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 A B S T R A C T

Two different approaches, with many different conventions, have been recently published to express electro-
magnetic beam shape coefficients, encoding the structure of laser beams, in terms of scalar (more specifically 
acoustical) beam shape coefficients. One approach, call it VP1, expresses the electromagnetic fields using one 
single vector potential, while the second approach, call it VP2, expresses the electromagnetic fields in terms of 
two vector potentials. In this paper, we discuss the relationships between the VP1 and VP2 approaches, showing 
how the  vector potential of the VP1 approach is related to the vector potentials of the VP2 approach, and 
express the relationships relating the beam shape coefficients of one approach to the beam shape coefficients 
of the other.
1. Introduction

The description of a laser beam may be encoded in two sets of 
coefficients named beam shape coefficients (BSCs), denoted 𝑔𝑚𝑛,𝑇𝑀  and 
𝑔𝑚𝑛,𝑇𝐸 (𝑛 from 1 to ∞, 𝑚 from (−𝑛) to (+𝑛), with 𝑇𝑀 standing for 
‘‘Transverse Magnetic’’ and 𝑇𝐸 standing for ‘‘Transverse electric’’). 
These coefficients may be in particular used in some light scattering 
theories in spherical coordinates such as generalized Lorenz–Mie the-
ories (GLMTs) for homogeneous spheres, for multilayered spheres, for 
aggregates of spheres, or for spheres with spherical inclusions, among 
others [1,2], or such as the Extended Boundary Condition Method 
available as well for nonspherical particles [3–5], both being T-matrix 
methods [6,7]. For recent reviews, the reader may refer to [8,9], and 
references therein.

Several methods are available to the evaluation of BSCs, which are 
for instance listed in the introduction of [10]. Beside these methods, 
another approach has been recently developed in which electromag-
netic BSCs are expressed in terms of scalar BSCs. Because there are two 
kinds of electromagnetic BSCs and one kind only of scalar BSCs, it is 
expected that the evaluation of electromagnetic BSCs in terms of scalar 
BSCs will roughly be twice faster, than by using more conventional 
methods [11–13].

There exist two such approaches which have been developed inde-
pendently. One of these approaches expresses the electromagnetic fields 
in terms of two vector potentials (let us call it the VP2 approach) while 
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the other approach expresses the electromagnetic fields in terms of only 
one vector potential (let us call it the VP1) approach. Conceptually, 
it is easy to understand that the VP1 approach is a simplified case 
of the VP2 approach. However,  because they have been developed 
independently, they may have different conventions related to different 
aspects. More specifically, the VP1 approach uses a time-dependence 
of the form exp(+𝑖𝜔𝑡) as is usual in the GLMT framework, while the 
VP2 approach uses a time-dependence of the form exp(−𝑖𝜔𝑡), with 
𝜔 being the angular frequency, and 𝑡 being the time. Also, the two 
approaches are different by using different normalizations, different 
definitions of the electromagnetic BSCs, different definitions of the 
associated Legendre functions 𝑃𝑚𝑛 (cos 𝜃), i.e. Ferrers’ convention in the 
VP2 approach versus Hobson’s convention in the VP1 approach, and 
the use of 𝑃𝑚𝑛 (cos 𝜃) in the VP2 approach versus the use of 𝑃 |𝑚|

𝑛 (cos 𝜃)
in the VP1 approach. Furthermore, the expressions of the scalar fields 
are different, as follows.

In the VP2 approach, the scalar field reads as [11]: 

𝜓(2)(𝐫) =
∞
∑

𝑛=0

+𝑛
∑

𝑚=−𝑛
𝑖𝑛(2𝑛 + 1)𝑔𝑚𝑛,(2)𝜓𝑛𝑚(𝑟, 𝜃, 𝜑) (1)

in which: 

𝜓𝑛𝑚(𝑟, 𝜃, 𝜑) = 𝑗𝑛(𝑘𝑟)𝑃𝑚𝑛 (cos 𝜃) exp(𝑖𝑚𝜑) (2)
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so that, as a whole: 

𝜓(2)(𝐫) =
∞
∑

𝑛=0

+𝑛
∑

𝑚=−𝑛
𝑖𝑛(2𝑛 + 1)𝑔𝑚𝑛,(2)𝑗𝑛(𝑘𝑟)𝑃

𝑚
𝑛 (cos 𝜃) exp(𝑖𝑚𝜑) (3)

In the Eqs. (1)–(3), (𝑟, 𝜃, 𝜑) are usual spherical coordinates, 𝑘 is 
the wavenumber, 𝑗𝑛(.) denotes spherical Bessel functions of the first 
kind, 𝑃𝑚𝑛 (cos 𝜃), as already mentioned above, are associated Legendre 
functions, and 𝑔𝑚𝑛,(2) are the scalar BSCs, and the subscript (2) is used to 
denote quantities pertaining to the VP2 approach. In [11], the scalar 
field is not explicitly defined as being an acoustical field.

On the contrary, the VP1 approach has been explicitly developed 
to relate electromagnetic and acoustical BSCs. Previous works in this 
framework concern the transfer of some methods used to evaluate the 
electromagnetic BSCs to methods used to evaluate acoustical BSCs. 
This concerns the localized approximations developed for electromag-
netic BSCs, e.g. [14,15] and references therein dating back to [16,17], 
including a variant known as the integral localized approximation, 
e.g. [18] dating back to [19], which have been adapted to the case of 
acoustical BSCs in [20–23], and also the electromagnetic finite series 
method, e.g. [24,25] and references therein dating back to [26,27], 
which has been adapted to the case of acoustical BSCs in [28]. In this 
framework, the scalar field (more specifically the acoustical field) is 
written as: 

𝜓(1)(𝐫) = 𝜓𝐴0
∞
∑

𝑛=0

+𝑛
∑

𝑚=−𝑛
(−𝑖)𝑛(2𝑛 + 1)𝑔𝑚𝑛,(1)𝑗𝑛(𝑘𝑟)𝑃

|𝑚|
𝑛 (cos 𝜃) exp(𝑖𝑚𝜑) (4)

with the subscript (1) being used to specify that we are dealing with 
the VP1 approach, while the expressions of the electromagnetic BSCs in 
terms of the scalar (acoustical) BSCs in the VP1 approach are available 
from [12,13].

The paper is then organized as follows. Section 2 expounds the 
relationship between the VP1 and the VP2 approaches, in terms of 
electromagnetic field expressions. Section 3 recalls how electromag-
netic BSCs are expressed in terms of scalar BSCs, both in VP1 and VP2 
approaches, and simplifies the expressions of the VP2 approach so that 
they become valid for a kind of VP1 approach, that we shall call the 
VP1-derived approach. Section 4 shows how the expressions of the VP1-
derived and the VP1 approaches are compatible, and how one set of 
expressions is related to the other set, even if the conventions used in 
the VP1 and the VP2 approaches are different. Section 5 is a conclusion.

2. VP1 and VP2 approaches in terms of vector potentials

2.1. General approach

We begin with a general approach before considering special cases. 
The starting point is then made of Maxwell’s equations for lossless, 
isotropic, linear media and in sourceless regions, which may be written 
as, e.g. Eqs.(1.56)-(1.59) of [2] and in [29,30]: 

𝛁 × 𝐄 = −𝜇 𝜕𝐇
𝜕𝑡

(5)

𝛁 ×𝐇 = 𝜀 𝜕𝐄
𝜕𝑡

(6)

𝛁·𝐄 = 0 (7)

𝛁·𝐇 = 0 (8)

in which 𝐄 and 𝐇 are the electric and magnetic fields respectively, 
while 𝜇 and 𝜀 are respectively the magnetic permeability and the 
electric permittivity of the medium in which the waves propagate. 
Now, the VP2 approach uses a time-dependence of the form exp(−𝑖𝜔𝑡). 
Maxwell’s equations then become: 
𝛁 × 𝐄 = 𝑖𝜔𝜇𝐇 (9)

𝛁 ×𝐇 = −𝑖𝜔𝜀𝐄 (10)
2 
𝛁·𝐄 = 0 (11)

𝛁·𝐇 = 0 (12)

We shall then consider two contributions to the electric field. For 
the first contribution, we first take into account the fact that the 
divergences of both 𝐄 and 𝐇 are 0 according to Eqs.  (11) and (12). 
Because 𝐇 is classically expressed as the curl of a potential vector, 
e.g. Eq.(1.110) in [2], the similarity between 𝐄 and 𝐇 expressed by 
Eqs.  (11) and (12) allows one to introduce an electric field which is 
expressed as well using a vector potential. The first contribution to 𝐄
is then written as: 
𝐄1 = 𝛁 × 𝐀1 (13)

in which 𝐀1 is a potential vector. A second, more classical contribution, 
i.e. Eq.(1.120) in [2], is derived from Eq. (10) and is written as: 

𝐄2 =
𝑖
𝜔𝜀

𝛁 × 𝛁 × 𝐀2 (14)

in which 𝐀2 is the second vector potential of the VP2 approach. We 
then define the electric field by adding the two contributions, reading 
as: 
𝐄 = 𝐄1 + 𝐄2 = 𝛁 × 𝐀1 +

𝑖
𝜔𝜀

𝛁 × (𝛁 × 𝐀𝟐) (15)

The potential vectors 𝐀1 and 𝐀2 are now written as: 
𝐀1 = 𝛼𝜓(2)(𝐫)𝐩 (16)

𝐀2 = 𝛽𝜓(2)(𝐫)𝐪 (17)

in which 𝐩 and 𝐪 are dimensionless polarization vectors, 𝛼 and 𝛽 are 
coordinate-independent parameters to be determined, and 𝜓(2)(𝐫) is 
the scalar function of the VP2 approach. Let us express this function 
using an angular spectrum decomposition, e.g. [6,31–33], and many 
references therein: 

𝜓(𝐫) = 𝐸0 ∫𝑘𝑥 ∫𝑘𝑦
𝜓̃(𝑘𝑥, 𝑘𝑦) exp(𝑖𝐤.𝐫)𝑑𝑘𝑥𝑑𝑘𝑦 (18)

in which 𝜓̃(𝑘𝑥, 𝑘𝑦) is the angular spectrum. We next insert Eq. (18) into 
Eqs.  (13) and (16), leading to: 
𝐄1 = 𝛁 × 𝐀1 = 𝛁 × 𝛼𝜓(𝐫)𝐩 (19)

= 𝛁 × [𝛼𝐸0𝐩∫𝑘𝑥 ∫𝑘𝑦
𝜓̃(𝑘𝑥, 𝑘𝑦) exp(𝑖𝐤.𝐫)𝑑𝑘𝑥𝑑𝑘𝑦]

= 𝐸0 ∫𝑘𝑥 ∫𝑘𝑦
𝜓̃(𝑘𝑥, 𝑘𝑦)𝛁 × [𝛼𝐩 exp(𝑖𝐤.𝐫)]𝑑𝑘𝑥𝑑𝑘𝑦

We afterward show by a direct check that: 
𝛁 × [𝛼𝐩 exp(𝑖𝐤.𝐫)] = 𝛼𝛁 exp(𝑖𝐤.𝐫) × 𝐩 (20)

= [𝑖𝛼𝐤 × 𝐩] exp(𝑖𝐤.𝐫)

so that: 

𝐄1 = 𝐸0 ∫𝑘𝑥 ∫𝑘𝑦
𝜓̃(𝑘𝑥, 𝑘𝑦)[𝑖𝛼𝐤 × 𝐩] exp(𝑖𝐤.𝐫)𝑑𝑘𝑥𝑑𝑘𝑦 (21)

For 𝐄2, we start from Eq. (14), use Eq. (17) and, working then 
similarly as for 𝐄1, we obtain:

𝐄2 = 𝑖
𝜔𝜀

𝛁 × 𝐸0 ∫𝑘𝑥 ∫𝑘𝑦
𝜓̃(𝑘𝑥, 𝑘𝑦)[𝑖𝛽𝐤 × 𝐪] exp(𝑖𝐤.𝐫)𝑑𝑘𝑥𝑑𝑘𝑦 (22)

=
𝑖𝐸0
𝜔𝜀 ∫𝑘𝑥 ∫𝑘𝑦

𝜓̃(𝑘𝑥, 𝑘𝑦)𝛁 × [𝑖𝛽𝐤 × 𝐪] exp(𝑖𝐤.𝐫)𝑑𝑘𝑥𝑑𝑘𝑦

We then show by a direct check that: 
𝛁 × [𝑖𝛽𝐤 × 𝐪] exp(𝑖𝐤.𝐫) = 𝑖𝐤 × [𝑖𝐤 × 𝛽𝐪] exp(𝑖𝐤.𝐫) (23)

which, once inserted into Eq. (22), leads to: 

𝐄2 =
𝑖𝐸0
𝜔𝜀 ∫ ∫ 𝜓̃(𝑘𝑥, 𝑘𝑦)[𝑖𝐤 × (𝑖𝐤 × 𝛽𝐪)] exp(𝑖𝐤.𝐫)𝑑𝑘𝑥𝑑𝑘𝑦 (24)
𝑘𝑥 𝑘𝑦
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Let us set: 
𝐤 = 𝑘𝐞𝑘 (25)

We then may add 𝐄1 from Eq. (21) and 𝐄2 from Eq. (24), and take 
advantage of the definition of Eq. (25), to obtain: 
𝐄 = 𝐄1 + 𝐄2 (26)

= 𝐸0 ∫𝑘𝑥 ∫𝑘𝑦
𝜓̃(𝑘𝑥, 𝑘𝑦)[𝑖𝛼𝑘𝐞𝑘 × 𝐩 + 𝑖

𝜔𝜀
𝑖𝑘𝐞𝑘 × (𝑖𝑘𝐞𝑘 × 𝛽𝐪)] exp(𝑖𝐤.𝐫)𝑑𝑘𝑥𝑑𝑘𝑦

= 𝐸0 ∫𝑘𝑥 ∫𝑘𝑦
𝜓̃(𝑘𝑥, 𝑘𝑦)[𝑖𝑘𝛼𝐞𝑘 × 𝐩 +

𝑖𝛽
𝜔𝜀

(𝑖𝑘)2𝐞𝑘 × (𝐞𝑘 × 𝐪)] exp(𝑖𝐤.𝐫)𝑑𝑘𝑥𝑑𝑘𝑦

We now state that the bracketed term is dimensionless. Let us 
simply consider the term 𝑖𝑘𝛼𝐞𝑘 × 𝐩, in which 𝐩 has been defined as 
dimensionless and 𝐞𝑘 is dimensionless as well (see Eq. (25)). Then, 
because 𝛼 has the same dimension as 1∕(𝑖𝑘), we have that 𝑖𝑘𝛼 is 
dimensionless. Therefore, 𝑖𝑘𝛼𝐞𝑘 × 𝐩 is dimensionless. This implies that 
𝑖𝛽(𝑖𝑘)2𝐞𝑘 × (𝐞𝑘 × 𝐪)∕(𝜔𝜀) is dimensionless as well. Then, the whole 
bracketed term is dimensionless as well.

Then, we may state: 
𝑖𝛼𝑘 = 𝛾1 (27)

𝑖𝛽
𝜔𝜀

(𝑖𝑘)2 = 𝛾2 (28)

leading to: 
𝛼 = (𝑖𝑘)−1𝛾1 (29)

𝛽 = 𝜔𝜀
𝑖
(𝑖𝑘)−2𝛾2 (30)

Next, we insert Eqs.  (29) and (30) into Eq.  (16), (17), leading to: 
𝐀1 = 𝛾1(𝑖𝑘)−1𝜓(2)(𝐫)𝐩 (31)

𝐀2 = 𝛾2
𝜔𝜀
𝑖
(𝑖𝑘)−2𝜓(2)(𝐫)𝐪 (32)

Let us define: 
𝐀 = 𝜓(2)(𝐫)𝐩 (33)

𝐀′ = 𝜓(2)(𝐫)𝐪 (34)

so that: 
𝐀1 = 𝛾1(𝑖𝑘)−1𝐀 (35)

𝐀2 = 𝛾2
𝜔𝜀
𝑖
(𝑖𝑘)−2𝐀′ (36)

Inserting Eqs. (35), (36) into Eq. (15), we obtain:
𝐄 = 𝐄1 + 𝐄2 (37)

= 𝛾1(𝑖𝑘)−1𝛁 × 𝐀+𝛾2(𝑖𝑘)−2𝛁 × (𝛁 × 𝐀′)

Eq. (26) may then be rewritten as:
𝐄 = 𝐄1 + 𝐄2 (38)

= 𝐸0 ∫𝑘𝑥 ∫𝑘𝑦
𝜓̃(𝑘𝑥, 𝑘𝑦)[𝛾1𝐞𝑘 × 𝐩 + 𝛾2𝐞𝑘 × (𝐞𝑘 × 𝐪)] exp(𝑖𝐤.𝐫)𝑑𝑘𝑥𝑑𝑘𝑦

We now recall Eq. (9) leading to: 

𝐇 = 1
𝑖𝜔𝜇

𝛁 × 𝐄 (39)

Inserting Eq. (38) into Eq. (39), and making a direct check, similar 
to the ones done for Eqs.  (20) and (23), leads to: 

𝐇 = 𝑖𝑘
𝑖𝜔𝜇

𝐸0 ∫𝑘𝑥 ∫𝑘𝑦
𝜓̃(𝑘𝑥, 𝑘𝑦){𝐞𝑘×[𝛾1𝐞𝑘×𝐩+𝛾2𝐞𝑘×(𝐞𝑘×𝐪)]} exp(𝑖𝐤.𝐫)𝑑𝑘𝑥𝑑𝑘𝑦

(40)

We then use, e.g. [2,29,30]: 
𝑘2 = 𝜇𝜀𝜔2 (41)
3 
𝐻0 = 𝐸0

√

𝜀
𝜇

(42)

to obtain: 
𝑖𝑘
𝑖𝜔𝜇

𝐸0 =
𝑘
𝜔𝜇

𝐸0 =
𝜔
√

𝜇𝜀
𝜔𝜇

√

𝜇
𝜀
𝐻0 = 𝐻0 (43)

so that Eq. (40) becomes: 

𝐇 =𝐻0 ∫𝑘𝑥 ∫𝑘𝑦
𝜓̃(𝑘𝑥, 𝑘𝑦){𝐞𝑘 × [𝛾1𝐞𝑘 × 𝐩 + 𝛾2𝐞𝑘 × (𝐞𝑘 × 𝐪)]} exp(𝑖𝐤.𝐫)𝑑𝑘𝑥𝑑𝑘𝑦

(44)

2.2. Special cases

If we use 𝛾1 = 𝛾2 = 1, Eq. (37) becomes:

𝐄 = 𝐄1 + 𝐄2 (45)
= (𝑖𝑘)−1𝛁 × 𝐀+(𝑖𝑘)−2𝛁 × (𝛁 × 𝐀′)

which is the expression of Eq.(1) in the VP2 approach of [11], 
although it was introduced without explanation. Concerning the VP1 
approach of [12], it deals with only one vector potential reading as, 
e.g. Eq.(12) in [12]: 

𝐄 = 1
𝑖𝜔𝜇𝜀

𝛁 × (𝛁 × 𝐀(1)) (46)

which is a variant of Eq. (37) with 𝛾1 = 0, in which the subscript (1)
refers to the VP1 approach. Then, using Eq. (37), we have: 
𝑖𝜔𝐀(1) = 𝜸2𝐀′ (47)

Eq. (47) implies that 𝐀(1) and 𝐀′ do not have the same dimension. 
This may be checked as follows. Indeed, Eqs.  (32) and (34) imply: 
𝐀2 = 𝛾2

𝜔𝜀
𝑖
(𝑖𝑘)−2𝐀′ (48)

Eqs.  (14) and (48) then imply:

𝐄2 = 𝑖
𝜔𝜀
𝛾2
𝜔𝜀
𝑖
(𝑖𝑘)−2𝛁 × (𝛁 × 𝐀′) (49)

= 𝛾2(𝑖𝑘)−2𝛁 × (𝛁 × 𝐀′)

Comparing Eqs.  (46) and (49), we have: 
1

𝑖𝜔𝜇𝜀
𝐀(1)=𝛾2(𝑖𝑘)−2𝐀′ (50)

which, using Eq. (41), leads to 𝑖𝜔𝐀(1) = 𝜸2𝐀′ which confirms 
Eq. (47).

2.3. A variant

In this variant, we use a special case for the scalar function, namely: 
𝜓(2)(𝐫) = exp(𝑖𝐤.𝐫) (51)

We then recall Eq. (15) and, using Eqs.  (16) and (17) , we have: 

𝐄 = 𝛁 × 𝛼𝜓(2)(𝐫)𝐩+
𝑖
𝜔𝜀

𝛁 × 𝛁 × 𝛽𝜓(2)(𝐫)𝐪 (52)

Let us introduce: 
𝐀 =𝜓(2)(𝐫)𝐩 (53)

𝐀′ = 𝜓(2)(𝐫)𝐪 (54)

Eq. (52) becomes: 

𝐄 = 𝛼𝛁 × 𝐀+ 𝑖𝛽
𝜔𝜀

𝛁 × (𝛁 × 𝐀′) (55)

that is to say: 
𝐄 = 𝛼1𝛁 × 𝐀+𝛼2𝛁 × (𝛁 × 𝐀′) (56)
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in which: 
𝛼1 = 𝛼 (57)

𝛼2 =
𝑖𝛽
𝜔𝜀

(58)

Using Eq. (53), (54), together with Eq. (51), we obtain: 
𝐄 =𝐸0{𝛼1𝛁 × [𝐩 exp(𝑖𝐤.𝐫)] + 𝛼2𝛁 × 𝛁[𝐪 exp(𝑖𝐤.𝐫)]} (59)

But, from Eq. (20), we have: 
𝛁 × [𝐩 exp(𝑖𝐤.𝐫)] = [𝑖𝐤 × 𝐩] exp(𝑖𝐤.𝐫) (60)

and, similarly: 
𝛁 × [𝐪 exp(𝑖𝐤.𝐫)] = [𝑖𝐤 × 𝐪] exp(𝑖𝐤.𝐫) (61)

Hence: 
𝛁 × ∇ × [𝐪 exp(𝑖𝐤.𝐫)] = 𝛁 × [𝑖𝐤 × 𝐪] exp(𝑖𝐤.𝐫) (62)

Then, using Eq. (23), Eq. (62) becomes: 
𝛁 × [𝑖𝐤 × 𝐪] exp(𝑖𝐤.𝐫) = 𝑖𝐤 × [𝑖𝐤 × 𝐪] exp(𝑖𝐤.𝐫) (63)

Inserting Eqs.  (60) and (63) into Eq. (59) leads to: 
𝐄 =𝐸0[𝛼1𝑖𝐤 × 𝐩 exp(𝑖𝐤.𝐫) + 𝛼2𝑖𝐤 × 𝑖𝐤 × 𝐪 exp(𝑖𝐤.𝐫)] (64)

Using Eq. (25), Eq. (64) becomes: 
𝐄 =𝐸0[𝛼1𝑖𝑘𝐞𝑘 × 𝐩 exp(𝑖𝐤.𝐫) + 𝛼2(𝑖𝑘)2𝐞𝑘 × 𝐞𝑘 × 𝐪 exp(𝑖𝐤.𝐫)] (65)

Again, similarly as for the discussion following Eq. (26), the brack-
eted term should be dimensionless, implying: 
𝛼1 = (𝑖𝑘)−1𝛾1 (66)

𝛼2 = (𝑖𝑘)−2𝛾2 (67)

Eq. (56) then becomes: 
𝐄 = 𝛾1(𝑖𝑘)−1𝛁 × 𝐀 + 𝜸2(𝑖𝑘)−2𝛁 × (𝛁 × 𝐀′) (68)

With 𝛾1 = 𝛾2 = 1, we recover Eq.(1) of [11].

3. BSCs from VP1 and VP2 approaches

3.1. Definitions of BSCs

In [11], the spherical wave expansions of the electric and of the 
magnetic fields are written as: 

𝐄(𝐫) =
∞
∑

𝑛=1

+𝑛
∑

𝑚=−𝑛
𝑐𝑝𝑤𝑛,(2)(𝑖𝐺

𝑚
𝑛,𝑇𝑀𝐍(1)

𝑛𝑚 − 𝐺𝑚𝑛,𝑇𝐸𝐌
(1)
𝑛𝑚) (69)

𝐇(𝐫) = 𝑘
𝜇𝜔

∞
∑

𝑛=1

+𝑛
∑

𝑚=−𝑛
𝑐𝑝𝑤𝑛,(2)(𝑖𝐺

𝑚
𝑛,𝑇𝐸𝐍

(1)
𝑛𝑚 + 𝐺𝑚𝑛,𝑇𝑀𝐌(1)

𝑛𝑚) (70)

with a typo in Eq.(6) of [11], namely 𝑐𝑝𝑤𝑛,(2) of Eqs.  (69) and (70) 
above being omitted, and in which:

𝑐𝑝𝑤𝑛,(2) =
𝑖𝑛(𝑛 + 1∕2)
𝑛(𝑛 + 1)

(71)

Also, 𝐺𝑚𝑛,𝑇𝑀  and 𝐺𝑚𝑛,𝑇𝐸 are the TM- and TE-BSCs in the VP2 ap-
proach, and the vector spherical wave functions of Eqs.  (69) and (70) 
are written following Stratton’s notation [29] according to: 
𝐌(1)
𝑛𝑚 = 𝐴𝜃𝐞𝜃 + 𝐴𝜑𝐞𝜑 (72)

𝐍(1)
𝑛𝑚 =

𝑛(𝑛 + 1)
𝑅2

𝜓𝑛(𝑅)𝑃𝑚𝑛 (cos 𝜃) exp(𝑖𝑚𝜑)𝐞𝑟 + 𝐵𝜃𝐞𝜃 + 𝐵𝜑𝐞𝜑 (73)

in which we do not need to specify the expressions for 𝐴𝜃 , 𝐴𝜑, 𝐵𝜃 , 
𝐵  and in which 𝑅 = 𝑘𝑟, 𝜓 (𝑧) = 𝑧𝑗 (𝑧).
𝜑 𝑛 𝑛

4 
According to Eqs.  (69) and (70), and using Eq.  (71)–(73), the radial 
components of the fields are found to read as: 

𝐸𝑟 =
∞
∑

𝑛=1

+𝑛
∑

𝑚=−𝑛
𝑖𝑛+1(𝑛 + 1∕2)𝐺𝑚𝑛,𝑇𝑀

𝜓𝑛(𝑅)
𝑅2

𝑃𝑚𝑛 (cos 𝜃) exp(𝑖𝑚𝜑) (74)

𝐻𝑟 =
𝑘
𝜇𝜔

∞
∑

𝑛=1

+𝑛
∑

𝑚=−𝑛
𝑖𝑛+1(𝑛 + 1∕2)𝐺𝑚𝑛,𝑇𝐸

𝜓𝑛(𝑅)
𝑅2

𝑃𝑚𝑛 (cos 𝜃) exp(𝑖𝑚𝜑) (75)

which, using 𝜓𝑛(𝑧) = 𝑧𝑗𝑛(𝑧) becomes: 

𝐸𝑟 =
∞
∑

𝑛=1

+𝑛
∑

𝑚=−𝑛
𝑖𝑛+1(𝑛 + 1∕2)𝐺𝑚𝑛,𝑇𝑀

𝑗𝑛(𝑅)
𝑅

𝑃𝑚𝑛 (cos 𝜃) exp(𝑖𝑚𝜑) (76)

𝐻𝑟 =
𝑘
𝜇𝜔

∞
∑

𝑛=1

+𝑛
∑

𝑚=−𝑛
𝑖𝑛+1(𝑛 + 1∕2)𝐺𝑚𝑛,𝑇𝐸

𝑗𝑛(𝑅)
𝑅

𝑃𝑚𝑛 (cos 𝜃) exp(𝑖𝑚𝜑) (77)

This is to be compared with the expressions of the radial compo-
nents of the VP1 approach given by Eqs.(8), (9) and (6) of [12], see 
as well Eqs.(3.39), (3.42), (3.45), (3.48) together with Eqs.(3.3) and 
(3.188) of [2], reading as: 

𝐸𝑟 = 𝐸0

∞
∑

𝑛=1

+𝑛
∑

𝑚=−𝑛
(−𝑖)𝑛+1(2𝑛 + 1)𝑔𝑚𝑛,𝑇𝑀

𝑗𝑛(𝑅)
𝑅

𝑃 |𝑚|
𝑛 (cos 𝜃) exp(𝑖𝑚𝜑) (78)

𝐻𝑟 = 𝐻0

∞
∑

𝑛=1

+𝑛
∑

𝑚=−𝑛
(−𝑖)𝑛+1(2𝑛 + 1)𝑔𝑚𝑛,𝑇𝐸

𝑗𝑛(𝑅)
𝑅

𝑃 |𝑚|
𝑛 (cos 𝜃) exp(𝑖𝑚𝜑) (79)

which may be taken as the definitions of the BSCs 𝑔𝑚𝑛,𝑇𝑀  and 𝑔𝑚𝑛,𝑇𝐸 in 
the VP1 approach.

Eqs. (78), (79) are very similar to Eqs. (76)–(77), but we recall that 
they differ due to the use of different conventions, namely different 
ways of normalizations, different definitions of the electromagnetic 
BSCs, different time dependence conventions, different definitions of 
the associated Legendre functions (Ferrers’ notation versus Hobson’s 
notation), and the use of 𝑃𝑚𝑛  versus the one of 𝑃 |𝑚|

𝑛 .

3.2. BSCs in the VP2 approach

Starting from Eqs. (76), (77), and using the definition of Eq. (3) 
to express the scalar function of the VP2 approach, Shen et al. [11] 
expressed the electromagnetic BSCs in terms of the scalar BSCs. In doing 
so, the dimensionless vectors of Eqs.  (16) and (17) are written as: 
𝐩 = 𝑝𝑥𝐞𝑥 + 𝑝𝑦𝐞𝑦 + 𝑝𝑧𝐞𝑧 (80)

𝐪 = 𝑞𝑥𝐞𝑥 + 𝑞𝑦𝐞𝑦 + 𝑞𝑧𝐞𝑧 (81)

in which 𝐞𝑥, 𝐞𝑦, 𝐞𝑧 are unit vectors in the 𝑥, 𝑦, 𝑧 directions respectively. 
Eqs. (80), (81) may be rewritten as: 
𝐩 = 𝑝+𝐞− + 𝑝−𝐞+ + 𝑝𝑧𝐞𝑧 (82)

𝐪 = 𝑞+𝐞− + 𝑞−𝐞+ + 𝑞𝑧𝐞𝑧 (83)

in which: 
𝐞± = 𝐞𝑥 ± 𝑖𝐞𝑦 (84)

𝑝± = (𝑝𝑥 ± 𝑖𝑝𝑦)∕2 (85)

𝑞± = (𝑞𝑥 ± 𝑖𝑞𝑦)∕2 (86)

With these notations, the BSCs of the VP2 approach read as:
𝐺𝑚𝑛,𝑇𝑀 = 2[𝑖(𝑝+𝑢+𝑛𝑚 + 𝑝−𝑢−𝑛𝑚 + 𝑝𝑧𝑢𝑧𝑛𝑚) (87)

−
𝑞+𝑣+𝑛𝑚 + 𝑞−𝑣−𝑛𝑚 + 𝑞𝑧𝑣𝑧𝑛𝑚

2𝑛 + 1
]

𝐺𝑚𝑛,𝑇𝐸 = 2[𝑖(𝑞+𝑢+𝑛𝑚 + 𝑞−𝑢−𝑛𝑚 + 𝑞𝑧𝑢𝑧𝑛𝑚) (88)

+
𝑝+𝑣+𝑛𝑚 + 𝑝−𝑣−𝑛𝑚 + 𝑝𝑧𝑣𝑧𝑛𝑚 ]
2𝑛 + 1
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in which: 
𝑢+𝑛𝑚 = (𝑛 + 𝑚 + 1)(𝑛 − 𝑚)𝑔𝑚+1𝑛,(2) (89)

𝑢−𝑛𝑚 = 𝑔𝑚−1𝑛,(2) (90)

𝑢𝑧𝑛𝑚 = −𝑚𝑔𝑚𝑛,(2) (91)

and: 
𝑣+𝑛𝑚 = 𝑛(𝑛+𝑚+ 1)(𝑛+𝑚+ 2)𝑔𝑚+1𝑛+1,(2) + (𝑛+ 1)(𝑛−𝑚)(𝑛−𝑚− 1)𝑔𝑚+1𝑛−1,(2) (92)

𝑣−𝑛𝑚 = −𝑛𝑔𝑚−1𝑛+1,(2) − (𝑛 + 1)𝑔𝑚−1𝑛−1,(2) (93)

𝑣𝑧𝑛𝑚 = 𝑛(𝑛 + 𝑚 + 1)𝑔𝑚𝑛+1,(2) − (𝑛 + 1)(𝑛 − 𝑚)𝑔𝑚𝑛−1,(2) (94)

3.3. BSCs in the VP1-derived approach

Let us derive a VP1 approach by simplifying the VP2 approach. Let 
us then start from Eq. (45) which, recall it, is the basic first equation 
of the VP2 approach in [11]. Using Ampere’s law, i.e. Eq. (9), and 
Eq. (45), we obtain:

𝐇(𝐫) = (𝑖𝜇𝜔)−1[(𝑖𝑘)−1𝛁 × 𝛁 × 𝐀+(𝑖𝑘)−2𝛁 × ∇ × (𝛁 × 𝐀′)] (95)

We now focus on the term 𝛁 × (𝛁 × 𝐀′) in Eq. (95). But we have a 
classical equation: 
𝛁 × (𝛁 × 𝐀′) = 𝛁(𝛁.𝐀′) −∆𝐀′ (96)

which, by using the Helmholtz equation ∆𝐀′ + 𝑘2𝐀′ = 0, becomes: 
𝛁 × (𝛁 × 𝐀′) = 𝛁(𝛁.𝐀′) + 𝑘2𝐀′ (97)

Then, the term 𝛁 × 𝛁 × (𝛁 × 𝐀′) of Eq. (95) becomes: 
𝛁 × [𝛁 × (𝛁 × 𝐀′)] = 𝛁 × [𝛁(𝛁.𝐀′) + 𝑘2𝐀′] (98)

But the curl of a gradient is zero, i.e. 𝛁× [𝛁(𝛁.𝐀′)] = 𝛁×𝛁𝜑 = 0, so 
that Eq. (98) reduces to: 
𝛁 × ∇ × (𝛁 × 𝐀′) = 𝑘2𝛁 × 𝐀′ (99)

Inserting Eq. (99) into Eq. (95) leads to: 
𝐇(𝐫) = (𝑖𝜇𝜔)−1[(𝑖𝑘)−1𝛁 × (𝛁 × 𝐀) − 𝛁 × 𝐀′] (100)

We then recall Eqs.  (53) and (54) in which the polarization vectors 
are given by Eqs.  (80) and (81). These vectors are specified as: 
𝑝𝑥 = 𝑝𝑦 = 𝑝𝑧 = 0 (101)

𝑞𝑥 = −𝑖𝜔, 𝑞𝑦 = 𝑞𝑧 = 0 (102)

Note that, in this approach, 𝐪 is not dimensionless, in contrast with 
what has been done for the VP2 approach, see comment after Eqs. (16), 
(17), in Section 2.1. Then, using Eqs. (53), (54), (101), (102), it is found 
that Eqs.  (45) and (100) may be rewritten as: 

𝐄(𝐫) =𝑖𝜔𝑘−2𝛁 × [𝛁 × 𝐞𝑥𝜓(2)(𝐫)] =
−1
𝑖𝜔𝜀𝜇

𝛁 × [𝛁 × 𝐞𝑥𝜓(2)(𝐫)] (103)

𝐇(𝐫) = 𝜇−1𝛁 × 𝐞𝑥𝜓(2)(𝐫) (104)

in which we used as well Eq. (41) to obtain Eq. (103). Also, the changes 
from 𝛁 × 𝐀′ to 𝛁 × 𝐞𝑥𝜓(𝐫) may be established by an easy direct check. 
Eqs. (103), (104) are structurally identical to Eqs.(12) and (34) of [12] 
respectively, but for a difference of sign in Eq.(12) due to the use of 
a different time convention. We then conclude that Eqs. (101), (102) 
provide a link between the VP2 approach and the VP1 approach, called 
the VP1-derived approach. These Eqs. (101), (102) imply: 
𝑝 = 𝑝 = 𝑝 = 0 (105)
+ − 𝑧

5 
𝑞+ = 𝑞− = −𝑖𝜔∕2, 𝑞𝑧 = 0 (106)

Using Eqs. (105)–(106), the BSCs of the VP2 approach given in 
Eqs. (87)–(94) simplify to:

𝐺𝑚𝑛,𝑇𝑀 = 𝑖𝜔
𝑣+𝑛𝑚 + 𝑣−𝑛𝑚
2𝑛 + 1

(107)

= 𝑖𝜔
2𝑛 + 1

{𝑛[(𝑛 + 𝑚 + 1)(𝑛 + 𝑚 + 2)𝑔𝑚+1𝑛+1,(2) − 𝑔
𝑚−1
𝑛+1,(2)]

+ (𝑛 + 1)[(𝑛 − 𝑚)(𝑛 − 𝑚 − 1)𝑔𝑚+1𝑛−1,(2) − 𝑔
𝑚−1
𝑛−1,(2)]}

𝐺𝑚𝑛,𝑇𝐸 = −𝜔(𝑢+𝑛𝑚 + 𝑢−𝑛𝑚) (108)

= −𝜔[(𝑛 + 𝑚 + 1)(𝑛 − 𝑚)𝑔𝑚+1𝑛,(2) + 𝑔
𝑚−1
𝑛,(2)]

3.4. BSCs in the VP1 approach

In [13], after unification of the results published in [12], the corre-
sponding solutions of the VP1 approach are found to read as: 

𝑔𝑚𝑛,𝑇𝐸 =
−𝑘𝜓𝐴0
2𝜇𝐻0

[(𝑛 + 𝑚 + 1)(𝑛 − 𝑚)𝑔𝑚+1𝑛,(1) + 𝑔
𝑚−1
𝑛,(1)], 𝑚 > 0 (109)

𝑔0𝑛,𝑇𝐸 =
−𝑘𝜓𝐴0
2𝜇𝐻0

𝑛(𝑛 + 1)[𝑔1𝑛,(1) − 𝑔
−1
𝑛,(1)], 𝑚 = 0 (110)

𝑔𝑚𝑛,𝑇𝐸 =
𝑘𝜓𝐴0
2𝜇𝐻0

[𝑔𝑚+1𝑛,(1) + 𝑔
𝑚−1
𝑛,(1)(𝑛 − |𝑚|)(𝑛 + |𝑚| + 1)], 𝑚 < 0 (111)

𝑔𝑚𝑛,𝑇𝑀 =
𝑖𝜔𝜓𝐴0

2(2𝑛 + 1)𝐸0
(112)

×{𝑛[(𝑛 + 𝑚 + 1)(𝑛 + 𝑚 + 2)𝑔𝑚+1𝑛+1,(1) − 𝑔
𝑚−1
𝑛+1,(1)]

+ (𝑛 + 1)[(𝑛 − 𝑚 − 1)(𝑛 − 𝑚)𝑔𝑚+1𝑛−1,(1) − 𝑔
𝑚−1
𝑛−1,(1)]}, 𝑚 > 0

𝑔0𝑛,𝑇𝑀 =
𝑖𝜔𝜓𝐴0

2(2𝑛 + 1)𝐸0
𝑛(𝑛 + 1) (113)

× [(𝑛 − 1)(𝑔1𝑛−1,(1) + 𝑔
−1
𝑛−1,(1)) + (𝑛 + 2)(𝑔1𝑛+1,(1) + 𝑔

−1
𝑛+1,(1))], 𝑚 = 0

𝑔𝑚𝑛,𝑇𝑀 =
𝑖𝜔𝜓𝐴0

2(2𝑛 + 1)𝐸0
(114)

×{𝑛[(𝑛 + |𝑚| + 1)(𝑛 + |𝑚| + 2)𝑔𝑚−1𝑛+1,(1) − 𝑔
𝑚+1
𝑛+1,(1)]

+ (𝑛 + 1)[(𝑛 − |𝑚| − 1)(𝑛 − |𝑚|)𝑔𝑚−1𝑛−1,(1) − 𝑔
𝑚+1
𝑛−1,(1)]}, 𝑚 < 0

It might be remarked that Eqs. (109)–(111) on one hand, and 
(112)–(114) on the other hand, may be merged as shown in [12], 
but we preferred to keep them separated for the sake of clarity and 
pedagogic skills.

4. Relationship between the BSCs of the VP1-derived and the VP1 
approaches

Eqs. (107)–(108) on one hand, and Eqs. (109)–(114) on the other 
hand cannot be identical due to the many differences of conventions al-
ready mentioned, but they must be closely and coherently related. The 
present section is devoted to the investigation of these relationships.

4.1. A Rossetta stone

The electromagnetic and the acoustical BSCs of the VP1 approach 
must be related to the electromagnetic and the acoustical BSCs of the 
VP1-derived approach by equations still to be established. In order 
to uncover the relation between these two approaches, we therefore 
define: 
𝑔𝑚𝑛,(1) = 𝐴𝑚𝑛 𝑔

𝑚
𝑛,(2) (115)

𝑔𝑚 = 𝐵𝑚𝐺𝑚 (116)
𝑛,𝑇𝐸 𝑛 𝑛,𝑇𝐸
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in which 𝐴𝑚𝑛  is a ratio of scalar BSCs and 𝐵𝑚𝑛  is a ratio of electromagnetic 
BSCs. In order to determine these ratios, let us begin with the case 
𝑚 < 0, and recall Eq. (111) which, using 𝑚 = − |𝑚|, may be rewritten 
as: 

𝑔𝑚𝑛,𝑇𝐸 =
𝑘𝜓𝐴0
2𝜇𝐻0

[𝑔𝑚+1𝑛,(1) + (𝑛 + 𝑚)(𝑛 − 𝑚 + 1)𝑔𝑚−1𝑛,(1)] (117)

and also, using Eq. (115), as: 

𝑔𝑚𝑛,𝑇𝐸 =
𝑘𝜓𝐴0
2𝜇𝐻0

[𝐴𝑚+1𝑛 𝑔𝑚+1𝑛,(2) + 𝐴
𝑚−1
𝑛 (𝑛 + 𝑚)(𝑛 − 𝑚 + 1)𝑔𝑚−1𝑛,(2)] (118)

Using Eq. (116), we then have: 

𝐺𝑚𝑛,𝑇𝐸 =
𝑘𝜓𝐴0
2𝜇𝐻0

[
𝐴𝑚+1𝑛
𝐵𝑚𝑛

𝑔𝑚+1𝑛,(2) + (𝑛 + 𝑚)(𝑛 − 𝑚 + 1)
𝐴𝑚−1𝑛
𝐵𝑚𝑛

𝑔𝑚−1𝑛,(2)] (119)

which is to be compared with Eq. (108): 

𝐺𝑚𝑛,𝑇𝐸 = −𝜔[(𝑛 + 𝑚 + 1)(𝑛 − 𝑚)𝑔𝑚+1𝑛,(2) + 𝑔
𝑚−1
𝑛,(2)] (120)

Such a comparison implies: 
𝑘𝜓𝐴0
2𝜇𝐻0

𝐴𝑚+1𝑛
𝐵𝑚𝑛

= −𝜔(𝑛 + 𝑚 + 1)(𝑛 − 𝑚) (121)

𝑘𝜓𝐴0
2𝜇𝐻0

(𝑛 + 𝑚)(𝑛 − 𝑚 + 1)
𝐴𝑚−1𝑛
𝐵𝑚𝑛

= −𝜔 (122)

that is to say, modifying the indices: 
𝑘𝜓𝐴0
2𝜇𝐻0

𝐴𝑚𝑛
𝐵𝑚−1𝑛

= −𝜔(𝑛 + 𝑚)(𝑛 − 𝑚 + 1) (123)

𝑘𝜓𝐴0
2𝜇𝐻0

(𝑛 + 𝑚 + 1)(𝑛 − 𝑚)
𝐴𝑚𝑛
𝐵𝑚+1𝑛

= −𝜔 (124)

from which, we may extract 𝐴𝑚𝑛  and find: 

𝐴𝑚𝑛 = −𝜔(𝑛 + 𝑚)(𝑛 − 𝑚 + 1)
2𝜇𝐻0
𝑘𝜓𝐴0

𝐵𝑚−1𝑛 = −𝜔
2𝜇𝐻0

𝑘𝜓𝐴0(𝑛 + 𝑚 + 1)(𝑛 − 𝑚)
𝐵𝑚+1𝑛

(125)

leading to: 
𝐵𝑚+1𝑛

𝐵𝑚−1𝑛
= (𝑛 + 𝑚)(𝑛 − 𝑚 + 1)(𝑛 + 𝑚 + 1)(𝑛 − 𝑚) (126)

Returning to Eqs. (121), (122), we may then extract the ratio 
𝐴𝑚+1𝑛 ∕𝐴𝑚−1𝑛  which is found to be given again by Eq. (126), so that, as 
a whole, we have: 
𝐴𝑚+1𝑛

𝐴𝑚−1𝑛
=
𝐵𝑚+1𝑛

𝐵𝑚−1𝑛
= (𝑛 − 𝑚)(𝑛 − 𝑚 + 1)(𝑛 + 𝑚)(𝑛 + 𝑚 + 1) (127)

We now consider 𝑚 > 0 and then use Eq. (109) which, using 
Eq. (115), becomes: 

𝑔𝑚𝑛,𝑇𝐸 =
−𝑘𝜓𝐴0
2𝜇𝐻0

[(𝑛 + 𝑚 + 1)(𝑛 − 𝑚)𝐴𝑚+1𝑛 𝑔𝑚+1𝑛,(2) + 𝐴
𝑚−1
𝑛 𝑔𝑚−1𝑛,(2)] (128)

Using Eq. (116), we then have: 

𝐺𝑚𝑛,𝑇𝐸 =
−𝑘𝜓𝐴0
2𝜇𝐻0

[(𝑛 + 𝑚 + 1)(𝑛 − 𝑚)
𝐴𝑚+1𝑛
𝐵𝑚𝑛

𝑔𝑚+1𝑛,(2) +
𝐴𝑚−1𝑛
𝐵𝑚𝑛

𝑔𝑚−1𝑛,(2)] (129)

which must identify with Eq. (108), leading to: 
𝑘𝜓𝐴0
2𝜇𝐻0

𝐴𝑚+1𝑛
𝐵𝑚𝑛

=
𝑘𝜓𝐴0
2𝜇𝐻0

𝐴𝑚−1𝑛
𝐵𝑚𝑛

= 𝜔 (130)

Therefore: 
𝐴𝑚+1𝑛 = 𝐴𝑚−1𝑛 = 𝐾 (131)

in which 𝐾 is a constant. Next, modifying the indices in Eq. (130), we 
also have: 
𝑘𝜓𝐴0
2𝜇𝐻

𝐴𝑚𝑛
𝐵𝑚−1

=
𝑘𝜓𝐴0
2𝜇𝐻

𝐴𝑚𝑛
𝑚+1

= 𝜔 (132)

0 𝑛 0 𝐵𝑛
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Hence: 
𝐵𝑚−1𝑛 = 𝐵𝑚+1𝑛 = 𝐾 ′ (133)

in which 𝐾 ′  is a constant. Eqs. (130) or (132) imply: 
𝐵𝑚𝑛
𝐴𝑚𝑛

= 𝐾 ′

𝐾
=

𝑘𝜓𝐴0
2𝜇𝐻0𝜔

(134)

Inserting Eq. (134) into Eq. (129), we obtain: 
𝐺𝑚𝑛,𝑇𝐸 = −𝜔[(𝑛 + 𝑚 + 1)(𝑛 − 𝑚)𝑔𝑚+1𝑛,(2) + 𝑔

𝑚−1
𝑛,(2)] (135)

which indeed identifies with Eq. (108).
For 𝑚 = 0, we start from Eqs.  (108) and (110), specified for 𝑚 = 0, 

according to: 

𝑔0𝑛,𝑇𝐸 =
−𝑘𝜓𝐴0
2𝜇𝐻0

𝑛(𝑛 + 1)[𝑔1𝑛,(1) − 𝑔
−1
𝑛,(1)] (136)

𝐺0
𝑛,𝑇𝐸 = −𝜔[𝑛(𝑛 + 1)𝑔1𝑛,(2) + 𝑔

−1
𝑛,(2)] (137)

Using Eqs. (115), (116), and also Eq. (136), we obtain: 

𝐺0
𝑛,𝑇𝐸 =

−𝑘𝜓𝐴0
2𝜇𝐻0

[𝑛(𝑛 + 1)
𝐴1
𝑛

𝐵0
𝑛
𝑔1𝑛,(2) − 𝑛(𝑛 + 1)

𝐴−1
𝑛

𝐵0
𝑛
𝑔−1𝑛,(2)] (138)

Comparing with Eq. (137), we then have: 
𝑘𝜓𝐴0
2𝜇𝐻0

𝐴1
𝑛

𝐵0
𝑛
= 𝜔 (139)

𝑘𝜓𝐴0
2𝜇𝐻0

𝑛(𝑛 + 1)
𝐴−1
𝑛

𝐵0
𝑛

= −𝜔 (140)

Eq. (139) is a special case of Eq. (130) which was obtained for 𝑚 > 0, 
and is valid as well for 𝑚 = 0 after extraction of: 
𝑘𝜓𝐴0
2𝜇𝐻0

𝐴𝑚+1𝑛
𝐵𝑚𝑛

= 𝜔 (141)

Also, Eq. (140) is a special case of Eq. (122) which was established 
for 𝑚 < 0 and is valid as well for 𝑚 = 0. Then, inserting Eqs.  (139) and 
(140) into Eq. (138), we obtain: 
𝐺0
𝑛,𝑇𝐸 = −𝜔[𝑛(𝑛 + 1)𝑔1𝑛,(2) + 𝑔

−1
𝑛,(2)] (142)

which identifies with Eq. (137) as it should.
As a summary, the results obtained up to now in this subsection are 

Eq. (127) for 𝑚 < 0, Eqs. (131), (133), (134) for 𝑚 > 0, and Eqs. (139), 
(140) for 𝑚 = 0. We may then verify that all these results can be further 
summarized by writing: 
𝑔𝑚𝑛,(1)𝑃

|𝑚|
𝑛 (cos 𝜃) = 𝑔𝑚𝑛,(2)𝑃

𝑚
𝑛 (cos 𝜃) (143)

𝑔𝑚𝑛,𝑇𝐸𝑃
|𝑚|
𝑛 (cos 𝜃) = 𝐺𝑚𝑛,𝑇𝐸𝑃

𝑚
𝑛 (cos 𝜃) (144)

leading to: 

𝐴𝑚𝑛 = 𝐵𝑚𝑛 =
𝑃𝑚𝑛 (cos 𝜃)

𝑃 |𝑚|
𝑛 (cos 𝜃)

(145)

To use Eq. (145), we may recall Eq.(2.77) in [2], leading to: 
𝑃𝑚𝑛 (cos 𝜃)

𝑃 |𝑚|
𝑛 (cos 𝜃)

= (−1)|𝑚|
(𝑛 − |𝑚|)!
(𝑛 + |𝑚|)!

 for 𝑚 < 0 and 𝑚 = 0 (146)

Then, for 𝑚 < 0, using Eqs.  (145) and (146), we readily recover 
Eq. (127). For 𝑚 > 0, Eqs.  (143) and (144) readily imply 𝐴𝑚𝑛 = 𝐵𝑚𝑛 = 1, 
that is to say 𝐾 = 𝐾 ′ = 1 in agreement with Eqs. (131), (133), while 
Eq. (134) implies: 
𝑘𝜓𝐴0
2𝜇𝐻0𝜔

= 1 (147)

which is a renormalization factor.
For 𝑚 = 0, Eqs. (139), (140) together with the renormalization of 

Eq. (147) lead to: 
𝐴1
𝑛
0
= 1 (148)
𝐵𝑛



G. Gouesbet et al. Journal of Quantitative Spectroscopy and Radiative Transfer 347 (2025) 109616 
𝑛(𝑛 + 1)
𝐴−1
𝑛

𝐵0
𝑛

= −1 (149)

so that, using Eq. (145) to evaluate 𝐵0
𝑛 = 1, we actually have: 

𝐴1
𝑛 = 1 (150)

𝐴−1
𝑛 = −1

𝑛(𝑛 + 1)
(151)

Both of these results in Eqs. (150), (151) are readily found to agree 
with Eq. (145).

4.2. TM-BSCs

The examination of TE-BSCs allowed one to establish the relation-
ship between their expressions in the VP1-derived and in the VP1 
approaches which are summarized in Eqs. (143)–(144), including the 
fact that, in Eq. (144), TE must be changed to TM. It remains to check 
that these equations allow one as well to establish the relationship 
between the expressions of the TM-coefficients. For this, we consider 
three cases as follows.

(i) 𝑚 > 0
Eqs.  (143) and (144) (with TE changed to TM) imply: 

𝑔𝑚𝑛,(1) = 𝑔𝑚𝑛,(2) (152)

𝑔𝑚𝑛,𝑇𝑀 = 𝐺𝑚𝑛,𝑇𝑀 (153)

which are inserted into Eq. (112), leading to:

𝐺𝑚𝑛,𝑇𝑀 =
𝑖𝜔𝜓𝐴0

2(2𝑛 + 1)𝐸0
(154)

×{𝑛[(𝑛 + 𝑚 + 1)(𝑛 + 𝑚 + 2)𝑔𝑚+1𝑛+1,(2) − 𝑔
𝑚−1
𝑛+1,(2)]

+ (𝑛 + 1)[(𝑛 − 𝑚 − 1)(𝑛 − 𝑚)𝑔𝑚+1𝑛−1,(2) − 𝑔
𝑚−1
𝑛−1,(2)]}

which identifies with Eq. (107) when we introduce a renormalization 
relation reading as: 
𝜓𝐴0 = 2𝐸0 (155)

(ii) 𝑚 = 0
We have Eq. (153) with 𝑚 = 0, reading as: 

𝑔0𝑛,𝑇𝑀 = 𝐺0
𝑛,𝑇𝑀 (156)

We also have Eq. (152) with 𝑚 = 1, and 𝑛 = ±1, reading as: 
𝑔1𝑛±1,(1) = 𝑔1𝑛±1,(2) (157)

Also, with 𝑚 = −1, we have to use Eqs.  (143) and (146), with 𝑛 = ±1, 
leading to: 

𝑔−1𝑛−1,(1) =
−𝑔−1𝑛−1,(2)
𝑛(𝑛 − 1)

(158)

𝑔−1𝑛+1,(1) =
−𝑔−1𝑛+1,(2)

(𝑛 + 1)(𝑛 + 2)
(159)

Inserting Eqs. (156)–(159) into Eq. (113), and using the renormal-
ization of Eq. (155) leads to:

𝐺0
𝑛,𝑇𝑀 = 𝑖𝜔

2𝑛 + 1
{𝑛[(𝑛 + 1)(𝑛 + 2)𝑔1𝑛+1,(2) − 𝑔

−1
𝑛+1,(2)] (160)

+(𝑛 + 1)[𝑛(𝑛 − 1)𝑔1𝑛−1,(2) − 𝑔
−1
𝑛−1,(2)]}

which identifies with Eq. (107) after having implemented in it the fact 
that we are dealing with the case 𝑚 = 0.

(iii) 𝑚 < 0
We insert Eqs. (143), (144) (with TE changed to TM), and (146) into 

Eq. (114), use the renormalization condition of Eq. (155), and rearrange 
to obtain:
𝐺𝑚 = 𝑖𝜔 {𝑛[(𝑛 − |𝑚| + 1)(𝑛 − |𝑚| + 2)𝑔𝑚+1 − 𝑔𝑚−1 ] (161)
𝑛,𝑇𝑀 2𝑛 + 1 𝑛+1,(2) 𝑛+1,(2)
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+(𝑛 + 1)[(𝑛 + |𝑚| − 1)(𝑛 + |𝑚|)𝑔𝑚+1𝑛−1,(2) − 𝑔
𝑚−1
𝑛−1,(2)]}

which, after changing |𝑚| to (−𝑚), identifies with Eq. (107).

5. Conclusion

This paper is somehow the conclusion of an effort to express the 
electromagnetic BSCs in terms of scalar (more specifically acoustical) 
BSCs. Due to the fact that we are facing two sets of electromagnetic 
BSCs and only one set of scalar BSCs, the interest of such expressions 
is to speed up the computations of electromagnetic BSCs by typically 
a factor equal to 2. There however exist two approaches in this frame-
work, one called the VP1 approach which expresses the electromagnetic 
fields in terms of only one vector potential, and another one, called 
the VP2 approach, which expresses the electromagnetic fields in terms 
of two vector potentials. In this paper, we have shown how that the 
VP1 approach is a simpler special case of the VP2 approach and, 
although both approaches use different definitions and conventions, 
it has been possible to relate the expressions of BSCs obtained in the 
VP1 approach with those obtained in the VP2 approach. The detailed 
relationships between the VP1 and the VP2 approaches constitute the 
most important result of the present paper, allowing anyone entering 
this field of research, more specifically concerning the evaluation of 
beam shape coefficients, to more conveniently know immediately how 
they are related, therefore avoiding the burden of algebraic calculations 
which require a certain amount of skill and time.
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