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 A B S T R A C T

This work reports a phase-field LBM model specifically designed to operate with real physical properties. 
The LBM will be applied to study the boiling phenomena involved in single bubbles’ life-cycle of saturated 
HFE7100. Previous references on LBM with physical properties are scarce and, therefore, conducting a rigorous 
assessment of the method becomes of utmost importance. The model was first confronted to the Stefan problem, 
and numerical results match with outstanding accuracy with the analytical solution. This research goes on 
with a benchmark-exercise on experimental single-bubble-growth in saturated HFE7100 at 195 kPa and 5.1 K 
of superheating. Experiments with 19 bubbles yielded the most plausible shape, equivalent radius, apparent 
contact angle, dry radius, and forces acting on the typical bubble. Numerical results are reported in the proper 
manner to compare with all previously mentioned experimental features. This kind of comparison can be hardly 
found in the open literature, even though it potentially identify the physical mechanism responsible for any 
eventual numerical failure. The proposed LBM model reproduced the experimental data with great precision. 
This research will show that numerical results matched the experimental data within the uncertainty reported 
for almost the entire bubble life-cycle period.
1. Introduction

Boiling heat transfer is an energy transfer mechanism that take place 
in many daily natural processes as well as in several industrial applica-
tions. Some examples of man-made applications are industrial boilers, 
nuclear reactors, evaporators of power plants and refrigeration systems, 
heat pipes, electronic equipment, sprays, and others [1]. The boiling 
heat transfer phenomenon is commonly related to the evaporation of a 
fluid due to a driven temperature difference between a wall and a fluid 
caused by a heat transfer interaction. Among the various boiling pro-
cesses, the pool boiling, is a boiling mechanism that frequently occurs 
in applications. Some non-extensive examples of industrial processes 
are the cooling of immersed electronic devices, quenching processes, 
refrigeration and power evaporators, nuclear boiling reactors, among 
many others devices. Following Carey [1], the pool boiling is defined 
as a process at the body surface immersed in a large volume of fluid, 
characterized by high heat transfer rates, especially in the nucleate 
boiling regime, where vapor bubbles form, growth and detach during 
the process of phase change.

In the last decades, a numerical method has drawn attention due to 
its potential to simulate a variety of considerable complex flows, such 
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as single and multiphase isothermal flows, flows in porous medium, 
phase-change processes due to heat and mass transfer, and compressible 
flows, among other applications [2]. This method, called the lattice 
Boltzmann method (LBM), was initially derived from lattice gas cellular 
automata (LGCA) and is formally based on the discretization of the 
Boltzmann transport equation (BTE) in the phase space [3,4].

There are several LBM models developed to simulate multiphase 
and multicomponent flows, considering or not the phase change phe-
nomena. These methods can be classified into four principal kinds: the 
color-gradient model [5–7], the pseudopotential method [8–10], the 
free energy method [11–13] and the phase-field-based models [14–17]. 
The last two kinds of methodologies are frequently classified as the 
same, as in Liu et al. [18], because both consider fundamental concepts 
related to fluid free energies to lead with the interface dynamics.

Addressing both phase segregation and interphase dynamics is nec-
essary to model multiphase flows, which can be done by the use of 
intermolecular forces or derived from free energy theory [19]. This 
gives some advantage to the LBM to deal with multicomponent flows in 
comparison to the traditional methods, such as Volume-of-Fluid (VoF) 
or Level Set methods, mainly when these problems also include solid–
fluid interactions [18]. Another advantage is that the LBM can deal
https://doi.org/10.1016/j.icheatmasstransfer.2025.109207
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Nomenclature

Acronyms

ABB Anti-bounce-back
BB Bounce-back
BC Boundary condition
BGK Bhatnagar–Gross–Krook
BTE Boltzmann transport equation
EoS Equation of State
HTC Heat Transfer Coefficient
LBM Lattice Boltzmann method
LGCA Lattice gas cellular automata
MRT Multiple-relaxation-time
NS Navier–Stokes
VoF Volume-of-Fluid

Greek Symbols
𝛼 thermal diffusivity [m2 s−1]
𝛽 constant for free energy calculation [J m−3]
𝛽𝑇 thermal expansion coefficient [K−1]
𝜦 collision matrix for the MRT collision 

operator
𝛥𝑡 discrete time increment [s]
𝛥𝑥 discrete space interval [m]
𝛿𝑖𝑛𝑖 initial thermal boundary layer width [m]
𝜖 expansion coefficient for the Chapman–

Enskog analysis
𝛾 coordinate perpendicular to the interface 

[m]
𝜅 constant for free energy calculation [N]
𝜆 parameter for the diffusive flux [m−1]
𝜇 chemical potential [N m−2]
𝜈 Kinematic viscosity [m2s−1]
𝜌 mean density [kg m−3]
𝜙 order parameter or liquid concentration
𝛱𝛼𝛽𝛾 parameter for NS Chapman–Enskog analy-

sis [m s−1]
𝛹 free energy [J m−3]
𝜓 source term for mass conservation equation 

[s−1]
𝜌 fluid density [kg m−3]
𝜎 surface tension of the fluid [N m−1]
𝜏 relaxation time for LBE [s]
𝜑 static contact angle [◦]
𝜑𝑎𝑝 apparent contact angle [◦]
𝜉 constant for analytical solution of the 

Stefan problem
𝜁 dynamic viscosity [Pa s]

Roman Symbols
𝛥𝑇 superheating degree [K]
𝑚̇′′′ volumetric vapor generation term 

[kg m−3s−1]
𝑞̇′′ heat flux [W m−2]
𝑄̇𝑠 heat transfer rate at the surface [W]
2 
𝐜 discrete velocity vector [m s−1]
𝐅𝐛 buoyancy force [N m−3]
𝐅𝐠 gravitational force [N m−3

𝐅𝐬 interfacial force [N m−3]
𝐅 external force [N m−3]
𝐠 gravity acceleration [m s−2]
𝐈 Identity matrix
𝐣 flux density between phases [m s−1]
𝐌 transformation matrix
𝐦 moments of the distribution functions
𝐌−1 inverse of the transformation matrix
𝐧 normal vector
𝐮 fluid velocity [m s−1]
𝐱 position vector [m]
𝑞̇′′ mean heat flux [W m−2]
ℎ mean heat transfer coefficient [W m−2K−1]
𝑐 lattice speed [m s−1]
𝑐𝑝 specific heat at constant pressure 

[J kg−1K−1]
𝑐𝑠 lattice sound speed [m s−1]
𝐸 error term on the Chapman–Enskog analysis
𝐹𝑏 buoyancy force [N]
𝐹𝐷 dynamic force [N]
𝐹𝑥 force in x-cartesian direction [N m−3]
𝐹𝑦 force in y-cartesian direction [N m−3]
𝐹𝜎 surface tension force [N]
𝐹𝑐𝑝 contact pressure force [N]
𝑔𝑖 discrete distribution function for the pres-

sure [kg m−3]
ℎ𝑖 discrete distribution function for the order 

parameter
ℎ𝑙𝑔 latent heat of vaporization [J kg−1]
𝐾 constant for correcting the vapor generation 

term
𝑘 thermal conductivity [W m−1K−1]
𝐾𝑛 Knudsen number
𝐿 length of the domain [m]
𝑀 mobility [m2 s−1]
𝑁𝑥 number of nodes in 𝑥 direction
𝑝 pressure [Pa]
𝑃𝑟 reduced pressure
𝑃𝑎𝑏𝑠 absolute pressure [Pa]
𝑞 number of discrete velocity directions of the 

lattice scheme
𝑅𝑐 cavity radius [m]
𝑅𝑑 dry radius [m]
𝑅𝑒𝑞 equivalent radius [m]
𝑅𝑖𝑛𝑖 initial bubble radius [m]
𝑠𝑖 discrete temperature distribution function 

[K]
𝑆𝑔𝑖 source term for the pressure LBE 

[Kg m−3s−1]
𝑆ℎ𝑖 source term for the order parameter [s−1]
𝑆𝑠𝑖 source term for the thermal LBE [K s−1]
𝑇 temperature [K]
𝑡 time [s]
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𝑇 ∗ normalized temperature [K]
𝑇𝑟 reduced temperature
𝑇𝑟𝑒𝑓 reference temperature for buoyancy force 

[K]
𝑢 fluid velocity at x-cartesian direction [m s−1]
𝑉 bubble volume [m3]
𝑣 fluid velocity at y-cartesian direction [m s−1]
𝑊 interface width [m]
𝑤 weight functions
𝑥𝑖 interface velocity for the Stefan problem [m]
A constant for the contact angle model
Subscripts/superscripts

∗ post-collision variables
𝜈 referent to the pressure LBE
𝑖 discrete velocity direction opposite to 𝑖
𝜙 relative to order parameter LBE
𝑏 referent to the boundary node
𝑒𝑞 indicates the equilibrium distribution func-

tion
𝑔 saturated vapor, gas phase
𝑖 discrete velocity directions
𝑗 nodes in 𝑥 direction
𝑘 subindex indicating which component the 

variable is related to
𝑙 saturated liquid
𝑞2 referent to the fourth relaxation time in the 

relaxation matrix
𝑠𝑎𝑡 saturated state
𝑇 ∗ relative to the thermal LBE
𝑤 variables at the boundary wall

with the transition between the different boiling regimes automati-
cally, as the bubble merging process occurs naturally by mesoscale 
interactions [20].

The multiphase LBM model that has been the most used to simulate 
vapor–liquid phase change problems with heat transfer is the pseudopo-
tential model [20]. This model has been extensively used for simulating 
several liquid–gas two-phase one-component problems. For example, 
stationary droplet evaporation, nucleate pool boiling in cavities and 
channels [21–24], flow boiling [25–27], gas–liquid condensation [28], 
cavitation [29], and other processes. Recent works have been also 
applied the pseudopotential LBM for simulating more complexes phe-
nomena, such as liquid–gas phase-change process considering effects of 
electric fields [30,31], which evidence the capability of this model.

Nevertheless, the simulation of liquid–vapor phase-change heat 
transfer processes for real conditions with the pseudopotential LBM 
is complicated [32]. They showed the necessity of performing mesh 
refinement to correctly assess pool boiling problems with the LBM, 
demonstrating also the nucleate pool boiling results’ dependence on 
contact angle. The authors observed that the simulation of pool boil-
ing problems considering real experimental conditions would require 
very small mesh size to obtain numerical convergence. This fact, not 
well addressed in the open literature, greatly influences the use of 
pseudopotential LBM for simulating real boiling problems.

For example, recently Wang et al. [33] developed a conversion strat-
egy to simulate liquid–vapor phase change with the pseudopotential 
method. The authors proposed conversion relations for the fundamental 
units using the surface tension and EoS parameters related to fluid 
properties, to deduce conversion relations of other quantities. They 
3 
simulated film evaporation and single bubble nucleation from a V-
shaped cavity, recovering the latent heat of the fluid and the correct 
critical superheat temperature in physical units, respectively. However, 
in both cases they employed mesh sizes between 2400 and 120000 
lattices (120×20 and 300×400, respectively), and also assumed that 
the liquid and vapor kinematic viscosities were equal (𝜈𝑔 = 𝜈𝑙 =
1.29 ⋅ 10−7 m2s−1).

In addition, the pseudopotential LBM needs the use of an equation 
of state (EoS), limiting the applicability of the method for medium 
to high density ratios, corresponding to medium or low saturation 
temperatures. A recent work uses a piece-wise linear EoS [34], only 
valid for the tuned fluid like water, in this case. Zheng et al. [35] 
proposed a thermal pseudopotential model for simulating problems 
considering the full set of properties for a real fluid, converting the 
physical variables to the lattice units. They employed the more accurate 
Martin-Hou EoS and also a multi-block grid for improving the model 
estimations. However due to the necessity of finer meshes they solved 
liquid–vapor phase change problems for higher reduced temperature 
values, from 0.9 to 0.98 approximately, and at nanoscales.

Although the pseudopotential LBM is the most employed for sim-
ulating phase-change processes, the phase-field-based LBM models are 
the kind of multiphase LBM that presented better results when handling 
with high density ratios and, consequently, real fluids, see Martins 
et al. [36]. By this reason these models were chosen as the basis for 
the development of our methodology, focusing in the simulation of 
thermal liquid–gas phase-change problem considering exactly the same 
operational conditions found in experiments.

The original free energy based method was developed in the end 
of the 20th century, with the works of Swift et al. [11], Orlandini 
et al. [12], Swift et al. [13], based on the Van der Waals EoS. In 
the beginning of the 21st century, some authors developed a multi-
component LBM based on the original Swift model [37–43], but using 
the square gradient form of the free energy, or Helmholtz energy [44].

The first version of the phase-field model was published by He 
et al. [14], proposing the use of two distribution functions to recover 
the momentum and mass conservation equations for a multiphase 
system. For this task, the authors assume each phase as incompressible 
and employ two distribution functions, one to deal with the pressure 
distribution and other for mass conservation. Their models became the 
foundation for more elaborated methods on phase-field theory, as it 
will be possible to see below.

This method was further modified by Zheng et al. [16] to simulate 
multiphase flows with high density ratio, considering the recovering of 
the Cahn–Hilliard equation to track the interface between the different 
phases. Further, this method was adapted to consider the liquid–gas 
phase-change phenomena in the works of Dong et al. [45,46]. The same 
procedure was used by Sun et al. [47], Sun [48] to simulate single 
bubble nucleate boiling, and their results were compared qualitatively 
with experimental data.

However, as pointed by Fakhari and Rahimian [49],Liang et al. 
[50], the [16] model is only valid to density matched situations, 
because the method is incapable to distinguish between two different 
cases with the same mean density. For example, if in one system the 
liquid and gas phase densities are 𝜌𝑙 = 501.0 kg m−3 and 𝜌𝑔 = 500.0
kg m−3, respectively, and in other system they are 𝜌𝑙 = 1000.0 kg m−3

and 𝜌𝑔 = 1.0 kg m−3, both have the same mean density of 𝜌 = 500.50
kg m−3. Then, as the momentum conservation part of the Zheng et al. 
[16] method is based on the average density of the fluid, both systems 
will present the same results in the simulations, which is not necessarily 
what would happened in a real system.

Thereby, Fakhari and Rahimian [49] proposed an incompressible 
modification to the pressure distribution function, used to recover the 
Navier–Stokes (NS) equation similar to the [14] procedure, trying to 
avoid the density complications of Zheng et al. [16] model. A similar 
method was also proposed by Zu and He [51] to deal with high density 
ratio multiphase multi-component flows.
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Moreover, Lee and Lin [17], Lee et al. [52], Lee and Fischer [53] 
proposed a two-phase multicomponent LBM to simulate high density 
ratio problems, trying to eliminate the presence of parasitic currents. In 
the sequence, Amaya-Bower and Lee [54], Lee [55], Lee and Liu [56] 
improved the previous models, which were further used to simulate 
thermal liquid–gas phase change by Safari et al. [57,58].

Other authors also performed phase-change simulations with Lee 
and Liu [56] models, such as Begmohammadi et al. [59], Sadeghi et al. 
[60]. Nonetheless, this model presents some complications about the 
non-conservation of the domain mass, which is induced by the mixed 
derivatives employed to calculate the spatial gradients, a combination 
of central and biased finite difference schemes [61].

In the sequence, some authors developed improved models also 
for high density ratio problems, but now trying to recover the con-
servative Allen–Cahn equation for the interface-tracking, instead of 
Cahn–Hilliard equation [62–65]. Again, these models were also im-
proved to consider the thermal liquid–gas phase change phenomena, 
as can be seen in Haghani-Hassan-Abadi et al. [66], He et al. [67].

However, the great majority of the works did not consider real 
fluids in their simulations, some of them even use densities close to 
real ones, but with different viscosity and surface tension values, and 
generally the density ratio does not surpass 1000/1. This can be far 
from the reality when dealing with fluids such as water, for which these 
ratios can attain values of 43000 and 470 for the density and kinematic 
viscosity, as considered in Martins et al. [36]. At the best knowledge 
of the authors, there are no published works capable of embracing the 
pool boiling phenomena in a real installation. This fact evidences that it 
is still a challenge the simulation of real boiling problems with the LBM, 
limiting the applicability of the method. This limitation of the LBM is 
faced and reduced in the present research and, perhaps, it constitutes 
the main contribution of this work.

As a general rule, in the LBM community, comparisons are made 
qualitatively through observation of the bubble shape reported by the 
numerical algorithm and the experimental facility, as in the follow-
ing works [48,68–70]. Regretfully, numerical–experimental compari-
son with additional quantitative information is usually omitted since, in 
most cases, numerical scientists cannot find available additional and/or 
detailed experimental information.

Recall that bubble growth is governed by coupled mechanisms 
that take place simultaneously. Provide the whole set of experimental 
information, along with the corresponding uncertainty, is quite use-
ful for numerical scientists. Numerical methods can also provide the 
whole set of information, and therefore, an step-by-step assessment 
is pertinent to disaggregate the mechanisms involved in the bubble 
growth. This information becomes necessary to identify why and when 
the numerical algorithm might be eventually failing. As a result, more 
detailed experimental evidence is both necessary and pertinent for the 
eventual assessment of numerical methods.

This research reports a phase-field LBM that overcomes previous 
limitations, since the model will be able to simulate the physical true 
conditions in an experimental rig on pool boiling. This work will take 
advantage of previous work from the authors [36], and push their 
model forward to solve a single-bubble boiling of saturated HFE7100 
directly in physical units, considering the full set of variables at the 
experiment conditions. Therefore, this work reports (i) a new method-
ology to simulate any/all eventual real pool boiling phenomena and 
(ii) a quantitative benchmark exercise with the results yielded by an 
experimental facility subject to equal operating conditions.

The procedure is first validated through the Stefan problem, com-
paring the numerical and analytical solutions. This problem also serves 
as a calibration test for the vapor generation term, as will be explained 
in Section 2. In the sequence, the results of single-bubble pool boiling 
will be exhaustively and quantitatively compared against experimental 
results.

The experimental data were obtained in the workbench presented 
in Alvariño et al. [71], considering a single-bubble nucleating boiling 
4 
of saturated HFE7100 at 195 kPa and 5.1 K of superheating. To our 
best knowledge HFE7100 experimental data at this pressure are very 
scarce in the open literature. Thus, we can also consider that we are 
presenting new experimental data which can be employed for compar-
ison purpose by other researchers. In fact, it may be difficult to find 
numerical–experimental studies that provide a comparison of results at 
the pressure–temperature values presented in the paper. Furthermore, 
the experimental data are treated with a procedure recently published 
in Martins et al. [72]. From this procedure, we can determinate a 
characteristic bubble that represents the entire set of bubbles analyzed 
in the experiment for one given condition, as well as its respective 
uncertainties. Consequently, this set of quantitative data about bubble’s 
characteristics allows the comparison and validation of the numerical 
results, a task very difficult to be found in the open literature.

2. Methodology

For modeling the fluid dynamics and phase separation, we adopt the 
phase-field LBM model based on the conservative Allen–Cahn equation 
with the dimensional approach proposed by Martins et al. [36]. This 
approach employs the LBEs, the collision operators, and the calculation 
of macroscopic variables using 𝛥𝑡, 𝛥𝑥 and 𝑐 in physical units when 
necessary, to ensure that all variables are used in physical units during 
simulations. Then, all the variables can be used directly in its physical 
units. For example, the relaxation time is 𝜏 = 𝜈∕𝑐2𝑠 + 0.50𝛥𝑡, the 𝜈 is 
kept in m2∕s, 𝑐2𝑠 = 𝑐2

√

1∕3 = (𝛥𝑥∕𝛥𝑡)2
√

1∕3 in m2∕s2, 𝛥𝑡 in s and 𝛥𝑥
in m. Then, the final dimension of 𝜏 is 𝑠. Similarly, all other variables 
such as 𝑓 , 𝐮, 𝜌, 𝐜𝑖 are kept in physical units and the whole simulation is 
performed in the physical space. So, there is no need for unit conversion 
in the beginning or in the end of the simulation. For more information 
on this process, see Martins et al. [36].

The LBM model used here is also based on the approaches of Liang 
et al. [50], Sugimoto et al. [73] with modifications for accounting 
the phase-change process due to temperature change. Then, the full 
methodology proposed here for the simulation of boiling phenom-
ena consists of these modified models, as well as new treatments 
for the liquid–gas thermal interface, gravity force and boundary con-
ditions. The methodology is applied employing the dimensional ap-
proach, see Martins et al. [36], which allows to simulate the problem di-
rectly in physical units, without need of any conversion to lattice units, 
and thus, facilitating the reproduction of the true physical operating 
conditions in any experimental rig or industrial process.

2.1. Allen–Cahn-based lattice Boltzmann method

The phase-field LBM based on the conservative Allen–Cahn equation 
adopts two distribution functions: one for the pressure field, 𝑔𝑖, and 
other for the order parameter (or liquid concentration), ℎ𝑖, representing 
the mass conservation for the liquid phase.

Starting by the order parameter distribution function, first we need 
to derive the conservative Allen–Cahn equation. Considering the mass 
conservation equation for each component, 𝑘, with a source term 
𝜓 [74], being 𝜌 the fluid density, 𝐮 the fluid velocity and 𝐣𝐤 the flux 
density between the phases [75], we have the following equation, 
𝜕𝑡𝜌𝑘 + ∇ ⋅

(

𝜌𝑘𝐮
)

= ∇ ⋅
(

𝜌𝑘𝐣𝐤
)

+ 𝜌𝑘𝜓𝑘. (1)

The flux densities are divided into two main sources [76]: the 
diffusive flux, 𝐣𝐃 = 𝑀∇𝜙, and the phase separation flux, 𝐣𝐏 = −𝑀𝜆𝐧. 
Here, 𝑀 is the mobility coefficient, representing the diffusive ratio 
between the phases, 𝜆 is a parameter defined as 𝜆 = 4𝜙 (1 − 𝜙) ∕𝑊  and 
𝜙 is the order parameter, assuming 1 for the liquid phase and 0 for the 
gas phase. In these expressions, 𝑊  stands for the interface width and 
𝐧, for the normal vector to the interface, pointing into the liquid phase.

The local density of the system is related to the order parameter 
by 𝜌 = 𝜌𝑙𝜙 + (1 − 𝜙) 𝜌𝑔 , where 𝜌𝑙 and 𝜌𝑔 are the liquid and gas phase 
densities, respectively. The normal vector can be calculated as follows: 
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𝐧 = ∇𝜙∕|∇𝜙|. Taking the liquid phase conservation equation, i.e. 𝑘 = 𝑙, 
adding the vapor source term due to thermal phase-change process, 𝑚̇′′′

(kg m−3s−1), and inserting the previous definitions in Eq. (1), we obtain 
the Allen–Cahn equation with the source term for evaporation: 

𝜕𝑡𝜙 + ∇ ⋅ (𝜙𝐮) = ∇ ⋅
[

𝑀
(

∇𝜙 −
4𝜙 (1 − 𝜙)

𝑊
𝐧
)]

− 𝑚̇′′′

𝜌𝑙
. (2)

For correctly recovering Eq. (2), we employ the lattice Boltzmann 
equation (LBE) for ℎ𝑖 with the BGK collision operator, presented in 
Eq. (3). In this equation, 𝐱 is the position vector, ℎ𝑒𝑞𝑖  is the equilibrium 
distribution functions, 𝑆ℎ𝑖  is the source term and 𝜏𝜙 is the relaxation 
time, related to the mobility by 𝑀 = 𝑐2𝑠

(

𝜏𝜙 − 0.5𝛥𝑡
) for correctly 

recovering the Eq. (2) through the Chapman–Enskog analysis [77]. This 
analysis is shown in Appendix  A.1. 

ℎ𝑖(𝐱+𝐜𝐢𝛥𝑡, 𝑡+𝛥𝑡)−ℎ𝑖(𝐱, 𝑡) = − 𝛥𝑡
𝜏𝜙

[

ℎ𝑖(𝐱, 𝑡) − ℎ
𝑒𝑞
𝑖 (𝐱, 𝑡)

]

+
(

1 − 𝛥𝑡
2𝜏𝜙

)

𝑆ℎ𝑖 (𝐱, 𝑡)𝛥𝑡

(3)

The equilibrium distribution functions are defined by Eq. (4), where 
𝑤𝑖 are the weights and 𝐜𝐢 are the lattice velocities. 

ℎ𝑒𝑞𝑖 = 𝑤𝑖𝜙

[

1 +
𝐜𝑖 ⋅ 𝐮
𝑐2𝑠

]

(4)

For all two-dimensional (2D) simulations, the D2Q9 velocity scheme 
was employed. Only for the 1D problem we used the D1Q3 scheme. 
Thus, according to Qian et al. [78] the sound speed in the lattice cells 
for both arrangements is 𝑐𝑠 = 𝑐

√

1∕3, where 𝑐 is the lattice speed 
defined as 𝑐 = 𝛥𝑥∕𝛥𝑡. In this expression, 𝛥𝑥 stands for the grid discrete 
interval while 𝛥𝑡, for the temporal interval between the time steps. For 
this specific velocity scheme, the weights and the lattice velocity can 
be defined by Eqs.  (5) and (6), respectively. In the case of the D1Q3, 
these values change to 𝑤𝑖 = (4∕6; 1∕6; 1∕6) and 𝐜𝐢 = 𝑐 (0, 1, −1). 

𝑤𝑖 =

⎧

⎪

⎨

⎪

⎩

4∕9 ,  if 𝑖 = 0;
1∕9 ,  if 𝑖 = 1, 2, 3, 4;
1∕36,  if 𝑖 = 5, 6, 7, 8;

(5)

𝐜𝐢 = 𝑐

⎧

⎪

⎨

⎪

⎩

(0, 0) ,  if 𝑖 = 0;
(1, 0), (0, 1), (−1, 0), (0,−1) ,  if 𝑖 = 1, 2, 3, 4;
(1, 1), (−1, 1), (−1,−1), (1,−1) ,  if 𝑖 = 5, 6, 7, 8;

(6)

In the present model we modified the source term for accounting the 
effects of vapor generation due to temperature-change, 𝑚̇′′′, resulting in 
Eq. (7). 

𝑆ℎ𝑖 = 𝑤𝑖

⎧

⎪

⎨

⎪

⎩

𝐜𝐢 ⋅
[

𝜕𝑡(𝜙𝐮) + 𝑐2𝑠
4𝜙(1−𝜙)
𝑊 𝐧

]

𝑐2𝑠
− 𝑚̇′′′

𝜌𝑙

⎫

⎪

⎬

⎪

⎭

(7)

At last, the order parameter is calculated from the distribution 
functions according to Eq. (8), where 𝑞 represents the number of 
discrete velocity directions of the scheme (e.g. 9, for the D2Q9 scheme). 
Notably, this expression was also modified to account the mass source 
term 𝑚̇′′′. Then, the local density, 𝜌, and dynamic viscosity, 𝜁 , can 
be calculated as a linear function of 𝜙: 𝜌 = 𝜙𝜌𝑙 + (1 − 𝜙)𝜌𝑔 and 𝜁 =
𝜙𝜁𝑙 + (1 − 𝜙)𝜁𝑔 . 

𝜙 =
𝑞−1
∑

𝑖=0
ℎ𝑖 −

𝛥𝑡
2
𝑚̇′′′

𝜌𝑙
(8)

Considering now the pressure distribution function, in order to 
improve the stability of the method we used the MRT collision operator. 
Then, we define the LBE for the pressure dynamics by Eq. (9), where 
[𝐌] is the transformation matrix, responsible for transforming the 
functions to the momentum space, 𝜦 is the collision matrix, which has 
the relaxation rates for each momentum, 𝑆𝑔𝑗  is the source term and [𝐈]
is the identity matrix. It is important to mention that, for developing 
this LBE, the fluid was assumed to be incompressible.
5 
𝑔𝑖(𝐱 + 𝐜𝑖𝛥𝑡, 𝑡 + 𝛥𝑡) − 𝑔𝑖(𝐱, 𝑡) = −𝛥𝑡
[

𝐌−1𝜦𝐌
]

𝑖𝑗

[

𝑔𝑗 (𝐱, 𝑡) − 𝑔
𝑒𝑞
𝑗 (𝐱, 𝑡)

]

+ 𝛥𝑡𝐌−1
𝑖𝑗

(

𝐼𝑖𝑗 −
𝛥𝑡𝜦𝑖𝑗

2

)

𝐒𝑔𝑗 (𝐱, 𝑡)
(9)

It is convenient for the implementation to calculate the collision 
directly in the moment space. For this task, first we transform the 
distribution functions and the source term to the moment space using 
the transformation matrix. Then, the collision can be performed by 
Eq. (10), where 𝐦∗ are the post-collision moments. In the sequence, 
the post-collision distribution functions are obtained by 𝐠∗(𝐱, 𝑡) = [𝐌]−1⋅
𝐦∗(𝐱, 𝑡), followed by the propagation of the functions: 𝑔𝑖(𝐱+𝐜𝑖𝛥𝑡, 𝑡+𝛥𝑡) =
𝑔∗𝑖 (𝐱, 𝑡). 

𝐦∗(𝐱, 𝑡) = 𝐦(𝐱, 𝑡) − 𝛥𝑡 [𝜦] ⋅
[

𝐦(𝐱, 𝑡) −𝐦𝑒𝑞(𝐱, 𝑡)
]

+ 𝛥𝑡
(

[𝐼] − 𝛥𝑡
2
[𝜦]

)

⋅ 𝐒𝐠(𝐱, 𝑡)

(10)

Regarding the collision in the moment space, the equilibrium mo-
ments are given by Eq. (11). 
𝐦𝑒𝑞 =

{

0; 3 (𝜌𝐮 ⋅ 𝐮 + 2𝑝) ; −3𝑐2 (𝜌𝐮 ⋅ 𝐮 + 3𝑝) ;

𝜌𝑢; −𝑐2𝜌𝑢; 𝜌𝑣; −𝑐2𝜌𝑣; 𝜌
(

𝑢2 − 𝑣2
)

; 𝜌𝑢𝑣
} (11)

Additionally, to properly capture the gravity effects on the pressure 
field, we adopt the following expression for the body force, 𝐅𝐠 = 𝜌𝐠, 
which matches exactly to the gravity force in Eq. (15). This choice is 
based on an observation made by Czelusniak et al. [79], where they 
realize that the correct implementation of the gravitational forces is 
strongly related to the pressure gradients along the 𝑦 direction, which is 
particularly important for modeling the fluid motion. It should be noted 
that various phase-field LBM works employ other formulations, as for 
example 𝐅𝐠 = (𝜌𝑔 −𝜌𝑙)𝐠, 𝐅𝐠 = (𝜌−𝜌𝑙)𝐠 or 𝐅𝐠 = (𝜌−𝜌)𝐠 [51,66,67,80,81]. 
Depending on the values of 𝐠 this kind of term can affect the pressure 
distribution in the computational domain, see Czelusniak et al. [79].

The buoyancy force in the liquid phase due to natural convection is 
also considered in our model. For this task, we employed the Boussinesq 
approach, 𝐅𝐛 = −𝐠𝜌𝑙𝛽𝑇

(

𝑇 − 𝑇𝑟𝑒𝑓
)

, where 𝛽𝑡 is the thermal expansion 
coefficient and 𝑇𝑟𝑒𝑓  is the reference temperature where 𝛽𝑇  and 𝜌𝑙 are 
measured [4]. In this paper, we took the saturation temperature as the 
reference (𝑇𝑟𝑒𝑓 = 𝑇𝑠𝑎𝑡). As in our model the vapor is assumed to remain 
at 𝑇𝑠𝑎𝑡, the buoyancy force is not considered in this phase (𝐅𝐛 = 𝟎 at 
the gas phase).

Another modification of the traditional phase-field LBM is in the 
source term for the pressure distribution function. Here, we also need 
to add extra terms to insert the effects of vapor generation in the flow 
field, similar to in Sugimoto et al. [73]. In the moment space, this 
source term can be given by Eq. (12). Here 𝐅 =

(

𝐹𝑥, 𝐹𝑦
) is the total 

force, involving 𝐅𝐠, 𝐅𝐬 and 𝐅𝐛. 

𝐒𝐠 = {∇𝜌 ⋅ 𝐮 + 𝜌𝑚̇′′′
(

𝜌−1𝑔 − 𝜌−1𝑙
)

; −2𝑐2𝜌𝑚̇′′′
(

𝜌−1𝑔 − 𝜌−1𝑙
)

;

𝑐4
[

𝜌𝑚̇′′′
(

𝜌−1𝑔 − 𝜌−1𝑙
)

− ∇𝜌 ⋅ 𝐮
]

;

𝐹𝑥; −𝑐2𝐹𝑥; 𝐹𝑦; −𝑐2𝐹𝑦;
2
3
𝑐2

(

𝑢𝜕𝑥𝜌 − 𝑣𝜕𝑦𝜌
)

; 1
3
𝑐2

(

𝑣𝜕𝑥𝜌 + 𝑢𝜕𝑦𝜌
)

}

(12)

After the collision and the streaming processes, the macroscopic 
velocity and the pressure field can be calculated by the moments of 𝑔𝑖, 
using Eq.  (13) and Eq. (14), respectively. Again, the traditional Allen–
Cahn-based LBM must be modified to include the effects of 𝑚̇′′′ in the 
pressure calculation. It is important to mention that here we adopt the 
relative pressure, for convenience, which is the difference between the 
saturation pressure and the absolute pressure, 𝑝 = 𝑃𝑎𝑏𝑠 − 𝑃𝑠𝑎𝑡. 

𝜌𝐮 =
𝑞−1
∑

𝐜𝐢𝑔𝑖 +
𝛥𝑡𝐅 (13)
𝑖=0 2
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𝑝 =
𝑐2𝑠

1 −𝑤0

{𝑞−1
∑

𝑖≠0
𝑔𝑖 + 𝜌𝑤0

[

−𝐮 ⋅ 𝐮
2𝑐2𝑠

]

+ 𝛥𝑡
2

[𝐮 ⋅ ∇𝜌

+
(

1 −𝑤0
)

𝜌𝑚̇′′′
(

1
𝜌𝑔

− 1
𝜌𝑙

)]}

(14)

At last, from the momentum LBE, Eq. (10), it is possible to recover 
the NS equation, represented by Eq. (15) [82], where 𝜁 stands for 
the fluid dynamic viscosity. This recovering is performed by doing the 
Chapman–Enskog analysis, which can be seen in Appendix  A.2.

Also, from this analysis we can relate the main values of the relax-
ation rates with the viscosity of the fluid. The relaxation matrix can be 
defined as 𝜦 = diag(𝛥𝑡−1, 𝛥𝑡−1, 𝛥𝑡−1, 𝛥𝑡−1, 𝜏−1𝑞2 , 𝛥𝑡

−1, 𝛥𝑡−1, 𝜏−1𝜈 , 𝜏−1𝜈 ). 
Then, they are related to the kinematic viscosity of the fluid, 𝜈 = 𝜁∕𝜌, 
by 𝜈 = 𝑐2𝑠

(

𝜏𝜈 − 0.5𝛥𝑡
) and 𝜏−1𝑞2 =

(

3
𝛥𝑡

)
(

2∕𝛥𝑡−𝜏−1𝜈
)

(

3∕𝛥𝑡−𝜏−1𝜈
) , see Martins et al. [36]. 

𝜕𝑡 (𝜌𝐮) + ∇ ⋅ (𝜌𝐮𝐮) = −∇𝑝 + ∇ ⋅
[

𝜁
(

∇𝐮 + ∇𝐮𝑇
)]

+ 𝜌𝐠 + 𝐅𝐬 + 𝐅𝐛 (15)

For the interface force, the potential form based on the chemical 
potential 𝜇 is adopted in this work [83], 𝐅𝐬 = 𝜇∇𝜙, as it is commonly 
employed in the Allen–Cahn-based LBM models [50,63,84].

The chemical potential can be obtained from the free energy of 
the system [85], 𝛹 . Approaching the domain as a two-component sys-
tem, besides being a single-component two-phase system, the chemical 
potential can be given by 𝜇 = 𝜕𝜙𝛹 = 4𝛽 (𝜙 − 1) (𝜙 − 0.5) − 𝜅∇2𝜙, 
where 𝛽 and 𝜅 are constants related to the interface width 𝑊  and 
surface tension 𝜎 as in Eq. (16) [86]. This approach is convenient, as it 
facilitates the calculation of the interface force, and was used by other 
phase-change works using phase-field LBM models [16,50,56]. 

𝛽 = 12 𝜎
𝑊

; 𝜅 = 3
2
𝜎𝑊 . (16)

The first and second derivatives of 𝜙 are calculated using a central 
finite difference scheme, denoted by Eqs.  (17) and (18). As density 
and order parameter are linearly related, the density gradient can be 
obtained from the order parameter gradient as ∇𝜌 =

(

𝜌𝑙 − 𝜌𝑔
)

∇𝜙. 
The temporal derivative of 𝜙𝐮 here is calculated using a second order 
backward finite difference scheme, as in Eq. (19). 

∇𝜙(𝐱) =
∑

𝑖≠0

𝑤𝑖𝐜𝐢𝜙(𝐱 + 𝐜𝐢𝛥𝑡)
𝑐2𝑠𝛥𝑡

(17)

∇2𝜙(𝐱) =
∑

𝑖≠0

2𝑤𝑖
[

𝜙(𝐱 + 𝐜𝐢𝛥𝑡) − 𝜙(𝐱)
]

𝑐2𝑠𝛥𝑡2
(18)

𝜕𝑡 (𝜙𝐮)𝐱,𝑡 =
3 (𝜙𝐮)𝐱,𝑡 − 4 (𝜙𝐮)𝐱,𝑡−𝛥𝑡 + (𝜙𝐮)𝐱,𝑡−2𝛥𝑡

2𝛥𝑡
(19)

An important feature that must be explained is how the interface 
is initialized at the beginning of the simulation, because a bad initial 
profile can lead to undesirable instabilities. As the LBM model assumes 
a diffuse interface between the phases, it is convenient to use an 
hyperbolic tangent profile to perform the initial values of 𝜙, as given 
by Eq. (20). In this equation, 𝛾(𝐱) denotes the coordinate perpendicular 
to the interface. 

𝜙(𝐱, 0) = 1
2
+ 1

2
tanh

(

2𝛾(𝐱)
𝑊

)

(20)

2.2. Thermal lattice Boltzmann method

For modeling the temperature distribution of the domain, first we 
made some assumptions about the liquid–gas system:

1. The fluid is incompressible (as already assumed before);
2. The vapor phase remains at saturation temperature (𝑇𝑠𝑎𝑡);
3. All the heat flux arriving at the interface is consumed in the 
phase-change process.
6 
Then, by hypothesis 1 we only need to calculate the heat transfer 
at the liquid phase. For this task, we employed the traditional thermal 
lattice Boltzmann method considering the dimensional approach [36]. 
The method uses an additional distribution function, 𝑠𝑖, to determine 
the temperature field in the simulation. However, in the presence of the 
liquid–gas phase-change process, we need to add extra terms into the 
LBE to recover the complete energy conservation equation, represented 
by Eq. (21) for the liquid phase with constant local density, 𝜌𝑙, and 
constant specific heat, 𝑐𝑝𝑙 . This is made through the source term, 𝑆𝑠𝑖 . 

𝜕𝑡𝑇
∗ + 𝐮 ⋅ ∇𝑇 ∗ = 𝛼𝑙∇2𝑇 ∗ (21)

Also, after the Chapman–Enskog analysis of Eq. (22), with the tra-
ditional source term the remaining error would be ∇ ⋅

(

𝜏𝑇 ∗ − 𝛥𝑡∕2
)

𝜖𝜕(1)𝑡
(𝑇 ∗𝐮). To mitigate its impact on the LBM solution, we also include the 
term 𝜕𝑡 (𝑇 ∗𝐮) in 𝑆𝑠𝑖 , which reduces the error to ∇ ⋅

(

𝜏𝑇 ∗ − 𝛥𝑡∕2
)

𝜖2𝜕(2)𝑡
(𝑇 ∗𝐮). Then, considering the BGK collision operator, the thermal LBE 
can be defined by Eq. (22). 

𝑠𝑖(𝐱 + 𝐜𝐢𝛥𝑡, 𝑡 + 𝛥𝑡) − 𝑠𝑖(𝐱, 𝑡) = − 𝛥𝑡
𝜏𝑇 ∗

[

𝑠𝑖(𝐱, 𝑡) − 𝑠
𝑒𝑞
𝑖 (𝐱, 𝑡)

]

+
(

1 − 𝛥𝑡
2𝜏𝑇 ∗

)

𝑆𝑠𝑖 (𝐱, 𝑡)𝛥𝑡
(22)

For treating phase-change processes, one proposition of this paper 
is to re-scale the temperature values in relation to the saturation 
temperature of the fluid, 𝑇 ∗ = 𝑇 − 𝑇𝑠𝑎𝑡. This modification facilitates 
the implementation of the interface conditions, as it is explained in 
Section 2.3. It is important to note that now the distribution functions 
are related to the variable 𝑇 ∗ instead of 𝑇 .

In the sequence, the equilibrium distribution functions are defined 
by Eq. (23), and the source term, by Eq. (24). 

𝑠𝑒𝑞𝑖 = 𝑤𝑖𝑇
∗

[

1 +
𝐜𝑖 ⋅ 𝐮
𝑐2𝑠

]

(23)

𝑆𝑠𝑖 = 𝑤𝑖

[

𝐜𝐢 ⋅ 𝜕𝑡 (𝑇 ∗𝐮)
𝑐2𝑠

+ 𝑇 ∗𝑚̇′′′
(

𝜌−1𝑔 − 𝜌−1𝑙
)

]

(24)

By the same perturbation expansion mentioned before, the Chap-
man–Enskog analysis, from the thermal LBE it is possible to recover 
the energy conservation equation if 𝛼𝑙 = 𝑐2𝑠

(

𝜏𝑇 − 0.5𝛥𝑡
)

, where 𝛼𝑙 is the 
liquid thermal diffusivity. The analysis mentioned here is presented in 
Appendix  A.3 with more details.

To calculate the normalized temperature during the simulations, 
we use the zeroth moment of the temperature distribution functions, 
represented by Eq. (25). 

𝑇 ∗ =
[

1 − 𝛥𝑡
2
𝑚̇′′′

(

𝜌−1𝑔 − 𝜌−1𝑙
)]−1 𝑞−1∑

𝑖=0
𝑠𝑖 (25)

The vapor generation term is modeled similar to in Safari et al. 
[57]. However, as it is explained in Section 2.3, here we propose 
different methods for calculating the interface conditions, because the 
temperature profile closer to the interface has strong influence on 
𝑚̇′′′ [87]. Then, the vapor source term is calculated by Eq. (26), where 
ℎ𝑙𝑔 is the latent heat of vaporization, 𝑘𝑙 is the liquid conductivity and 
K is a constant to be adjusted using the Stefan problem as calibration. 
The necessity of this constant is more clearly explained in Section 3 
and it is due to the fact that the source term by itself has errors that 
not correctly capture the vapor generation rate. 

𝑚̇′′′ = 𝐾
𝑘𝑙∇𝑇 ∗ ⋅ ∇𝜙

ℎ𝑙𝑔
(26)

The temperature gradients away from the liquid–gas vapor interface 
are calculated using the traditional central finite difference scheme, 
Eq. (27), while the temporal derivative of 𝑇 ∗𝐮 is calculated using the 
backward scheme mentioned before, Eq. (28). 

∇𝑇 ∗(𝐱) =
∑

𝑖≠0

𝑤𝑖𝐜𝐢𝑇 ∗(𝐱 + 𝐜𝐢𝛥𝑡)
𝑐2𝑠𝛥𝑡

(27)

𝜕𝑡
(

𝑇 ∗𝐮
)

𝐱,𝑡 =
3 (𝑇 ∗𝐮)𝐱,𝑡 − 4 (𝑇 ∗𝐮)𝐱,𝑡−𝛥𝑡 + (𝑇 ∗𝐮)𝐱,𝑡−2𝛥𝑡 (28)
2𝛥𝑡
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Fig. 1. Schematic diagram of the experimental facility used in this work.
2.3. Boundary and interface conditions

For the fluid flow modeling, three main kinds of boundary con-
ditions (BC) were considered: rigid walls, fixed pressure and open 
boundaries.

The rigid walls were implemented through the bounce-back (BB) 
rule [88,89], which for both ℎ𝑖 and 𝑔𝑖 can be represented by Eq. (29). 
In this equation, ∗ stands for the post-collision distribution functions, 𝑖
the opposite direction of 𝑖 and 𝐱𝐛, the boundary location. 

ℎ𝑖(𝐱𝐛, 𝑡 + 𝛥𝑡) = ℎ∗𝑖 (𝐱𝐛, 𝑡); 𝑔𝑖(𝐱𝐛, 𝑡 + 𝛥𝑡) = 𝑔∗𝑖 (𝐱𝐛, 𝑡) (29)

For the fixed pressure BC, the bounce-back scheme was used for ℎ𝑖, 
while the anti-bounce-back (ABB) rule from [90] was adapted for 𝑔𝑖, 
resulting in Eq. (30), where 𝑝𝑤 is the fixed pressure at the outlet. With 
the anti-bounce-back condition we can guarantee the fixed pressure at 
the wall, which is not possible with the BB rule. Also, for convenience, 
the total pressure 𝑝 is taken in relation to the saturation pressure, 
𝑝 = 𝑃 − 𝑃𝑠𝑎𝑡, where 𝑃  is the absolute pressure. Then, the boundary 
pressure is set to 𝑝𝑤 = 0, and the fluid is assumed to be stationary at 
the boundary (𝐮𝐰 = 𝟎), facilitating the implementation of this BC. 

𝑔𝑖(𝐱𝐛, 𝑡+𝛥𝑡) = −𝑔∗𝑖 (𝐱𝐛, 𝑡) + 2𝑤𝑖

{

𝑝𝑤
𝑐2𝑠

+ 𝜌𝑤

[

(𝐜𝐢 ⋅ 𝐮𝐰)2

2𝑐4𝑠
−

𝐮𝐰 ⋅ 𝐮𝐰
2𝑐2𝑠

]}

(30)

The open boundary was implemented by the extrapolation scheme
[91] for the both distribution functions, as shown in Eq. (31). In this 
equation, 𝐧 is the normal vector to the boundary, pointing into the 
domain. 
ℎ𝑖(𝐱𝐛, 𝑡+𝛥𝑡) = ℎ𝑖(𝐱𝐛−𝐧𝛥𝑥, 𝑡+𝛥𝑡); 𝑔𝑖(𝐱𝐛, 𝑡+𝛥𝑡) = 𝑔𝑖(𝐱𝐛−𝐧𝛥𝑥, 𝑡+𝛥𝑡) (31)

For the thermal LBM, it was considered also three kinds of BCs: 
adiabatic walls, fixed temperature walls and open boundaries. The first 
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kind was implemented by the bounce-back rule considering zero heat 
flux: 𝑠𝑖(𝐱𝐛, 𝑡 + 𝛥𝑡) = 𝑠∗𝑖 (𝐱𝐛, 𝑡).

The walls with fixed temperature were implemented through the 
anti-bounce-back rule. For the temperature distribution functions, this 
condition can be given by Eq. (32), in which 𝑇 ∗

𝑤 is the fixed relative 
temperature at the wall. 

𝑠𝑖(𝐱𝐛, 𝑡 + 𝛥𝑡) = −𝑠∗𝑖 (𝐱𝐛, 𝑡) + 2𝑤𝑖𝑇 ∗
𝑤

[

1 +
(𝐜𝐢 ⋅ 𝐮𝐰)2

2𝑐4𝑠
−

𝐮𝐰 ⋅ 𝐮𝐰
2𝑐2𝑠

]

(32)

At last, the open boundary was again implemented using the extrap-
olation scheme: 𝑠𝑖(𝐱𝐛, 𝑡 + 𝛥𝑡) = 𝑠𝑖(𝐱𝐛 + 𝐧𝛥𝑥, 𝑡 + 𝛥𝑡). Regarding that 𝐧 is 
the normal direction pointing into the domain.

As mentioned before, here we propose a thermal boundary con-
dition for the liquid–gas interface, in order to properly capture the 
temperature gradients close to the interface, which is very important for 
correctly capture the vapor-generation rate. As we assume that the va-
por phase remains at saturation temperature, the anti-bounce-back rule, 
Eq. (32), can be used for implementing the fixed temperature at the 
interface 𝑇𝑤 = 𝑇𝑠𝑎𝑡 = 0. If we use the absolute temperature, 𝑇 , instead 
of the reference one, 𝑇 ∗, we must calculate the interface velocity 𝐮𝐰 for 
implementing this BC, which is not a simple task. However, re-scaling 
the temperature in relation to the saturation temperature, we have 
𝑇 ∗
𝑤 = 𝑇 ∗

𝑠𝑎𝑡 = 0, and all the terms of Eq. (32) in braces vanish, resulting 
in 𝑠𝑖(𝐱𝐛, 𝑡 + 𝛥𝑡) = −𝑠∗𝑖 (𝐱𝐛, 𝑡). This avoids the necessity of calculating the 
interface velocity, facilitating the implementation of the ABB rule at 
the interface and guaranteeing that the vapor remains at saturation 
temperature.

In addition, for modeling the wetting boundary condition at solid 
surfaces, we employed the model based on the minimization of the 
surface free energy, 𝛹 . Following the procedure proposed on Briant 
𝑠
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et al. [42], the wetting condition at the solid–fluid interface can be 
expressed as follows, 
𝜕𝜙𝛹𝑠 − 𝜅𝐧 ⋅ ∇𝜙 = 0. (33)

According to de Gennes [92], 𝛹𝑠 can be approached by a power 
series of 𝜙. Here we adopt the same cubic polynomial for the surface 
free energy as in Liang et al. [64]. Using the relation between the 
surface tensions and the contact angle from Young’s law [93], from 
the free-energy minimization at the surface, being 𝜑 the equilibrium 
contact angle, we get the following equation for the contact boun-
dary, 

𝐧 ⋅ ∇𝜙 = −cos𝜑
(

𝜙 − 𝜙2)
√

2𝛽
𝜅
. (34)

Considering the link-wise approach for the boundary location in re-
lation to the lattice centers [4], and supposing a south boundary in a 2D 
arrangement, the spatial derivative in the normal direction of Eq. (34) 
can be approached by 𝜕𝑛𝜙 =

(

−8𝜙𝑥,𝑤∕3 + 3𝜙𝑥,0 − 𝜙𝑥,1∕3
)

∕𝛥𝑥, where 
𝜙𝑥,𝑤 is the wall position, 𝜙𝑥,0 is the boundary node at 𝛥𝑥∕2 distance 
from the wall and 𝜙𝑥,1 is the next node in the normal direction. Sub-
stituting this expression into Eq. (34) and defining 𝐴 = 𝛥𝑥 cos𝜑

√

2𝛽∕𝜅, 
we get the following second order equation for determining the value 
of 𝜙𝑤, 
𝐴𝜙2

𝑥,𝑤 + (8∕3 − 𝐴)𝜙𝑥,𝑤 +
(

𝜙𝑥,1∕3 − 3𝜙𝑥,0
)

= 0. (35)

The solution that remains between 0 and 1 is the value of 𝜙𝑤 at the 
boundary that guarantees the desired wettability, represented by the 
static contact angle 𝜑. Then, the ghost nodes, 𝜙𝑥,−1, required for the 
calculation of Eqs.  (17) and (18) can be calculated by extrapolation 
from the boundary node, 𝜙𝑥,0, and the wall node, 𝜙𝑥,𝑤, as 𝜙𝑥,−1 =
2𝜙𝑥,𝑤 − 𝜙𝑥,0.

2.4. Experimental procedure

The bubble life-cycle features were also studied experimentally. 
A schematic view of the boiler setup is illustrated is in Fig.  1. The 
boiler chamber is a cylindrical vessel with two borosilicate windows 
at opposite sides, for the visualization of the boiling process. A JUMO 
pressure transducer is located at the top of the chamber, to measure 
the pressure inside the boiler. In addition, two precision Pt100 probes 
measured both liquid and vapor temperatures, to check that HFE-7100 
fluid was operated under a saturated condition. More information about 
the experimental procedure can be seen in previous publications from 
the authors [71,72].

The test section shown in Fig.  2(a) was machined from a 60 mm 
diameter copper (Cu-Electrolytic Tough Pitch R300 – Cu> 99,9%) rod. 
Four 𝑇  type thermocouples with a separation of five mm from each 
other were inserted in the axis of the test section to yield its temper-
ature distribution. The temperature at the hot surface was determined 
through a linear fit with the temperature distribution inside the test 
section. Fig.  2(a) also illustrates the mirror-finishing of the hot surface 
at the top of the test section, in order to prevent from spurious bubbles. 
The mirror-finished surface in Fig.  2(a) is a circle of 30 mm diameter.

Five nucleation sites were manufactured with the help of a needle 
on the boiling surface of the test section (see Fig.  2(a)). We crafted 
more than one artificial site (five) in order to gain feasibility on the 
nucleation process. Fig.  2(b) is a picture recorded with a microscope of 
the company Dino-Lite with a RK-10-PX mounting device. It shows the 
particular nucleation site that effectively produced the set of bubbles 
(19) reported in this research. The site is about 120 μm diameter.

The procedure for measuring the bubble’s characteristics is ex-
plained in Martins et al. [72], where the authors developed a model 
for determining the ‘‘mean bubble’’ and, then, the mean properties 
of its life-cycle. The mean bubble is a synthetic bubble that contains 
the average geometrical aspects (a 2D information about bubble width
per height per time) of all bubbles measured in the experiments, with 
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the uncertainties related to them. For more information about this 
technique, see Martins et al. [72]. This procedure yields the mean 
shape, equivalent radius (𝑅𝑒𝑞), apparent contact angle (𝜑𝑎𝑝), dry radius 
(𝑅𝑑), and forces acting on the typical bubble, and the corresponding 
uncertainty, which is of utmost importance for comparison of the 
experimental data with simulated results.  The expressions adopted 
for calculating these forces can be seen in Appendix  A.4. The referred 
mean bubble and mean properties were found from data for 19 bubbles 
obtained under the cited experimental operation conditions.

The bubble dry radius, 𝑅𝑑 , is defined as the radius at the bottom 
of the bubble, close to the solid surface level. The bubble equivalent 
radius, 𝑅𝑒𝑞 , is calculated from the bubble volume, while the apparent 
contact angle, 𝜑𝑎𝑝, is the contact angle measured during the growth 
of the bubble. As mentioned before, all these variables are calculated 
using the mean bubble as reference. Thus, the resultant values of these 
properties represent the mean values found in all bubbles considered 
in the experiments.

3. Results

Both numerical and experimental results were obtained considering 
saturated HFE7100 as working fluid at 𝑃𝑠𝑎𝑡 = 195 kPa (𝑇𝑠𝑎𝑡 = 355.4
K) and a superheating degree of 𝛥𝑇 = 5.1 K. The thermodynamic and 
transport properties of the fluid at this condition were obtained from 
EES software [94], and are disposed in Table  1. For this operational 
condition the reduced pressure and temperature are 𝑃𝑟 = 0.087 and 
𝑇𝑟 = 0.758, respectively.

The present phase-field model without phase-change was already 
validated by the simulation of two isothermal two-phase problems 
in Martins et al. [36]. In this previous work, there are solutions for 
the static bubble and the layered-Poiseuille flow problems for water–air 
and saturated water at different operational conditions.

For this paper, the codes were implemented in C language, us-
ing OpenMP parallel computing. The final simulations for the results 
showed here were executed in a workstation with 128 GB RAM DDR5, 
CPU AMD Threadripper 7980X with 64 cores (128 threads).

In the present paper we will develop the model validation in three 
stages: (i) the Stefan problem is solved to validate the model regarding 
the liquid–gas phase-change process, (ii) the contact-angle model will 
be tested for a wide range of static contact angles, in order to verify 
the accuracy on capturing the fluid–solid interaction, and (iii) the 
experimental evidence of a bubble life-cycle will be confronted with 
the numerical algorithm.

3.1. The Stefan problem

First, the model was employed for simulating the 1D liquid–gas 
Stefan problem. It consists of a one-dimensional liquid domain initially 
at saturation temperature, 𝑇𝑠𝑎𝑡, that suddenly is submitted to a fixed 
wall temperature at the left boundary, 𝑇𝑤 = 𝑇𝑠𝑎𝑡 + 𝛥𝑇 , greater than the 
saturation temperature. This superheating evaporates the liquid, which 
is generated close to the left boundary. As the liquid is heated, more 
vapor is generated and the liquid–gas interface advances in 𝑥-direction 
with time. The right boundary is treated as an outlet boundary, ther-
mally insulated with no velocity gradient (𝜕𝑥𝑇 = 0 and 𝜕𝑥𝑢𝑥 = 0), 
being implemented with the equilibrium scheme, which assumes that 
the unknown functions are in equilibrium with the boundary velocity 
and density. The left boundary, a Dirichlet’s kind of boundary, was 
implemented using the ABB scheme.

The Stefan problem has analytical solution and, thereby, it is usually 
employed for validating liquid–vapor phase-change models [23,95,96]. 
In our case, it will also be used for determining the vapor generation 
constant of Eq. (26), 𝐾, serving as a calibration test. This constant will 
be further used for the boiling simulation (Section 3.3). The analytical 
solution for the interface position, 𝑥 , and the interface velocity, 𝑢 , 
𝑖 𝑖
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Fig. 2. Top view of the copper probe body (a) and nucleation site manufactured with a needle (b).
Table 1
Properties of HFE7100 at saturation pressure of 195 kPa, used in all simulations.
 𝜌 (kg m−3) 𝜇 (10−4Pa s) 𝜎 (10−3N m−1) 𝑘 (10−2W m−1 K−1) 𝑐𝑝 (J kg−1 K−1) ℎ𝑙𝑔 (J kg−1) 𝛽𝑇  (10−3K−1) 
 Liquid 1355.718 3.145 7.742 5.764 1228.764 108880.640 2.308  
 Vapor 18.091 0.212 – 0.979 974.052 – –  
with time, 𝑡, is given by Eq. (36), where 𝛼𝑔 = 𝑘𝑔∕(𝜌𝑔𝑐𝑝,𝑔) is the thermal 
diffusivity of the gas phase and 𝜉 comes from the solution of Eq. (37). 
𝑥𝑖(𝑡) = 2𝜉

√

𝛼𝑔𝑡

𝑢𝑖(𝑡) = 𝜉
√

𝛼𝑔
𝑡

(36)

𝜉𝑒𝜉
2erf (𝜉) =

𝑐𝑝,𝑔𝛥𝑇

ℎ𝑙𝑔
√

𝜋
(37)

It is important to mention that in this case we assume that there is 
only heat transfer in the gas phase, while the liquid phase remains at 
saturation temperature. This is the opposite of the previous hypotheses 
in Section 2.2. Also, the vapor generation term, Eq. (26), receives a mi-
nus signal. These changes are only made for this specific problem and, 
for any boiling-like problem, the assumptions and equations defined 
before remain, see Section 2.2.

For the simulations we used a domain of width 𝐿 = 1 mm, employ-
ing a grid of 200 nodes with the D1Q3 velocity scheme. The spatial and 
temporal discrete intervals where 𝛥𝑥 = 5 ⋅ 10−6 m and 𝛥𝑡 = 2.5 ⋅ 10−7

s, with 𝑊 = 5𝛥𝑥 = 25 μm and 𝑀 = 0.1𝛥𝑥2∕𝛥𝑡 = 1.0 ⋅ 10−5 m2s−1. 
These values lead to the following relaxation times: 𝜏𝜈,𝑔 = 1.02 ⋅ 10−6 s, 
𝜏𝜈,𝑙 = 5.0 ⋅ 10−7 s, 𝜏𝑇 ∗ = 5.17 ⋅ 10−7 s and 𝜏𝜙 = 8.0 ⋅ 10−7 s. As the phase-
field model presented here is not capable of generating vapor by itself, 
it is necessary to initialize an amount of vapor at the beginning of the 
simulation. This is because the method only drives the phase-change 
process after the existence of the two phases. Then, the initial condition 
for the simulation was 𝑥𝑖 = 0.15 mm, with a linear temperature profile 
along 𝑥-direction, starting from 𝑇𝑤 at 𝑥 = 0 mm and ending with 𝑇𝑠𝑎𝑡
at 𝑥 = 𝑥𝑖 = 0.15 mm. The other variables where initialize with 𝑝 = 𝑝𝑠𝑎𝑡
and 𝑢 = 0 m∕s.

After the tests, we found that 𝐾 = 6.2 was a good value, providing 
accurate results in comparison to the analytical solution, which can 
be verified in Fig.  3. In Fig.  3(a) we can realize the sensibility of the 
results to the value of 𝐾 constant, as it is also presented the numerical 
solutions for 𝐾 = 7, 𝐾 = 5 and 𝐾 = 1 (or without constant). An 
important remark to be clarify is that, in this calibration/validation 
test, we took careful to maintain the same values of 𝛥𝑥 and 𝛥𝑡 that 
was employed in the boiling simulation.

A grid analysis was performed in order to verify if the grid impacts 
on the constant choice, as well as, to see if the results are already 
converged. The solutions considering the previous grid and two other 
more refined grids can be seen in Fig.  4(a), and we can realize that 
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the results are the same for the three different discretization levels. 
It is important to say that the interface width and the mobility value 
were kept the same value for all the simulations, 𝑊 = 25 μm and 
𝑀 = 1.0 ⋅ 10−5 m2s−1. These results show that we can safely use the 
same grid in the forthcoming boiling simulations.

It is important to mention that, for this problem, the equilibrium 
scheme was employed instead of the extrapolation one because the last 
kind of BC creates some oscillations in the results. The equilibrium 
scheme neglects the non-equilibrium phenomena that may happen 
on the boundary [2]. Thus, we did a comparison between both BC 
schemes, which can be seen in Fig.  4(b). By the results, we can 
affirm that both BC schemes satisfactorily lead to very close results, 
confirming that the equilibrium BC can be used without preoccupations 
for this specific problem.

3.2. Contact angle model validation

The solid–fluid interaction between the bubble and the wall plays 
an important role guaranteeing the correct force balance during boiling, 
which reflects on the bubble detachment and its diameter at this stage. 
Thus, addressing the accuracy of the contact-angle implementation in 
the model becomes of huge importance.

As stated in Section 2.3, here we employed a free-energy-based 
model to insert the interaction between the liquid–gas interface and the 
solid wall. The input of this model is the equilibrium contact angle, 𝜑, 
which represents the contact angle measured at equilibrium conditions.

For simulations, a droplet with radius of 0.15 mm is initialized over a 
surface with an initial angle of 90◦. Then, the simulation is carried out 
until the bubble reaches equilibrium (i.e., stops moving). The contact 
angle is, then, measured and compared with the expected one (the 
equilibrium contact angle used as input). In this case, for measuring the 
resultant contact angle from simulations we used the ImageJ software 
with the DropSnake plug-in [97], applying the procedure to the density 
profile figures.

We employed 𝛥𝑥 = 5 ⋅ 10−6 m and 𝛥𝑡 = 2.5 ⋅ 10−7 s, using a grid 
of 300:200 lattices and an interface width of 𝑊 = 5𝛥𝑥 = 25 μm. All 
the properties of the HFE7100 were employed here (see Table  1), with 
their respective relaxation times.

The results are depicted in Fig.  5, where we can see a good agree-
ment between the expected contact angle and the measured from the 
simulations. Only for values below 15◦ or above 145◦ the results start 
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Fig. 3. Liquid–gas interface position (a) and interface velocity (b) with time for the Stefan problem, considering different values for 𝐾 in comparison to the analytical solution.
Fig. 4. Grid analysis of the Stefan problem considering 3 grid levels (a) and Difference between extrapolation and equilibrium BC schemes (b).
to deviate more significantly from the input 𝜑 value. Therefore, as the 
static contact angle between the HFE7100 and the polish coper surface 
is about 6◦, it is expected some deviations or challenges during the 
boiling simulation, which are debated in the next section. The errors 
for 𝜑 >150◦ have already been reported by other authors from the 
literature [56,64]. However, usually the simulations did not use the 
full set of physical properties of real fluids, such as the HFE7100, which 
has considerable high viscosity and density rations between the gas and 
liquid phases, as well as, higher surface tension than the common value 
adopted in the literature. Thus, the significant deviations yielded for 
𝜑 < 15𝑜 can be related to effects from the considerable high density 
(75) and kinematic viscosity (15) ratios, as well as high surface tension 
value, see Table  1.

3.3. Single bubble life-cycle under pool boiling

The operational conditions and the properties of the HFE7100 are 
reported in Table  1. Simulations were developed in a rectangular 
domain with dimensions of 6 and 7 mm in width and high, respectively. 
The upper part of the domain was considered as saturated vapor, 
whereas the bottom is saturated liquid. The interface between gas 
and liquid phases was placed 3 mm below the uppermost limit of the 
domain. An additional effort was made to properly reproduce a nucle-
ation site, somehow, similar to that manufactured in the experiments. 
Accordingly, a V shape cavity was placed in the middle of the bottom 
wall. The radius of the simulated is 𝑅𝑐 = 0.06 mm, which is similar to 
the experimental one, as shown in Fig.  2(b). The numerical site was 
designed with 45◦ of inclination in relation to the horizontal. Previous 
numerical features are illustrated in Fig.  6.
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Fig. 5. Validation of the contact-angle model for a static droplet.

The lateral and bottom walls are assumed to be rigid, implemented 
using the bounce-back scheme for both distribution functions, ℎ𝑖 and 𝑔𝑖. 
The top wall remains at a constant pressure of 𝑃𝑠𝑎𝑡, which is imposed 
by the anti-bounce-back scheme for 𝑔𝑖, Eq. (30), and the bounce-back 
scheme for ℎ𝑖, Eq. (29). At the bottom wall, the contact-angle model 
is employed for considering the wetting phenomena between the fluid 
and the solid.
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Fig. 6. Scheme of the computational domain simulated, dimensions in mm.

Regarding the thermal boundary conditions, the bottom wall is 
assumed to be at a constant superheated temperature 𝑇𝑤, and the top, 
at 𝑇𝑠𝑎𝑡. Both are implemented using the anti-bounce-back scheme for 𝑠𝑖, 
Eq. (32). The lateral walls are considered as adiabatic, being modeled 
by the bounce-back rule as explained in Section 2.3.

The domain was initialized in equilibrium, i.e. ℎ𝑖 = ℎ𝑒𝑞𝑖 , 𝑔𝑖 = 𝑔𝑒𝑞𝑖  and 
𝑠𝑖 = 𝑠𝑒𝑞𝑖 . The pressure and the velocity fields were initialized uniform 
at 𝑃𝑠𝑎𝑡 (𝑝 = 0) and 𝐮 = 𝟎. For the initial density profile, we considered 
a vapor layer with 3 mm width at the top of the domain and a small 
bubble of radius 𝑅𝑖𝑛𝑖 = 10𝛥𝑥 at the bottom center of the cavity, as 
represented in Fig.  6. All the interfaces between phases were initialized 
considering the hyperbolic tangential profile given by Eq. (20).

For the initial temperature profile, all the domain was assumed to be 
at saturation temperature, 𝑇𝑠𝑎𝑡, except for the lattices near to the bottom 
wall. In this region, a thermal boundary layer of width 𝛿𝑖𝑛𝑖 with a linear 
profile between 𝑇𝑤 and 𝑇𝑠𝑎𝑡 was considered. Recall we are trying to 
numerically simulate the experiments inside a real boiling chamber. 
Throughout the experiments the nucleation site was already active, 
this situation was kept when the data was collected and, for sure, 
this feature affected the thermal boundary layer. As a result, is seems 
pertinent to use a boundary layer correlation specifically reported for 
this condition. Accordingly, we choose the correlation given by Han 
and Griffith [98], represented by Eq. (38). 

𝛿𝑖𝑛𝑖 =
3
2

𝛥𝑇𝑅𝑐

𝑇𝑤 − 𝑇𝑠𝑎𝑡

(

1 − 2𝜎
𝑅𝑐𝜌𝑔ℎ𝑙𝑔

) (38)

The discrete time and space intervals were 𝛥𝑥 = 5.0⋅10−6 m and 𝛥𝑡 =
2.5 ⋅ 10−7 s. The interface width was 𝑊 = 5𝛥𝑥 = 25 μm and the values 
of the relaxation rates for 𝜦, 𝜏𝑇  and 𝜏𝜙 are calculated directly using the 
properties of the fluid (Table  1) and the values of 𝛥𝑥 and 𝛥𝑡. Again, it 
is important to effort that all the real properties of the HFE7100 were 
employed on the LBM simulation, using directly physical units without 
the necessity of employing lattice units, as reported in Martins et al. 
[36].

Given HFE7100 volatility, and mainly its high wettability, the ex-
perimental contact angle determination of HFE7100 in polished copper 
is not straight forward [71,72]. According to previous references, the 
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expected static contact angle is almost null, even though in the first 
stages of the drop deposition could be considered at about 6◦. Recall the 
numerical solver requires the input of a static contact angle to develop 
the simulations. Indeed, its value becomes of great importance, since it 
will affect the dynamics of the bubble, mainly, at the final stage of the 
bubble life-cycle.

Numerical simulations will show that the dry radius of the bubble 
is almost coincident with the size of the manufactured nucleation site 
at the experimental test section, reported in Fig.  2(b). Moreover, this 
particular feature takes place throughout almost the whole life-cycle of 
the bubble. The maximum value of the dry radius for the experimental 
results is about 0.07 mm, which is only slightly above the size of 
the manufactured site, which is about 0.06 mm. In the case of the 
numerical results, the maximum value of 𝑅𝑑 is about 0.055 mm. As 
this peculiar feature takes place for both numerical and experimental 
results, it seems there is a close relationship between the site and the 
dry radius of the bubble, at least for the operating conditions reported 
herein. Given that the triple line is located within the region affected 
by the nucleation site, it seems more than questionable that the proper 
static contact angle is the one provided by the polished surface. Thus, 
we choose a value of static contact angle that would give a bubble 
period near to the experimental one.

It is important to realize that the static contact angle is the only 
input to our model that really depends on the experimental results. All 
other parameters are physical properties of the fluid. Also, given the 
uncertainty of the real value of the static contact angle in the cavity, 
this choice based on the experimental results is justified. In the end, 
the value of 16.73𝑜 was used as input for the wetting model. This angle 
provided a numerical bubble period of 54 ms, while the experimental 
period was 53 ms.

The results for density fields and streamlines in the liquid phase 
can be seen in Fig.  7. By the streamlines we can see that the bubble 
expansion provokes an upward movement on the fluid. Also, some 
downward lines can be seen, mainly in Fig.  7(b), due to the fluid that 
is replacing the portion accelerated and consumed by the growth of the 
bubble. These results illustrate the capability of the model to capture 
the movement induced by the bubble growth.

A qualitative comparison between the numerical bubble and one 
of the recorded experimental bubbles can be seen in Fig.  7. By this 
figure, we realize that the simulated and experimental shapes are 
very similar, reinforcing the applicability of the proposed simulation 
procedure. However, after the detachment of the bubble, there are 
more differences between the numerical and experimental results. This 
can be due to, first, a second bubble pushing the detached bubble 
away from the surface and, second, oscillations at the bulk fluid in the 
experiments. As bubbles are very small compared to the boiling vessel, 
they are easily moved by the liquid currents surrounding them. In the 
case of the numerical simulations, after the bubble’s detachment we do 
not have a second bubble growing in the cavity. This is because we are 
simulating one bubble cycle only, considering that the phase field LBM 
needs an initial seed and, for a second cycle, an other nucleus would 
have to be inserted.

For a quantitative verification, we directly compare the shapes of 
the numerical bubble with the mean shape of the experimental bubbles, 
which can be seen in Fig.  9. This comparison allows us to truly evaluate 
the accuracy of the method when capturing bubble’s characteristics. It 
confirms that, at the initial stages, there are more significant deviations 
between the numerical and the experimental results than in the final 
growth stage. Even so, the data provided by the LBM show a very good 
accuracy in predicting the bubble’s shape, evidencing a good capability 
of dealing with single bubbles under pool boiling. In fact, considering 
all results from Fig.  9, the highest absolute error between the experi-
mental and numerical results is approximately equal to 0.05 mm in 𝑦
value.

Here it is important to clarify that, for the calculation of 𝑅𝑒𝑞 , 𝑉 , 𝑅𝑑
and 𝜑 , the reference line was taken coincident with the plane wall at 
𝑎𝑝
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Fig. 7. Density contours with streamlines in the liquid from LBM simulations.
the bottom of the domain, just above the cavity. This choice was made 
to provide a fair comparison between the numerical and experimental 
results, because in the experiments the reference line for the bottom 
of the bubble was also taken as the horizontal plane, just above the 
cavity. Then, despite an initial bubble of radius 10𝛥𝑥 being placed at 
the beginning of the simulation, it remains entirely inside the cavity 
(below the horizontal plane wall). Consequently, in the graphics of 𝑅𝑒𝑞 , 
𝑉 , 𝑅𝑑 and 𝜑𝑎𝑝 and in the numerical representation of the bubble (Figs. 
8 and 9), this initial radius does not appear.

Also, for the determination of the apparent contact angle, a different 
procedure than used in Section 3.2 was employed. In order to make a 
fair comparison between numerical and experimental results, we used 
the same methodology than in Martins et al. [72] for the determination 
of 𝜑𝑎𝑝, which is the secant method. This method considers two points 
along the contact line of the bubble: one at the triple point, close to 
the wall, and other at the interface in an arbitrary distance of the wall. 
This distance was chosen the same than for measuring the experiments, 
30 μm.

Treating of geometric aspects of the bubble, we compare the equiva-
lent radius, the bubble volume, the dry radius and the apparent contact 
angle of the numerical bubble with the experimental data. As we can 
see in Fig.  10 and in Fig.  11, the great part of the numerical data 
remains within the uncertainty of the experimental results. This fact 
confirms again the precision of the proposed LBM for capturing the 
geometrical aspects of the bubble life-cycle. The tendency of the curves 
also corresponds to that of the experimental data, showing the physical 
coherence and accuracy of the simulations. Only the apparent contact 
angle curve deviates from the experiments. However, this fact can be 
connected to structures present in the test-section cavity that are not 
12 
considered in the simulations, where a smooth 45◦ cavity is considered. 
Then, a continuous decrease of 𝜑𝑎𝑝 is expected in the numerical results 
as a consequence of the smooth surface. In the case of the experiments, 
there is the possibility of having structures that retain the bubble at a 
constant apparent contact angle, which is observed in Fig.  11(a).

It should also be observed that the bubble detaches without almost 
showing a decrease in the growing velocity, which seems to be almost 
constant at the end of the growth period. It is only at the end of the 
curves that this tendency starts to deviate more, besides the results 
getting closer to the experimental ones. This fact may be due to the 
absence of a second bubble nucleating in the V cavity. For the phase-
field LBM, the nucleation site remains active only for static contact 
angles above 90◦ for flat walls, or above the cavity angle for V-shaped 
cavities, see Begmohammadi et al. [59], Sadeghi et al. [60]. As the 
static contact angle for the HFE7100 in a copper surface is low (below 
45◦, which is the V-cavity angle), the nucleation site does not remains 
active. So we do not see a new bubble pushing the detached bubble 
upward, a behavior that would be expected in real conditions. Without 
this second bubble, the fluid inundates the cavity and more vapor is 
generated at the bottom part of the bubble, changing the derivative of 
𝑅𝑒𝑞 curve at 37 ms. This would be avoided if there was a new bubble at 
the nucleation site. Thus, for the next steps of our research, it would be 
interesting to develop a nucleation model for the LBM proposed here. 
Besides this fact, the accuracy of the method is still very good.

Now, for a evaluation of the dynamics present in the phenomena, we 
calculate the forces acting on the bubble during its growth. The main 
forces are the contact pressure force, 𝐹𝑐𝑝, the surface tension force, 𝐹𝜎 , 
the buoyancy force, 𝐹𝑏, and the dynamic force, 𝐹𝐷. The calculation of 
these forces can be seen in Appendix  A.4.



I.T. Martins et al.

Fig. 8. Transient snapshot of one particular experimental bubble and the corresponding LBM results.

Fig. 9. Comparison between mean bubble profile from experiments and from LBM. The solid lines are the LBM results, while the dashed lines are the experimental results with 
the uncertainties in blue.

Fig. 10. Comparison between equivalent radius (a) and bubble’s volume (b) from experiments and from LBM.
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Fig. 11. Comparison between apparent contact angle (a) and dry radius (b) from experiments and from LBM.
Fig. 12. Comparison between buoyancy (a) and contact pressure forces (b) from experiments and from LBM.
Table 2
Relative errors of the numerical simulations in comparison to the experimental data.
 𝑅𝑒𝑞 𝑉 𝑅𝑑 𝜑𝑎𝑝 𝐹𝑏 𝐹𝑐𝑝 𝐹𝐷 𝐹𝜎 
 𝐸𝐿1 (%) 11 26 9 30 26 21 30 25 

The buoyancy force, which depends mainly on the bubble volume, 
is depicted in Fig.  12(a). We can see that the numerical results remain 
almost always inside the uncertainty bar of the experimental results, 
similarly to the bubble volume, as expected. Next, the contact pressure 
is reported in Fig.  12(b). In this case, the numerical and experimental 
results are closer to each other in comparison to the other forces. 
Meanwhile, in Fig.  13(a) we have the surface tension force, the only 
force keeping the bubble attached to the wall in this case. At last, in 
Fig.  13(b) we have the dynamic force, that accomplishes for both lift 
and unsteady growth effects.

Once more, the results from LBM are very accurate in comparison 
to the experimental data, as the great part of the simulated results 
remain inside the uncertainty of the experimental results. This reaffirms 
the capability of the present model of correct simulating the dynamic 
behavior of a single bubble under pool boiling. It should be noted that 
the force values are very low, being of the order of 10−6 and 10−7, 
meaning that the numerical model is very accurate in its quantitative 
predictions.

𝐸𝐿1 = 100
∑𝑁
𝑛=0 |𝜒

𝐿𝐵𝑀
𝑛 − 𝜒𝑒𝑥𝑝𝑛 |

∑𝑁 𝑒𝑥𝑝 (39)

𝑛=0 |𝜒𝑛 |
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The relative errors for the numerical results in comparison to the 
experimental data are disposed in Table  2, considering the L1 norm 
— see Eq. (39). Analyzing Table  2, we can see that they remain 
between 10% and 30%. Therefore, besides having ‘‘high’’ values for 
some variables, almost all the trends of the numerical curves match 
those measured from experiments, excepting the contact angle, a topic 
already discussed before.

In addition, the relative errors do not give a good estimative of 
how really close the numerical results are to the experimental data. 
In fact, a graphical comparison of the figures shows that almost all 
numerical curves stay inside the uncertainty region of the experimental 
data. It is important to evidence that this quantitative comparison 
with experimental results is rare in the LBM community, especially 
considering the model proposed here, which directly uses all physical 
properties of the fluid under real operational conditions.

Another important topic to be mentioned is that in this work we 
restricted ourselves to a two-dimensional description of the boiling 
phenomena, as the main objective was to propose and validate a 
new phase-field LBM model to simulate the liquid–gas phase-change 
process. However, approaching a 3D phenomena using a 2D model can 
have issues, because some effects of three-dimensional curvatures are 
not included in the analysis. 

As observed in Table  2, the forces and the bubble volume were the 
variables with higher errors. This can be connected to the fact that these 
variables are the ones with stronger dependency of 3D features, and to 
calculate them here we used a 2D approach and, then, we needed to 
make assumptions about the two-dimensionalization of a 3D bubble. 
Thus, future studies regarding the expansion of the present model to 
3D are of great importance.
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Fig. 13. Comparison between surface tension (a) and dynamic forces (b) from experiments and from LBM.
Fig. 14. (a) Heat transfer rate at the surface with time and (b) mean heat transfer coefficient at the surface with time for the numerical simulation.
At last, the detailed results provided by the numerical simulations 
also allow the calculation of the total heat transfer rate emanating 
from the superheated surface. As for the bubble volume calculation, 
we assume that each width of the bubble per 𝑦 is a cylindrical disk, to 
estimate the heat transfer rate at the surface we also assumed that it is 
a circular disk with a diameter 𝐿. Then, using Fourier’s law to calculate 
the heat flux, considering only the wet zone of the bottom wall (regions 
insulated by the vapor are neglected), and taking the mean heat flux 
between the cells of the bottom wall, we achieve the Eq. (40). In this 
equation, the derivative in 𝑦 direction was approached by a second 
order forward finite difference scheme, and 𝑗 represents the nodes in 𝑥
direction, while 𝑁𝑥, the total number of nodes in 𝑥 direction. 

𝑄̇𝑠 (𝑡) =𝜋
𝐿2

4
𝑞̇′′ (𝑡) = 𝜋 𝐿

2

4
1
𝐿 ∫

𝐿

0
−𝑘𝑙

𝜕𝑇
𝜕𝑦

(𝑡, 𝑥, 𝑦 = 0) 𝑑𝑥

≈
−𝑘𝑙𝜋𝐿𝑥

4

𝑁𝑥
∑

𝑗=0

−𝑇𝑗,2 (𝑡) + 4𝑇𝑗,1 (𝑡) − 3𝑇𝑗,0 (𝑡)
2

(40)

The heat transfer rate can be seen in Fig.  14(a). As the superheating 
degree is constant in the case studied, 𝛥𝑇 = 5.1𝐾, using Newton’s law 
of cooling we can also determinate the mean heat transfer coefficient 
(HTC) at the surface, ℎ = 𝑞̇′′∕𝛥𝑇 , which is shown in Fig.  14(b). The 
behavior of ℎ is as expected, because as the bubble grows, the area 
insulated by the vapor at the superheated wall increases. Consequently, 
decreasing the heat transfer rate of the surface, until the bubble de-
taches, at 𝑡 = 54 ms. It is important to mention that, for both 𝑄̇𝑠 and 
ℎ, there are no experimental results for comparison because we did not 
have measurements of the heat flux close to the surface.
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The results shown in this section demonstrate the accuracy of the 
proposed method in capturing the features of a single bubble under 
pool boiling. Beyond this fact, the simulations are carried out using the 
full set of real properties of the HFE7100 and they are implemented 
directly using physical units. These are a remarkable novelty for the 
LBM community and allowed the validation of the method. Also, the 
experimental data provided here can be used as a benchmark test 
for other authors, considering a high saturation pressure operational 
condition. Note this research makes available the experimental data as 
supplementary material. Hopefully, these data will provide numerical 
scientists useful information to test the performance of their numerical 
models. The downloadable file is structured in the same fashion as 
reported in Martins et al. [72].

4. Conclusions

This work reported a LBM for boiling simulation where the use 
of lattice units are no longer necessary. The entire simulation was 
performed in physical units. As a result, the physical properties of the 
fluid are imposed in a natural manner. The model was calibrated and 
validated with both analytical and experimental evidence.

In a first step, the calibration term for the vapor generation was 
performed in the basis of the Stefan problem. The calibration was only 
related to the operational condition: fluid, pressure, temperature, and 
superheating degree. After the calibration, the model yielded negligible 
errors. In a second step, the static contact angle model imposed to 
the model was tested in order to evaluate the ability of the method 
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on recovering the proper interphase in the near vicinity of the triple 
line. The model showed an outstanding performance for static contact 
angles between 15◦ and 150◦. More research is needed to improve the 
numerical model for very low and very high contact angles.

In a third (and final) step, a single bubble of saturated HFE7100 
under pool boiling was simulated. Besides, this research reports the ex-
perimental test that matches the operational condition of the numerical 
study. The typical experimental bubble was yielded from the life-
cycle of 19 bubbles. The experimental uncertainties provided an useful 
reference for the assessment of the numerical results. The operating 
conditions in terms of reduced pressure and temperature were 0.087 
and 0.758, respectively. Both sets of results were confronted with a 
notable degree of success.

The experimental analysis allowed for comparison of the bubble 
shape with time, geometrical aspects of the bubble life-cycle (equiva-
lent radius, bubble volume, dry radius and apparent contact angle) and 
also the set of forces acting on the bubble. Numerical results showed a 
very good agreement with the experimental data, remaining inside the 
uncertainty of the experiments for almost the whole life-cycle of the 
bubble. This fact evidences the capability of the method on capturing 
the boiling phenomena, considering both geometrical and dynamical 
aspects.

In addition, this work provides detailed experimental information 
on a single bubble of saturated HFE7100 under pool boiling. This 
information is freely available as supplementary material, and its is 
formatted in the manner described in Martins et al. [72]. This set 
of data can serve as a benchmark exercise for numerical scientists 
interested in validating their models.

Then, the main conclusions of this work can be summarized in the 
following points:

• A new phase-field LBM for liquid–gas phase-change simulation, 
which allows the direct use of physical units, was successfully 
proposed.

• The new methodology was validated first with theoretical prob-
lems and, then, with experimental results, showing a good accu-
racy and applicability.

• The results suggested that a deep study regarding the contact 
angle model needs to be performed in the future.

• This paper also provided valuable experimental information about
the life-cycle of a single bubble of HFE7100 under saturation 
conditions of 𝑃𝑠𝑎𝑡 = 195 kPa, which can be used as benchmark 
for further numerical studies.
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Appendix. Chapman–Enskog analysis

In this section, the Chapman–Enskog procedure for recovering the 
macroscopic conservation laws is presented for each LBE. The subindex 
𝛼, 𝛽 and 𝛾 will be used for representing the Cartesian coordinates in the 
Einstein notation.

A.1. Allen–Cahn equation

Starting by Eq. (3), the aim is tho recover the full Allen–Cahn 
equation, Eq. (2). First, we need to determine the moments of the 
equilibrium distribution function, Eq. (4), and the source term, Eq. (7): 

⎧

⎪

⎨

⎪

⎩

∑

𝑖 ℎ
𝑒𝑞
𝑖 = 𝜙;

∑

𝑖 𝑐𝑖𝛼ℎ
𝑒𝑞
𝑖 = 𝜙𝑢𝛼 ;

∑

𝑖 𝑐𝑖𝛼𝑐𝑖𝛽ℎ
𝑒𝑞
𝑖 = 𝑐2𝑠𝜙𝛿𝛼𝛽 .

(41)

{

∑

𝑖 𝑆ℎ𝑖 = − 𝑚̇′′′

𝜌𝑙
;

∑

𝑖 𝑐𝑖𝛼𝑆ℎ𝑖 = 𝜕𝑡
(

𝜙𝑢𝛼
)

+ 𝑐2𝑠𝜆𝑛𝛼 .
(42)

Starting from the LBE for the Allen–Cahn equation, Eq. (3), we first 
expand ℎ𝑖(𝑥𝛼+𝑐𝑖𝛼𝛥𝑡, 𝑡+𝛥𝑡) in Taylor series. Then, we substitute into the 
LBE, considering terms only up to second order: 

𝛥𝑡
(

𝜕𝑡 + 𝑐𝑖𝛼𝜕𝛼
)

ℎ𝑖+
𝛥𝑡2

2
(

𝜕𝑡𝑡 + 2𝑐𝑖𝛼𝜕𝑡𝛼 + 𝑐2𝑖𝛼𝜕𝛼𝛼
)

ℎ𝑖 = − 𝛥𝑡
𝜏𝜙

(

ℎ𝑖 − ℎ
𝑒𝑞
𝑖
)

+𝛥𝑡𝑆ℎ𝑖 .

(43)

Next, we expand the derivatives, the distribution functions and the 
source term in terms of the Knundsen number, represented by 𝜖: 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

ℎ𝑖 = ℎ(0)𝑖 + 𝜖ℎ(1)𝑖 + 𝜖2ℎ(2)𝑖 ;
𝜕𝑡 = 𝜖𝜕(1)𝑡 + 𝜖2𝜕(2)𝑡 ;
𝜕𝛼 = 𝜖𝜕(1)𝛼 ;
𝑆ℎ𝑖 = 𝜖𝑆(1)

ℎ𝑖
.

(44)

Substituting into Eq. (43) and neglecting terms with order superior 
than 𝜖3, we have: 

𝜖0
[

1
𝜏𝜙

(

ℎ(0)𝑖 − ℎ𝑒𝑞𝑖
)

]

+ 𝜖1
[

𝜕(1)𝑡 ℎ(0)𝑖 + 𝑐𝑖𝛼𝜕(1)𝛼 ℎ(0)𝑖 +
ℎ(1)𝑖
𝜏𝜙

−
(

1 − 𝛥𝑡
2𝜏𝜙

)

𝑆(1)
ℎ𝑖

]

+⋯

𝜖2
[

𝜕(1)𝑡 ℎ(1)𝑖 + 𝜕(2)𝑡 ℎ(0)𝑖 + 𝑐𝑖𝛼𝜕(1)𝛼 ℎ(1)𝑖 + 𝛥𝑡
2

(

𝜕(1)𝑡 + 𝑐𝑖𝛼𝜕(1)𝛼
)2
ℎ(0)𝑖

+
ℎ(2)𝑖
𝜏𝜙

]

= 0

. (45)

Separating the scales of Eq. (45), considering the same order of 𝜖: 
𝜖0 ∶ ℎ(0)𝑖 = ℎ𝑒𝑞𝑖 ; (46)

𝜖1 ∶
(

𝜕(1)𝑡 + 𝑐𝑖𝛼𝜕(1)𝛼
)

ℎ(0)𝑖 = −
ℎ(1)𝑖
𝜏𝜙

+
(

1 − 𝛥𝑡
2𝜏𝜙

)

𝑆(1)
ℎ𝑖

; (47)

𝜖2 ∶ 𝜕(2)𝑡 ℎ(0)𝑖 +
(

𝜕(1)𝑡 + 𝑐𝑖𝛼𝜕(1)𝛼
)

ℎ(1)𝑖 + 𝛥𝑡
2

(

𝜕(1)𝑡 + 𝑐𝑖𝛼𝜕(1)𝛼
)2
ℎ(0)𝑖 = −

ℎ(2)𝑖
𝜏

. (48)

𝜙



I.T. Martins et al. International Communications in Heat and Mass Transfer 167 (2025) 109207 
If we substitute Eq. (47) into Eq. (48), we have: 

𝜕(2)𝑡 ℎ(0)𝑖 +
(

𝜕(1)𝑡 + 𝑐𝑖𝛼𝜕(1)𝛼
)

(

1 − 𝛥𝑡
2𝜏𝜙

)

ℎ(1)𝑖 = −
ℎ(2)𝑖
𝜏𝜙

− 𝛥𝑡
2

(

𝜕(1)𝑡 + 𝑐𝑖𝛼𝜕(1)𝛼
)

×
(

1 − 𝛥𝑡
2𝜏𝜙

)

𝑆(1)
ℎ𝑖
.

(49)

By Eq.  (8), Eq. (41) and (42), we see that ∑𝑖 ℎ𝑖 =
∑

𝑖 ℎ
𝑒𝑞
𝑖 −

𝛥𝑡∕2
∑

𝑖 𝑆ℎ𝑖 . Expanding in terms of 𝜖, we have 
∑

𝑖 ℎ
(1)
𝑖 = −𝛥𝑡∕2

∑

𝑖 𝑆
(1)
ℎ𝑖

and ∑𝑖 ℎ
(2)
𝑖 = 0.

Taking the zeroth and the first moments of Eq. (47): 

⎧

⎪

⎨

⎪

⎩

0th ∶ 𝜕(1)𝑡 𝜙 + 𝜕(1)𝛼
(

𝑢𝛼𝜙
)

=
∑

𝑖 𝑆
(1)
ℎ𝑖

;

1st ∶ 𝜕(1)𝑡
(

𝑢𝛼𝜙
)

+ 𝑐2𝑠 𝜕
(1)
𝛼 𝜙 −

(

1 − 𝛥𝑡
2𝜏𝜙

)

∑

𝑖 𝑐𝑖𝛼𝑆
(1)
ℎ𝑖

= − 1
𝜏𝜙

∑

𝑖 𝑐𝑖𝛼ℎ
(1)
𝑖 .

(50)

Taking the zeroth moment of Eq. (49), by the value of ∑𝑖 ℎ
(1)
𝑖  and 

∑

𝑖 ℎ
(2)
𝑖 , and the first moment in Eq. (50), we have 

𝜕(2)𝛼 𝜙 = 𝜕(1)𝛼
(

𝜏𝜙 − 𝛥𝑡
2

)

[

𝜕(1)𝑡
(

𝑢𝛼𝜙
)

+ 𝑐2𝑠 𝜕
(1)
𝛼 𝜙 −

∑

𝑖
𝑐𝑖𝛼𝑆

(1)
ℎ𝑖

]

. (51)

Summing Eq. (51) with the zeroth moment of Eq. (50), we recover 
the full Allen–Cahn equation: 

𝜕𝑡𝜙 + 𝜕𝛼
(

𝑢𝛼𝜙
)

= 𝜕𝛼
[(

𝜏𝜙 − 𝛥𝑡
2

)

𝑐2𝑠
(

𝜕𝛼𝜙 − 𝜆𝑛𝛼
)

]

+ 𝐸, (52)

which gives the relation between the mobility, 𝑀 , and the relax-
ation time, 𝜏𝜙. In this equation, the remaining error is 𝐸 = −𝜕𝛼
[(

𝜏𝜙 − 𝛥𝑡
2

)

𝜖2𝜕(2)𝑡
(

𝑢𝛼𝜙
)

]

.

A.2. Navier–Stokes equation

The LBE recovering the Navier–Stokes equation and the mass con-
servation equation uses the MRT collision operator. However, for the 
sake of brevity, the Chapman–Enskog analysis will be performed only 
considering the moments related to the target equations (NSE and mass 
conservation). Thus, instead of considering all the nine moments of the 
variables, it will be considered only the ones related to the two last 
relaxation rates.

First, the moments of the equilibrium distribution functions and the 
source term are the following, 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

𝑖 𝑔
𝑒𝑞
𝑖 = 0;

∑

𝑖 𝑐𝑖𝛼𝑔
𝑒𝑞
𝑖 = 𝜌𝑢𝛼 ;

∑

𝑖 𝑐𝑖𝛼𝑐𝑖𝛽𝑔
𝑒𝑞
𝑖 = 𝜌𝑢𝛼𝑢𝛽 + 𝑝𝛿𝛼𝛽 ;

∑

𝑖 𝑐𝑖𝛼𝑐𝑖𝛽𝑐𝑖𝛾𝑔
𝑒𝑞
𝑖 = 𝜌𝑐2𝑠

(

𝑢𝛼𝛿𝛽𝛾 + 𝑢𝛽𝛿𝛼𝛾 + 𝑢𝛾𝛿𝛼𝛽
)

.

(53)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

𝑖 𝑆𝑔𝑖 = 𝑢𝛼𝜕𝛼𝜌 + 𝜌𝑚̇′′′
(

𝜌−1𝑔 − 𝜌−1𝑙
)

;
∑

𝑖 𝑐𝑖𝛼𝑆𝑔𝑖 = 𝐹𝛼 ;
∑

𝑖 𝑐𝑖𝛼𝑐𝑖𝛽𝑆𝑔𝑖 = 𝑐2𝑠
{

𝑢𝛼𝜕𝛽𝜌 + 𝑢𝛽𝜕𝛼𝜌 + 𝛿𝛼𝛽
[

𝑢𝛾𝜕𝛾𝜌 + 𝜌𝑚̇′′′
(

𝜌−1𝑔 − 𝜌−1𝑙
)]}

.

(54)

Second, expanding 𝑔𝑖(𝑥𝛼 + 𝑐𝑖𝛼𝛥𝑡, 𝑡+𝛥𝑡) in Taylor series up to second 
order terms and substituting into de LBE, Eq. (9), we have the following 
expression, 
(

𝜕𝑡 + 𝑐𝑖𝛼𝜕𝛼
)

𝑔𝑖 +
𝛥𝑡
2

(

𝜕𝑡𝑡 + 2𝑐𝑖𝛼𝜕𝑡𝛼 + 𝑐2𝑖𝛼𝜕𝛼𝛼
)

𝑔𝑖 = − 1
𝜏𝜈

(

𝑔𝑖 − 𝑔
𝑒𝑞
𝑖
)

+ 𝑆𝑔𝑖 . (55)

Expanding variables in scales of 𝜖: 
⎧

⎪

⎪

⎨

⎪

⎪

𝑔𝑖 = 𝑔(0)𝑖 + 𝜖𝑔(1)𝑖 + 𝜖2𝑔(2)𝑖
𝜕𝑡 = 𝜖𝜕(1)𝑡 + 𝜖2𝜕(2)𝑡
𝜕𝛼 = 𝜖𝜕(1)𝛼

(1)

(56)
⎩

𝑆𝑔𝑖 = 𝜖𝑆𝑠𝑔𝑖
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From the scale analysis of Eq. (55), we can separate into the 
following equations, 

𝜖0 ∶ 𝑔(0)𝑖 = 𝑔𝑒𝑞𝑖 ; (57)

𝜖1 ∶
(

𝜕(1)𝑡 + 𝑐𝑖𝛼𝜕(1)𝛼
)

𝑔(0)𝑖 = −
𝑔(1)𝑖
𝜏𝜈

+
(

1 − 𝛥𝑡
2𝜏𝜈

)

𝑆(1)
𝑔𝑖

; (58)

𝜖2 ∶ 𝜕(2)𝑡 𝑔(0)𝑖 +
(

𝜕(1)𝑡 + 𝑐𝑖𝛼𝜕(1)𝛼
)

𝑔(1)𝑖 + 𝛥𝑡
2

(

𝜕(1)𝑡 + 𝑐𝑖𝛼𝜕(1)𝛼
)2
𝑔(0)𝑖 = −

𝑔(2)𝑖
𝜏𝜈

. (59)

Using Eq. (58), we can reformulate Eq. (59) as follows, 

𝜕(2)𝑡 𝑔(0)𝑖 +
(

𝜕(1)𝑡 + 𝑐𝑖𝛼𝜕(1)𝛼
)

(

1 − 𝛥𝑡
2𝜏𝜈

)

𝑔(1)𝑖 = −
𝑔(2)𝑖
𝜏𝜈

− 𝛥𝑡
2

(

𝜕(1)𝑡 + 𝑐𝑖𝛼𝜕(1)𝛼
)

×
(

1 − 𝛥𝑡
2𝜏𝜈

)

𝑆(1)
𝑔𝑖
.

(60)

From Eq. (13), Eq. (14) and the moments of 𝑔𝑒𝑞𝑖  and 𝑆𝑔𝑖 , we have: 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

𝑖 𝑔
(1)
𝑖 = − 𝛥𝑡

2
∑

𝑖 𝑆
(1)
𝑔𝑖 ;

∑

𝑖 𝑐𝑖𝛼𝑔
(1)
𝑖 = − 𝛥𝑡

2
∑

𝑖 𝑐𝑖𝛼𝑆
(1)
𝑔𝑖 ;

∑

𝑖 𝑔
(2)
𝑖 = 0;

∑

𝑖 𝑐𝑖𝛼𝑔
(2)
𝑖 = 0.

(61)

Taking the moments of Eq. (58) and using the relations of Eq. (61), 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0th ∶ 𝜕(1)𝛼
(

𝜌𝑢𝛼
)

=
∑

𝑖 𝑆
(1)
𝑔𝑖 ;

1st ∶ 𝜕(1)𝑡
(

𝜌𝑢𝛼
)

+ 𝜕(1)𝛼
(

𝜌𝑢𝛼𝑢𝛽 + 𝑝𝛿𝛼𝛽
)

=
∑

𝑖 𝑐𝑖𝛼𝑆
(1)
𝑔𝑖 ;

2nd ∶ 𝜕(1)𝑡
(

𝜌𝑢𝛼𝑢𝛽 + 𝑝𝛿𝛼𝛽
)

+ 𝜕(1)𝛼
(

𝜌𝑐2𝑠𝛱𝛼𝛽𝛾
)

−
(

1 − 𝛥𝑡
2𝜏𝜈

)

∑

𝑖 𝑐𝑖𝛼𝑐𝑖𝛽𝑆
(1)
𝑔𝑖

= − 1
𝜏𝜈

∑

𝑖 𝑐𝑖𝛼𝑐𝑖𝛽𝑔
(1)
𝑖 ;

(62)

where 𝛱𝛼𝛽𝛾 = 𝑢𝛼𝛿𝛽𝛾 + 𝑢𝛽𝛿𝛼𝛾 + 𝑢𝛾𝛿𝛼𝛽 .
Now, taking the first moment of Eq. (60), 

𝜕(2)𝑡
(

𝜌𝑢𝛼
)

+ 𝜕(1)𝛼

(

1 − 𝛥𝑡
2𝜏𝜈

)

∑

𝑖
𝑐𝑖𝛼𝑐𝑖𝛽𝑔

(1)
𝑖 − 𝛥𝑡

2
𝜕(1)𝛼

(

1 − 𝛥𝑡
2𝜏𝜈

)

×
∑

𝑖
𝑐𝑖𝛼𝑐𝑖𝛽𝑆

(1)
𝑔𝑖

= 0.
(63)

Using the 2nd moment in Eq. (62), we have 

𝜕(2)𝑡
(

𝜌𝑢𝛼
)

= 𝜕(1)𝛼
(

𝜏𝜈 −
𝛥𝑡
2

) [

𝜕(1)𝑡
(

𝜌𝑢𝛼𝑢𝛽 + 𝑝𝛿𝛼𝛽
)

+ 𝑐2𝑠 𝜕
(1)
𝛼

(

𝜌𝛱𝛼𝛽𝛾
)

−
∑

𝑖
𝑐𝑖𝛼𝑐𝑖𝛽𝑆

(1)
𝑔𝑖

]

.
(64)

Recovering the scale expansion of the 0th moment in Eq. (62), we 
achieve the mass conservation equation, as follows, 

𝜕𝛼𝑢𝛼 = 𝑚̇′′′ (𝜌𝑔 − 𝜌𝑙
)

(65)

At last, recovering the scale expansion of the 1st moment in Eqs. 
(62) and (64), summing both equations, using mass conservation, 
Eq. (65) and neglecting terms up to 𝑂 (

𝛥𝑡𝑀𝑎2
)

, we achieve the NS 
equation if 𝜈 = 𝑐2𝑠 𝜌

(

𝜏𝜈 −
𝛥𝑡
2

)

, as follows: 

𝜕𝑡
(

𝜌𝑢𝛼
)

+𝜕𝛼
(

𝜌𝑢𝛼𝑢𝛽
)

= −𝜕𝛼𝑝+𝐹𝛼+𝜕𝛼
[(

𝜏𝜈 −
𝛥𝑡
2

)

𝑐2𝑠 𝜌
(

𝜕𝛼𝑢𝛽 + 𝜕𝛽𝑢𝛼
)

]

. (66)

A.3. Energy conservation equation

The Chapman–Enskog analysis for the energy equation is very simi-
lar than for the Allen–Cahn equation. The moments of the equilibrium 
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distribution functions and of the source term are given by Eqs.  (67) and 
(68). 
⎧

⎪

⎨

⎪

⎩

∑

𝑖 𝑠
𝑒𝑞
𝑖 = 𝑇 ∗

∑

𝑖 𝑐𝑖𝛼𝑠
𝑒𝑞
𝑖 = 𝑇 ∗𝑢𝛼

∑

𝑖 𝑐𝑖𝛼𝑐𝑖𝛽𝑠
𝑒𝑞
𝑖 = 𝑐2𝑠𝑇

∗𝛿𝛼𝛽

(67)

⎧

⎪

⎨

⎪

⎩

∑

𝑖 𝑆𝑠𝑖 = 𝑇 ∗𝑚̇′′′
(

𝜌−1𝑔 − 𝜌−1𝑙
)

∑

𝑖 𝑐𝑖𝛼𝑆𝑠𝑖 = 𝜕𝑡
(

𝑇 ∗𝑢𝛼
)

(68)

Expanding 𝑠𝑖(𝑥𝛼 + 𝑐𝑖𝛼𝛥𝑡, 𝑡+𝛥𝑡) in Taylor series, considering terms up 
to second order, and substituting into the thermal LBE, Eq. (22), we 
have: 
(

𝜕𝑡 + 𝑐𝑖𝛼𝜕𝛼
)

𝑠𝑖 +
𝛥𝑡
2

(

𝜕𝑡𝑡 + 2𝑐𝑖𝛼𝜕𝑡𝛼 + 𝑐2𝑖𝛼𝜕𝛼𝛼
)

𝑠𝑖 = − 1
𝜏𝑇 ∗

(

𝑠𝑖 − 𝑠
𝑒𝑞
𝑖
)

+𝑆𝑠𝑖 . (69)

Expanding the variables in terms of 𝜖: 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑠𝑖 = 𝑠(0)𝑖 + 𝜖𝑠(1)𝑖 + 𝜖2𝑠(2)𝑖
𝜕𝑡 = 𝜖𝜕(1)𝑡 + 𝜖2𝜕(2)𝑡
𝜕𝛼 = 𝜖𝜕(1)𝛼
𝑆𝑠𝑖 = 𝜖𝑆(1)

𝑠𝑖

(70)

Applying the expansion to Eq. (69), neglecting terms of order 𝜖3 and 
superior, and separating into the scales of 𝜖, we have: 

𝜖0 ∶ 𝑠(0)𝑖 = 𝑠𝑒𝑞𝑖 ; (71)

𝜖1 ∶
(

𝜕(1)𝑡 + 𝑐𝑖𝛼𝜕(1)𝛼
)

𝑠(0)𝑖 = −
𝑠(1)𝑖
𝜏𝑇 ∗

+
(

1 − 𝛥𝑡
2𝜏𝑇 ∗

)

𝑆(1)
𝑠𝑖

; (72)

𝜖2 ∶ 𝜕(2)𝑡 𝑠(0)𝑖 +
(

𝜕(1)𝑡 + 𝑐𝑖𝛼𝜕(1)𝛼
)

𝑠(1)𝑖 + 𝛥𝑡
2

(

𝜕(1)𝑡 + 𝑐𝑖𝛼𝜕(1)𝛼
)2
𝑠(0)𝑖 = −

𝑠(2)𝑖
𝜏𝑇 ∗

. (73)

Substituting Eq. (72) into Eq. (73), 

𝜕(2)𝑡 𝑠(0)𝑖 +
(

𝜕(1)𝑡 + 𝑐𝑖𝛼𝜕(1)𝛼
)

(

1 − 𝛥𝑡
2𝜏𝑇 ∗

)

𝑠(1)𝑖 = −
𝑠(2)𝑖
𝜏𝑇 ∗

− 𝛥𝑡
2

(

𝜕(1)𝑡 + 𝑐𝑖𝛼𝜕(1)𝛼
)

×
(

1 − 𝛥𝑡
2𝜏𝑇 ∗

)

𝑆(1)
𝑠𝑖
.

(74)

To determine the moments of 𝑠(1)𝑖  and 𝑠(2)𝑖 , we start from Eq.  (25), 
Eq. (67) and (68). Similarly to Appendix  A.1, we have that ∑𝑖 𝑠

(1)
𝑖 =

−𝛥𝑡∕2
∑

𝑖 𝑆
(1)
𝑠𝑖  and ∑𝑖 𝑠

(2)
𝑖 = 0. Then, taking the zeroth and first moments 

of Eq. (72), 

⎧

⎪

⎨

⎪

⎩

0th ∶ 𝜕(1)𝑡 𝑇 ∗ + 𝜕(1)𝛼
(

𝑢𝛼𝑇 ∗) =
∑

𝑖 𝑆
(1)
ℎ𝑖

;

1st ∶ 𝜕(1)𝑡
(

𝑢𝛼𝑇 ∗) + 𝑐2𝑠 𝜕
(1)
𝛼 𝑇 ∗ −

(

1 − 𝛥𝑡
2𝜏𝑇 ∗

)

∑

𝑖 𝑐𝑖𝛼𝑆
(1)
𝑠𝑖 = − 1

𝜏𝑇 ∗
∑

𝑖 𝑐𝑖𝛼𝑠
(1)
𝑖 .

(75)

Next, taking the zeroth moment of Eq. (73), using the first moment 
of Eq. (75) and the relations found for ∑𝑖 𝑠

(1)
𝑖  and ∑𝑖 𝑠

(2)
𝑖 , 

𝜕(2)𝛼 𝑇 ∗ = 𝜕(1)𝛼
(

𝜏𝑇 ∗ − 𝛥𝑡
2

)

[

𝜕(1)𝑡
(

𝑢𝛼𝑇
∗) + 𝑐2𝑠 𝜕

(1)
𝛼 𝑇 ∗ −

∑

𝑖
𝑐𝑖𝛼𝑆

(1)
𝑠𝑖

]

. (76)

Summing Eq. (76) with the zeroth moment in Eq. (75), and recov-
ering the scale analysis, we have: 

𝜕𝑡𝑇
∗+𝜕𝛼

(

𝑢𝛼𝑇
∗) = 𝜕𝛼

[(

𝜏𝑇 ∗ − 𝛥𝑡
2

)

𝑐2𝑠 𝜕𝛼𝑇
∗
]

+𝑚̇′′′𝑇 ∗
(

𝜌−1𝑔 − 𝜌−1𝑙
)

+𝐸, (77)

From the continuity equation, Eq. (65), and with the relation 𝛼𝑙 =
(

𝜏𝑇 ∗ − 𝛥𝑡
2

)

𝑐2𝑠 , we achieve the full energy equation, Eq. (78), with the 
error term 𝐸 = −𝜕𝛼

[(

𝜏𝑇 ∗ − 𝛥𝑡
2

)

𝜖2𝜕(2)𝑡
(

𝑢𝛼𝑇 ∗)
]

. 

𝜕𝑡𝑇
∗ + 𝑢𝛼𝜕𝛼𝑇 ∗ = 𝜕𝛼

(

𝛼𝑙𝜕𝛼𝑇
∗) + 𝐸 (78)
18 
A.4. Forces calculation

In this section we present the models used here for the forces 
estimation, both for numerical and experimental [72]. The scheme used 
are based on Zeng et al. [99] proposition.

Starting by the buoyancy force, the same is calculated by the 
traditional way, considering the bubble volume, the gravitational ac-
celeration and the density difference between gas and liquid phases, as 
given in Eq. (79). 
𝐹𝑏(𝑡) = 𝑉 (𝑡)(𝜌𝑙 − 𝜌𝑔)|𝐠| (79)

Next, for the surface tension force, the authors proposed the expres-
sion given by Eq. (80), where 𝜎 is the surface tension value, 𝑅𝑑 is the 
dry radius and 𝜑𝑎𝑝 is the apparent contact angle. 

𝐹𝜎 (𝑡) = −2𝜋𝑅𝑑 (𝑡)𝜎 sin
(

𝜑𝑎𝑝(𝑡)
)

(80)

The contact pressure are related to the pressure inside the bub-
ble. Zeng et al. [99] proposed the form given by Eq. (81), where 𝑅𝑟
is the radius of curvature at the base of the bubble. In this case, we 
followed the suggestion of the mentioned authors, in which 𝑅𝑟 ≈ 5𝑅𝑒𝑞 . 

𝐹𝑐𝑝(𝑡) = 𝜋𝑅𝑑 (𝑡)2
2𝜎
𝑅𝑟(𝑡)

; (81)

At last, the forces related to the growth resistance and lift (both drag 
forces) because of the movement between the liquid and the bubble, 
as well as the added mass force (also related to the growth process) 
are included in a single force called ‘‘dynamic force’’. As we have the 
position of the bubble center of mass with time, we can estimate its 
velocity (𝑣) and, consequently, its acceleration. Thus, we can estimate 
the resultant force acting on the bubble. By a force balance, we can 
then estimate the value of the dynamic force, given by Eq. (82). 

𝐹𝐷(𝑡) = −𝜌𝑔𝑉 (𝑡)
𝑑𝑣(𝑡)
𝑑𝑡

+ 𝐹𝑏(𝑡) + 𝐹𝜎 (𝑡) + 𝐹𝑐𝑝(𝑡); (82)

The previous expressions were used for estimating the forces acting 
on the numerical bubble. For a more detailed explanation, see Martins 
et al. [72].

Appendix B. Supplementary data

Supplementary material related to this article can be found online 
at https://doi.org/10.1016/j.icheatmasstransfer.2025.109207.

Data availability

Data will be made available on request.
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