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RESUMO

Uma Estagdo de Tratamento de Esgotos (ETE) deve funcionar de maneira correta para
ndo acarretar problemas tanto do ponto de vista social, quanto do ponto de vista bioldgico.
Todos os residuos provenientes das atividades humanas devem ser tratados antes de serem
dispostos no ambiente. Algumas aplicagdes de problemas relacionados ao meio ambiente
envolvem processos dindmicos que sdo dificeis de serem descritos por métodos
matematicos convencionais. Além disso o controle destes processos apresenta algumas
dificuldades, como por exemplo, a presenca de sistemas n3o-lineares com varios graus de
liberdade e incerteza. A modelagem de uma ETE € um problema com tais caracteristicas.
As aplicagdes que utilizam redes neurais aumentaram significativamente nos ultimos anos
em diversas areas. Esta tecnologia se encaixa muito bem em problemas de controle,
possibilitando um desempenho superior ao dos modelos convencionais. Este trabalho tem
como objetivo principal iniciar os estudos de modelagem de uma ETE utilizando redes
neurais, visando a previsdo dos pardmetros de operagdo, apoiados em informagdes
passadas. Os resultados obtidos indicam que redes neurais podem ser adequadas para
modelar estagdes de tratamento de esgotos.

PALAVRAS-CHAVE: Redes Neurais, Modelos Matematicos, Processos Aerdbios.
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INTRODUGAO

O mau funcionamento de uma Estagdo de Tratamento de Esgotos (ETE) traz sérios
problemas ambientais e sociais, visto que os efluentes destas estagdes podem causar ou
alastrar diversas doengas aos seres humanos, assim como desestabilizar o meio natural no
qual estes despejos sdo langados (Belanche, 1992).

Ainda que conscientes da grande importancia do tratamento de esgotos, no Brasil ainda
muito pouco se tem investido para melhorar as redes coletoras de esgotos e posterior
tratamento. Apenas 30% da populagdo urbana brasileira tém seus esgotos coletados, e
destes, apenas 10% tém tratamento adequado (Costa Junior, 1996; Tindéco Filho, 1996).
Entretanto, esforgos tém sido concentrados para baratear e melhorar as tecnologias
disponiveis no mercado para o tratamento de esgotos, que podem levar a uma agio mais
efetiva por parte dos governantes na utilizagdo destes sistemas para a melhoria da
qualidade de vida da populagéo brasileira.

Com o intuito de melhorar a operagdo destas estagdes de tratamento, a emissio de
diagnosticos a partir das observagdes dos parametros na entrada, saida e etapas
intermediarias do processo, possibilita um maior controle do processo de tratamento de
esgoto. Para a resolugdo desta tarefa € necessario, inicialmente, determinar um modelo
matematico que reproduza, com uma precisdo especificada, o processo de tratamento
como um todo, englobadas todas as operagdes unitarias e processos biologicos.

Devido a dificuldade de se modelar tais processos, caracterizados por serem altamente
complexos e ndo-lineares, este trabalho propde a aplicag@o de redes neurais artificiais para
simular o comportamento de uma ETE convencional, visto que a forma como os
problemas sdo modelados pela abordagem de redes neurais € o paralelismo natural
inerente a sua arquitetura, criam a possibilidade de um desempenho superior a dos
modelos convencionais.

O objetivo desta primeira etapa do trabalho ¢ a elaboragdo de uma fungio que prevé os
parametros de operagdo da ETE em um instante de tempo futuro, baseados em
informagdes presentes e passadas. Os dados utilizados sdo de uma ETE em operagdo em
Manresa, Espanha. Esta planta consiste de 6 bioreatores aerébios de 1800m* divididos em
duas linhas de trés reatores, dois decantadores primarios de 37m de diametro e volume de
3332m’ e dois decantadores secundarios de 42m de didmetro e volume de 4850m’. A
temperatura da agua residuéria oscila entre 12°C no inverno e 20°C no verdo. A taxa de
recirculagdo varia em torno de 100% da vazdo de entrada e a idade do lodo esta situada
entre 4 e 7 dias (Poch, 1993).

No préximo item alguns conceitos bésicos sobre redes neurais serdo apresentados e
literaturas adequadas ao seu pleno entendimento serdio sugeridas. Logo apds, a
metodologia, resultados, discussdes e conclusdes serdo descritos.
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REDES NEURAIS

Redes neurais sdo sistemas paralelos distribuidos, compostos por unidades de
processamento simples (neurdnios). Estas unidades computam certas fungdes matematicas
e estdo dispostas em uma ou mais camadas, interligadas por um grande nimero de
conexdes geralmente unidirecionais. Estas conexdes estdo associadas a pesos, 0s quais
armazenam o conhecimento representado no modelo, e servem para ponderar a entrada
recebida em cada neur6nio da rede. O funcionamento destas redes é inspirado no cérebro
humano e tém como atribui¢des mais comuns a aproximagcio de fungdes lineares ou n3o-
lineares, classificagdo e reconhecimento de padrdes. Suas semelhangas com o cérebro
humano baseiam-se em dois aspectos fundamentais, segundo Haykin (1994).

1. Conhecimento € adquirido pela rede através de um processo de aprendizado e;
2. A intensidade, ou forca da conexd3o entre os neurdnios, conhecida como pesos
sinapticos sdo usadas para armazenar o conhecimento.

Existem diversas arquiteturas de redes, sendo que a rede do tipo MLP (perceptron de multiplas
camadas) tem sido ostensivamente estudada no campo da Engenharia para simulacio de
processos quimicos e biolégicos, pois podem aproximar qualquer tipo de fun¢o nio-linear (Cruz
e Giordano, 1995; Morris et al., 1994; Bhat et al., 1990). Assim, optou-se trabalhar com este tipo
de rede para modelar a ETE. Esta rede ¢ mostrada na Figura 1.

camada camada camada sinais de
de entrada interme- de saida e ol

didria "o
X1 @ ° v PrN - Yj

fungéo de salda
2 ativagéo

pesos

sinapticos
Figura 1: Redes MLP completamente Figura 2: Modelo n3o-linear de um neurdnio
conectadas Fonte: Haykin (1994)

Fonte: Haykin (1994)

As redes MLP sd3o caracterizadas por possuirem uma ou mais camadas internas
(escondidas), cujos neurdnios (Figura 2) realizam uma operagdo de confluéncia de suas
entradas:

vy = XWX, (1)

onde: v; = entrada total recebida pelo neurénio;
W;; = pesos sinapticos;
X; = entradas do neurdnio.
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Uma fungdo threshold (limiar) pode ser aplicada a soma ponderada, fornecendo uma
maior variabilidade do grau de ativagio deste neurdnio. Esta fun¢@o adiciona uma entrada
-1 a0 neurdnio e pode ser incorporada a equag@o 1, adicionando-se w;.x,, que resulta em
um somatdrio dei=:0 an:

v, = L WX, 2

i=0

Aplicando-se uma fungdo de ativagdio a esta equagdo (2), produz-se a saida deste
neurdnio:

v, =1(o,) &)

Geralmente a funcédo de ativagdo € a fung@o sigmoide:

f(‘)j)= i—:le—_Tl- )

O aprendizado da rede consiste de um processo iterativo em que, dado um sinal de
entrada, obtém-se uma resposta, ou estimulo, que ¢ comparado a sua saida desejada
(aprendizado supervisionado). Os pesos, que armazenam o conhecimento da rede, sdo
reajustados, retropropagados para cada padrio apresentado, até um dado instante em que a
fung¢@o custo, ou erro (equagdo 5) atinja um minimo global. Este algoritmo é denominado
retropropagacg@o padrio (standard backpropagation).

c=35 (@) ©

onde: d; = saida desejada;
o; = saida real;
m = nimero de neurénios na ultima camada.

Diversas variagdes deste algoritmo tém sido desenvolvidas, entre estas, backpropagation
with momentum e RPROP. Este ultimo algoritmo é uma variagdo do standard
backpropagation que elimina a influéncia prejudicial da extens3o da derivada parcial do
erro em relagdo aos pesos. Como conseqiiéncia, somente o sinal da derivada ¢é
considerado para indicar a diregdo de atualizagdo dos pesos (Riedmiller, 1994). Para um
maior detalhamento e compreenséo das redes MLP e outras topologias em geral, ver
Rumelhart (1989).

METODOLOGIA

A Tabela 1 apresenta um resumo dos parametros de caracterizagdo da ETE. Os simbolos
preenchidos indicam que estes pardmetros foram medidos diariamente no ponto de coleta
especificado na primeira linha desta tabela. Estes parametros sio relativos a operagédo da
estagdo no periodo de 01/03/90 a 29/10/91.
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Utilizou-se o simulador SNNS (Stuttgart Neural Network Simulator) (Stuttgart, 1995),
desenvolvido no Instituto para Sistemas Paralelos e Distribuidos de Alta Performance da
Universidade de Stuttgart para a definigdo das arquiteturas, aprendizado, validagio e teste
das redes testadas. Todos os parametros foram normalizados, sendo que os parimetros
ndo determinados, por quaisquer motivos, foram preenchidos, utilizando uma técnica
descrita na préxima seg¢@o.

Tabela 1: Parametros determinados em seus respectivos pontos de coleta

parametros entrada da entrada entrada saida da
estacdo decantador decantador estagdo
primario secundario
Q (m*/dia) ® - - -
Zn (mg/L) ® - . .
pH [ [ & [
DBO (mg/L) ® ® o ®
DQO (mg/L) d - d o
SS (mg/L) @ [ ® o
SSV (mg/L) [ [ ) [ [
sed. (mL/L) ® ® ® ®
cond. Q'cm” ® ® ® ®

Fonte: (Poch, 1993)

@ parametros determinados.
- pardmetros ndo determinados no ponto de coleta.

Por serem medidos diariamente 29 parametros e tendo-se como objetivo a previsio destes
mesmos parametros, baseados em informagdes passadas e presentes (parametros avaliados
nos ultimos dias), as redes possuem na camada de saida 29 neurdnios. Foram definidas 5
topologias (arquiteturas) de redes, variando-se o nimero de dias utilizados para fazer a
previsdo e conseqiientemente, o nimero de nds de suas camadas de entrada. Assim, a rede
com 29 nés na camada de entrada fez uso de somente 1 dia para a previsdo dos
parametros do dia seguinte da estag3o, e as redes com 58, 87, 116 € 145 nds utilizaram 2,
3, 4 e 5 dias, respectivamente, para a previsdo destes pardmetros. Nesta fase do trabalho
camadas intermediarias de neurdnios ndo foram utilizadas.

A partir da defini¢do do numero de nds na camada de entrada e de neurénios na camada
de saida para cada rede, foram determinados, aleatoriamente, trés conjuntos de
treinamento, validag@o e teste, sendo que 50% dos dados (padrdes) foram reservados para
a fase de treinamento, 25% para a fase de validagdo e 25% para a de teste.

Foram utilizados trés algoritmos de treinamento diferentes, standard backpropagation,
backpropagation with momentum e RPROP. A taxa de aprendizado utilizada foi variavel,
iniciando em 0,9 e reduzindo-a gradualmente até a taxa minima de 0,01. Para o algoritmo
backpropagation with momentum, utilizou-se a mesma taxa de aprendizado variavel e o
termo de momento foi fixado em 0,1. O numero maximo de apresentagdes (ciclos) do
conjunto de padrdes de treinamento foi de 5000 e, e a cada 10 ciclos, apresentou-se o
conjunto de validag@o. O conjunto de teste foi utilizado somente no final do treinamento.

RESULTADOS E DISCUSSOES
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A Figura 3 mostra a técnica utilizada para o preenchimento dos pardmetros ausentes, pois
o simulador de redes neurais SNNS n#o permite intervalos de dados nio preenchidos. O
exemplo aqui ilustrado € um caso extremo, em que a vazdo nio foi medida por varios
dias. Assim, uma fung@o linear ¢é tragada entre os dois extremos do intervalo ausente deste
parametro. Este procedimento visou acompanhar a tendéncia dos dados, fato este ndo
levado em consideragio caso fosse adotado o procedimento usual, a média dos 4 dltimos
parametros.

VAZAO DIARIA

530 540 550 560 570 580 500 800
DIAS

Figura 3: Preenchimento dos parametros ausentes.

As médias dos erros' de treinamento, validagiio e teste’ para as redes treinadas com 3
cojuntos de padrdes distintos estdo apresentadas nas Figuras 4, 5 e 6, para cada um dos
algoritmos de treinamento utilizados.O treinamento, validag@o e teste de cada arquitetura
com 3 conjuntos de dados, extraidos aleatoriamento do conjunto total, visou eliminar
erros causados por supostos intervalos nio-representativos do comportamento global da
estacdo.

Notou-se nestas figuras que, as médias dos erros quadraticos médios determinados por
estas redes foram altos, embora isto ndo signifique um mau desempenho da rede. Muitas
vezes estes erros podem estar associados a algumas saidas muito complexas (pardmetro
de dificil modelagem) e ao grande niimero de neurdnios na camada de saida, contribuindo
sensivelmente para o aumento do somatdrio dos erros.

Observou-se também que, quanto mais nds de entrada (pardmetros para a previsio) foram
acrescentados, menores os erros de treinamento e maiores os erros de validagio e teste.

Isto indicou que redes com mais nés na camada de entrada atingiram um alto grau de
conhecimento sobre os padrdes, mas ndo conseguiram generalizar suficientemente bem
quando os conjuntos de validagdo e teste foram apresentados, ou seja, a rede decorou os

! Os erros referem-se ao Erro Quadratico Médio (MSE), dado por:

(fi(di—oi)z)

p=li=1

MSE =
m

onde: m = numero de padrdes de treinamento;
n = nimero de neur6nios na camada de saida;
d,= saida desejada no neurdnio i;
o, = saida real do neur6nio i.

2 Os erros de treinamento, validagdo e teste apresentados correspondem aos ciclos cujos erros de validagdo
foram os menores entre todos os ciclos da etapa de aprendizagem.
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padrdes apresentados, ndo tendo capacidade de generalizar novos padrdes (o conjunto de
teste). Assim, pode-se afirmar que a rede com 29 nds de entrada apresentou a melhor

performance, visto que, apesar de ndo apresentar erros significativamente baixos,
conseguiu generalizar melhor que as demais redes.

As Figuras 7, 8, 9, 10 e 11 apresentam uma comparagdo dos erros quadraticos médios
para as 5 arquiteturas treinadas com os 3 algoritmos distintos. Observou-se que, para as
redes com 58, 87, 116 e 145 nds de entrada (Figuras 8, 9, 10 e 11), o algoritmo RPROP
mostrou-se mais eficiente para as fases de validagdo e teste a medida que nds sdo
acrescentados na camada de entrada. Para a rede com 29 nés na entrada, os algoritmos

standard backpropagation e backpropagation with momentum apresentaram uma ligeira
vantagem na fase de teste.

E importante salientar que ndo foram utilizadas camadas intermediarias nas redes para que
se pudesse verificar suas performances com arquiteturas as mais simples possiveis.
Somente a partir dos erros determinados por estas redes, novas estruturas definidas.

o
w

algoritmo de treinamento:
RPROP

algoritmo de treinamento:
4. standard backpropagation|

o
N
o

o
~

o

erro quadratico médio
erro quadratico médio
=)
o
I

{ @erro de treinamento
Merro de validagso 0.00 | merro de vaiidagao | |
Oerro de teste erro de teste
o .
1 dia 2 dias 3 dias 4 dias 5 dias 1 dia 2 dias 3 dias 4 dias 5 dias
namero de dias utilizados para previsdo namero de dias utilizados para previsdo

Figura 4: Erros das 5 arquiteturas utilizando Figura 6: Erros das 5 arquiteturas utilizando
algoritmo de treinamento  standard algoritmo de treinamento RPROP

backpropagation

algoritmo de treinamento:
backpropagation with momentum|

erro quadratico médio

tandard backpropagation
ackpropagation with momentum

erro quadratico médio

Berro de treinamento
Werro de validagao

DOerro de teste

erro de erro de erro de teste
1dia 2 dias 3 dias 4 dias 5 dias i [ )
namero de dias utilizados para previsdo
Figura 5: Erros das 5 arquiteturas utilizando Figura 7: Erros para a rede com 29 nds na
algoritmo de treinamento backpropagation camada de entrada (1 dia para a previsio)

with momentum
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Figura 9: Erros para a rede com 87 nds na

Figura 11: Erros para a rede com 145 n6s na
camada de entrada (3 dias para a previsdo)

camada de entrada (5 dias para a previsio)

CONCLUSOES E SUGESTOES

O modelo de previsdo proposto utilizando redes neurais mostrou-se bastante promissor na
modelagem de sistemas bioldgicos de tratamento de esgotos, embora nenhum resultado
realmente conclusivo possa ainda ser extraido. A proxima etapa deste estudo visara
verificar a influéncia da adi¢do de neurdnios em camadas intermediarias. Segundo o
teorema de Kolmogorov (Kolmogorov, 1963) ndo é necessario mais que trés camadas
para se aproximar qualquer tipo de fungdo. Depois de terminada a etapa de previsdo dos
parametros, pretende-se viabilizar a emisséo de diagnésticos da planta, diminuindo-se o
numero de nés na camada de entrada das redes, considerando-se somente os pardmetros,
experimentais ou calculados, realmente relevantes a caracterizag@o da planta.
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