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Two different approaches, with many different conventions, have been recently published to express electro-
magnetic beam shape coefficients, encoding the structure of laser beams, in terms of scalar (more specifically
acoustical) beam shape coefficients. One approach, call it VP1, expresses the electromagnetic fields using one
single vector potential, while the second approach, call it VP2, expresses the electromagnetic fields in terms of
two vector potentials. In this paper, we discuss the relationships between the VP1 and VP2 approaches, showing

how the vector potential of the VP1 approach is related to the vector potentials of the VP2 approach, and
express the relationships relating the beam shape coefficients of one approach to the beam shape coefficients

of the other.

1. Introduction

The description of a laser beam may be encoded in two sets of
coefficients named beam shape coefficients (BSCs), denoted g,’:T M and
g;'fT g (n from 1 to co, m from (—n) to (+n), with TM standing for
“Transverse Magnetic” and TE standing for “Transverse electric”).
These coefficients may be in particular used in some light scattering
theories in spherical coordinates such as generalized Lorenz-Mie the-
ories (GLMTs) for homogeneous spheres, for multilayered spheres, for
aggregates of spheres, or for spheres with spherical inclusions, among
others [1,2], or such as the Extended Boundary Condition Method
available as well for nonspherical particles [3-5], both being T-matrix
methods [6,7]. For recent reviews, the reader may refer to [8,9], and
references therein.

Several methods are available to the evaluation of BSCs, which are
for instance listed in the introduction of [10]. Beside these methods,
another approach has been recently developed in which electromag-
netic BSCs are expressed in terms of scalar BSCs. Because there are two
kinds of electromagnetic BSCs and one kind only of scalar BSCs, it is
expected that the evaluation of electromagnetic BSCs in terms of scalar
BSCs will roughly be twice faster, than by using more conventional
methods [11-13].

There exist two such approaches which have been developed inde-
pendently. One of these approaches expresses the electromagnetic fields
in terms of two vector potentials (let us call it the VP2 approach) while
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the other approach expresses the electromagnetic fields in terms of only
one vector potential (let us call it the VP1) approach. Conceptually,
it is easy to understand that the VP1 approach is a simplified case
of the VP2 approach. However, because they have been developed
independently, they may have different conventions related to different
aspects. More specifically, the VP1 approach uses a time-dependence
of the form exp(+iwt) as is usual in the GLMT framework, while the
VP2 approach uses a time-dependence of the form exp(—iwt), with
® being the angular frequency, and ¢ being the time. Also, the two
approaches are different by using different normalizations, different
definitions of the electromagnetic BSCs, different definitions of the
associated Legendre functions P)"(cos#), i.e. Ferrers’ convention in the
VP2 approach versus Hobson’s convention in the VP1 approach, and
the use of P)"(cos#) in the VP2 approach versus the use of P,!'"'(cos 0)
in the VP1 approach. Furthermore, the expressions of the scalar fields
are different, as follows.
In the VP2 approach, the scalar field reads as [11]:

©  +n

W) =Y, D i"Cn Vg Wan(r, 0, 9) )}
n=0 m=—n

in which:

Wun(r, 0, @) = j,(kr) P, (cos 8) exp(im¢) 2
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so that, as a whole:

©  +n

Vo )= Y, D '@+ gl jy(kr) Py (cos 0) explimep) ®)

In the;l I%a"s ?1)—(3), (r,0, ) are usual spherical coordinates, k is
the wavenumber, j,(.) denotes spherical Bessel functions of the first
kind, P!"(cos#), as already mentioned above, are associated Legendre
functions, and g;f(z) are the scalar BSCs, and the subscript (2) is used to
denote quantities pertaining to the VP2 approach. In [11], the scalar
field is not explicitly defined as being an acoustical field.

On the contrary, the VP1 approach has been explicitly developed
to relate electromagnetic and acoustical BSCs. Previous works in this
framework concern the transfer of some methods used to evaluate the
electromagnetic BSCs to methods used to evaluate acoustical BSCs.
This concerns the localized approximations developed for electromag-
netic BSCs, e.g. [14,15] and references therein dating back to [16,17],
including a variant known as the integral localized approximation,
e.g. [18] dating back to [19], which have been adapted to the case of
acoustical BSCs in [20-23], and also the electromagnetic finite series
method, e.g. [24,25] and references therein dating back to [26,27],
which has been adapted to the case of acoustical BSCs in [28]. In this
framework, the scalar field (more specifically the acoustical field) is
written as:

o +n
W) =wag Y, Y, (=)' @n+ gl j(kr)PI" (cos 0) exp(img) “
n=0 m=—n
with the subscript (1) being used to specify that we are dealing with
the VP1 approach, while the expressions of the electromagnetic BSCs in
terms of the scalar (acoustical) BSCs in the VP1 approach are available
from [12,13].

The paper is then organized as follows. Section 2 expounds the
relationship between the VP1 and the VP2 approaches, in terms of
electromagnetic field expressions. Section 3 recalls how electromag-
netic BSCs are expressed in terms of scalar BSCs, both in VP1 and VP2
approaches, and simplifies the expressions of the VP2 approach so that
they become valid for a kind of VP1 approach, that we shall call the
VP1-derived approach. Section 4 shows how the expressions of the VP1-
derived and the VP1 approaches are compatible, and how one set of
expressions is related to the other set, even if the conventions used in
the VP1 and the VP2 approaches are different. Section 5 is a conclusion.

2. VP1 and VP2 approaches in terms of vector potentials
2.1. General approach

We begin with a general approach before considering special cases.
The starting point is then made of Maxwell’s equations for lossless,

isotropic, linear media and in sourceless regions, which may be written
as, e.g. Egs.(1.56)-(1.59) of [2] and in [29,30]:

oH
VXE=—-u— 5
X 1o %)
JE
VXxH=¢e¢— 6
X S (6)
V- E=0 @
VH=0 8)

in which E and H are the electric and magnetic fields respectively,
while x4 and e are respectively the magnetic permeability and the
electric permittivity of the medium in which the waves propagate.
Now, the VP2 approach uses a time-dependence of the form exp(—iwt).
Maxwell’s equations then become:

VXE = iouH ©)

V xH = —iweE (10)
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VE=0 an

VH=0 12)

We shall then consider two contributions to the electric field. For
the first contribution, we first take into account the fact that the
divergences of both E and H are 0 according to Egs. (11) and (12).
Because H is classically expressed as the curl of a potential vector,
e.g. Eq.(1.110) in [2], the similarity between E and H expressed by
Egs. (11) and (12) allows one to introduce an electric field which is
expressed as well using a vector potential. The first contribution to E
is then written as:

E, =VxA, (13)

in which A, is a potential vector. A second, more classical contribution,
i.e. Eq.(1.120) in [2], is derived from Eq. (10) and is written as:

E,= LVxVxA, as
wEe

in which A, is the second vector potential of the VP2 approach. We
then define the electric field by adding the two contributions, reading
as:

E=E +E, = VXA + —Vx(VXA,) (15)
we
The potential vectors A, and A, are now written as:
A = ay)(r)p 16)
A, = Py (r)q a7

in which p and q are dimensionless polarization vectors, « and p are
coordinate-independent parameters to be determined, and ) (r) is
the scalar function of the VP2 approach. Let us express this function
using an angular spectrum decomposition, e.g. [6,31-33], and many
references therein:

w(r):EO/ / Wk, k,)exp(ikr)dk,dk, (18)
ky Jky

in which g (k,, k,) is the angular spectrum. We next insert Eq. (18) into
Egs. (13) and (16), leading to:

E, = VXA, =VXay()p (19)

= V x[aEyp / / W(ky. ky) exp(ikr)dk, dk,]
ke Jk,

E, / / @ (ky. k,)V X [apexp(ik.r)|dk, dk,
k

We aftefwafd show by a direct check that:

V X [apexp(ik.r)] = aVexp(ik.r) X p (20)
= [iak X p]exp(ik.r)
so that:
E, = EO/ / W(ky, ky)liak X plexp(ik.r)dk,dk, 21
ky Sk,

For E,, we start from Eq. (14), use Eq. (17) and, working then
similarly as for E,, we obtain:

E, = —V><EO / / @k k,)Nipk X qlexp(ik.r)dk dk, (22)

i E
= 0 / / @ (ky, k,)V X [iBk X qlexp(ik.r)dk,dk,
We then show by a direct check that:
V x [ifk x q] exp(ik.r) = ik X [ik x fq] exp(ik.r) (23)

which, once inserted into Eq. (22), leads to:

) / / (k. k ik X (ik X pa)] exp(ik.r)dk, dk, 24)
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Let us set:
k = ke, (25)

We then may add E; from Eq. (21) and E, from Eq. (24), and take
advantage of the definition of Eq. (25), to obtain:

E=E +E, (26)

Eﬂ/ / y(k,, ky)liake, X p + i ike, X (ike, x pq)lexp(ik.r)dk, dk,
ke Sk,

Eﬂ/ / Wk, ky)likae, X p + ;Tﬁe (ik)%e; x (e, X q)] exp(ik.r)dk,dk,
ky Jky

We now state that the bracketed term is dimensionless. Let us
simply consider the term ikae, X p, in which p has been defined as
dimensionless and e, is dimensionless as well (see Eq. (25)). Then,
because a has the same dimension as 1/(ik), we have that ika is
dimensionless. Therefore, ikae, X p is dimensionless. This implies that
if(ik)*e, x (e, x q)/(we) is dimensionless as well. Then, the whole
bracketed term is dimensionless as well.

Then, we may state:

iak =y, 27)

D (2 =, (28)

wEe

leading to:

a =ik, (29)

p= %(ik)—zyz (30)
Next, we insert Egs. (29) and (30) into Eq. (16), (17), leading to:

Ay =110y, (0)p (31

Ay = 1 25w () (32)
Let us define:

A =y (r)p (33)

A= vy (r)q (34

so that:

Ay =7,G)7'A (35)

Ay =p 2R A (36)

Inserting Egs. (35), (36) into Eq. (15), we obtain:

E=E +E, 37
71Gk) ™IV X A4y, (ik) 2V x (VX A')

Eq. (26) may then be rewritten as:

E=E +E, (38)
= Eo/ / y(ky, ky)lyie X p+r.e, X (e X @)lexp(ik.r)dk,dk,
We now recall Eq. (9) leading to:

H=—L VxE (39)
iop

Inserting Eq. (38) into Eq. (39), and making a direct check, similar
to the ones done for Egs. (20) and (23), leads to:

Hz@EO/ / w(kx,k e X[y e, xp+rye x(e, xq)]} exp(ik.r)dk, dk

(40)
We then use, e.g. [2,29,30]:

k* = pew’ 41)
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Hy = EO\/% (42)

to obtain:

iEO = iEO = = H, 43

iou
so that Eq. (40) becomes.

H =H0/ / y(ky, k){eg X [r1e X P+ rr€, X (e X )]} exp(ikr)dk, dk,
ky Jky

44
2.2. Special cases
If we use y; =y, = 1, Eq. (37) becomes:
E=E +E, (45)

(ik)7IV X A+(ik) ™2V X (V x A")

which is the expression of Eq.(1) in the VP2 approach of [11],
although it was introduced without explanation. Concerning the VP1
approach of [12], it deals with only one vector potential reading as,
e.g. Eq.(12) in [12]:

E= L Vx(VxA,) (46)
IOUE

which is a variant of Eq. (37) with y; = 0, in which the subscript (1)

refers to the VP1 approach. Then, using Eq. (37), we have:

oAy =y,A 47)

Eq. (47) implies that Ay and A’ do not have the same dimension.
This may be checked as follows. Indeed, Egs. (32) and (34) imply:

Ay =1 RN (48)
Egs. (14) and (48) then imply:
E, = 1, %5072V X (VX A) (49)
wEe 1
= 1,(ik) 2V X (V x A")
Comparing Egs. (46) and (49), we have:
%A(]):yz(ik)_zA’ (50)

which, using Eq. (41), leads to iwA;, = y,A’ which confirms
Eq. (47).

2.3. A variant

In this variant, we use a special case for the scalar function, namely:
W (r) = exp(ik.r) (51)
We then recall Eq. (15) and, using Egs. (16) and (17) , we have:
E = V X ay(a)(Dp+—=V X ¥ X fis) (1) (52)

Let us introduce:

A =y (r)p (53)
A =y g G
Eq. (52) becomes:
E:aV><A+£V><(V><A’) (55)
wE

that is to say:

E=aVxA+a,Vx (VXA (56)
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in which:
a =a (57)
wm=L (58)
wE

Using Eq. (53), (54), together with Eq. (51), we obtain:

E =Ey{a;V X [pexp(ik.r)] + a,V X V[qexp(ik.r)]} (59)
But, from Eq. (20), we have:

V x [pexp(ik.r)] = [ik X p] exp(ik.r) (60)

and, similarly:

V x [qexp(ik.r)] = [ik X q] exp(ik.r) (61)
Hence:
V x V x[qexp(ik.r)] =V X [ik X q] exp(ik.r) (62)

Then, using Eq. (23), Eq. (62) becomes:

V X [ik X q] exp(ik.r) = ik X [ik X q] exp(ik.r) (63)
Inserting Egs. (60) and (63) into Eq. (59) leads to:

E =Ej[a;ik X pexp(ik.r) + a,ik X ik X q exp(ik.r)] (64)
Using Eq. (25), Eq. (64) becomes:

E =FEg[a, ike, X pexp(ik.r) + a,(ik)’e; X e, x qexp(ik.r)] (65)

Again, similarly as for the discussion following Eq. (26), the brack-
eted term should be dimensionless, implying:

a, = (i) (66)

a, = (ik) %y, (67)
Eq. (56) then becomes:
E = 7,(ik)"'V X A + 7,(ik) 2V x (V x A") (68)

With y; =y, = 1, we recover Eq.(1) of [11].
3. BSCs from VP1 and VP2 approaches
3.1. Definitions of BSCs

In [11], the spherical wave expansions of the electric and of the
magnetic fields are written as:

1 1
Er) = Z Z n(z)(’Gn raNom = nTEM( ) (69)
n=1 m=-n
k [sS) +n
H(r) = ——= Z Z Crl:b(vz)(iGmTEN(l) + G;nTMME,l,,),) (70)

w1th a typo 1r1 Eq.(6) of [11], namely c” (2) of Egs. (69) and (70)
above being omitted, and in which:

w i"(n+1/2)
c = —
n(2) n(n+1)
Also, Gl and G are the TM- and TE-BSCs in the VP2 ap-
proach, and the vector spherlcal wave functions of Egs. (69) and (70)

are written following Stratton’s notation [29] according to:

(71)

M) = Agey + A€, (72)

w,(R)P"(cos 0) exp(imp)e, + Byey + B, e, (73)

nm

m _nn+ D
N =

in which we do not need to specify the expressions for 4,, A, By,
B, and in which R = kr, y,(2) = zj,(2).
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According to Egs. (69) and (70), and using Eq. (71)-(73), the radial
components of the fields are found to read as:

E, = 21 Z "+ 1/2G) W"( )P’”(cos 0) exp(im) D))
© +n
=— Z 3 0+ 1/2)G Lo P cos ) explimg) 75)

n—l m=—n
wh1ch using y,(z) = zj,(z) becornes.

0o +n
E, = 2‘1 X " 1/2)G P P eos ) explime) 76)
oo +n
= e Z 2 i+ 1/2)GnTE 77)
n—l m=-n

ThlS is to be compared with the expressions of the radial compo-
nents of the VP1 approach given by Egs.(8), (9) and (6) of [12], see
as well Egs.(3.39), (3.42), (3.45), (3.48) together with Egs.(3.3) and
(3.188) of [2], reading as:

58] +n .
R
E, =E, Z Z (=)' @n+ gl ’"; )P,!'"l(cos 0) exp(img) (78)
n=1 m=—n
00 +n j ( )
H, = Hy Y, ¥ (=i @nt gyt == Py (cos 6) explime) (79)
n=1 m=—n

which may be taken as the definitions of the BSCs g M and g™
the VP1 approach.

Egs. (78), (79) are very similar to Egs. (76)—(77), but we recall that
they differ due to the use of different conventions, namely different
ways of normalizations, different definitions of the electromagnetic
BSCs, different time dependence conventions, different definitions of
the associated Legendre functions (Ferrers’ notation versus Hobson’s
notation), and the use of P;" versus the one of P,!""

nTE

3.2. BSCs in the VP2 approach

Starting from Egs. (76), (77), and using the definition of Eq. (3)
to express the scalar function of the VP2 approach, Shen et al. [11]
expressed the electromagnetic BSCs in terms of the scalar BSCs. In doing
so, the dimensionless vectors of Egs. (16) and (17) are written as:

P =p.etpse, +p.e; (80)

q=gq.e, +q,e,+q.e; 81)

in which e,, e, e, are unit vectors in the x, y, z directions respectively.
Egs. (80), (81) may be rewritten as:

p=p.e_+p_e, +pe, (82)

q=gq,e_+q_e, +q.e, (83)

in which:

e, =e, tie, (84)
= (s £1p))/2 (85)
= (g +iq,)/2 (86)

With these notations, the BSCs of the VP2 approach read as:

Gy = 2[i(p+unm +p_u, +pu) 87
q+ nm + q—Unm + qlvim ]
2n+1
Gyrp = 2li(guy, +q_u,, +q.ur,) (88)

P+ nm+p—vnm+plvim
2n+1

]
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in which:

_ +1

=m+m+1)(n— m)g”:(z) (89)
=533 ©
u:, = —mg;'f(z) 91)
and:
vt =n(n+m+Dn+m+ Z)g",”LI,(Z) +(n+1)(n—m)(n—m-— l)g:l":’llv(z) 92)
Upm = _"g:,n;ll,a) —(n+ l)g»'an—_llﬂ) (93)
Vi =nn+m+1)g" —(n+ D(n—-mg™" 94)

n+1,(2) n—1,2)

3.3. BSCs in the VP1-derived approach

Let us derive a VP1 approach by simplifying the VP2 approach. Let
us then start from Eq. (45) which, recall it, is the basic first equation
of the VP2 approach in [11]. Using Ampere’s law, i.e. Eq. (9), and
Eq. (45), we obtain:

H(r) = (iuw)~ ' [(ik)"'V X V X A+(ik) 2V X V X (V x A))] (95)

We now focus on the term V X (V x A’) in Eq. (95). But we have a
classical equation:

Vx(VxA)=V(VA") - AA' (96)

which, by using the Helmholtz equation AA’ + k*A’ = 0, becomes:

VX(VxA)=V(VA) + kKA’ 97)
Then, the term V X V x (V x A’) of Eq. (95) becomes:

VX [VX(VXAN] =VX[V(V.A")+k>A"] (98)

But the curl of a gradient is zero, i.e. VX [V(V.A")] =V Xx Vg =0, so
that Eq. (98) reduces to:

VX VX(VxA)=kVxA 99)
Inserting Eq. (99) into Eq. (95) leads to:

H(r) = (ipw) ' [(ik) "'V x (VX A) =V x A (100)

We then recall Egs. (53) and (54) in which the polarization vectors
are given by Egs. (80) and (81). These vectors are specified as:

px=p,=p;=0 (101)

gy = —iw, q,=q, =0 (102)

Note that, in this approach, q is not dimensionless, in contrast with
what has been done for the VP2 approach, see comment after Egs. (16),
(17), in Section 2.1. Then, using Egs. (53), (54), (101), (102), it is found
that Egs. (45) and (100) may be rewritten as:

- -1
E(r) =iok 2V X [V X e,y (r)] = Twen? VX e ®] (103)

H(r) = 47V x e,y (r) (104)

in which we used as well Eq. (41) to obtain Eq. (103). Also, the changes
from V x A’ to V x e, w(r) may be established by an easy direct check.
Egs. (103), (104) are structurally identical to Egs.(12) and (34) of [12]
respectively, but for a difference of sign in Eq.(12) due to the use of
a different time convention. We then conclude that Egs. (101), (102)
provide a link between the VP2 approach and the VP1 approach, called
the VP1-derived approach. These Egs. (101), (102) imply:

pr=p_=p,=0 (105)
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4, =q_=-iw/2, q, =0 (106)

Using Egs. (105)—(106), the BSCs of the VP2 approach given in
Egs. (87)-(94) simplify to:

vt +u;
Giry = 05—~ (107)
_ 110} m—1
= It {n[(n+m+ 1)(n+m+2)gn+1 @ gﬂ+1’(2)]
+(n+ Dl(n —m)(n —m — 1)8,:"_1,(2) - gn:l,(Z)]}
G;",TE = —oW! +u ) (108)

= —ow[(n+m+ )(n— m)g:l":'zl) g (2)]

3.4. BSCs in the VP1 approach

In [13], after unification of the results published in [12], the corre-
sponding solutions of the VP1 approach are found to read as:

—ky
Sire =, ;0 [(n+m+ D)(n = gt + g7 1, m> 0 (109)
R L,m=0 110
80TE = 2, S+ Dlg, o) =g, () m= (110)
ky
Ehre = T, B + En (= ImDGn + Iml + DL, m <0 (111)
m iy 40
= Wao 112
M = 20n+ DE, (112)
X{nl(n+m+1)(n+m+2)g"! (1) gnJr_ll,(l)]
+(n+ Dl(n—m— 1)(n— myg] L~ gl m>0
0 oy 40
= VA0 1 11
&M = 30n+ DEg" TV 113)
X[(n=1(&,_y 1)+ &ty q) + 0+ 2 1)+ Erpy o) m =0
m iy 4
= Va0 114
&M = 20n+ DE, (114)

x{(n[(n+ |m| + D(n + |m| + 2)g;"+—11(1) -

1
+(n+ DI = |m| = D(n = [mDgi ) = g 1), m <0

m+1
&nsr )]

It might be remarked that Eqgs. (109)-(111) on one hand, and
(112)-(114) on the other hand, may be merged as shown in [12],
but we preferred to keep them separated for the sake of clarity and
pedagogic skills.

4. Relationship between the BSCs of the VP1-derived and the VP1
approaches

Egs. (107)—(108) on one hand, and Egs. (109)-(114) on the other
hand cannot be identical due to the many differences of conventions al-
ready mentioned, but they must be closely and coherently related. The
present section is devoted to the investigation of these relationships.

4.1. A Rossetta stone

The electromagnetic and the acoustical BSCs of the VP1 approach
must be related to the electromagnetic and the acoustical BSCs of the
VP1-derived approach by equations still to be established. In order
to uncover the relation between these two approaches, we therefore
define:

gn(l) Ay gn(z) (115)
gr’,':TE = Bn’"G;'fTE (116)
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in which A”' is a ratio of scalar BSCs and B} is a ratio of electromagnetic
BSCs. In order to determine these ratios, let us begin with the case
m < 0, and recall Eq. (111) which, using m = — |m|, may be rewritten

as:
kw
SnTE = —20 [g:,"(*ll) +(n+m(n—m+ Dl ] 117)
and also, using Eq. (115), as:
ky 40 1 1 1
SorE = 3ty (A gt + AT (n+ m)(n — m+ 1)g)' )] (118)
Using Eq. (116), we then have:
ky 40 AZIH +1 m_l 1
g = _214H0[ B ;"(2) +(m+mm—m+1)—=— B”’ ;"(2)] (119
which is to be compared with Eq. (108):
Gl = —ol(n+m+ D(n—mght) + g ] (120)
Such a comparison implies:
kWA() Am+1
2uty BY =—wn+m+ 1)(n—m) (121)
k m—l
2‘4’;{0 (n+m)(n—m+l) By =-w (122)
that is to say, modifying the indices:
kygo A
2uH, B;ln—l =-—wn+m(n—-—m+1) (123)
kW ao (n+m+ 1)(n—m) v = - (124)
2u H m+1
from which, we may extract A” and find:
uH, 2uH,
A'”——a)(n+m)(n—m+l) LB = -0 — i
kw40 ky go(n+m+ 1)(n — m)
(125)
leading to:
m+1
Biln—l =m+mn—m+1)n+m+ 1)(n—m) (126)

n
Returning to Egs. (121), (122), we may then extract the ratio
Am+l7Am=1 which is found to be given again by Eq. (126), so that, as
a whole, we have:

Am+l Bm+l
“ 127)

Am—l B I =m-mmn—-—m+1)n+mm+m+1)

We now consider m > 0 and then use Eq. (109) which, using
Eq. (115), becomes:

—kwao 1 m+l 1, m-1

g;'fTE = Sy [(n+m+ 1)(n—-mAlt'e r""(z) + A ,':’(2)] (128)

Using Eq. (116), we then have:

kWA() m+] | m—1
Glrp = S H [(n+m+1)(n—m) B’" ;”E) + —— B'" n(2>] (129)
which must 1dent1fy with Eq. (108), leading to:
k Am+1 k Amfl
Vao n _ KWa0 A0 _ w (130)

2uH, B 2uH, BT

Therefore:
A=Al Z K (131)

in which K is a constant. Next, modifying the indices in Eq. (130), we
also have:
kwao AV _ kwao Al

= 132
2uH, B! 2/4H0 B:,""'] @ (132)
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Hence:

-1 _ 1_
B:,n — B'r,n+ — K/ (133)
in which K’ is a constant. Egs. (130) or (132) imply:
B_:'n K kva (134)
Am K 2uHyw

Inserting Eq. (134) into Eq. (129), we obtain:
Gl = —ol(n+m+ D(n—mght) + g ] (135)

which indeed identifies with Eq. (108).
For m = 0, we start from Egs. (108) and (110), specified for m = 0,
according to:

—ky

0 1
8.TE = 2uH, 20 1(n + 1)[g,,(1) &yl (136)
Gy = —oln(n+ g, 5 +8, )] (137)

Using Egs. (115), (116), and also Eq. (136), we obtain:
l A—l
ky
E,TE 2h [-;10 [n(n + DBO w2y~ M+ D —- B9 ,,(2)] (138)
Comparing with Eq. (1 37), we then have:
Ky A,

TAO Tn 139
2uH, B0 ¢ (139)
kWAO _1

N2 =— 1
2un," "t g @ (140)

Eq.(139)isa special case of Eq. (130) which was obtained for m > 0,
and is valid as well for m = 0 after extraction of:
ky 4o A
2uH, BI
Also, Eq. (140) is a special case of Eq. (122) which was established
for m < 0 and is valid as well for m = 0. Then, inserting Egs. (139) and
(140) into Eq. (138), we obtain:

=w (141)

Gy = —olnin+ g, 5 +8, )] (142)

which identifies with Eq. (137) as it should.

As a summary, the results obtained up to now in this subsection are
Eq. (127) for m < 0, Egs. (131), (133), (134) for m > 0, and Egs. (139),
(140) for m = 0. We may then verify that all these results can be further
summarized by writing:

g,'f(l) PJ"" (cos0) = g, (2) P (cos 6) (143)
&g P (cos 0) = G P (cos 0) (144)
leading to:
P(cos 0)
Al =B = —— (145)
P (cos )
To use Eq. (145), we may recall Eq.(2.77) in [2], leading to:
P™(cos @
El(cost) —pylm (n—|m I)' form<0and m=0 (146)
P"(cos ) (n+ |m))!

Then, for m < 0, using Egs. (145) and (146), we readily recover
Eq. (127). For m > 0, Egs. (143) and (144) readily imply Al =B =1,
that is to say K = K’ = 1 in agreement with Egs. (131), (133), while
Eq. (134) implies:

kw 40

=1 147
2uHyw (147)

which is a renormalization factor.

For m = 0, Egs. (139), (140) together with the renormalization of
Eq. (147) lead to:
Al

ek 1 (148)
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A—l
n [
so that, using Eq. (145) to evaluate BS =1, we actually have:
Al=1 (150)
P — (151)
" nn+ 1)

Both of these results in Egs. (150), (151) are readily found to agree
with Eq. (145).

4.2. TM-BSCs

The examination of TE-BSCs allowed one to establish the relation-
ship between their expressions in the VP1l-derived and in the VP1
approaches which are summarized in Egs. (143)-(144), including the
fact that, in Eq. (144), TE must be changed to TM. It remains to check
that these equations allow one as well to establish the relationship
between the expressions of the TM-coefficients. For this, we consider
three cases as follows.

@m>0

Egs. (143) and (144) (with TE changed to TM) imply:

i) = 8n2) (152)
&orm = Onrm (153)
which are inserted into Eq. (112), leading to:
oy 40
G" = — 154
nTM = 20n+ 1)E, (154

x{n[(n+m+ D)(n+m+ 2)3}':“11’(2) - gr:"J:l{(z)]

+(n+ DI —m=1n—myg!  — gl 1)

which identifies with Eq. (107) when we introduce a renormalization
relation reading as:

W0 =2E, (155)
(ii)m=0
We have Eq. (153) with m = 0, reading as:
0 _ 0
&urm = Curm (156)
We also have Eq. (152) with m = 1, and n = +1, reading as:
1 _ 1
Ens1,(1) = 8nx1,2) 157)

Also, with m = —1, we have to use Egs. (143) and (146), withn = =1,
leading to:

g
a0 TE
&= o (158)
-1
-8
-1 n+1,(2)
S N 159
Bl ) = G Dn+2) (159

Inserting Egs. (156)—(159) into Eq. (113), and using the renormal-
ization of Eq. (155) leads to:
O () 1 -1
Gorm = il i+ Dn+2)g,,1 o) = &ri1 0]

+(n+ Dnn—1)g

(160)
1 -1
n—1,2) ~ gn—l,(Z)]}
which identifies with Eq. (107) after having implemented in it the fact
that we are dealing with the case m = 0.

(iii) m< 0

We insert Egs. (143), (144) (with TE changed to TM), and (146) into
Eq. (114), use the renormalization condition of Eq. (155), and rearrange
to obtain:

G"n. = iL{n[(n— Im| + D(n = |m| +2)g"

+1 -1
nT™M = 5,71 n+1,2) —&e] (161)
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+on+ DI+ [m] = D(n+ ImDgyt| o = gn! o1

which, after changing |m| to (—m), identifies with Eq. (107).
5. Conclusion

This paper is somehow the conclusion of an effort to express the
electromagnetic BSCs in terms of scalar (more specifically acoustical)
BSCs. Due to the fact that we are facing two sets of electromagnetic
BSCs and only one set of scalar BSCs, the interest of such expressions
is to speed up the computations of electromagnetic BSCs by typically
a factor equal to 2. There however exist two approaches in this frame-
work, one called the VP1 approach which expresses the electromagnetic
fields in terms of only one vector potential, and another one, called
the VP2 approach, which expresses the electromagnetic fields in terms
of two vector potentials. In this paper, we have shown how that the
VP1 approach is a simpler special case of the VP2 approach and,
although both approaches use different definitions and conventions,
it has been possible to relate the expressions of BSCs obtained in the
VP1 approach with those obtained in the VP2 approach. The detailed
relationships between the VP1 and the VP2 approaches constitute the
most important result of the present paper, allowing anyone entering
this field of research, more specifically concerning the evaluation of
beam shape coefficients, to more conveniently know immediately how
they are related, therefore avoiding the burden of algebraic calculations
which require a certain amount of skill and time.
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