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Abstract In this work we take Lagrange’s and Euler’s important concepts from fl uid mechanics and 
apply them to the movement of a rigid body. By means of two examples, namely motion around a fi xed 
axis and around a fi xed point, Lagrangian and Eulerian formulations of the problems are discussed. It is 
shown that Euler’s approach suits better the description of rigid body kinematics, since the linearized 
equations of motion are simpler than the ones obtained by Lagrange’s formulation. This topic is rarely 
discussed in undergraduate courses on mechanics but it can provide students with a deeper 
comprehension of the movement of a rigid body and, at the same time, establish a connection with the 
scope of fl uid mechanics.
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Notation

γ a generic scalar or vector property of a fl uid particle
P0(X0, Y0, Z0) start position of a point of the rigid body
P(X, Y, Z) end position of a point of the rigid body
[P] a point of the fi xed frame
[p] a point of the rigid body
[Rφ,0,0], [R0,ψ,0], [R0,0,θ] rotation matrices
v→p velocity of the material point p
v→p velocity of all rigid body points that pass through P
[ω] angular velocity matrix
Ω
→

 angular velocity vector
s trajectory arc length
V control volume

Introduction

Lagrangian and Eulerian viewpoints are concepts commonly covered in fl uid 
mechanics undergraduate courses. Students are taught to describe the physical prop-
erties of a fl ow either by tracking a fl uid particle during its motion or by measuring 
the average properties of a fl ow of particles that cross the surface of a small control 
volume.

Given an inertial reference system OXYZ, two fi xed points P0(X0, Y0, Z0) and P(X, 
Y, Z), the scalar or vectorial property γ of the fl uid particles is described, according 
to Lagrangian viewpoint, as a function of the kind
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γ γ= ( )( )P P t t0, ,  (1)

where P(P0, t) represents the position of a particle that at instant t = 0 was in P0(X0, 
Y0, Z0). So, γ is seen, in this case, as a function intrinsically associated with the 
material point.

In the Eulerian approach, γ is represented by

γ γ= ( )P t,  (2)

and, in this case, it is intrinsically associated with the geometrical fi xed position P(X, 
Y, Z).

The advantages of Euler’s viewpoint over Lagrange’s in solving a great variety 
of fl uid mechanics problems have been emphasized in the literature. As implicit in 
equation 2, it is not mandatory that fl uid particles keep their material identity during 
the motion; so, the occurrence of turbulence does not prevent the application of this 
approach. Moreover, Euler’s mathematical model facilitates the linearization of the 
fl uid dynamics equations of motion.

Although comparisons of Euler’s and Lagrange’s viewpoints are made in fl uid 
mechanics books [1], in the literature concerning rigid body mechanics the subject 
is seldom approached. Except for one brief attempt [2], the authors ignore those 
concepts in their explanations of rigid body kinematics. Generally, the equation for 
the velocity fi eld of a rigid body is presented using algebraic reasoning [3, 4], instead 
of focusing on the physical phenomenon. However, the lack of information concern-
ing the motion of a moving space (i.e., the body) ‘fl owing’ through a fi xed space 
(i.e., the inertial reference system) hides important physical aspects of the rigid body 
velocity equation and, as a consequence, prevents students from having a deeper 
comprehension of its kinematics.

In this paper, we intend to show the application of the above viewpoints in the 
construction of the rigid body velocity equation, and to demonstrate that the Eulerian 
approach leads to a natural linearization of the equations of motion; it is thus fi tted 
to a more elementary-level course on rigid body mechanics. In order to do this, we 
analyze two cases of rigid body motions that are usually discussed in undergraduate 
courses – otation about a fi xed axis and rotation about a fi xed point.

Rigid body rotating about a fi xed axis

Let OXY be the coordinate system of a plane inertial reference system S, and Oxy 
be the coordinate system linked to a rigid body E undergoing plane motion around 
a fi xed axis OZ (Fig. 1).

Hence, consider the motion of the material point p(x, y) of E that departs from 
the fi xed position P0(X0, Y0) of S at instant 0 and arrives at the fi xed point P(X, Y) 
of S at instant t. Coincidence of points p of E and P of S can be achieved if the fol-
lowing relationship between their coordinates, respectively in systems Oxy and OXY, 
holds:
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P R p[ ] = [ ]⋅[ ]0 0, ,θ  (3)

where

R0 0, ,

cos sin

sin cos
θ

θ θ
θ θ

[ ] =
−





 (4)

is the geometrical transformation that moves p to P after time t.
Therefore, adopting Lagrange’s point of view, the velocity of the material point 

p of E (v→p) relative to the inertial system S at this instant is given by:
� � � �v t p P R p R p R pp ≡( ) =  ⋅[ ] + [ ]⋅[ ] =  ⋅[ ]0 0 0 0 0 0, , , , , ,θ θ θ  (5)

since p(x, y), as a point fi xed to E, does not change its position relative to this refer-
ence system during the motion.

Developing equation 5 we fi nally obtain:

� � �
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sin cos

cos sin

x

y
 (6)

This is the velocity of the material point p of E according to Lagrange’s viewpoint.

(a) (b)

(c)

Fig. 1(a,b,c) Moving (E) and fi xed (S) spaces for a body rotating about a fi xed axis.
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It is important to stress that, in the above expression, θ is the necessary fi nite 
rotation that causes the coincidence of the material point p(x, y) with the fi xed point 
P(X, Y) after time t, considering that its start position coincided with P0(X0, Y0) at 
departure time, as indicated by equation 1.

Since the length, s, of the trajectory from P0(X0, Y0) to P(X, Y) depends on θ,

s x yp p= + ⋅2 2 θ  (7)

the velocity of the material point p becomes a function of the fi nite angle θ.
On the other hand, in order to describe the velocities of every point p of E that 

coincides with the fi xed point P of S at instant t, it is necessary, fi rst of all, to apply 
the inverse transformation [R0,0,θ]−1 to P, in such a way that

p R P[ ] = [ ] ⋅[ ]−
0 0

1
, ,θ  (8)

represents the position, described in the Oxy system, of any material point p of E 
coincident with the fi xed point P of S at instant t.

As [R0,0,θ] is an orthogonal matrix, the following relationship holds:

R R T
0 0

1
0 0, , , ,θ θ[ ] = [ ]−  (9)

Consequently, the velocity of all material points of E that pass through P, henceforth 
designated as v→p, is obtained by substituting equations 8 and 9 into equation 5, to 
give:

� � � �v P R p R R PP
T=   =  ⋅[ ] =  ⋅[ ] ⋅[ ]0 0 0 0 0 0, , , , , ,θ θ θ  (10)

Developing the above expression, we fi nally obtain:

� �v
X

P = ⋅
− −

−






⋅
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
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Y
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�θ
0 1

1 0
 (11)

Noticing that θ̇  corresponds to the angular velocity ωz of E relative to the inertial 
reference system S and that the product of the skew matrix

ω
ω

ω
[ ] =

−





0

0
z

z

 (12)

and the position vector P
→

 = (P − O) can be written as a cross-vector product,

0

0

−
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


⋅ 
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z

X

Y
P O

�
 (13)

we fi nally obtain
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� �
v P OP = ∧ −( )ω  (14)

This, according to Euler’s point of view, represents the velocity of points of E that 
pass through point P fi xed at the inertial reference system S at instant t.

By comparing equations 6 and 14, one can see that the Eulerian approach naturally 
gives rise to a linear representation of the velocity of a point of a rigid body, whereas 
linearization of Lagrange’s formulation (equation 6) requires the assumption that arc 
length s between points P0(X0, Y0) and P(X, Y) is suffi ciently small to make sin θ ≈ 
0 and cos θ ≈ 1, so that equations 6 and 14 are alike.

Rigid body rotating about a fi xed point

Let now OXYZ be the coordinate system of an inertial reference system S and Oxyz 
the coordinate system linked to a rigid body E undergoing rotation about a fi xed 
point O (Fig. 2).

To describe the position of a point, p(x, y, z), of E that coincided with fi xed point 
P(X0, Y0, Z0) at start time, and at time t occupies the position of fi xed point P(X, Y, 
Z) of S, we apply the following geometrical transformations:

P R p R R R p[ ] = [ ]⋅[ ] = [ ]⋅[ ]⋅[ ]⋅[ ]0 0 0 0 0 0, , , , , ,θ ψ ϕ  (15)

where [Rφ,0,0], [R0,ψ,0], [R0,0,θ] represent, respectively, the rotation matrices about axes 
X, y1 and z3 (see Fig. 2), φ, ψ and θ are the respective rotation angles and R is the 
resultant rotation matrix.

These rotation matrices are given by:

R c s
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s c
ϕ ψϕ ϕ

ϕ ϕ

ψ ψ

ψ ψ
, , , ,,0 0 0 0

1 0 0

0

0

0

0 1 0

0

= −
















=
−

















=
−















, , ,R

c s

s c0 0

0

0

0 0 1
θ

θ θ
θ θ  (16a–c)

where c and s stand respectively for cos (.) and sin (.).

Fig. 2 Moving (E) and fi xed (S) spaces for a body rotating about a fi xed point.
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Consequently, the resultant rotation matrix is:
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 (17)

Adopting Lagrange’s point of view, the velocity of the material point p, when it 
coincides with P, is given by:

� � � �v t p P R p R p R pp ≡( ) =  ⋅[ ] + [ ]⋅[ ] =  ⋅[ ]  (18)

Differentiating expression 17 with respect to time and in relation to the inertial 
reference frame S, we obtain:
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Substituting expression 19 into 17 we fi nally obtain the velocity of the material 
point p of E. That is, according to the Lagrange’s point of view:
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We must stress that, in equation 20, φ, ψ and θ are the fi nite rotations strictly 
necessary to move material point p(x, y, z) from P0(X0, Y0, Z0) at instant 0 to position 
P(X, Y, Z) at instant t. As shown in Fig. 3, the trajectory arc length s, between points 
P0(X0, Y0, Z0) and P(X, Y, Z), is given by:

s r P O
P P

P O
O= ⋅ = −( ) ⋅ ⋅ ⋅ −( )

−( )






−α 2
1

2
1sin  (21)

Therefore, according to equation 15, s depends on the fi nite angles φ, ψ, θ, and, 
consequently, the velocity v→p of the material point p becomes a nonlinear function 
of those angles.

Then, following the same rationale followed in the previous section for rotation 
about an axis, we determine the velocities of all material points of E that pass through 
P using the equation below:

� � � �v P R p R R PP
T=   =  ⋅[ ] =  ⋅[ ] ⋅[ ]  (22)

Adopting the notation

ω[ ] =  ⋅[ ]�R R T  (23)

and calculating every term of [ω] by applying expression 19, we obtain:

ω ψ ψ θ θ ψ θ ψ θ ψ ψ θ θ ψ θ ψ ψ11 = − ⋅ ⋅ − ⋅ ⋅( )⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅( )⋅ − ⋅ ⋅� � � � �s c c s c c s s c c c ss
c s s c c s

θ
ψ ψ ψ ψ ψ ψ ψ ψ ψ

( )
+ ⋅ ⋅ = − ⋅ ⋅ + ⋅ ⋅ =� � � 0

 

(24)

ω ψ ψ θ θ ψ θ ϕ ψ θ ϕ θ ψ ψ θ θ ψ12 = − ⋅ ⋅ − ⋅ ⋅( ) ⋅ ⋅ ⋅ + ⋅( ) + ⋅ ⋅ − ⋅ ⋅� � � �s c c s s s c c s s s c cθθ
ϕ ψ θ ϕ θ ψ ψ ϕ ψ ψ ϕ θ ϕ ψ

( )⋅
− ⋅ ⋅ + ⋅( ) + ⋅ ⋅ − ⋅( ) = − ⋅ − ⋅ ⋅s s s c c c s c s c c� � �  

(25)

ω ψ ψ θ θ ψ θ ϕ ψ θ ϕ θ ψ ψ θ θ ψ13 = − ⋅ ⋅ − ⋅ ⋅( ) ⋅ − ⋅ ⋅ + ⋅( ) + ⋅ ⋅ − ⋅ ⋅� � � �s c c s c s c s s s s c cc

c s s s c c c c c s c

θ
ϕ ψ θ ϕ θ ψ ψ ϕ ψ ψ ϕ θ ϕ ψ

( )⋅
⋅ ⋅ + ⋅( ) + ⋅ ⋅ ⋅ = − ⋅ − ⋅ ⋅( )� � �  

(26)

Fig. 3 Circular trajectory between points P0 and P.
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ω ϕ ϕ ψ θ ψ ϕ ψ θ θ ϕ ψ θ ϕ ϕ θ θ ϕ θ21 = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅( � � � � �c s c s c c s s s s s c c )) ⋅ ⋅
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(27)

ω ϕ ϕ ψ θ ψ ϕ ψ θ θ ϕ ψ θ ϕ ϕ θ θ ϕ θ22 = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅( � � � � �c s c s c c s s s s s c c )) ⋅
⋅ ⋅ + ⋅( ) + − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅(

−
s s c c s c s s s c c s s cϕ ψ θ ϕ θ ϕ ϕ ψ θ ψ ϕ ψ θ θ ϕ ψ θ� � �

�� �ϕ ϕ θ θ ϕ θ ϕ ψ θ ϕ θ⋅ ⋅ − ⋅ ⋅ ) ⋅ − ⋅ ⋅ + ⋅( ) =s c c s s s s c c 0

 

(28)

ω ϕ ϕ ψ θ ψ ϕ ψ θ θ ϕ ψ θ ϕ ϕ θ θ ϕ θ23 = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅( � � � � �c s c s c c s s s s s c c )) ⋅
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(29)

ω ϕ ϕ ψ θ ψ ϕ ψ θ θ ϕ ψ θ ϕ ϕ θ θ ϕ θ31 = ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅( � � � � �s s c c c c c s s c s s c )) ⋅
⋅ + − ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅(
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(30)
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ϕ ϕ θ θ ϕ θ ϕ ψ θ ϕ θ
ϕ ϕ ψ ψ ϕ ψ

⋅ ⋅ − ⋅ ⋅ ) ⋅ − ⋅ ⋅ + ⋅( ) +
− ⋅ ⋅ − ⋅ ⋅( )

c c s s s s s c c

s c c s ⋅⋅ − ⋅( ) = + ⋅s c sϕ ψ ϕ θ ψ� �

 

(31)

ω ϕ ϕ ψ θ ψ ϕ ψ θ θ ϕ ψ θ ϕ ϕ θ θ ϕ θ33 = ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅( � � � � �s s c c c c c s s c s s c )) ⋅
− ⋅ ⋅ + ⋅( ) + − ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅(c s c s s s s s c c s c s cϕ ψ θ ϕ θ ϕ ϕ ψ θ ψ ϕ ψ θ θ ϕ ψ θ� � �

++ ⋅ ⋅ − ⋅ ⋅ ) ⋅ ⋅ ⋅ + ⋅( ) +
− ⋅ ⋅ − ⋅ ⋅( )
� �
� �

ϕ ϕ θ θ ϕ θ ϕ ψ θ ϕ θ
ϕ ϕ ψ ψ ϕ ψ

c c s s c s s s c
s c c s ⋅⋅ ⋅ =c cϕ ψ 0

 

(32)

Therefore, [ω] is given by:

ω
θ ϕ ψ ψ ϕ ψ ϕ θ ϕ ψ

θ ϕ ψ ψ ϕ ϕ θ ψ[ ] =
− ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅

⋅ ⋅ + ⋅ − − ⋅
0

0

� � � �
� � � �

c c s c s c

c c s s

−− ⋅ + ⋅ ⋅ + ⋅















� � � �ψ ϕ θ ϕ ψ ϕ θ ψc s c s 0

 (33)

Equation 33, after substituted into equation 22, gives:
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�
� � � �

� �v P

c c s c s c

c c sP = [ ]⋅[ ] =
− ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅

⋅ ⋅ + ⋅ −ω
θ ϕ ψ ψ ϕ ψ ϕ θ ϕ ψ

θ ϕ ψ ψ ϕ
0

0 �� �

� � � �
ϕ θ ψ

ψ ϕ θ ϕ ψ ϕ θ ψ
− ⋅

− ⋅ + ⋅ ⋅ + ⋅

















⋅
















s

c s c s

X

Y

Z0

 

(34)

Comparison of equations 20 and 34 exposes, again, the simplicity of rigid body 
velocity point formulation according to Euler’s point of view.

If, by hypothesis, φ, ψ and θ are small rotations, i.e., φ ≈ 0 ψ ≈ 0 θ ≈ 0, [ω] 
assumes its well known linear form:

ω
θ ψ

θ ϕ
ψ ϕ

[ ] =
−

−
−

















0

0

0

� �
� �
� �

 (35)

Consequently, equation 22 becomes:

�
� �

� �
� �

�

v P

X

Y

Z
P = [ ]⋅[ ] =

−
−

−

















⋅
















=
−

ω
θ ψ

θ ϕ
ψ ϕ

θ0

0

0

⋅⋅ + ⋅
⋅ − ⋅

− ⋅ + ⋅

















Y Z

X Z

X Y

�
� �
� �

ψ
θ ϕ
ψ ϕ

 (36)

Since the product of the skewed matrix [ω] by the vector [P] can be represented 
by the cross-vector product of Ω

→

 and [P], where

�
�
�
�
� � �Ω = + +ϕ ψ θi j k  (37)

according to Euler’s viewpoint, the velocity of points of E that pass through point 
P, fi xed relative to the inertial reference system S, is given by:

� �
v P P OP = [ ]⋅[ ] = ∧ −( )ω Ω .  (38)

It is important to emphasize that linearized equation 38, the well known velocity 
formula according to Eulerian approach, implicitly assumes the existence of an 
infi nitesimal control volume, V, around the fi xed point, P (see Fig. 4), where the 

Fig. 4 Eulerian control volume and Lagrangian trajectory.
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velocity, v→p, of all material points p of E converge to v→p as soon as the volume of V 
tends to zero. That is:

� �
v vP

V
p=

→
lim

vol( ) 0  (39)

On the other hand, equation 39 means, according to the Lagrangian viewpoint, that 
the trajectory of the material point, p, becomes small enough to allow linearization 
of equation 20 in the same way that was done for equation 34; as a consequence, 
both viewpoints converge to the same result:

� �
v vp P=  (40)

as one should expect.

Conclusions

The comparison of Lagrangian and Eulerian viewpoints is fundamental in fl uid 
mechanics. Nevertheless, even in fl uid mechanics undergraduate literature, this 
important subject is frequently disregarded. As a consequence, students, in general, 
cannot properly interpret the meaning of the velocity fi eld of particles in a moving 
fl uid that occupy a control volume at a given instant, a fact that is implicit in the 
Eulerian representation of fl ow.

The basic rigid body kinematics usually taught in undergraduate courses makes 
natural use of the Eulerian concepts, although little effort is employed in making it 
explicit to the students. The presentation of both the Lagrangian and Eulerian view-
points in courses covering either rigid or deformable mechanics would certainly 
increase student understanding of motion in general. In the present paper, the for-
mulations of Euler and Lagrange have been presented, and it has been shown that 
they lead to the same results once proper hypotheses are assumed – infi nitesimal 
control volume and infi nitesimal trajectory length. This can provide a student with 
insight into both points of view of rigid body kinematics.
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