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Abstract. The aim of this paper is to provide results on the expo-
nential stability of the trivial solution of certain Volterra-Stieltjes in-
tegral equations involving Perron–Stieltjes integrable functions. By
means of Lyapunov–type functionals, we obtain conditions for the
trivial solution of a generalized ODE to be weakly exponentially
stable and exponentially stable. Then, because Volterra-Stieltjes in-
tegral equations can be identified with a certain class of generalized
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to illustrate our results, we provide an application to impulsive dif-
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1 Introduction

In this work, we establish sufficient conditions to obtain exponential
stability results for the trivial solution of the following integral form

x(t) = x(s0) +

∫ t

s0

f(x(s), s)ds+

∫ t

s0

g(x(s), s)du(s), t ≥ s0, (1.1)

where f, g : X × [t0,∞) → X and u : [t0,∞) → R are functions, t0 ∈ R,
X is a Banach space and f(0, t) = g(0, t) = 0 for all t ≥ t0 and s0 ≥ t0.
The integrals on the right–hand side of (1.1) are considered in the senses
of Perron and Perron–Stieltjes respectively.

In order to obtain the main results, we first present the theory of
exponential stability for generalized ordinary differential equations (we
write generalized ODEs, for short). The theory of exponential stability for
generalized ODEs was first presented in 2014 (see [1]). Later, this theory
also appeared in the book [6] and in the papers [17, 18]. In the present
paper, we recover a different notion of exponential stability together with a
concept of weak exponential stability employed to impulsive infinite delay
differential systems in [16] and we adapt such concepts to our generalized
ODEs, establishing criteria not only for this new concept of exponential
stability, but also for weak exponential stability of solutions.

It is well–known that there exists a one-to-one relation between the
solutions of certain generalized ODEs and the solutions of equations (1.1)
(see [8, 10], for instance). In fact, generalized ODEs encompass several
kinds of equations, among which we mention ordinary and impulsive dif-
ferential equations [29], functional differential equations (FDEs) including
those of neutral type [7, 9, 11, 12, 14, 21, 28], impulsive FDEs [1–4, 13, 15],
among others. It is clear that any combination of these equations can also
be described by generalized ODEs. Using the correspondence theorem
between the solutions of generalized ODEs and those of equation (1.1), we
obtain the desired results.

We organize this paper in the following way. In Section 2, we recall
some basic concepts and results from the theory of generalized ODEs.
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In Section 3, we present new concepts of weak exponential stability and
exponential stability for the trivial solution of a generalized ODE. Us-
ing Lyapunov–type functionals, we establish sufficient conditions for the
trivial solution of a generalized ODE to be weakly exponentially stable
(see Theorem 3.4) and exponentially stable (see Theorem 3.6). Section
4 deals with the exponentially stability for equation (1.1). In Subsection
4.1, we present the general conditions for (1.1) to have a unique maximal
solution and then, in Subsection 4.2, we introduce adequate concepts of
weak exponential stability and exponential stability for the trivial solution
of the Volterra–Stieltjes integral equation (1.1) so that, when we apply the
relation between equation (1.1) and a certain generalized ODE, the inten-
ded results come naturally. Finally, in Section 5, we deal with exponential
stability for impulsive differential equations.

2 Preliminaries

In this section, for the reader’s convenience, we present basic concepts
and some results from the theory of generalized ODEs. In order to exhibit
the concept of a generalized ODE, we need to present the definition of the
integral due to Jaroslav Kurzweil [6, 22, 29].

A division of an interval [a, b] is a finite set d = {s0, s1, . . . , s|d|} such
that a = s0 ≤ s1 ≤ . . . ≤ s|d| = b, where |d| denotes the number of
subintervals of the form [si−1, si] of the division d.

A tagged division of a compact interval [a, b] ⊂ R is a finite collection
of point–interval pairs d̃ = {(τi, [si−1, si])}|d|i=1, where d = {s0, s1, . . . , s|d|}
is a division of [a, b] and τi ∈ [si−1, si] is a tag for each i.

A gauge on a set J ⊂ [a, b] is any function δ : J → (0,∞). Given a
gauge δ on [a, b], we say that a tagged division d̃ = {(τi, [si−1, si])}|d|i=1 is
δ–fine, whenever

τi ∈ [si−1, si] ⊂ (τi − δ(τi), τi + δ(τi)) for all i = 1, 2, . . . , |d|.

Let X be a Banach space endowed with a norm ‖ · ‖.
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Definition 2.1. A function U : [a, b] × [a, b] → X is said to be Kurzweil
integrable on [a, b], if there is an element I ∈ X such that for each ε > 0

there exists a gauge δ on [a, b] so that∥∥∥∥∥
|d|∑
i=1

[U(τi, si)− U(τi, si−1)]− I

∥∥∥∥∥ < ε

for every δ–fine tagged division d̃ = {(τi, [si−1, si])}|d|i=1 of [a, b]. In this case,
I is the Kurzweil integral of U over [a, b] and it is denoted by

∫ b
a DU(τ, t).

The Kurzweil integral has the usual properties of uniqueness, linearity,
additivity with respect to adjacent intervals, integrability on subintervals,
among other properties. Moreover, it encompasses the well–known Perron–
Stieltjes integral as well as its improper integrals. The reader may consult
[6, 29] for more properties of this type of integration.

Remark 2.2. The Kurzweil integral can be extended to unbounded in-
tervals, see [5] and [19].

In what follows, we present basic concepts and an important prelim-
inary result of the theory of generalized ODEs. This theory is very well
structured in the books [6], [27] and [29]. Other important references on
generalized ODEs are [23], [24], [25] and [26].

Let F : Ω → X be a function defined for each (x, t) ∈ Ω, where Ω =

X × [t0,∞) and t0 ∈ R. As introduced in [29], the equation

dx

dτ
= DF (x, t) (2.1)

is known as a generalized ODE and it is defined via its solutions, that
is, a function x : J → X is said to be a solution of (2.1) on the interval
J ⊂ [t0,∞), whenever for all s1, s2 ∈ J , we have

x(s2)− x(s1) =

∫ s2

s1

DF (x(τ), t), (2.2)

where the integral on the right–hand side of (2.2) is in the sense of the
Kurzweil integral.
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Given an initial condition (x0, s0) ∈ X × J , a solution of the initial
value problem 

dx

dτ
= DF (x, t)

x(s0) = x0,

on the interval J ⊂ [t0,∞) is any function x : J → X satisfying

x(s) = x0 +

∫ s

s0

DF (x(τ), t), s ∈ J.

Now, we present a special class of functions F : Ω → X for which we
can derive interesting properties of the solutions of (2.1).

Definition 2.3. We say that a function F : Ω→ X belongs to F(Ω, h), if
there is a nondecreasing left–continuous function h : [0,∞)→ R such that
for all (x, s2), (x, s1), (y, s2), (y, s1) ∈ Ω,

‖F (x, s2)− F (x, s1)‖ ≤ |h(s2)− h(s1)| and

‖F (x, s2)− F (x, s1)− F (y, s2) + F (y, s1)‖ ≤ ‖x− y‖|h(s2)− h(s1)|

The next result shows interesting properties concerning the solutions
of the generalized ODE (2.1), provided F belongs to the class F(Ω, h).

Proposition 2.4. Let [α, β] ⊂ [t0,∞) and x : [α, β] → X be a solution
of (2.1). If F : Ω → X belongs to the class F(Ω, h), then the following
properties hold:

(i) ‖x(t)− x(s)‖ ≤ |h(t)− h(s)| for all t, s ∈ [α, β]. Moreover, every
point of [α, β] at which h is continuous, is a continuity point of x.

(ii) x is a function of bounded variation on [α, β] and

var[α,β]x ≤ h(β)− h(α) <∞.

(iii) x(t+) − x(t) = F (x(t), t+) − F (x(t), t) for all t ∈ [α, β) and x(t) −
x(t−) = F (x(t), t) − F (x(t), t−) for all t ∈ (α, β], where F (x, t+) =

lim
s→t+

F (x, s) for t ∈ [α, β) and F (x, t−) = lim
s→t−

F (x, s) for t ∈ (α, β].
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(iv) For each (x0, s0) ∈ Ω, there exists a unique maximal solution of the
generalized ODE (2.1), defined in [s0,∞), such that x(s0) = x0.

The proofs of items (i), (ii) and (iii) can be found in [29]. The statement
in (iv) was proved in [10].

3 Exponential stability for Generalized ODEs

Let us consider a function F : Ω → X which belongs to the class
F(Ω, h), where h : [t0,∞) → R is a left–continuous and nondecreasing
function. With this function, we consider the following generalized ODE

dx

dτ
= DF (x, t). (3.1)

Our aim is to establish results on the exponential stability and the weak
exponential stability of the trivial solution of (3.1). In order to ensure that
x ≡ 0 is a solution of (3.1), we shall assume that

F (0, t2)− F (0, t1) = 0, t1, t2 ∈ [t0,∞).

In what follows, we denote by x(·) = x(·, s0, x0) the maximal solution
x : [s0,∞) → X of (3.1), with initial condition x(s0) = x0 ∈ X, s0 ≥ t0.
Such a solution exists and is unique due to Proposition 2.4–(iv).

Definition 3.1. The trivial solution of the generalized ODE (3.1) is

(i) Weakly exponentially stable, if there exist a continuous strictly
increasing function α : R+ → R+ satisfying α(0) = 0 and a constant
λ > 0, such that for ε > 0 and s0 ≥ t0, there exists δ = δ(ε) > 0 such
that α(‖x(t)‖) < εe−λ(t−s0) for every t ≥ s0, provided ‖x0‖ < δ.

(ii) Exponentially stable, if there exists a constant λ > 0, such that
for every ε > 0 and s0 ≥ t0, there exists δ = δ(ε) > 0 such that
‖x(t)‖ < εe−λ(t−s0) for every t ≥ s0, provided ‖x0‖ < δ.
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Remark 3.2. It is worth reiterating that the concepts of stability and
weak stability for generalized ODEs described in Definition 3.1 are new in
the literature, but they were adapted from those presented by Fu and Li
in [16], in Definition 2.3, for impulsive differential equations with infinite
delay.

Remark 3.3. The Definition 3.1 - (ii) is related with the notion of uniform
stability from [9, Definition 3.2], because

‖x(t)‖ < εe−λ(t−s0) ⇒ ‖x(t)‖ < ε,

for every t > s0, since e−λ(t−s0) < 1.

Using Lyapunov–type functionals, we now establish conditions for both
the weak exponential stability and the exponential stability of the trivial
solution of equation (3.1).

Theorem 3.4. Let V : [t0,∞)×X → R be a functional for which

(i) there exist continuous strictly increasing functions a : R+ → R+ and
b : R+ → R+ satisfying a(0) = 0 = b(0) such that

b(‖x‖) ≤ V (t, x) ≤ a(‖x‖)

for all t ∈ [t0,∞) and all x ∈ X;

(ii) there exist T > 0 and θ ∈ (0, 1) such that if x : [s0,∞)→ X, s0 ≥ t0,
is solution of (3.1), then V (t, x(t)) ≤ θV (s, x(s)), for t, s ∈ [s0,∞)

and t− s ≥ T ;

(iii) if x : [s0,∞)→ X, s0 ≥ t0, is a solution of (3.1), then V (t2, x(t2)) ≤
V (t1, x(t1)) for all t1, t2 ∈ [s0,∞) such that s0 ≤ t1 ≤ t2 <∞.

Then, the trivial solution of (3.1) is weakly exponentially stable.

Proof. Consider λ = − 1
T ln θ > 0. Let ε > 0 and s0 ≥ t0. By the properties

of the function a, there is a δ > 0 depending on ε and such that a(δ) < εθ.
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Let x(t) = x(t, s0, x0) be the solution of (3.1) on [s0,∞) such that
x(s0) = x0 ∈ X, with ‖x0‖ < δ. Given t ≥ s0, there exists an integer
n ≥ 0 such that nT ≤ t− s0 < nT + T. Condition (ii) implies that

V (t, x(t)) ≤ θV (t− T, x(t− T )) ≤ θ2V (t− 2T, x(t− 2T ))

≤ . . . ≤ θnV (t− nT, x(t− nT )). (3.2)

Since V satisfies condition (iii), we obtain

V (t− nT, x(t− nT )) ≤ V (s0, x0). (3.3)

Then, condition (i) yields

V (s0, x(s0)) ≤ a(‖x0‖) < a(δ). (3.4)

By (3.2), (3.3) and (3.4), for all t ≥ s0, we have

V (t, x(t)) ≤ θnV (s0, x(s0)) < θn+1θ−1a(δ) ≤ θ
t−s0
T θ−1a(δ)

= e−λ(t−s0)θ−1a(δ) < θ−1εθe−λ(t−s0)

= εe−λ(t−s0). (3.5)

On the other hand, by condition (i) and (3.5), for all t ≥ s0,

b(‖x(t)‖) ≤ V (t, x(t)) < εe−λ(t−s0),

whence the result follows.

Given a solution x : [s0,∞)→ X of the generalized ODE (3.1), where
s0 ≥ t0, we consider the right derivative of V along to x given by

D+V (t, x(t)) = lim sup
η→0+

V (t+ η, x(t+ η))− V (t, x(t))

η
,

for all t ≥ s0. Thus, we have the following straightforward result.

Corollary 3.5. Let V : [t0,∞)×X → R be a functional satisfying:
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(i) there are continuous strictly increasing functions a : R+ → R+ and
b : R+ → R+, with a(0) = 0 = b(0), such that for every t ∈ [t0,∞)

and x ∈ X,
b(‖x‖) ≤ V (t, x) ≤ a(‖x‖);

(ii) there exist T > 0 and θ ∈ (0, 1) such that a(‖x(t)‖) ≤ θb(‖x(s)‖)
for every solution x : [s0,∞) → X of (3.1), with t, s ∈ [s0,∞) and
t− s ≥ T ;

(iii) D+V (t, x(t)) ≤ 0, for every solution x : [s0,∞) → X of (3.1), with
s0 ≥ t0.

Then, the trivial solution of (3.1) is weakly exponentially stable.

Theorem 3.6. Let V : [t0,∞)×X → R be a functional satisfying condi-
tions (ii) and (iii) of Theorem 3.4. Moreover, assume that V satisfies:

(i∗) there exist k > 0, m ∈ N, and a continuous strictly increasing func-
tion a : R+ → R+, with a(0) = 0, and such that k‖x‖m ≤ V (t, x) ≤
a(‖x‖) for every t ∈ [t0,∞) and x ∈ X.

Then, the trivial solution x ≡ 0 of (3.1) is exponentially stable.

Proof. Let λ̂ = − 1
T ln θ > 0 and λ = λ̂

m , where m is given by condition
(i∗). Let ε > 0 and s0 ≥ t0. Since a(0) = 0, the continuity of a at 0 implies
the existence of a δ > 0 depending on ε and such that a(δ) < εmθk.

Let x(t) = x(t, s0, x0) be the solution of the generalized ODE (3.1) on
[s0,∞) satisfying x(s0) = x0 ∈ X, with ‖x0‖ < δ. By the same procedure
used in the proof of Theorem 3.4, k‖x(t)‖m < e−λ̂(t−s0)θ−1a(δ). Hence,

‖x(t)‖ <
(
θ−1a(δ)

k

) 1
m

e−
λ̂
m
(t−s0) < εe−

λ̂
m
(t−s0) = εe−λ(t−s0),

for all t ≥ s0, which completes the proof.

Corollary 3.7. Let V : [t0,∞)×X → R be a functional satisfying condi-
tion (iii) of Corollary 3.5 and condition (i∗) of Theorem 3.6. Assume, in
addition, that
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(ii∗) there exist T > 0 and θ ∈ (0, 1) such that a(‖x(t)‖) ≤ θk‖x(s)‖m

for every solution x : [s0,∞) → X of (4.1), with t, s ∈ [s0,∞) and
t− s ≥ T .

Then, the trivial solution x ≡ 0 of (3.1) is exponentially stable.

4 Exponential stability for a Volterra–Stieltjes–
type integral equation

This section is divided into two parts. In Subsection 4.1, we describe
the setting of our equations and we bring up the aforementioned result
that links our Volterra–Stieltjes–type integral equation with a generalized
ODE. The main results are grouped Subsection 4.2.

4.1 Basic framework

Let X be a Banach space with norm ‖ · ‖ and t0 ∈ R. For s0 ≥ t0,

consider the following Volterra–Stieltjes–type integral equation

x(t) = x(s0) +

∫ t

s0

f(x(s), s)ds+

∫ t

s0

g(x(s), s)du(s), t ≥ s0, (4.1)

where f, g : X × [t0,∞) → X and u : [t0,∞) → R are functions. The
first integral on the right–hand side of (4.1) is understood in the sense of
Definition 2.1, with U(t, τ) = tf(τ, x(τ)), in which case we refer to as the
Perron integral. The second integral can also be understood in the sense
of Definition 2.1, with U(t, τ) = u(t)g(τ, x(τ)), and we refer to it as the
Perron–Stieltjes integral.

Let a, b ∈ R, with a < b. The space of all regulated functions defined
on the interval [a, b] and taking values in X is denoted by G([a, b], X).
This space, equipped with the usual supremum norm given by

‖x‖∞ = sup
t∈[a,b]

‖x(t)‖, x ∈ G([a, b], X),

is a Banach space, see [20, Theorem 3.6]. By G([t0,∞), X), we mean the
space of all functions x : [t0,∞)→ X such that x|[α,β] belongs to the space
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G([α, β], X) for all [α, β] ⊂ [t0,∞). Then, by G0([t0,∞), X), we denote
the space of all functions x ∈ G([t0,∞), X) fulfilling

sup
s∈[t0,∞)

e−(s−t0) ‖x(s)‖ <∞.

The space G0([t0,∞), X), endowed with the norm

‖x‖[t0,∞) = sup
s∈[t0,∞)

e−(s−t0) ‖x(s)‖ , x ∈ G0([t0,∞), X),

is a Banach space. A proof of this fact was presented in [6, Proposition 1.9].
In order to obtain existence and uniqueness of solutions of (4.1), we

assume that the functions f, g : X × [t0,∞) → X and u : [t0,∞) → R
satisfy the conditions below.

(A1) u : [t0,∞)→ R is nondecreasing and left–continuous on (t0,∞).

(A2) The Perron integral
∫ s2
s1
f(x(s), s)ds exists for all x ∈ G([t0,∞), X)

and all s1, s2 ∈ [t0,∞).

(A3) The Perron–Stieltjes integral
∫ s2
s1
g(x(s), s)du(s) exists for all x ∈

G([t0,∞), X) and all s1, s2 ∈ [t0,∞).

(A4) There exist a locally Perron integrable function M1 : [t0,∞) → R+

and a locally Perron–Stieltjes integrable function M2 : [t0,∞)→ R+

with respect to u such that, for all x ∈ G([t0,∞), X) and all s1, s2 ∈
[t0,∞), with s1 ≤ s2, we have∥∥∥∥∫ s2

s1

f(x(s), s)ds

∥∥∥∥ ≤ ∫ s2

s1

M1(s)ds and∥∥∥∥∫ s2

s1

g(x(s), s)du(s)

∥∥∥∥ ≤ ∫ s2

s1

M2(s)du(s).

(A5) There exist a locally Perron integrable function L1 : [t0,∞) → R+

and locally Perron–Stieltjes integrable function L2 : [t0,∞) → R+

with respect to u such that, for all x, z ∈ G0([t0,∞), X) and all
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s1, s2 ∈ [t0,∞), with s1 ≤ s2, we have∥∥∥∥∫ s2

s1

[f(x(s), s)− f(z(s), s)]ds

∥∥∥∥ ≤ ‖x− z‖[t0,∞)

∫ s2

s1

L1(s)ds and∥∥∥∥∫ s2

s1

[g(x(s), s)− g(z(s), s)]du(s)

∥∥∥∥ ≤ ‖x− z‖[t0,∞)

∫ s2

s1

L2(s)du(s).

A proof of the next result follows as in [10, Theorems 4.2 and 4.7].

Theorem 4.1. Assume that conditions (A1)–(A5) hold. Choose an arbit-
rary τ0 ∈ [t0,∞) and define F : X × [t0,∞)→ X by

F (x, t) =

∫ t

τ0

f(x, s)ds+

∫ t

τ0

g(x, s)du(s), (x, t) ∈ X × [t0,∞). (4.2)

Then, the following conditions are true:

(i) F ∈ F(Ω, h), where Ω = X × [t0,∞), and h : [t0,∞)→ R given by

h(t) =

∫ t

τ0

(M1(s) + L1(s))ds+

∫ t

τ0

(M2(s) + L2(s))dg(s),

for t ∈ [t0,∞), is a nondecreasing and left–continuous function.

(ii) If x ∈ G([a, b], X), with [a, b] ⊂ [t0,∞), then both the Kurzweil integ-
ral
∫ b
a DF (x(τ), t) and the Perron–Stieltjes integral

∫ b
a f(x(s), s)dg(s)

exist and have the same value.

In the sequel, we present the correspondence result which links the
solutions of (4.1) to the solutions of a certain class of generalized ODE
given by

dx

dτ
= DF (x, t), (4.3)

where F is defined by

F (x, t) =

∫ t

t0

f(x, s)ds+

∫ t

t0

g(x, s)du(s),

with (x, t) ∈ X × [t0,∞). This relation is essential to our main results.
The proof of Theorem 4.2 below follows as in [10, Theorem 4.8].
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Theorem 4.2. Assume that conditions (A1)–(A5) hold.

(i) A function x : J → X is solution of (4.1) on J ⊂ [t0,∞) if and only
if it is solution of the generalized ODE (4.3) on J .

(ii) For all (x0, s0) ∈ X× [t0,∞), there exists a unique maximal solution
of (4.1) defined in [s0,∞) for which x(s0) = x0.

4.2 Main results

Recall the Volterra–Stieltjes–type integral equation (4.1) such that
f, g : X × [t0,∞)→ X satisfy conditions (A2) to (A5) and u : [t0,∞)→ R
satisfies condition (A1). Assume, in addition, that

f(0, t) = g(0, t) = 0, t ≥ t0,

which implies that x ≡ 0 is a solution of the MDE (4.1) in every subinterval
of [t0,∞). By x(t) = x(t, s0, x0), we denote the unique maximal solution
x : [s0,∞)→ X of (4.1), with initial condition x(s0) = x0. Such a solution
exists by Theorem 4.2.

Next, we present the new concepts of weak exponential stability and
exponential stability for the trivial solution of (4.1), which were adapted
from [16], Definition 2.3.

Definition 4.3. The trivial solution of (4.1) is

(i) weakly exponentially stable, if there exist a continuous strictly
increasing function α : R+ → R+, with α(0) = 0, and a constant
λ > 0, such that for ε > 0 and s0 ≥ t0, there exists δ = δ(ε) > 0 such
that α(‖x(t)‖) < εe−λ(t−s0) for every t ≥ s0, provided ‖x0‖ < δ;

(ii) exponentially stable, if there exists a constant λ > 0, such that
for ε > 0 and s0 ≥ t0, there exists δ = δ(ε) > 0 such that ‖x(t)‖ <
εe−λ(t−s0) for every t ≥ s0, provided ‖x0‖ < δ.

In the next results, we provide sufficient conditions to ensure that the
trivial solution of (4.1) is weak exponentially stable and exponentially
stable.
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Theorem 4.4. Let V : [t0,∞)×X → R be a functional for which

(i) there exist continuous strictly increasing functions a : R+ → R+ and
b : R+ → R+ satisfying a(0) = 0 = b(0) such that

b(‖x‖) ≤ V (t, x) ≤ a(‖x‖)

for all t ∈ [t0,∞) and all x ∈ X;

(ii) there exist T > 0 and θ ∈ (0, 1) such that if x : [s0,∞)→ X is solu-
tion of the MDE (4.1), with s0 ≥ t0, then V (t, x(t)) ≤ θV (s, x(s))

whenever t, s ∈ [s0,∞) and t− s ≥ T ;

(iii) if x : [s0,∞)→ X is a solution of (4.1), with s0 ≥ t0, then V (t2, x(t2)) ≤
V (t1, x(t1)) for all t1, t2 ∈ [s0,∞), such that s0 ≤ t1 ≤ t2 <∞.

Then, the trivial solution of (4.1) is weakly exponentially stable.

Proof. Let F : X × [t0,∞)→ X be a function defined by

F (x, t) =

∫ t

t0

f(x, s)ds+

∫ t

t0

g(x, s)du(s),

with (x, t) ∈ X × [t0,∞). Since f, g : X × [t0,∞) → X satisfy conditions
(A2) to (A5), and u : [t0,∞) → R satisfies condition (A1), Theorem 4.1
implies F ∈ F(Ω, h), with Ω = X × [t0,∞) and h : [t0,∞)→ R given by

h(t) =

∫ t

τ0

(M1(s) + L1(s))ds+

∫ t

τ0

(M2(s) + L2(s))dg(s).

Note that the function h is left–continuous on (t0,∞), since u is left–
continuous on (t0,∞). In addition, the assumption f(0, t) = g(0, t) = 0,
for all t ∈ [t0,∞), implies that F (0, t2) − F (0, t1) = 0 for all t2, t1 ≥ t0,

which implies that x ≡ 0 is a solution of the generalized ODE

dx

dτ
= DF (x, t), (4.4)

on the interval [t0,∞).
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The relation between the solutions of our class of generalized ODE
(4.4) and the solutions of (4.1), which is described by Theorem 4.2, allows
us to verify that V satisfies the conditions (i), (ii) and (iii) of Theorem
3.4. Consequently, the trivial solution of the generalized ODE (4.4) is
weakly exponentially stable. Using again the relation between solutions,
the trivial solution of (4.1) is weakly exponentially stable.

Corollary 4.5. Let V : [t0,∞)×X → R be a functional satisfying

(i) there exist continuous strictly increasing functions a : R+ → R+ and
b : R+ → R+ satisfying a(0) = 0 = b(0) such that

b(‖x‖) ≤ V (t, x) ≤ a(‖x‖)

for all t ∈ [t0,∞) and all x ∈ X;

(ii) there exist T > 0 and θ ∈ (0, 1) such that a(‖x(t)‖) ≤ θb(‖x(s)‖) for
every solution x : [s0,∞)→ X of (4.1), whenever t, s ∈ [s0,∞) and
t− s ≥ T ;

(iii) D+V (t, x(t)) ≤ 0 for every solution x : [s0,∞) → X of (4.1), with
s0 ≥ t0.

Then, the trivial solution of (4.1) is weakly exponentially stable.

Theorem 4.6. Let V : [t0,∞) ×X → R be a Lyapunov functional satis-
fying conditions (ii) and (iii) of Theorem 4.4. If, in addition,

(i∗) there exist k > 0, m ∈ N, and a continuous strictly increasing func-
tion a : R+ → R+, with a(0) = 0, such that k‖x‖m ≤ V (t, x) ≤
a(‖x‖) for all t ∈ [t0,∞) and x ∈ X.

Then, the trivial solution of (4.1) is exponentially stable.

Proof. As in the proof of Theorem 4.4, one may check that all the hy-
potheses of Theorem 3.6 are satisfied. Hence, the trivial solution of the
generalized ODE (4.4) is exponentially stable. Using the relation between
the solutions of our class of generalized ODE (4.4) and the solutions of (4.1)
yields that the trivial solution of (4.1) is also exponentially stable.
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Corollary 4.7. Let V : [t0,∞)×X → R be a functional satisfying condi-
tion (iii) of Corollary 4.5 and condition (i∗) of Theorem 4.6. If, moreover,

(ii∗) there exist T > 0 and θ ∈ (0, 1) such that a(‖x(t)‖) ≤ θk‖x(s)‖m for
every solution x : [s0,∞)→ X of (4.1), whenever t, s ∈ [s0,∞) and
t− s ≥ T .

Then, the trivial solution of (4.1) is exponentially stable.

5 An application

Let Rn be endowed with norm ‖x‖1 =
∑n

i=1 |xi|, x ∈ Rn. Consider the
impulsive differential equation (IDE) subject to pre-assigned moments of
impulse effects{

ẋ = −b(t)q(x), t 6= ti, t ≥ 0,

∆(x(ti)) = x(ti+)− x(ti) = Bix(ti), i ∈ N.
(5.1)

Suppose the following conditions hold:

(B1) b : R+ → [0,∞) is a non–negative function, q : O ⊂ Rn → Rn is a
function defined on a bounded subset O of Rn, with q(0) = 0 and
xiqi(x) > 0 whenever xi 6= 0 and i ∈ {1, 2, . . . , n}, and the Perron
integral

∫ b
a b(s)q(x(s))ds exists for x ∈ G(R+, O) and 0 ≤ a < b;

(B2) there exists a locally Perron integrable function m : R+ → R+ such
that for all a, b ∈ R+, with a < b, we have∥∥∥∥∫ b

a
b(s)q(x(s))ds

∥∥∥∥
1

≤
∫ b

a
m(s)ds,

for every x ∈ G(R+, O);

(B3) there exists a locally Perron integrable function ` : R+ → R+ such
that for a, b ∈ R+, with a < b, we have∥∥∥∥∫ b

a
[b(s)q(x(s))− b(s)q(z(s))]ds

∥∥∥∥
1

≤ ‖x− z‖[0,∞)

∫ b

a
`(s)ds,

for every x, z ∈ G0(R+, O);
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(B4) 0 < t1 < t2 < . . . < tk < . . . and lim
k→∞

tk =∞;

(B5) −1 < Bi < −1 + θ0 for some θ0 ∈ (0, 1) and for all i ∈ N;

(B6) there exists T > 0 such that on each interval (kT, (k + 1)T ), k ∈ N,
there exists at least one discontinuity point tj .

Given s0 ≥ 0, a function x : [s0,∞)→ Rn is a solution of (5.1), if x(t) ∈
O for all t ∈ [s0,∞), x is continuous on every interval [0, t1] ∩ [s0,∞) and
(ti, ti+1] ∩ [s0,∞) for i ∈ N, x′(t) = −b(t)q(x(t)) for almost all t ∈ [s0,∞)

and x(ti+) = x(ti) +Bix(ti) whenever ti ∈ [s0,∞).
If x : [s0,∞)→ Rn is solution of (5.1), with s0 ≥ 0, then x satisfies the

Volterra integral equation

x(t) = x(s0)−
∫ t

s0

b(s)q(x(s)) ds+

∞∑
i=1

Bix(ti)Hti(t), t ≥ s0,

where Hti is the left–continuous Heaviside function concentrated at ti, i.e.,

Hti(t) =

{
0, for 0 ≤ t ≤ ti,

1, for t > ti.

Define g : R+ × O → Rn by g(t, x) = −b(t)q(x), and consider the
auxiliary functions:

g̃(t, x) =

{
g(t, x), if t ∈ R+ \ {t1, t2, . . .},
Bkx(tk), if t = tk, k ∈ N,

and

ũ(t) =

{
t, if t ∈ [0, t1],

t+ k, if t ∈ (tk, tk+1], k ∈ N.

According to [12, Theorem 3.1], the IDE (5.1) can be transformed into the
following Volterra–Stieltjes–type integral equation

x(t) = x(s0) +

∫ t

s0

g̃(s, x(s))dũ(s), t ≥ s0. (5.2)

This means that x is a solution of the IDE (5.1) if and only if x is a solution
of 5.2. Since conditions (B1) and (B1) hold and O is bounded, one can



88 S. M. Afonso, E. M. Bonotto and M. Federson

prove that conditions (A1)–(A5) are satisfied with f , g and u replaced by
0, g̃ and ũ respectively, see [12, Lemma 3.3]. Note that the boundedness
of O is used to conclude condition (A4), since the proof of [12, Lemma 3.3]
uses the boundedness of the impulse operator.

Define V : R+ × Rn → R+ by V (t, x) = ‖x‖1. We show next that the
function V satisfies the hypotheses of Theorem 4.6.

At first, consider a : R+ → R+ defined by a(t) = t, k = 1
2 and m = 1.

Then,
k‖x‖m1 ≤ V (t, x) ≤ a(‖x‖1),

which yields condition (i∗).
Now, let us consider an auxiliary function U : Rn → R+ given by

U(x) = ‖x‖1, x ∈ Rn. Let x : [0,∞) → O be a solution of (5.2). We
claim that, for all t ≥ 0,

D+U(x(t)) = lim sup
η→0+

U(x(t+ η))− U(x(t))

η
≤ 0.

In fact, we consider two cases: when t 6= ti for all i ∈ N and when t = ti

for some i ∈ N.
Case 1: t 6= ti for all i ∈ N. Since x ≡ 0 is the unique solution of (5.1)
such that x(0) = 0, we may consider:

(i) If x(t) 6= 0, then

D+U(x(t)) = ∇U(x(t))x′(t) = −
n∑
i=1

b(t) sgn(xi(t))qi(x(t)) ≤ 0,

since b is non-negative and xihi(x) > 0 for xi 6= 0. Here, by sgn(z)

we mean the sign of z.

(ii) If x(t) = 0, then D+U(x(t)) = 0.

Case 2: t = ti for some i ∈ N. In this case, by (B5), we get

U(x(t+i )) = U(x(ti) +Bix(ti)) = ‖(1 +Bi)(x(ti))‖1
< θ0‖x(ti)‖1 = θ0U(x(ti)).
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Thus, for η > 0 sufficiently small, we have U(x(ti + η)) ≤ U(x(ti)). Then,
for t = ti, we obtain

D+U(x(t)) = lim sup
η→0+

U(x(t+ η))− U(x(t))

η
≤ 0.

Analyzing the two previous cases, we conclude that D+U(x(t)) ≤ 0 for
all t ≥ 0. Consequently, U(x(t)) ≤ U(x(s)) whenever t ≥ s ≥ 0, which
implies that

V (t, x(t)) = U(x(t)) ≤ U(x(s)) = V (s, x(s))

for all t ≥ s ≥ 0 and condition (iii) is also satisfied.
Let t, s ≥ 0 be such that t− s ≥ T . By condition (B6), there exists tk

such that s < tk < t. Therefore,

U(x(t)) ≤ U(x(t+k )) ≤ θ0U(x(tk)) ≤ θ0U(x(s)),

whence it follows that V (t, x(t)) ≤ θ0V (s, x(s)). Hence, condition (ii)
holds. Since all conditions of Theorem 4.6 are satisfied, the trivial solution
of the Volterra–Stieltjes–type integral equation (5.2) is exponentially stable
and, therefore, the trivial solution of the IDE (5.1) is also exponentially
stable.
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