been 
compiled by [130] and [137] and are represented with tri-
angles. Also included is data from [173] (diamonds) derived 
using SNIa, BAO data from figure 14 and expansion data from 
[373]. Lines show the prediction for the models of figure 13.

The look-back time (see section 1.2) can also be used to 
constrain models. In [190] and [345] the ages of 35 and 32 
red galaxies are respectively given. For the age of the uni-
verse one can adopt = ±t 13.73 0.120

obs  Gyr [213] from e.g. 5 
years WMAP data, the seven year data [214] or else the most 
recent data from Planck, gives = ±t 13.799 0.0130

obs  Gyr 

Figure 12.  Cluster number counts with an interaction kernel ξ ρ=Q c1 . Solid lines correspond to a homogeneous DE distribution and dotted 
lines to the inhomogeneous case.
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[296] (actually, we cannot go that far in precision, consider-
ing the interaction, the above values being model dependent). 
Although this estimate for t0

obs has been obtained assuming a 
ΛCDM universe, it does not introduce systematic errors in our 
calculation. Any such errors eventually introduced would be 
compensated by adjusting d f, in equation  (9). On the other 
hand, this estimate is in perfect agreement with other values, 
which are independent of the cosmological model, as for 

example = −
+t 12.60

obs
2.4
3.4 Gyr, obtained from globular cluster 

ages [216] and = ±t 12.5 3.00
obs  Gyr, obtained from radioiso

topes studies [92].

6.1.4.  Cluster number counts.  The cluster mass function and 
cluster redshift distribution probe the late time evolution of the 
universe and the associated DE effects (see section 5.3). These 
observables provide specific signatures of DM/DE interaction 
and the existence of DE inhomogeneities [45, 166]. Also, high 
resolution simulations of LSS formation show significant dif-
ferences in the mass function between DM/DE models and Λ
CDM [357]. Cluster counts are exponentially sensitive to the 
properties of the DE but their effectiveness relies in obtain-
ing good estimators of the cluster mass. They could be used 
to constrain the properties of DE if the evolution in the rela-
tionship between observable quantities and the cluster mass 
can be calibrated [234]. Cluster surveys such as those of DES, 
SPT, WFirst, Euclid or e-Rosita, detecting about 104 clusters 
out to redshifts z  =  2 would provide enough statistics to con-
strain/measure Ω w,DE DE with 3% and 6% accuracy [233]. The 
dependence of cluster abundances and DM/DE coupling has 
been studied in [166, 242] who found that increasing the cou-
pling reduces significantly the cluster number counts, and that 
DE inhomogeneities increases cluster abundances. Wiggles in 
cluster number counts were shown to be a specific signature of 
coupled DE models. The interaction can significantly enhance 
the probability to observe very massive clusters at redshifts 

⩾z 1.4, that are very unlikely in the concordance model [41].
Observationally, cluster counts from the Planck Collabo

ration show the data is not in full agreement with the con-
cordance model. In 2013, the Planck Collaboration described 
a tension between the constraints on Ωm and σ8 from cluster 
counts and those from the primary CMB in the concordance 
model [291], result confirmed by the analysis of the latest data 
[297]. At present, it is unclear if the tension arises from low-
level systematics in the data or is an indication of new physics; 

Table 4.  Main current and planned observational facilities.

Acronym Meaning & url address

2MASS 2-micron all sky survey
www.ipac.caltech.edu/2mass

6dFGS 6-degree field galaxy survey
www-wfau.roe.ac.uk/6dFGS

ACT Atacama cosmology telescope
www.princeton.edu/act/

BOSS Baryon oscillation spectroscopic survey
www.sdss3.org/surveys/boss.php

CMBPol Cosmic microwave background polarization
cmbpol.uchicago.edu/

COrE Cosmic origins explorer
www.core-mission.org/

CFHT Canada–France–Hawaii telescope
www.cfht.hawaii.edu/

DES Dark energy survey
www.darkenergysurvey.org/

eBOSS Extended baryon oscillation spectroscopic survey
eBOSS www.sdss.org/sdss-surveys/eboss/

Euclid Euclid satellite, euclid consortium
www.cosmos.esa.int/web/euclid/home

HETDEX Hobby–Eberly telescope dark energy experiment
http://hetdex.org/

JDEM Joint dark energy mission
http://jdem.lbl.gov/

J-PAS Javalambre physics of the accelerating universe 
astronomical survey
http://j-pas.org/

LSST Large synoptic survey telescope
www.lsst.org/lsst/

Pan-STARSS Panoramic survey telescope and rapid response 
system
www.ps1sc.org/

Planck Planck satellite, Planck Collaboration
www.cosmos.esa.int/web/planck/pla

PRISM Polarized radiation imaging and spectroscopy 
mission
www.prism-mission.org/

SDSS Sloan digital sky survey
www.sdss3.org/

SKA Square kilometre array
www.skatelescope.org/

SNAP Super nova acceleration probe
http://snap.lbl.gov/

SPT South pole telescope
https://pole.uchicago.edu/

WFIRST Wide field infrared survey telescope
http://wfirst.gsfc.nasa.gov/

WMAP Wilkinson microwave anisotropy probe
http://lambda.gsfc.nasa.gov/

Figure 13.  Luminosity distances derived from SNIa union 2 sample 
data. The sample can be downloaded from http://supernova.lbl.
gov/Union/. As illustration, solid, dashed and dot–dashed lines 
represent the luminosity distance of the concordance model with 
the cosmological parameters measured by the Planck Collaboration 
and a fluid DM/DE model with ω = −0.9 and different interaction 
parameter.
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unstable DM models help to ease the tension [60] and could 
be more easily accommodated in interacting quintessence 
models.

6.1.5. The Sandage–Loeb test.  The Sandage–Loeb test pro-
vides a direct measurement of the expansion of the universe 
by measuring the redshift drift of extra-galactic sources. The 
test was first proposed in [327] and it was shown to be feasi-
ble using the spectra of distant quasars at the redshift interval 
z  =  [2, 5] [237]. Measuring the redshift drift of quasar spectra 
would be useful to determine the cosmic expansion history 
on a redshift interval where other DE probes are unable to 
provide useful information [108]. The data would be help-
ful to break the degeneracy between the values of Ωm and 
H0 existing in BAO, SNIa and CMB data [147], to constrain 
the equation  of state parameter of DE and, consequently, 
also constrain any possible DM/DE interactions at those red-
shifts [148]. Monte Carlo simulations of data taken with high 
resolution spectrographs using  ∼  40 m telescopes have been 
carried out to show how these observations would constrain  
DM/DE interactions [149]. As we indicate in section 8.1.3 this 
test could be within reach of the forthcoming generation of 
observational facilities.

6.1.6.  Equivalence principle tests.  The interaction between 
DM and DE produces a violation of the equivalence principle 
between baryons and DM. The DE modifies the gravity felt 
by the DM particles. At Newtonian scales, the interaction sim-
ply renormalizes Newton gravitational constant for the DM  
[115, 262]. The skewness of the large scale structure is a probe 
of gravitational clustering [273] and can be used to probe vio-
lations of the equivalence principle [24]. Moreover, if the DE 
couples only to DM and not to baryons, as requested by the 
constraints as imposed by local gravity measurements, the 
baryon fluctuations develop a constant, scale-independent, 
large-scale bias which is in principle directly observable [26].

6.2.  Constraints from large scale structure

The growth rate of large scale structure is another very sen-
sitive probe of the evolution of the gravitational potential. 
The transition from a matter dominated universe to a period 
of accelerated expansion freezes the growth of matter den-
sity perturbations [44, 274]. The interaction modifies the 
scale-invariant Harrison–Zel’dovich matter power spectrum  
[162, 410] adding power at large scales [126] and leading to 
a mismatch between the CMB-inferred amplitude of the fluc-
tuations, late-time measurements of σ8 [41, 218] and galaxy 
rotation curves [42].

6.2.1. The growth rate of matter density perturbations.  In the 
concordance model, the vacuum energy is homogeneously 
distributed within the horizon and only perturbations in the 
matter fluid are considered. If DE perturbations exist, they 
affect the evolution of matter perturbations through the gravi-
tational field and are themselves affected by the interaction. 
The dimensionless growth rate is defined as /= ∆f ad ln d lnc  
where ∆c is the growth factor as discussed in section  4, 
it is customary to express in terms of the growth index as 

( ) ( )Ω Ωγ Ω�f m m
m  [275]. In most models of DE, structure forma-

tion stops when the accelerated expansion begins. By contrast, 
the coupling of DE to DM can induce the growth of pertur-
bations even in the accelerated regime [26, 262]. Depending 
on the parameters, the growth may be much faster than in 
a standard matter-dominated era. Then, the growth index γ 
probes the nature of DE and can discriminate between models 
[127, 168, 236, 329, 366]. Data on the product ( ) ( )σf z z8  of 
the growth rate f (z) of matter density perturbations and the 
redshift-dependent rms fluctuation of the linear matter density 
field σ8 has been compiled by [46]. This estimator is (almost) 
model independent [350]. The Euclid satellite is expected to 
measure the growth factor within 1 to 2.5% accuracy for each 
of 14 redshift bins in the interval of redshifts [0.5  −  2] [29] 

Figure 14.  Ratio of the BAO drag scale to the angle-averaged 
dilation scale DV (z). The 6dFGS data is from [64] (blue), the SDSS 
from [279, 317] (green), the BOSS from [30] (gold) and WiggleZ 
from [198] (red). Like in figure 13 solid, dashed and dot–dashed 
lines corresponds to the theoretical prediction of the concordance 
model and the interacting DM/DE model IV for different interaction 
parameters.

Figure 15.  Hubble factor as a function of redshift. The data has 
been taken from [173, 260], [101] and [324] from the baryon 
oscillation spectroscopic survey data release 7, 9 and 11,  
respectively, [69] (at z  =  0.44, 0.6, 0.73) using data from  
WiggleZ DE Survey. Black triangles correspond to the data from 
the compilation of [130] and [137] while diamonds are given in 
[173]. Lines correspond to model predictions and follow the same 
conventions as in figure 13.
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(see section 8.2.2). A model independent test to probe pos-
sible departures from the concordance model at perturbation 
level was proposed in [256] and found that if the data on the 
growth factor was free of systematics, it was in conflict with 
the concordance model.

There are also effects at high redshifts. Due to the interac-
tion the growth rate of matter density perturbations during 
the radiation dominated regime is slower compared to non-
interacting models with the same ratio of DM to DE today. 
This effect introduces a damping on the power spectrum at 
small scales proportional to the strength of the interaction 
similar to the effect generated by ultra relativistic neutrinos 
[262]. The interaction also shifts matter-radiation equality to 
larger scales [126].

In figure 16 we present a compilation of growth factor data 
from different surveys, measured in units of the amplitude of 
the matter power spectrum at 8h−1 Mpc, σ8 [64, 101, 181, 198, 
243, 260, 363]. The different lines correspond to the concord-
ance model and a DM/DE interacting fluid model with EoS 
parameter ω = −1.1d . The interaction parameters are given in 
the figure.

6.2.2.  Redshift space distortions.  The growth of LSS 
induces galaxy peculiar velocities, i.e. coherent flows of 
galaxies towards matter overdensities. When redshifts are 
used to map galaxy positions, the reconstructed spatial dis-
tribution of objects is distorted in the radial direction, effect 
known as redshift space distortions (RSD). On large scales 
galaxies trace the linear growth of cosmological structures 
enhancing the amplitude of the 2-point correlation function; 
on small scales virialized structures are elongated along the 
line of sight. The amplitude of the former effect is directly 
proportional to the logarithmic growth rate of density fluc-
tuations ( ) ( )/δ=f z a ad ln d lnm  [160, 193]. The recent RSD 
measurements [67, 238, 324] indicate values smaller than the 
ΛCDM prediction. Analysis of the BOSS sample using RSD 
has yielded the tightest constraints to date on the growth rate 
of structure [309]. In [250] the cross-correlation between gal-
axies and galaxy groups was used to measure RSD as a probe 
of the growth rate of cosmological structure.

6.2.3. The Alcock–Paczynski test.  Alcock and Paczynski 
(A–P) test expresses the idea that if one assumes the wrong 
cosmological model to convert redshift measurements to dis-
tances, an intrinsically spherical object or pattern comoving 
with the Hubble flow will appear ellipsoidal [14]. The dist
ortion is proportional to ( )D zA  and H(z). The BAO is an exam-
ple of the A–P test but with an object of a known size [201]. 
The test is partially degenerate due to the apparent ellipticity 
of clustering caused by RSD. Although the two effects have 
a different dependence with scale, with a sufficient large vol-
ume one could expect to separate them [246].

6.3.  Constraints from CMB temperature anisotropies

The cosmic microwave background is the main source of 
information on the physics of the early universe. The differ-
ent time evolution of the gravitational potentials in interacting 

models induces several effects that change the radiation power 
spectrum with respect to the concordance model. Baryons and 
DM evolve differently, affecting the ratio between the odd 
and even peaks [22]. The change of the potential modifies the 
lensing B-mode contribution [21]. The sound speed of gravi-
tational waves is also modified and it affects the amplitude of 
the primordial B-mode [307]. The damping tail of the radia-
tion power spectrum varies, providing a measurement of the 
abundance of DE at different redshifts [83, 308]. Comparing 
models with data requires to follow the evolution of all 
energy density components by solving the perturbation equa-
tions from some early time [18, 23, 261, 263].

CMB temperature anisotropies have been measured by sev-
eral experiments out to =� 3000 [58, 287, 344, 354]. Earlier 
studies on DM/DE interaction used WMAP, and additionally 
other data sets on CMB temperature anisotropies, to set upper 
limits on the strength of the DM/DE coupling [110, 111, 144, 
167, 169, 170, 261, 263, 283, 321, 369, 371, 398] or to con-
strain the cross-section of DM/DE interactions [401]. More 
recently, Planck CMB data have been used to constrain inter-
acting models with different kernels discussed in the literature: 

ξ ρ=Q H c1  [110, 372], ξ ρ=Q H d2  [72, 110, 404, 405, 406], 
( )ξ ρ ξ ρ= +Q H c d1 2  [110, 135, 302]. Other couplings have 

also been discussed; [322] has shown that the data provides a 
moderate Bayesian evidence in favor of an interacting vacuum 
model. Nevertheless, since CMB temperature anisotropy data 
probes the DM density at the time of last scattering, i.e. at 
redshift ∼z 1100 while the interaction preferentially modifies 
the evolution between the last scattering surface and today, the 
data is degenerate with respect to Ω hc

2 and the interaction rate 
and complementary data sets are required to break the degen-
eracy such as baryon acoustic oscillations, supernova data, the 
growth of matter density perturbations and the ISW discussed 
below [102, 166, 371, 400].

Data on temperature anisotropies, covariance matrices, 
window functions likelihoods and many other resources 
are publicly available5. As an illustration, in figure  17 we 
plot the radiation power spectrum measured by the Planck 
Collaboration (red and green) [292] and the south pole tel-
escope [354] (blue). For comparison, we also superpose the 
model predictions for the concordance ΛCDM model and the 
interacting DM/DE fluid model. In model I the EoS parameter 
is ω = −0.9 when the kernel is proportional to the DE density 
and ω=−1.1 when it is proportional to the DM density.

6.3.1. The ISW effect.  The decay of the gravitational poten-
tial affects the low-multipoles of the radiation power spectrum 
by generating ISW temperature anisotropies [184, 208, 318].  
These anisotropies are generated by evolving gravitational 
potential at the onset of the accelerated expansion and change 
with the interaction [167, 170]. The contribution to the radia-
tion power spectrum due to the evolution of the gravitational 
potential at low redshifts is given by equation  (109). The 
ISW effect at low redshifts is generated by local structures, 
the spatial pattern of ISW anisotropies will correlate with 

5 All data products can be downloaded from http://lambda.gsfc.nasa.gov/
product/
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the distribution of the large scale structure and the cross-
correlation with a template of the matter distribution is given 
by equations  (109) and (110) [113]. Several groups looked 
for evidence of ISW effect by cross-correlating the WMAP 
data with templates built from different catalogs [73, 257]. 
The ISW signal at the position of superclusters is larger than 
expected in the ΛCDM model [158]. An update of these ear-
lier results have been carried out by the Planck Collaboration 
that reported a  ∼ σ4  detection of the ISW effect [290] and 
confirmed the previously mentioned ISW anomaly. Since the  
DM/DE interaction damps the growing mode of the Newto-
nian potential faster compared to models with no interaction, 
it enhances the ISW effect [151]. Comparison of the fraction 
of DE measured in CMB temperature maps with the fraction 
obtained from the ISW effect would provide a direct evidence 
of DM/DE interaction [264]. The Planck Collaboration con-
strained the vacuum energy density to be <Ω <Λ0.49 0.78 at 
the 68% confidence level compatible with the concordance 
model but also in agreement with interaction models with 

⩽ξ 0.01 [264]. Similar constraints but on a different coupling 
were obtained by [240, 331, 398].

6.3.2.  Constraints from peculiar velocities.  The interaction 
does not only change the time evolution of the gravitational 
potentials. It also changes the potentials themselves [262]. 
Since the gravitational potential gives rise to peculiar motions, 
the interaction, in turn, will modulate peculiar velocities of 
baryons and their effect on the CMB temperature anisotro-
pies. The correlation of spatial variations in the distribution 
of galaxy luminosities with the peculiar velocity field has 
been shown to be a powerful test of gravity and dark energy 
theories on cosmological scales [132]. In addition, while in 
the concordance model baryons trace the DM distribution 
in the linear regime, in DM/DE interacting models baryons 
do not follow DM as closely due to the DE inertial drag on 
the DM [166]. Peculiar velocities modify temperature fluc-
tuations on the CMB at small scales via the conventional 

Kinetic Sunyaev–Zel’dovich (kSZ) effect [355] generated by 
the ionized gas in the diffuse intergalactic medium and in the 
potential wells of galaxy clusters. Large scale flows have been 
detected in WMAP [195, 196] and Planck [36] data, the pair-
wise velocity dispersion of the unresolved cluster population 
has been measured [161] and the kSZ radiation power spec-
trum has been constrained using the data on CMB temper
ature anisotropies [150, 293]. In [402] it was determined that 
peculiar velocities could be between five times smaller and 
two times larger than in the concordance model and showed 
that peculiar velocities could provide constraints stronger than 
those derived from the ISW effect. The evidence of interaction 
between dark sectors in the kSZ observations were discussed 
in [402].

6.4.  Gravitational lensing

The effect of lensing is to remap the CMB fluctuations. The 
effect is parameterized in terms of the lensing potential ϕ [226],

( ˆ) ( ˆ )∫ϕ ς
ς ς
ς ς

ς τ τ= −
−
Ψ −

ς
n n2 d ; ,

0

rec

rec
0

rec

� (160)

itself a function of a gravitational potential Ψ. The observed 
anisotropy in direction n̂ is the unlensed (primordial) aniso
tropy in the direction ˆ ( ˆ)ϕ+∇n n ; ς is the conformal distance, 
τ the conformal time, τ0 the conformal time at present and the 
integration is carried out up to recombination. This expression 
assumes that the universe is spatially flat. The lensing poten-
tial power spectrum probes the matter power spectrum up to 
recombination [10]. It is also sensitive to the growth index 
[348]. The Planck satellite has measured the lensing potential 
using data on temperature and polarization anisotropies with 
a statistical significance of σ40  and has released an estimate 
of the lensing potential over approximately 70% of the sky, in 
band powers for the multipole range ⩽ ⩽�40 400 and with an 
associated likelihood for cosmological parameter constraints 
[295]. The data reveals some tension with the concordance 
ΛCDM model: the lensing amplitude is = ±A 1.22 0.10L , 
which is in σ2  tension with the amplitude of the CMB spec-
trum reconstructed from lensing deflection angle spectrum, 
= ±φφA 0.95 0.04L  while both quantities should be unity in 

the concordance model. In [186] it was argued that some mod-
els whose effective Newton gravitational constant is larger 
than that in ΛCDM could explain the discrepancy. However, 
in order to lens the CMB anisotropy, the growth of matter 
density perturbation needs to be enhanced, giving a value of 
σ8 larger than the measured value. A full non-linear study of 
gravitational lensing on different cosmological models is still 
lacking. In [88, 265] the impact of the DM/DE coupling on 
weak lensing statistics was analyzed by constructing realis-
tic simulated weak-lensing maps using ray-tracing techniques 
through a suite of N-body cosmological simulations. Model-
independent constraints on the growth function of structure 
and the evolution of the DE density can be obtained from the 
reconstruction through lensing tomography [183] and further 
information can be obtained from the power spectra and cross-
correlation measurements of the weak gravitational lensing 

Figure 16.  Growth factor data in units of σ8, obtained from different 
surveys: 6dF [64] (z  =  0.067), [181] (z  =  0.15), SDSS DR7 [260] 
(z  =  0.3) and SDSS DR9, [101] (z  =  0.57) and VIPERS [363] 
(z  =  0.8). Lines correspond to the concordance model and a  
DM/DE interacting fluid model with EoS parameter ω = −1.1d  with 
different interaction parameters.
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in the CMB and from the cosmic shearing of faint galaxies 
images [182].

6.5.  Model selection statistics

The data sets described above are not exclusively tests of 
interacting DE models. Fitting data to the model predic-
tions to determine/constrain its parameters is not sufficient to 
establish the validity of the model. The concordance model 
requires only the energy density associated to the cosmologi-
cal constant to explain the current period of accelerated expan-
sion. Interacting DE models require at least two additional 
parameters: the DE EoS and the DM/DE coupling constant. 
Further improvement on the available data sets will help as 
to constrain/measure the cosmological parameters with higher 
accuracy. Equally important is the inference problem of decid-
ing what set of parameters is needed to explain any given data, 
known as model selection [231]. Adding extra parameters 
necessarily improves the fit to the data at the expense of reduc-
ing the predictive power of the model [230]. The purpose of 
model selection statistics is to address whether the improved 
fit favors the introduction of extra parameters. The most com-
monly used criteria are the Akaike information criterion (AIC) 
[12] and the Bayesian information criterion (BIC) [333]. If 
ˆ ( )θL  is the maximum of a likelihood function of a model of θ 
parameters, N the number of data points and k the number of 
parameters to be estimated from the data, then

ˆ ( ) ˆ ( )θ θ= − = − +L LAIC k BIC k N2 2 ln ; 2 ln ln .�
(161)

Information criteria penalize the introduction of new para
meters that do not significantly improve the quality of the fit. 
For instance, if adding an extra parameter reduces the BIC by 
2–6 units, the data shows a positive evidence in favor of the 

new parameter being required to explain the data; if the decre-
ment is 6–10, the evidence is called strong and if it is larger 
than 10, very strong [230]. The BIC generally penalizes the 
number of parameters more strongly than the AIC, although 
it depends on the number of data points N and parameters k.

7.  Observational constraints on specific models

Determining the properties of interacting DE/DM models 
requires the use of all the available observational data, com-
bining different probing techniques described in section 6 and 
has been extensively considered in the literature [16, 20, 52, 
134, 248]. Comparisons with the CMB data using WMAP and 
Planck results have also been carried out [110, 261, 263, 321]. 
Further constraints, relying on cluster properties [2, 3] as well 
as structure formation [166], age constraints and other proper-
ties [5, 343, 372, 381] have also been discussed.

In this section, we will review the constraints that observa-
tions have imposed on some specific models. Since the data is 
constantly evolving, not all the models have been tested using 
the most recent data.

We will first go over the constraints obtained by using the 
observational data on the universe expansion history. Those 
data are not only obtained from distance based methods such 
as the SN data, but also obtained based on time-dependent 
observables for instance the age estimates of galaxies. We will 
combine four fundamental observables including the new 182 
Gold SNIa samples [315], the shift parameter of the CMB 
given by the three-year WMAP observations [383], the BAO 
measurement from the SDSS [128] and age estimates of 35 
galaxies provided in [328, 345] to perform the joint systematic 
analysis of the coupling between dark sectors.

Furthermore we will review the constraints on the interact-
ing DE models by employing the data from the CMB temper
ature anisotropies together with some other external data 
described as follows:

	 (i)	CMB temperature anisotropies: From the 2013 Planck 
data release we use the high-� TT likelihood, which 
includes measurements up to a maximum multipole 
=� 2500max , combined with the low-� TT likelihood, 

which includes measurements in the range =� 2–49 
[286, 293] (figure 17). We also include the polarization 
measurements from WMAP 9 yr [58], in particular the 
the low-� ( <� 32) TE, EE and BB likelihoods.

	(ii)	BAO: We combine the results from three data sets of 
BAO: the 6DF at redshift z  =  0.106 [64], the SDSS DR7 
at redshift z  =  0.35 [266] and the SDSS DR9 at z  =0.57 
[30] (figure 14)

	(iii)	SNIa data: The supernova cosmology project (SCP) union 
2.1 compilation [358] with 580 measured luminosity dis-
tances (figure 13)

	(iv)	Hubble constant data: Finally we also include the Hubble 
constant = ±H 73.8 2.40  km s−1 Mpc−1, measured by 
[316]. This value is in tension with the result of the Planck 
Collaboration [286, 292], so the constraints derived using 
H0 could be shifted slightly if a different value is used.

Figure 17.  Radiation power spectrum from Planck (low multipoles 
red and high multipoles in green) and the south pole telescope 
(blue). Planck data can be downloaded from the Planck legacy 
archive www.cosmos.esa.int/web/planck/pla and the latest 
compilation of SPT data (as of May 2014) can be downloaded from 
http://pole.uchicago.edu/public/data/story12/index.html. Lines 
correspond to the theoretical model predictions for the concordance 
ΛCDM model and the interacting DM/DE fluid model. In this case, 
the EoS parameter is ω = −0.9d  when ξ ≠ 02  and ω = −1.1d  when 
ξ ≠ 01 .
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We will limit the study to models with Ω = 0k ; our numer
ical calculations have been performed using the CMBEASY 
[124] and CAMB [224] codes. We modified the codes to 
include the effect of the DM/DE coupling at the background 
and perturbation level. To compare the theoretical predictions 
with observations, we perform Monte Carlo Markov Chain 
(MCMC), using a modified version of the CosmoMC program 
[225, 226].

7.1.  Constraints on the phenomenological interaction from  
the universe expansion history

In this section we examine different phenomenological inter-
action models between DE and DM by performing statisti-
cal joint analysis with observational data arising from the 182 
Gold type Ia SN samples, the shift parameter of the CMB 
given by the three-year WMAP observations, the BAO mea-
surement from the SDSS and age estimates of 35 galaxies. We 
compare the compatibility of these data sets. Especially we 
find that including the time-dependent observable, we can add 
sensitivity of measurement and give complementary results 
for the fitting. The complementary effect of adding the time 
observable was also noticed by using the lookback time data 
from [285]. Detailed analysis of our result can be found in 
[133].

We do not specify any special model for DE, but consider 
as an example the commonly used DE EoS parametrization 

( )
( )

ω = +
+

z wd
w z

z0 1
1

2 . After employing the MCMC method to 
explore the parameter space, we obtain the constraints on the 
model parameters in the table 5 when the coupling between 
DE and DM is taken proportional to energy densities of DM, 
DE and total dark sectors (T), respectively. For the chosen 
EoS, the priors on the model parameters are  −10  <  w0  <  10,
−  15  <  w1  <  15, <Ω <0 0.8m , ξ− < <1 1i .

In [133] it was argued that adding the age constraint, the 
coupling between DE and DM tends to be a small positive 
value which gives more compatibility among different data 
sets. We will see below that this result is consistent with the 
constraints obtained by using the CMB temperature anisotro-
pies and other external observations.

7.2.  Field description of the interaction between DE and DM

In section 2 we presented a field description of DM, DE and 
their interaction. In figure 18 we present the results of the like-
lihood analysis for a DE described as an scalar field with an 
exponential potential ( ) /ϕ = λϕ−V Ae Mpl and an interaction of 
the linear type: ( )ϕ βϕ= −F M  (see section 2.5). The influ-
ence of the fermionic mass M and the Yukawa coupling β 
is degenerate and both parameters can not be fit simultane-
ously. Let us define /β=� M to represent the amplitude of 
the Yukawa coupling in units of the fermionic mass. Only 
this parameter will be constrained by the observations. This 
approach has the advantage of decreasing one degree of 
freedom. The cosmological parameters have similar values 
to those in the concordance model. The constraint is much 
weaker on the parameter of the DE self-interaction potential 

λ. For Planck data alone the likelihood of interaction para
meter r is almost symmetric around zero. Adding low redshift 
data, λ tends to its lower limit, while r breaks the symmetry 
around zero. Including BAO, SNIa and H0, a null interaction 
is disfavored and the likelihood of � shows a preference for 
negative values.

Furthermore it was found [111] that if we can determine 
the scalar potential parameter λ, for example if we have a 
theoretical model to fix it as a large value, we observe that the 
Yukawa interaction between DE and DM can be preferred by 
the cosmological data. This shows that the field description of 
the interaction between DE and DM is compatible with obser-
vations. In addition, the best fit value of the cosmological 
parameter that we have obtained helps to alleviate the coin-
cidence problem, since there will be more time for the DM 
and DE energy densities to become comparable. This will be 
discussed further at the end of this section.

Discussions on how to break the degeneracy of the model 
parameters when the DE is described as a k-essence scalar 
field can be found in [248]. For more general discussion on 
the constraints of the non-minimally coupled k-essence DE 
models, readers are referred to [294].

7.3.  Phenomenological description of the interaction between 
DE and DM

The phenomenological description of the interaction between 
dark sectors was introduced in section 2 and the linear per-
turbation theory of the model was discussed in section 4. For 
the sake of simplicity in our subsequent discussion, we will 
review only models with a DE EoS parameter ω = const.d . The 
results for a variable EoS have been reported in [302, 400]. We 
restrict our analysis to the models that satisfy the stability con-
dition (section 4.2). The interaction kernels were summarized 
in table 3.

The results of the MCMC analysis using different data sets 
are shown in figure 19. When the coupling is proportional to 
the energy density of the DE, the data constrain the value of 
the interaction parameter to be in the range ⩽ ⩽ξ−0.3 0.12 . 
When the coupling is proportional to the energy density of 
the DM or the total energy density of the dark sector, the 
constraint is much tighter and the coupling are positive at the 
68% confidence level (CL). Including additional data tight-
ens the constraints on the cosmological parameters compared 
with the CMB data alone. Results for different models can be 
found in [2, 3, 23, 61, 110, 129, 133, 134, 157, 167, 169, 180, 
228, 229, 244, 255, 321, 322, 371, 381, 398–401, 407]. The 
conclusion of these analyses is that they are in agreement with 
those obtained from temperature anisotropies of the CMB by 
[294]. Evidence of the existence of interaction but with a low 
CL was given in [322].

7.4.  High redshift evidence for interacting DE

The effect of a dynamical DE component and of a DM/DE  
interaction is easier to be established at high redshift. 
Recently, the analysis of BOSS data presented evidence 
against the concordance model by measuring the BAO in the 
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redshift range ⩽ ⩽z2.1 3.5 from the correlation function of 
the Lyα forest from high redshift quasars [121]. Their result 
indicates a σ1.8  deviation (from Planck  +  WMAP) and σ1.6  
deviation (from ACT/SPT) from ΛCDM at z  =  2.34. While 
the statistical evidence is still not significant, if confirmed, 
this result cannot be explained by a dynamical DE component. 
An interacting DE appears as a simple and efficient solution 
to explain the BOSS result. If DE and DM interact and the 
former transfers energy to the latter, as required to alleviate 
the coincidence problem (see section  2.7) and indicated by 
the data [110], it would explain the value of the Hubble para
meter, ( )      = = ± − −H z 2.34 222 7 km s Mpc1 1, smaller than 
the expected value in ΛCDM [135]. Let us now briefly sum-
marize which of the models given in table 3 can explain better 
the BOSS result.

Let us consider a universe filled only with DM, DE and 
baryons. We can use the Hubble parameter obtained from the 
Friedmann equation and compare it with the value obtained 
by the BOSS collaboration for different sets of cosmo-
logical parameters. We can also compare the constraints for 
H(z  =  2.34) and ( )=D z 2.34A  given by the BOSS experiment 
with constraints from CMB adjusted data using ΛCDM and 
the interaction model. To carry out this analysis we need to 
establish first the evolution with redshift of the energy densi-
ties of each component, specially DE and DM since due to 
the interaction they are not independently conserved. For the 
models I and II, they behave as [164]
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The baryonic density is given by the usual expression 

( )ρ ρ= + z1b b
0 3. For the model III, the evolution is
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From these solutions, it is easy to establish that when the 
energy is transferred from the DE to the DM, the energy 
density of the DM is always smaller than what it would have 
been in the standard ΛCDM model. Since ρc is the dominant 
component at redshifts ⩾z 1 and it is smaller than in the con-
cordance model, so it would be the Hubble parameter, as indi-
cated by the BOSS data.

To make the previous statement more quantitative we took 
two sets of values for the cosmological parameters Ω Ω Ω, ,d c b

0 0 0 
and H0: (1) the values used by BOSS collaboration, obtained 

from the Planck Collaboration analysis of the ΛCDM model 
and listed in table 6, and (2) the values derived by [110] by 
fitting DM/DE interacting fluid models to the Planck, BAO, 
SNIa and H0 indicated above. Using both data sets, the Hubble 
parameter at z  =  2.34 has been computed using equations (163) 
and (162) for the cosmological models listed in table 3. The 
results are shown in figure 20. The right panel corresponds to 
the cosmological parameters of the BOSS collaboration and 
the left panel to those of [110]. The figure shows the measured 
value H(z  =  2.34) and its σ1  and σ2  contours. In both panels, 
the ΛCDM model that corresponds to the case of no interaction 
is always outside the σ1  CL. While still not statistically signifi-
cant, it does show that the data prefers an DM/DE interacting 
model with positive interaction. Further improvements on the 
data could help to establish the existence of an interaction.

7.5. The coincidence problem

One motivation to study interacting DM/DE models is to 
alleviate the coincidence problem. The DM/DE ratio r in the 
ΛCDM model is of order unity only at the present time, requir-
ing a fine-tuning on the initial conditions at the Planck scale of 
90 orders of magnitude (see section 1.3.2). Let us examine if 
when interacting DE models are compared with observations, 
the goal can be satisfied. We will concentrate on the analysis 
of the phenomenological fluid model. The results shown in 
figure 19 suggest that a positive coupling is compatible with 
the data. Positive values work in the direction of solving the 
cosmological coincidence problem [164, 167] and similar 
conclusions have also been reached for the field description of 
the DE [111]. Let us particularize our analysis for fluid mod-
els. In section  2.1.1 we demonstrated that model IV solves 
the coincidence problem since the DM/DE ratio evolves from 
an unstable attractor ±rs  to a stable one −rs  (see equation (16)). 
When the coupling is ξ< �0 1, the ratios behave asymptoti-
cally as

ξ
ξ∼ ∼+ −r r

1
and ,s s� (164)

i.e. the ratios depend on the coupling constant ξ and do not 
depend on the initial conditions at the Planck scale. This solu-
tion of the coincidence problem is illustrated in figure  21. 
Purple solid lines represent the evolution of the energy den-

sities in units of the critical energy density today, ρcr
0 , with 

different initial conditions. The density contrast r at present 
is different for different initial conditions but all the curves 
are bounded by the two attractors solutions +rs  and −rs . In this 
particular case we fixed ξ = −10 4 and ω = −1.05d . During the 
whole thermal history of the universe, the DM to DE ratio 
takes values within the range < <− r10 104 4; it changes much 
less than in the ΛCDM model, thus the cosmological coinci-
dence problem is greatly alleviated.

8.  Current and future observational prospects

The discovery that the expansion of the universe is accelerating 
has led to a large observational effort to understand its origin. 

Table 5.  Parameters at 68.3% confidence level.

Coupling EoS w0 w1 Ωm / /ξ ξ ξ1 2

T ωd − −
+1.50 0.30

0.31
−
+3.90 2.31

2.09
−
+0.26 0.02

0.02
−
+0.01 0.03

0.03

DM ωd − −
+1.50 0.31

0.32
−
+3.91 2.34

2.12
−
+0.25 0.02

0.02
−
+0.01 0.04

0.04

DE ωd − −
+1.49 0.30

0.31
−
+3.78 2.39

2.13
−
+0.26 0.02

0.02
−
+0.05 0.10

0.06
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Figure 18.  Marginalized likelihoods for the parameters of the Yukawa model. The black solid lines correspond to the Planck constraints, 
the red dashed lines correspond to Planck  +  BAO and the blue dot–dashed lines correspond to Planck  +  BAO  +  SNIa  +  H0.
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New facilities are being designed and built aiming to measure 
the expansion history and the growth of structure in the universe 
with increasing precision out to greater redshifts. Since the 
interaction changes the expansion history of the universe, the 
evolution of matter and radiation density perturbations, peculiar 
velocities and gravitational fields, these new facilities will not 
only test the current period of accelerated expansion but also 

constrain the nature of the interaction. Observations of SNIa, 
BAOs, gravitational lensing, redshift-space distortions and the 
growth of cosmic structure probe the evolution of the universe 
at ⩽ −z 2 3. In parallel, the physics of DM/DE interactions 
at recombination can be probed by the CMB radiation power 
spectrum while the ISW effect and lensing pattern of the CMB 
sky are sensitive to the growth of matter at lower redshifts.

Figure 19.  Marginalized likelihoods for the parameters describing interacting fluid models of table 3. Black solid lines correspond to the 
constraints from Planck data alone, red dashed lines to Planck  +  BAO and blue dot–dashed lines to Planck  +  BAO  +  SNIa  +  H0.
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The DE task force (DETF) was established to advise the 
different U.S. funding agencies on future DE research. Their 
report categorized different experimental approaches by intro-
ducing a quantitative ‘figure of merit’ that is sensitive to the 
properties of DE, including its evolution with time [13]. Using 
this figure  of merit, they evaluated ongoing and future DE 
studies based on observations of baryon acoustic oscillations, 
galaxy clusters, supernova and weak lensing. The DETF cat-
egorized the different experiments by their different degree of 
development. Stage I referred to the discovery experiments, 
stage II to the on-going experiments at that time when the 
report was elaborated (circa 2006), stage III was defined as 
the next generation that are currently in full operation. They 
also looked forward to a stage IV generation of more capable 
experiments. Examples of stage II surveys are the Canada–
France–Hawaii telescope (CFHT) legacy survey, with obser-
vations of SNIa [105] and weak lensing [176] and that ended  
in 2009, the ESSENCE [396] and SDSS-II [139] supernova sur-
veys and BAO measurements from the SDSS [128, 266, 280].  
While new observations continue to be expanded and improved 
with more recent instruments, the CHFT Lensing survey 
remains the largest weak lensing survey to date.

In this section we will briefly review projects that are cur
rently operating or under construction (stage III and IV). All 
of these facilities share the common feature of surveying wide 
areas to collect large samples of galaxies, clusters, and/or 
supernovae and they will help clarify the nature of the interac-
tion between dark sectors. Acronyms were given in table 4. 
More details can be found in [390].

8.1.  Ground based observations

The existing and planned ground based DE experiments col-
lect data on SNIa, galaxy clustering and gravitational lens-
ing. Wide-field imaging is used to measure weak gravitational 
lensing and clustering of galaxies in bins of photometrically 
estimated redshifts and wide-field spectroscopy, to map the 
clustering of galaxies, quasars and the Ly-α forest and mea-
sure distances and expansion rates with BAO and the history 
of structure growth with redshift-space distortions (RSD). 
type Ia supernovae are searched to determine the distance-
redshift relation.

8.1.1.  Stage III: 6dFGS, BOSS, HETDEX, pan-STARRS, Wig-
gleZ.  The 6-degree field galaxy survey (6dFGS) has mapped 
the nearby universe over  ∼17 000 deg2 of the southern sky 
with galactic latitude | | >b 100. The median redshift of the sur-
vey is z  =  0.053. It is the largest redshift survey of the nearby 
universe, reaching out to ∼z 0.15. The survey data includes 
images, spectra, photometry, redshifts and a peculiar velocity 
survey of a subsample of 15 000 galaxies. The final release of 
redshift data is given in [191].

The baryon oscillation spectroscopic survey (BOSS) is 
currently the largest spectroscopic redshift survey world-
wide, mapping 104 deg2 up to z  =  0.7. BOSS is the largest 
of the four surveys that comprise SDSS-III and has been in 
operation for 5 years since 2009. Its goals are to measure 

angular diameter distance and expansion rate using BAO, using  
1.5 million galaxies [30]. Using Ly-α lines towards a dense 
grid of high-redshift quasars, it has pioneered a method to 
measure BAO at redshifts z  =  [2, 3.5]. The analysis of SDSS 
Data Release 9 has provided a measurement of the BAO scale 
at ∼z 2.5 with a precision of 2–3% [79, 347]. This survey will 
be followed by the extended BOSS (eBOSS) that will be oper-
ating for six years and will extend the BOSS survey to higher 
redshifts.

Similar to BOSS, the Hobby–Eberly telescope DE experi-
ment (HETDEX) at the Austin McDonald observatory has 
the goal of providing percent-level constraints on the Hubble 
parameter and angular diameter distance on the redshift range 
z  =  [1.9, 3.5] by using a combination of BAO and power 
spectrum shape information. It will be achieved by surveying  
0.8 million α−Ly  emitting galaxies on a field of view of  
420 deg2 [177].

The panoramic survey telescope and rapid response system 
(Pan-STARRS) describes a facility with a cosmological sur-
vey among its major goals. The final goal is to use four coor-
dinated telescopes to carry out survey of the full sky above 
DEC  =  − �45  [251] that will go a factor  ∼10 deeper than the 
SDSS imaging survey. The survey will provide data on high 
redshift SN, galaxy clustering and gravitational lensing. For 
that purpose, in addition to the wide survey, an ultra-deep field 
of 1200 deg2 will be observed down to magnitude 27 in the g 
band with photometric redshifts to measure the growth galaxy 
clustering. Data from this facility has already been used to 
constrain the equation of state parameter [412].

The WiggleZ DE survey is a large-scale redshift survey 
carried out at the Anglo-Australian telescope and is now 
complete. It has measured redshifts for  ∼240 000 galaxies 
over 1000 deg2 in the sky. It combines measurements of cos-
mic distance using BAO with measurements of the growth 
of structure from redshift-space distortions out to redshift 
z  =  1 [198].

8.1.2.  CMB experiments: ACT, SPT.  The Atacama cosmology 
telescope (ACT) operates at 148, 218 and 277 GHz with full-
width at half maximum angular resolutions of ( )′ ′ ′1.4 , 1.0 , 0.9  
[359]. ACT observes the sky by scanning the telescope in azi-
muth at a constant elevation of �50.5  as the sky moves across 
the field of view in time, resulting in a stripe-shaped observa-
tion area. The collaboration has released two observed areas 
of 850 deg2 and 280 deg2 [125]. Sky maps, analysis software, 
data products and model templates are available through 
NASA legacy archive for microwave background data analy-
sis (LAMBDA).

Table 6.  Cosmological parameters used by the BOSS collaboration 
[121].

Parameter Bestfit σ

h 0.706 0.032

Ω hc
0 2 0.143 0.003

Ωd
0 0.714 0.020

Ω hb
0 2 0.02207 0.00033
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The south pole telescope (SPT) is a 10 m telescope 
designed to map primary and secondary anisotropies in the 
CMB, currently operating at 95, 150, 220 GHz with a resolu-
tion with resolution (1.7, 1.2, 1.0)′. The noise levels are 18 μK  
at 150 GHz and  ∼ 2 larger for the other two channels [150]. 
It has observed a region of 2540 deg2. Data in the three fre-
quencies were used to produce a radiation power spectra cov-
ering the multipole range < <�2000 11 000. At present is the 
most precise measurement of the radiation power spectrum 
at >� 2, 500 at those frequencies; at those angular scales the 
signal is dominated by the SZ effect and is not so relevant to 
constrain models of DM/DE interaction.

A polarization-sensitive receiver have been installed on the 
SPT; data at 95 and 150 GHz has provided a measurement 

of the B-mode polarization power spectrum from an area of 
100 deg2, spanning the range ⩽ ⩽�300 2300. The resulting 
power spectra was consistent with the spectrum arising from 
the gravitational lensing of E-mode polarization [199].

8.1.3.  Stage IV: DES, eBOSS, JPAS, LSST, SKA, WFMOS, 
BINGO.  The DE survey (DES) is a wide-field imaging 
and supernova survey on the Blanco 4 m telecope at Cerro 
Tololo (Chile) using the DE camera. It has started operations 
and it will continue for five years. The DE spectroscopic sur-
vey instrument (DESI) is a wide field spectroscopic instru-
ment intended to start in 2018 and operate also for 5 years 
in the nearly twin Mayall telescope at Kitt peak (Arizona). 
DESI will obtain spectra and redshifts for at least 18 million 
emission-line galaxies, 4 million luminous red galaxies and 
3 million quasi-stellar objects, to probe the effects of DE on 
the expansion history BAO and measure the gravitational 
growth history through RSD. The resulting 3D galaxy maps 
at redshift z  <  2 and Ly-α forest at z  >  2 are expected to pro-
vide the distance scale in 35 redshift bins with a one-percent 
precision [223]. The imaging survey will detect 300 million 
galaxies, with approximately 200 million WL shape measure-
ments, almost a two-order of magnitude improvement over 
the CFHTLens Weak Lensing survey.

Approved as a major cosmology survey in SDSS-IV 
(2014–2020), eBOSS will capitalize on this premier facil-
ity with spectroscopy on a massive sample of galaxies and 
quasars in the relatively uncharted redshift range that lies 
between the BOSS galaxy sample and the BOSS Ly-α 
sample. Compared with BOSS, this new survey will focus on 
a smaller patch of 7500 deg2 but it will reach higher magni-
tudes. It will measure both the distance-redshift relation and 
the evolution of the Hubble parameter using different den-
sity tracers; the clustering of luminous red galaxies (LGRs) 
and emission line galaxies (ELGs), quasars and Ly-α sys-
tems to probe the BAO scale in the redshift ranges [0.6, 0.8], 
[1, 2.2] and [2.2, 3.5] respectively and it will achieve 1–2% 
accuracy in distance measurements from BAOs between 
0.6  <  z  <  2.5.

Figure 21.  ρc
0 is the critical energy density today. The attractor 

solutions of r do not depend on the initial conditions at the early 
time of the universe. The purple lines represent the density 
evolution of cosmological model with different initial conditions. 
Solid circles represent the density contrast r today. Values change 
with the initial conditions but they are bounded in two attractor 
solutions /ξ ξ∼ ∼− +r r, 1s s  in ρ ρ−c d plane.

Figure 20.  Hubble function at redshift z  =  2.34 as a function of the interaction parameters ξ ξ,1 2 for models III and I, II, respectively. In 
the left panel we used the cosmological parameters from tables V, XI and XII of [110]. In the right panel, labeled BOSS, the cosmological 
parameters are those of table 6. The horizontal line corresponds to the BOSS measured value ( )      = ± − −H 2.34 222 7 km s Mpc1 1 with the 
shaded areas representing σ1  and σ2  CL.
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The Javalambre physics of the accelerating universe 
astronomical survey (JPAS) is a new astronomical facility 
dedicated to mapping the observable universe in 56 colors 
[55]. The starting date for this multi-purpose astrophysical 
survey is 2015. In five years, JPAS will cover  ∼8000 deg2 
using a system of 54 narrow band and 2 broad-band filters 
in the range 300–1000 nm. The filter system was optimized 
to accurately measure photometric redshifts for galaxies up 
to ∼z 1. The main instruments are a 2.5 m telescope located 
at El Pico del Buitre (Teruel, Spain) and a 1.2 Giga-pixel 
camera. The main goals of the survey are to measure angular 
and radial components of BAO from the galaxy clustering, 
determine the evolution of the cosmic volume from cluster 
counts and luminosity distances from SNIa. The filter sys-
tem will permit to determine the redshifts of the observed 
supernovae. The camera is not optimized to measure galaxy 
elipticities so weak lensing studies would require elliptic-
ity measurements obtained from other surveys. The JPAS 
telescope will measure BAO from high redshift quasars to 
achieve a better precision than BOSS [55], open the possibil-
ity of using the test described in section 7.4 to disproof the 
concordance model.

The large synoptic survey telescope (LSST) is a wide-field, 
ground-based telescope, designed to image  ∼20 000 deg2 in 
six optical bands from 320 nm to 1050 nm. The telescope will 
be located on Cerro Pachón (Chile) and it will operate for a 
decade allowing to detect galaxies to redshifts well beyond 
unity. Its science goals are to measure weak and strong gravi-
tational lensing, BAO, SNIa and the spatial density, distribu-
tion, and masses of galaxy clusters as a function of redshift. Its 
first light is expected on 2019.

The square kilometre array (SKA) is a radio-facility which 
is scheduled to begin construction in 2018. The HI galaxy 
redshift survey can provide us with accurate redshifts (using 
the 21 cm line) of millions of sources over a wide range of 
redshifts, making it an ideal redshift survey for cosmological 
studies [6, 38, 78, 135, 202, 303, 330, 411]. Although techni-
cally challenging, the SKA could measure the expansion rate 
of the universe in real time by observing the neutral hydrogen 
(HI) signal of galaxies at two different epochs [117, 203].

Wide-field multi-object spectrograph (WFMOS) is a cam-
era specially devoted to galaxy surveys. It will be mounted 
atop the 8.2 m Subaru telescope on Mauna Kea (Hawaii). One 
of the science goals of the WFMOS camera is high precision 
measurements of BAO. The WFMOS DE survey comprises 
two parts: a 2000 deg2 survey of two million galaxies at red-
shifts z  <  1.3 and a high redshift survey of about half a mil-
lion Lyman break galaxies (LBGs) at redshifts 2.5  <  z  <  3.5 
that would probe distances and the Hubble rate beyond z  =  2  
(see [47] for more details).

BINGO is a radio telescope designed to detect BAO at radio 
frequencies by measuring the distribution of neutral hydrogen 
at cosmological distances using a technique called intensity 
mapping. The telescope will be located in an abandon mine 
in Northern Uruguay. It will operate in the range [0.96, 1.26] 
GHz to observe the redshifted 21 cm Hydrogen line. It will 
consist of a two-mirror compact range design with a 40 m 
diameter primary and it will have no moving parts to provide 

an excellent polarization performance and very low side-lobe 
levels (for details see [48]).

8.1.4.  Stage IV: CMB experiments.  Currently, the interest on 
CMB ground experiments is centered on polarization. For a 
cosmic variance limited experiment polarization alone places 
stronger constraints on cosmological parameters than CMB 
temperature [141]. Experiments like SPTpol [199] and Quix-
ote [146] are currently taken data aiming to characterize the 
polarization of the CMB and of the Galactic and extragalactic 
sources. CMB experiments devoted to measuring polarization 
from the ground are also being proposed; the scientific capa-
bilities of a CMB polarization experiment like CMB-S4 in 
combination with low redshift data would be able to constrain 
the DE EoS and DM annihilation rate among other parameters 
[1, 397].

8.2.  Space based surveys

Satellite surveys usually require a dedicated facility and, con-
sequently, are more expensive than those carried out from the 
ground. Their significant advantage is that, by observing out-
side the atmosphere, the data usually contains a lower level of 
systematic errors.

8.2.1.  Stage III: WMAP, Planck.  The Wilkinson microwave 
anisotropy probe (WMAP) was a satellite mission devoted to 
measure CMB temperature fluctuations at frequencies operat-
ing between 23 and 94 GHz. Launched on June 30, 2001 and 
operated for 9 years up to the end of September 2010. The 
main results and data products of the nine years of operation 
are described in [58]. The final 9yr data released was soon 
followed by those of the Planck Collaboration. The Planck 
satellite observed the microwave and sub-millimeter sky from 
August 12th, 2009 to Oct 23rd, 2013 in nine frequencies 
between 30 and 857 GHz, with angular resolution between 33’ 
and 5’. This satellite measured the temperature–temperature, 
temperature-E mode and E mode–E mode power spectra up to 
∼� 2000 [287] and derived the CMB lensing potential [289]. 

Temperature maps, a catalog of Sunyaev–Zeldovich (SZ) 
clusters and likelihood codes to assess cosmological models 
against the Planck data [286, 292] and other data products can 
be downloaded from the Planck Legacy Archive (see table  4).

8.2.2.  Stage IV: eRosita, Euclid and WFIRST.  The extended 
Röntgen survey with an imaging telescope array (eROSITA) 
is a x-ray satellite expected to be launched at the end of 2017. 
It will perform the first imaging all-sky survey in energy 
range 0.3–10 keV [247] to detect  ∼105 galaxy clusters out to 
redshifts z  >  1. In the soft x-ray band (0.5–2 keV), it will be 
about 20 times more sensitive than the ROSAT all sky survey, 
while in the hard band (2–10 keV) it will provide the first ever 
true imaging survey of the sky at those energies.

Euclid is a European space agency DE satellite mis-
sion scheduled for launch in 2020. This mission is designed 
to perform two surveys: a wide 15 000 deg2 survey in the 
optical and near-infrared and a deep survey on 40 deg2 two 
magnitudes deeper. Euclid will map the extra-galactic sky 
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with the resolution of the Hubble space telescope, with opti-
cal and near-infrared (NIR) imaging and NIR spectroscopy. 
Photometric redshifts for the galaxies in the wide survey will 
be provided from ground photometry and from the NIR sur-
vey. In addition, 50 million spectroscopic redshifts will be 
obtained. Euclid data will allow to measure the expansion 
history and the growth of structure with great precision. A 
detailed quantitative forecast of Euclid performance has been 
discussed in [220]. The data will allow to constrain many dif-
ferent cosmological models; when the growth factor is para-
metrized as ( )= Ω γf zg m  the value γ� 0.545 corresponds to 
the ΛCDM model and Euclid will measure this parameter with 
a precision of γ∆ = 0.03 [174]. Forecasts for other magni-
tudes such as the bias, DE sound speed and the RSD are given 
in [29].

The wide field infrared survey telescope (WFIRST) is an 
american satellite mission that is currently being reviewed and 
expected to be launch in 2023. This mission updates and expands 
earlier proposed missions like the super nova acceleration probe 
(SNAP) and the joint DE mission (JDEM). Like Euclid, one of 
its primary science goals is to determine the properties of DE 
and in many respects complements EUCLID. WFIRST strategy 
is to construct a narrow and deep galaxy redshift survey of 2000 
deg2. Both satellites will measure the redshift for a similar num-
ber of galaxies and will obtain a comparable precision for the 
BAO derived angular diameter distances and Hubble constant 
redshift evolution [352]. Additionally, the measured fluctua-
tions of the cosmic infrared background could probe angular 
diameter distances at redshift z ~ 10 [197].

Many synergies will come from cross-correlating data 
from different observations For instance, Euclid, WFIRST 
and SKA have similar scientific aims but will carry observa-
tions at different wavelengths. Euclid and WFIRST probe the 
low redshift universe, through weak lensing and galaxy clus-
tering measurements. The SKA has the potential to probe a 
higher redshift regime and a different range in scales of the 
matter power spectrum, which are linear scales rather than the 
quasi-non-linear scales probed by Euclid and WFIRST. The 
combination of different observations will be particularly sen-
sitive to signatures of modified gravity. Cross-correlation of 
different data sets will help to control systematics for the pri-
mary science. The SKA, WFIRST and Euclid will be commis-
sioned on similar timescales offering an exciting opportunity 
to exploit synergies between these facilities. [202]

8.2.3.  CMB experiments: CMBpol, COrE, PRISM.  The cos-
mic origins explorer (COrE) is a Stage IV full-sky, micro-
wave-band satellite proposed to ESA within Cosmic Vision 
2015–2025. COrE will provide maps of the microwave sky in 
polarization and temperature in 15 frequency bands, ranging 
from 45 GHz to 795 GHz, with angular resolutions from ′23  at 
45 GHz and ′1.3  at 795 GHz, with sensitivities roughly 10 to 
30 times better than Planck [35].

The polarized radiation imaging and spectroscopy mission 
(PRISM) is a large-class mission proposed to ESA in May 
2013 to survey the CMB sky both intensity and polarization. 
The mission will detect approximately 106 clusters using the 

thermal SZ effect and a peculiar velocity survey using the 
kinetic SZ effect that comprises our entire Hubble volume 
[31]. NASA is carrying similar efforts through the primordial 
polarization program definition team (PPPDT) that converge 
towards a satellite dedicated to the study of CMB polarization 
(CMBPol) [49].

Combing these complementary ground based and space 
based observations, we would hopefully achieve a better 
understanding of the nature of DM, DE and the interaction 
within the dark sectors.

Conclusions

In principle an interaction must exist between any two fields 
provided some symmetry prevents it. In the case of DM and 
DE no such symmetry is known; this is why a non-gravita-
tional coupling between these two main components of the 
cosmic energy budget should be expected on general grounds. 
Thus far the observational evidence favoring the interaction 
is a bit more than marginal as the ΛCDM model is, as we 
write, consistent with the data. Nevertheless, if the coupling is 
such that DE decays into DM, then the coincidence problem 
that afflicts the said model gets alleviated and possibly solved. 
By contrast, if the coupling occurs in the opposite sense (i.e., 
Q < 0), this problem is worsened and the second law of ther-
modynamics very likely violated.

Only observation can provide us with a conclusive answer. 
It is to be expected that the wealth of data to come from pre-
sent and planned experiments (summarized in section 8) will 
establish whether the coupling exist, its strength, and in what 
sense it proceeds. Optimistically, it will tell us which interact-
ing model has been chosen by nature.
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