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RESUMO

Uma Estação de Tratamento de Esgotos (ETE) deve funcionar de maneira correta para
não acarretar problemas tanto do ponto de vista social, quanto do ponto de vista biológico.
Todos os resíduos provenientes das atividades humanas devem ser tratados antes de serem

dispostos no ambiente. Algumas aplicações de problemas relacionados ao meio ambiente

envolvem processos dinâmicos que são difíceis de serem descritos por métodos
matemáticos convencionais. Além disso o controle destes processos apresenta algumas
dificuldades, como por exemplo, a presença de sistemas não-lineares com vários graus de
liberdade e incerteza. A modelagem de uma ETE é um problema com tais características.

As aplicações que utilizam redes neurais aumentaram signifícativamente nos últimos anos
em diversas áreas. Esta tecnologia se encaixa muito bem em problemas de controle,

possibilitando um desempenho superior ao dos modelos convencionais. Este trabalho tem

como objetivo principal iniciar os estudos de modelagem de uma ETE utilizando redes

neurais, visando a previsão dos parâmetros de operação, apoiados em informações

passadas. Os resultados obtidos indicam que redes neurais podem ser adequadas para

modelar estações de tratamento de esgotos.

PALAVRAS-CHAVE: Redes Neurais, Modelos Matemáticos, Processos Aeróbios.
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INTRODUÇÃO

O mau funcionamento de uma Estação de Tratamento de Esgotos (ETE) traz sérios
problemas ambientais e sociais, visto que os efluentes destas estações podem causar ou
alastrar diversas doenças aos seres humanos, assim como desestabilizar o meio natural no

qual estes despejos são lançados (Belanche, 1992).

Ainda que conscientes da grande importância do tratamento de esgotos, no Brasil ainda
muito pouco se tem investido para melhorar as redes coletoras de esgotos e posterior
tratamento. Apenas 30% da população urbana brasileira têm seus esgotos coletados, e
destes, apenas 10% têm tratamento adequado (Costa Júnior, 1996; Tinôco Filho, 1996).
Entretanto, esforços têm sido concentrados para baratear e melhorar as tecnologias
disponíveis no mercado para o tratamento de esgotos, que podem levar a uma ação mais
efetiva por parte dos governantes na utilização destes sistemas para a melhoria da
qualidade de vida da população brasileira.

Com o intuito de melhorar a operação destas estações de tratamento, a emissão de

diagnósticos a partir das observações dos parâmetros na entrada, saída e etapas
intermediárias do processo, possibilita um maior controle do processo de tratamento de
esgoto. Para a resolução desta tarefa é necessário, inicialmente, determinar um modelo

matemático que reproduza, com uma precisão especificada, o processo de tratamento

como um todo, englobadas todas as operações unitárias e processos biológicos.

, ■

Devido à dificuldade de se modelar tais processos, caracterizados por serem altamente
complexos e não-lineares, este trabalho propõe a aplicação de redes neurais artificiais para
simular o comportamento de uma ETE convencional, visto que a forma como os

problemas são modelados pela abordagem de redes neurais e o paralelismo natural
inerente à sua arquitetura, criam a possibilidade de um desempenho superior à dos
modelos convencionais.

O objetivo desta primeira etapa do trabalho é a elaboração de uma função que prevê os
parâmetros de operação da ETE em um instante de tempo futuro, baseados em

informações presentes e passadas. Os dados utilizados são de uma ETE em operação em
Manresa, Espanha. Esta planta consiste de 6 bioreatores aeróbios de 1800m^ divididos em

duas linhas de três reatores, dois decantadores primários de 37m de diâmetro e volume de

3332m^ e dois decantadores secundários de 42m de diâmetro e volume de 4850m\ A

temperatura da água residuária oscila entre 12°C no inverno e 20“C no verão. A taxa de

recirculação varia em tomo de 100% da vazão de entrada e a idade do lodo está situada

entre 4 e 7 dias (Poch, 1993).

No próximo item alguns conceitos básicos sobre redes neurais serão apresentados e
literaturas adequadas ao seu pleno entendimento serão sugeridas. Logo após, a
metodologia, resultados, discussões e conclusões serão descritos.
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REDES NEURAIS

Redes neurais são sistemas paralelos distribuídos, compostos por unidades de
processamento simples (neurônios). Estas unidades computam certas funções matemáticas
e estão dispostas em uma ou mais camadas, interligadas por um grande número de
conexões geralmente unidirecionais. Estas conexões estão associadas a pesos, os quais
armazenam o conhecimento representado no modelo, e servem para ponderar a entrada
recebida em cada neurônio da rede. O funcionamento destas redes é inspirado no cérebro
humano e têm como atribuições mais comuns a aproximação de funções lineares ou não-

lineares, classificação e reconhecimento de padrões. Suas semelhanças com o cérebro
humano baseiam-se em dois aspectos fundamentais, segundo Haykin (1994).

1. Conhecimento é adquirido pela rede através de um processo de aprendizado e;
2. A intensidade, ou força da conexão entre os neurônios, conhecida como pesos

sinápticos são usadas para armazenar o conhecimento.

Existem diversas arquiteturas de redes, sendo que a rede do tipo MLP (perceptron de múltiplas
camadas) tem sido ostensivamente estudada no campo da Engenharia para simulação de
processos químicos e biológicos, pois podem aproximar qualquer tipo de fimção não-linear (Cruz
e Giordano, 1995; Morris et al., 1994; Bhat et al., 1990). Assim, optou-se trabalhar com este tipo
de rede para modelar a ETE. Esta rede é mostrada na Figura 1.

camada camada camada

Figura 1: Redes MLP completamente
conectadas

Fonte: Haykin (1994)

"igura 2: Modelo não-linear de um neurônio

Fonte: Haykin (1994)

As redes MLP são caracterizadas por possuírem uma ou mais camadas internas

(escondidas), cujos neurônios (Figura 2) realizam uma operação de confluência de suas
entradas:

ü.=ZWyXj

onde: Uj = entrada total recebida pelo neurônio;
Wjj = pesos sinápticos;
Xj = entradas do neurônio.

(1)
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Uma função threshold (limiar) pode ser aplicada à soma ponderada, fornecendo uma
maior variabilidade do grau de ativação deste neurônio. Esta função adiciona uma entrada

-1 ao neurônio e pode ser incorporada a equação 1, adicionando-se que resulta em
um somatório de i =:0 a n:

= ZWyXj (2)u
j

i=0

Aplicando-se uma função de ativação a esta equação (2), produz-se a saída deste
neurônio:

(3)

Geralmente a função de ativação é a função sigmóide:

1

f("i) (4)
1 + e

O aprendizado da rede consiste de um processo iterativo em que, dado um sinal de
entrada, obtém-se uma resposta, ou estímulo, que é comparado a sua saída desejada
(aprendizado supervisionado). Os pesos, que armazenam o conhecimento da rede, são

reajustados, retropropagados para cada padrão apresentado, até um dado instante em que a
função custo, ou erro (equação 5) atinja um mínimo global. Este algoritmo é denominado

retropropagação padrão {standard baciqjropagation).

Í|(V0,j (5)e =

onde: dj = saída desejada;
Oj = saída real;
m = número de neurônios na última camada.

Diversas variações deste algoritmo têm sido desenvolvidas, entre estas, backpropagation
with momentum e RPROP. Este último algoritmo é uma variação do standard
backpropagation que elimina a influência prejudicial da extensão da derivada parcial do
erro em relação aos pesos. Como conseqüência, somente o sinal da derivada é

considerado para indicar a direção de atualização dos pesos (Riedmiller, 1994). Para um
maior detalhamento e compreensão das redes MLP e outras topologias em geral, ver
Rumelhart (1989).

METODOLOGIA

A Tabela 1 apresenta um resumo dos parâmetros de caracterização da ETE. Os símbolos

preenchidos indicam que estes parâmetros foram medidos diariamente no ponto de coleta
especificado na primeira linha desta tabela. Estes parâmetros são relativos à operação da

estação no período de 01/03/90 a 29/10/91.
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Utilizou-se o simulador SNNS (Stuttgart Neural NetWork Simulator) (Stuttgart, 1995),
desenvolvido no Instituto para Sistemas Paralelos e Distribuídos de Alta Performance da

Universidade de Stuttgart para a definição das arquiteturas, aprendizado, validação e teste
das redes testadas. Todos os parâmetros foram normalizados, sendo que os parâmetros
não determinados, por quaisquer motivos, foram preenchidos, utilizando uma técnica

descrita na próxima seção.

Tabela 1: Parâmetros determinados em seus respectivos pontos de coleta

parâmetros entrada da

estação

entrada

decantador

primário

entrada

decantador

secundário

saída da

estação

Q (mVdia)
Zn (mg/L)

DBO (mg/L)

DQO (mg/L)

SS (mg/L)

SSV (mg/L)

sed. (mL/L)

cond. Q'’cm ‘

Fonte: (Poch, 1993)

• parâmetros determinados.
- parâmetros não determinados no ponto de coleta.

Por serem medidos diariamente 29 parâmetros e tendo-se como objetivo a previsão destes
mesmos parâmetros, baseados em informações passadas e presentes (parâmetros avaliados
nos últimos dias), as redes possuem na camada de saída 29 neurônios. Foram definidas 5

topologias (arquiteturas) de redes, variando-se o número de dias utilizados para fazer a
previsão e conseqüentemente, o número de nós de suas camadas de entrada. Assim, a rede
com 29 nós na camada de entrada fez uso de somente 1 dia para a previsão dos
parâmetros do dia seguinte da estação, e as redes com 58, 87, 116 e 145 nós utilizaram 2,

3, 4 e 5 dias, respectivamente, para a previsão destes parâmetros. Nesta fase do trabalho
camadas intermediárias de neurônios não foram utilizadas.

A partir da definição do número de nós na camada de entrada e de neurônios na camada

de saída para cada rede, foram determinados, aleatoriamente, três conjuntos de
treinamento, validação e teste, sendo que 50% dos dados (padrões) foram reservados para
a fase de treinamento, 25% para a fase de validação e 25% para a de teste.

Foram utilizados três algoritmos de treinamento diferentes, standard backpropagation,

backpropagation with momentum e RPROP. A taxa de aprendizado utilizada foi variável,

iniciando em 0,9 e reduzindo-a gradualmente até a taxa mínima de 0,01. Para o algoritmo
backpropagation with momentum, utilizou-se a mesma taxa de aprendizado variável e o
termo de momento foi fixado em 0,1. O número máximo de apresentações (ciclos) do

conjunto de padrões de treinamento foi de 5000 e, e a cada 10 ciclos, apresentou-se o

conjunto de validação. O conjunto de teste foi utilizado somente no final do treinamento.

RESULTADOS E DISCUSSÕES
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A Figura 3 mostra a técnica utilizada para o preenchimento dos parâmetros ausentes, pois
o simulador de redes neurais SNNS não permite intervalos de dados não preenchidos. O
exemplo aqui ilustrado é um caso extremo, em que a vazão não foi medida por vários
dias. Assim, uma função linear é traçada entre os dois extremos do intervalo ausente deste

parâmetro. Este procedimento visou acompanhar a tendência dos dados, fato este não

levado em consideração caso fosse adotado o procedimento usual, a média dos 4 últimos

parâmetros.
vazAo oiAria

VAZiO

15000

640

DIAS

Figura 3: Preenchimento dos parâmetros ausentes.

As médias dos erros' de treinamento, validação e teste^ para as redes treinadas com 3

cojuntos de padrões distintos estão apresentadas nas Figinas 4, 5 e 6, para cada um dos
algoritmos de treinamento utilizados.O treinamento, validação e teste de cada arquitetura
com 3 conjuntos de dados, extraídos aleatoriamento do conjunto total, visou eliminar
erros causados por supostos intervalos não-representativos do comportamento global da
estação.

Notou-se nestas figuras que, as médias dos erros quadráticos médios determinados por
estas redes foram altos, embora isto não signifique um mau desempenho da rede. Muitas
vezes estes erros podem estar associados a algumas saídas muito complexas (parâmetro
de difícil modelagem) e ao grande número de neurônios na camada de saída, contribuindo

sensivelmente para o aumento do somatório dos erros.

Observou-se também que, quanto mais nós de entrada (parâmetros para a previsão) foram
acrescentados, menores os erros de treinamento e maiores os erros de validação e teste.
Isto indicou que redes com mais nós na camada de entrada atingiram um alto grau de
conhecimento sobre os padrões, mas não conseguiram generalizar suficientemente bem

quando os conjuntos de validação e teste foram apresentados, ou seja, a rede decorou os

Os erros referem-se ao Erro Quadrático Médio (MSE), dado por:

Vp=li=l
MSE-

m

onde: m = número de padrões de treinamento;
número de neurônios na camada de saida;

dj = saida desejada no neurônio i;
0| = saída real do neurônio i.

^ Os erros de treinamento, validação e teste apresentados correspondem aos ciclos cujos erros de validação
foram os menores entre todos os ciclos da etapa de aprendizagem.

n
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padrões apresentados, não tendo capacidade de generalizar novos padrões (o conjunto de
teste). Assim, pode-se afirmar que a rede com 29 nós de entrada apresentou a melhor
performance, visto que, apesar de não apresentar erros significativamente baixos,
conseguiu generalizar melhor que as demais redes.

As Figuras 7, 8, 9, 10 e 11 apresentam uma comparação dos erros quadráticos médios
para as 5 arquiteturas treinadas com os 3 algoritmos distintos. Observou-se que, para as
redes com 58, 87, 116 e 145 nós de entrada (Figuras 8, 9, 10 e 11), o algoritmo RPROP
mostrou-se mais eficiente para as fases de validação e teste à medida que nós são
acrescentados na camada de entrada. Para a rede com 29 nós na entrada, os algoritmos
standard backpropagation e backpropagation with momentum apresentaram uma ligeira
vantagem na fase de teste.

É importante salientar que não foram utilizadas camadas intermediárias nas redes para que
se pudesse verificar suas performances com arquiteturas as mais simples possíveis.
Somente a partir dos erros determinados por estas redes, novas estruturas definidas.

0.35 0.3

algorilmo de treinamenlo:

0.3 standard backpropagation
algoritmo de treinamento;

RPROP
0.25

O

I5 0.25%

1
8 0,2 8

í 0.15
lo,15 1

crI
0.1

0.1
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■erro de validaçfio

□ erro de teste
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0.05
005
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□ erro da teste

0 0

1 dia 2 dias 3 dias 4 dias 5 dias

número de dias utilizados para previsão

1 dia 2 dias 3 dias 4 dias 5 dias

número de dias utilizados para previsão

Figura 4: Erros das 5 arquiteturas utilizando
algoritmo de treinamento standard

backpropagation

Figura 6: Erros das 5 arquiteturas utilizando
algoritmo de treinamento RPROP

0,4

0.25
algoritmo de treinamento;

backpropagation with momentum0.35

Jm !,■ I.M 1,1^

o 0.2
13

1
0 0.158

5

S 0.1

í i
■ standard backpropagation

■ backpropagation with momentum
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® 0.1 *0.05
de

de validação

de teste LhI0

erro de

treinamento

erro de

validação

erro de teste

1 dia 2 dias 3 dias

número de dias utilizados para previsão

5 dias

Figura 5: Erros das 5 arquiteturas utilizando
algoritmo de treinamento backpropagation
with momentum

Figura 7: Erros para a rede com 29 nós na

camada de entrada (1 dia para a previsão)
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Figura 8: Erros para a rede com 58 nós na

camada de entrada (2 dias para a previsão)
Figura 10: Erros para a rede com 116 nós na

camada de entrada (4 dias para a previsão)
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Figura 9: Erros para a rede com 87 nós na

camada de entrada (3 dias para a previsão)
Figura 11: Erros para a rede com 145 nós na

camada de entrada (5 dias para a previsão)

CONCLUSÕES E SUGESTÕES

O modelo de previsão proposto utilizando redes neurais mostrou-se bastante promissor na
modelagem de sistemas biológicos de tratamento de esgotos, embora nenhum resultado

realmente conclusivo possa ainda ser extraído. A próxima etapa deste estudo visará
verificar a influência da adição de neurônios em camadas intermediárias. Segundo o
teorema de Kolmogorov (Kolmogorov, 1963) não é necessário mais que três camadas
para se aproximar qualquer tipo de fimção. Depois de terminada a etapa de previsão dos
parâmetros, pretende-se viabilizar a emissão de diagnósticos da planta, diminuindo-se o
número de nós na camada de entrada das redes, considerando-se somente os parâmetros,
experimentais ou calculados, realmente relevantes à caracterização da planta.
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