
Journal of Econometrics 252 (2025) 106101 

A
0

 

Contents lists available at ScienceDirect

Journal of Econometrics

journal homepage: www.elsevier.com/locate/jeconom  

Inference on model parameters with many L-moments
Luis A.F. Alvarez a ,∗, Chang Chiann b , Pedro A. Morettin b
a Department of Economics, University of São Paulo, Brazil
b Department of Statistics, University of São Paulo, Brazil

A R T I C L E  I N F O

Keywords:
L-statistics
Quantiles
Generalised method of moments
Tuning parameter selection methods
Higher-order expansions

 A B S T R A C T

This paper studies parameter estimation using L-moments, an alternative to traditional moments 
with attractive statistical properties. The estimation of model parameters by matching sample 
L-moments is known to outperform maximum likelihood estimation (MLE) in small samples 
from popular distributions. The choice of the number of L-moments used in estimation remains
ad-hoc, though: researchers typically set the number of L-moments equal to the number of 
parameters, which is inefficient in larger samples. In this paper, we show that, by properly 
choosing the number of L-moments and weighting these accordingly, one is able to construct 
an estimator that outperforms MLE in finite samples, and yet retains asymptotic efficiency. We 
do so by introducing a generalised method of L-moments estimator and deriving its properties 
in an asymptotic framework where the number of L-moments varies with sample size. We 
then propose methods to automatically select the number of L-moments in a sample. Monte 
Carlo evidence shows our approach can provide mean-squared-error improvements over MLE 
in smaller samples, whilst working as well as it in larger samples. We consider extensions of 
our approach to the estimation of conditional models and a class semiparametric models. We 
apply the latter to study expenditure patterns in a ridesharing platform in Brazil.

1. Introduction

L-moments, expected values of linear combinations of order statistics, were introduced by Hosking (1990) and have been 
successfully applied in areas as diverse as computer science (Hosking, 2007; Yang et al., 2021), hydrology (Wang, 1997; Sankarasub-
ramanian and Srinivasan, 1999; Das, 2021; Boulange et al., 2021), meteorology (Wang and Hutson, 2013; Šimková, 2017; Li et al., 
2021b) and finance (Gourieroux and Jasiak, 2008; Kerstens et al., 2011). By appropriately combining order statistics, L-moments 
offer robust alternatives to traditional measures of dispersion, skewness and kurtosis. Models fit by matching sample L-moments 
(a procedure labelled ‘‘method of L-moments’’ by Hosking, 1990) have been shown to outperform maximum likelihood estimators 
in small samples from flexible distributions such as generalised extreme value (Hosking et al., 1985; Hosking, 1990), generalised 
Pareto (Hosking and Wallis, 1987; Broniatowski and Decurninge, 2016), generalised exponential (Gupta and Kundu, 2001) and 
Kumaraswamy (Dey et al., 2018).

Statistical analyses of L-moment-based parameter estimators rely on a framework where the number of moments is fixed (Hosk-
ing, 1990; Broniatowski and Decurninge, 2016). Practitioners often choose the number of L-moments equal to the number of 
parameters in the model, so as to achieve the order condition for identification. This approach is generally inefficient.1 It also raises 
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1 In the generalised extreme value distribution, there can be asymptotic root mean-squared error losses of 30% with respect to the MLE when the target 
estimand are the distribution parameters (Hosking et al., 1985; Hosking, 1990). In our Monte Carlo exercise, we verify root mean squared error losses of over 
10% when the goal is tail quantile estimation.
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the question of whether overidentifying restrictions, together with the optimal weighting of L-moment conditions, could improve the 
efficiency of ‘‘method of L-moments’’ estimators, as in the framework of generalised-method-of-moment (GMM) estimation (Hansen, 
1982). Another natural question would be how to choose the number of L-moments in finite samples, as it is well-known from GMM 
theory that increasing the number of moments with a fixed sample size can lead to substantial biases (Koenker and Machado, 1999; 
Newey and Smith, 2004). In the end, one can only ask if, by correctly choosing the number of L-moments and under an appropriate 
weighting scheme, it may not be possible to construct an estimator that outperforms maximum likelihood estimation of some target 
quantities in small samples from popular distributions and yet achieves the Cramér–Rao bound asymptotically. Intuitively, the 
answer appears to be positive, especially if one takes into account that Hosking (1990) shows L-moments characterise distributions 
with finite first moments.

The goal of this paper lies in answering the questions outlined in the previous paragraph. Specifically, we propose to study L-
moment-based estimation in a context where: (i) the number of L-moments varies with sample size; and (ii) weighting is used in order 
to optimally account for overidentifying conditions. In this framework, we introduce a ‘‘generalised’’ method of L-moments estimator 
and analyse its properties. We provide sufficient conditions under which our estimator is consistent and asymptotically normal; we 
also derive the optimal choice of weights and introduce a test of overidentifying restrictions. We then show that, under independent 
and identically distributed (iid) data and the optimal weighting scheme, the proposed generalised L-moment estimator achieves 
the Cramér–Rao lower bound. We provide simulation evidence that our L-moment approach outperforms (in a mean-squared error 
sense) MLE estimation of some target quantities in smaller samples from popular distributions; while working as well as the MLE in 
larger sample sizes. We then construct methods to automatically select the number of L-moments used in estimation. For that, we 
rely on higher order expansions of the method-of-L-moment estimator, similarly to the procedure of Donald and Newey (2001) and 
Donald et al. (2009) in the context of GMM. We use these expansions to find a rule for choosing the number of L-moments so as 
to minimise the estimated (higher-order) mean-squared incurred when targeting a given transformation of the model parameters of 
interest. We also consider an approach based on 𝓁1-regularisation (Luo et al., 2015). We provide computational code to implement 
both methods,2 and evaluate their performance through Monte Carlo simulations. With these tools, we aim to introduce a fully 
automated procedure for estimating parametric models that is able to improve upon maximum likelihood estimation in small samples 
from popular distributions, and yet has the guarantee of not underperforming in larger datasets. As our examples and simulations 
throughout the paper indicate, our approach seems especially useful in tail quantile estimation of heavy-tailed distributions.3

We also consider two extensions of our main approach. First, we show how the generalised method-of-L-moment approach 
introduced in this paper can be extended to the estimation of conditional models. Second, we show how our approach may be used 
in the analysis of the ‘‘error term’’ in semiparametric models, an important task in specification testing and the construction of 
prediction bands. We apply the latter extension to study the tail behaviour of expenditure patterns in a ridesharing platform in São 
Paulo, Brazil. We provide evidence that the heavy-tailedness in consumption patterns persists even after partialing out the effect of 
unobserved time-invariant heterogeneity and observable heterogeneity in consumption trends. We also show how our estimators can 
be used to construct prediction bands for individual treatment effects when one is interested in causal inference on individualised 
interventions. With these extensions, we hope more generally to illustrate how the generalised-method-of-L-moment approach to 
estimation may be a convenient tool in a variety of settings, e.g. when a model’s quantile function is easier to evaluate than its 
likelihood. The latter feature has been explored in followup work by one of the authors in semi- and nonparametric settings (Alvarez 
and Orestes, 2023; Alvarez and Biderman, 2024).
Related literature. This paper contributes to two main literatures. First, we relate to a couple of papers that, building on Hosking’s 
original approach, propose new L-moment-based estimators. Gourieroux and Jasiak (2008) introduce a notion of L-moment for 
conditional moments, which is then used to construct a GMM estimator for a class of dynamic quantile models. As we argue in more 
detail in Section 6, while conceptually attractive, their estimator is not asymptotically efficient (vis-à-vis the conditional MLE), as it 
focuses on a finite number of moment conditions and does not optimally explore the set of overidentifying restrictions available in the 
parametric model. In contrast, our proposed extension of the generalised method-of-L-moment estimator to conditional models is able 
to restore asymptotic efficiency. In an unconditional setting, Broniatowski and Decurninge (2016) propose estimating distribution 
functions by relying on a fixed number of L-moments and a minimum divergence estimator that nests the empirical likelihood 
and generalised empirical likelihood estimators as particular cases. Even though these estimators are expected to perform better 
than (generalised) method-of-L-moment estimators in terms of higher-order properties (Newey and Smith, 2004), both would be
first-order inefficient (vis-à-vis the MLE) when the number of L-moments is held fixed. In this paper, we thus focus on improving 
L-moment-based estimation in terms of first-order asymptotic efficiency, by suitably increasing the number of L-moments with 
sample size and optimally weighting the overidentifying restrictions, while retaining its known good finite-sample behaviour. We 
do note, however, that one of our suggested approaches to select the number of L-moments aims at minimising an estimate of the 
higher-order mean-squared error, which may be useful in improving the higher-order behaviour of estimators even when a bounded 
(as a function of sample sizes) number of L-moments is used in estimation.

2 The repository https://github.com/luisfantozzialvarez/lmoments_redux contains R script that implements our main methods, as well as replication code for 
our Monte Carlo exercise and empirical application.

3 More generally, the question of whether our approach will generate significant small sample root mean squared error gains over the MLE for a given family 
of distributions and transformation of the model parameters of interest must be answered on a case-by-case basis. We provide tools to automatically select the 
number of L-moments used in estimation based on higher-order expansions of the mean-squared error that may be applied to any estimation target that is a 
smooth transformation of the model parameters. Moreover, our asymptotic efficiency result ensures that, asymptotically, there will be no losses in adopting this 
approach vis-à-vis the MLE.
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Secondly, we contribute to a literature that seeks to construct estimators that, while retaining asymptotic (first-order) unbiased-
ness and efficiency, improve upon maximum likelihood estimation in finite samples. The classical method to achieve finite-sample 
improvements over the MLE is through (higher-order) bias correction (Pfanzagl and Wefelmeyer, 1978). However, analytical 
bias corrections may be difficult to implement in practice, which has led the literature to consider jackknife and bootstrap 
corrections (Hahn et al., 2002). More recently, Ferrari and Yang (2010) introduced a maximum 𝐿𝑞-likelihood estimator for 
parametric models that replaces the log-density in the objective function of the MLE with 𝑓 (𝑥)1−𝑞−11−𝑞 , where 𝑞 > 0 is a tuning parameter. 
They show that, by suitably choosing 𝑞 in finite samples, one is able to trade-off bias and variance, thus enabling MSE improvements 
over the MLE. Moreover, if 𝑞 → 1 asymptotically at a rate, the estimator is asymptotically unbiased and achieves the Crámer–Rao 
lower bound. There are some important differences between our approach and maximum 𝐿𝑞-likelihood estimation, though. First, 
we note that the theoretical justification for our construction is distinct from their method. Indeed, for a fixed number of L-moments, 
our proposed estimator is first-order asymptotically unbiased, whereas the maximum 𝐿𝑞-likelihood estimator is inconsistent in an 
asymptotic regime with 𝑞 fixed and consistent but first-order biased if 𝑞 → 1 slowly enough. Therefore, whereas the choice of the 
tuning parameter 𝑞 is justified as capturing a tradeoff between first-order bias and variance; the MSE-optimal choice of L-moments 
in our setting concerns a tradeoff between the first-order variance of the estimator and its higher-order terms. This is precisely 
what we capture in our proposal to select the number of L-moments by minimising an estimator of the higher-order MSE; whereas 
presently no general rule for choosing the tuning parameter 𝑞 > 0 in maximum 𝐿𝑞-likelihood estimation exists (Li et al., 2021a).
Structure of paper. The remainder of this paper is organised as follows. In the next section, we briefly review L-moments and 
parameter estimation based on these quantities. Section 3 works out the asymptotic properties of our proposed estimator. In Section 4 
we conduct a small Monte Carlo exercise which showcases the gains associated with our approach. Section 5 proposes methods to 
select the number of L-moments and assesses their properties in the context of the Monte Carlo exercise of Section 4. Section 6 
presents the extensions of our main approach, as well as the empirical application. Section 7 concludes. The Supplemental Appendix 
presents the proofs of the main results in the paper, as well as additional details on the methods of selection of L-moments, and the 
extensions to ‘‘residual analysis’’ and conditional models.

2. L-moments: definition and estimation

Consider a scalar random variable 𝑌  with distribution function 𝐹  and finite first moment. For 𝑟 ∈ N, Hosking (1990) defines the 
𝑟th L-moment as: 

𝜆𝑟 ∶= ∫

1

0
𝑄𝑌 (𝑢)𝑃 ∗

𝑟−1(𝑢)𝑑𝑢 , (1)

where 𝑄𝑌 (𝑢) ∶= inf{𝑦 ∈ R ∶ 𝐹 (𝑦) ≥ 𝑢} is the quantile function of 𝑌 , and the functions 𝑃 ∗
𝑟 (𝑢) =

∑𝑟
𝑘=0(−1)

𝑟−𝑘(𝑟
𝑘

)(𝑟+𝑘
𝑘

)

𝑢𝑘, 𝑟 ∈ {0}∪N, are 
shifted Legendre polynomials.4 Expanding the polynomials and using the quantile representation of a random variable (Billingsley, 
2012, Theorem 14.1), we arrive at the equivalent expression: 

𝜆𝑟 = 𝑟−1
𝑟−1
∑

𝑘=0
(−1)𝑘

(

𝑟 − 1
𝑘

)

E[𝑌(𝑟−𝑘)∶𝑟] , (2)

where, 𝑌𝑗∶𝑙 is the 𝑗th order statistic of a random sample from 𝐹  with 𝑙 observations. Eq. (2) motivates our description of L-moments 
as the expected value of linear combinations of order statistics. Notice that the first L-moment corresponds to the expected value of 
𝑌 .

To see how L-moments may offer ‘‘robust’’ alternatives to conventional moments, it is instructive to consider, as in Hosking 
(1990), the second L-moment. In this case, we have:

𝜆2 =
1
2
E[𝑌2∶2 − 𝑌1∶2] =

1
2 ∬

(

max{𝑦1, 𝑦2} − min{𝑦1, 𝑦2}
)

𝐹 (𝑑𝑦1)𝐹 (𝑑𝑦2) =
1
2
E|𝑌1 − 𝑌2| ,

where 𝑌1 and 𝑌2 are independent copies of 𝑌 . This is a measure of dispersion. Indeed, comparing it with the variance, we have:

V[𝑌 ] = E[(𝑌 − E[𝑌 ])2] = E[𝑌 2] − E[𝑌 ]2 = 1
2
E[(𝑌1 − 𝑌2)2] ,

from which we note that the variance puts more weight to larger differences.
Next, we discuss sample estimators of L-moments. Let 𝑌1, 𝑌2 … 𝑌𝑇  be an identically distributed sample of 𝑇  observations, where 

each 𝑌𝑡, 𝑡 = 1,… , 𝑇 , is distributed according to 𝐹 . A natural estimator of the 𝑟th L-moment is the sample analog of (1), i.e. 

𝜆̂𝑟 = ∫

1

0
𝑄̂𝑌 (𝑢)𝑃 ∗

𝑟−1(𝑢)𝑑𝑢 , (3)

where 𝑄̂𝑌  is the left-continuous (càglàd) empirical quantile process: 

𝑄̂𝑌 (𝑢) = 𝑌𝑖∶𝑇 , if 𝑖 − 1
𝑇

< 𝑢 ≤ 𝑖
𝑇

, (4)

4 Legendre polynomials are defined by applying the Gram–Schmidt orthogonalisation process to the polynomials 1, 𝑥, 𝑥2 , 𝑥3 … defined on [−1, 1] (Kreyszig, 
1989, p. 176–180). If 𝑃𝑟 denotes the 𝑟th Legendre polynomial, shifted Legendre polynomials are related to the standard ones through the affine transformation 
𝑃 ∗(𝑢) = 𝑃 (2𝑢 − 1) (Hosking, 1990).
𝑟 𝑟
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with 𝑌𝑖∶𝑇  being the 𝑖th sample order statistic. The estimator given by (3) is generally biased (Hosking, 1990; Broniatowski and 
Decurninge, 2016). When observations 𝑌1, 𝑌2,… , 𝑌𝑇  may be assumed to be independent, researchers thus often resort to an unbiased 
estimator of 𝜆𝑟, which is given by an empirical analog of (2): 

𝜆̃𝑟 = 𝑟−1
𝑟−1
∑

𝑘=0
(−1)𝑘

(

𝑟 − 1
𝑘

)(

𝑇
𝑟

)

−1
∑

1≤𝑖1 ,𝑖2≤⋯≤𝑖𝑟≤𝑇
𝑌𝑖𝑟−𝑘∶𝑇 . (5)

In practice, it is not necessary to iterate over all size 𝑟 subsamples of 𝑌1,… , 𝑌𝑇  to compute the sample 𝑟th L-moment through 
(5). Hosking (1990) provides a direct formula that avoids such computation.

We are now ready to discuss the estimation of parametric models based on matching L-moments. Suppose that 𝐹  belongs to a 
parametric family of distribution functions {𝐹𝜃 ∶ 𝜃 ∈ 𝛩}, where 𝛩 ⊆ R𝑑 and 𝐹 = 𝐹𝜃0  for some 𝜃0 ∈ 𝛩. Let 𝑙𝑟(𝜃) ∶= ∫ 1

0 𝑃 ∗
𝑟−1(𝑢)𝑄(𝑢|𝜃)𝑑𝑢

denote the theoretical 𝑟th L-moment, where 𝑄(⋅|𝜃) is the quantile function associated with 𝐹𝜃 . Let 𝐻𝑅(𝜃) ∶= (𝜆1(𝜃), 𝜆2(𝜃),… , 𝜆𝑅(𝜃))′, 
and 𝐻̂𝑅 be the vector stacking estimators for the first 𝑅 L-moments (e.g. (3) or (5)). Researchers then usually estimate 𝜃0 by solving:

𝐻𝑑 (𝜃) − 𝐻̂𝑑 = 0 .

As discussed in Section 1, this procedure has been shown to lead to efficiency gains over maximum likelihood estimation in 
small samples from several distributions. Nonetheless, the choice of L-moments 𝑅 = 𝑑 appears rather ad-hoc, as it is based on an 
order condition for identification. One may then wonder whether increasing the number of L-moments used in estimation – and 
weighting these properly –, might lead to a more efficient estimator in finite samples. Moreover, if one correctly varies the number 
of L-moments with sample size, it may be possible to construct an estimator that does not underperform MLE even asymptotically. 
The latter appears especially plausible if one considers the result in Hosking (1990), who shows that L-moments characterise a 
distribution with finite first moment.

In light of the preceding discussion, we propose to analyse the behaviour of the ‘‘generalised’’ method of L-moments estimator: 
𝜃̂ ∈ arg inf

𝜃∈𝛩
(𝐻𝑅(𝜃) − 𝐻̂𝑅)′𝑊 𝑅(𝐻𝑅(𝜃) − 𝐻̂𝑅) , (6)

where 𝑅 may vary with sample size; and 𝑊 𝑅 is a (possibly estimated) weighting matrix. In Section 3, we work out the asymptotic 
properties of this estimator in a framework where both 𝑇  and 𝑅 diverge, i.e. we index 𝑅 by the sample size and consider the 
asymptotic behaviour of the estimator in the large-sample limit, for sequences (𝑅𝑇 )𝑇∈N where lim𝑇→∞ 𝑅𝑇 = ∞.5,6 We derive sufficient 
conditions for an asymptotic linear representation of the estimator to hold. We also show that the estimator is asymptotically 
efficient, in the sense that, under iid data and when optimal weights are used, its asymptotic variance coincides with the inverse 
of the Fisher information matrix. In Section 4, we conduct a small Monte Carlo exercise which showcases the gains associated with 
our approach. Specifically, we show that, for the task of tail quantile estimation, our L-moment approach entails mean-squared 
error gains over MLE in smaller samples, and performs as well as it in larger samples.7 In light of these results, in Section 5 we 
propose to construct a semiautomatic method of selection of the number of L-moments by working with higher-order expansions 
of the mean-squared error of the estimator – in a similar fashion to what has already been done in the GMM literature (Donald 
and Newey, 2001; Donald et al., 2009; Okui, 2009; Abadie et al., 2024). We also consider an approach based on 𝓁1-regularisation 
borrowed from the GMM literature (Luo et al., 2015). We then return to the Monte Carlo setting of Section 4 in order to assess 
the properties of the proposed selection methods. In Section 6, we consider extensions of our main approach to the estimation of 
conditional models and a class of semiparametric models.

In this paper, we will focus on the case where estimated L-moments are given by (3). As shown in Hosking (1990), under random 
sampling and finite second moments, for each 𝑟 ∈ N, 𝜆̂𝑟 − 𝜆̃𝑟 = 𝑂𝑝(𝑇 −1), which implies that the estimator (6) using either (3) or (5) 
as 𝐻̂𝑅 are first-order asymptotically equivalent when 𝑅 is fixed. However, in an asymptotic framework where 𝑅 increases with the 
sample size, this need not be the case. Indeed, note that, for 𝑟 > 𝑇 , 𝜆̃𝑟 is not even defined, whereas 𝜆̂𝑟 is. Relatedly, the simulations 
in Section 4 show that, for values of 𝑅 close to 𝑇 , the generalised-method-of L-moment estimator (6) based on 𝜆̃𝑟 breaks down, 
whereas the estimator based on 𝜆̂𝑟 does not.8 We thus focus on the properties of the estimator that relies on 𝜆̂𝑟, as it is especially 
well-suited for settings where one may wish to make 𝑅 large.

Remark 1 (On Computation of Integrals).  Parameter estimation through L-moments hinges crucially on computation of integrals 
∫ 1
0 𝑄(𝑢)𝑢𝑟𝑑𝑢, for a given quantile function 𝑄 and 𝑟 ∈ {0, 1,… , 𝑅 − 1}. These quantities, known in the literature as probability-
weighted moments (Landwehr et al., 1979), are directly available in closed form when 𝑄 is stepwise-constant (as when 𝑄 are 
the empirical quantiles), though this need not be the case for the theoretical moments ∫ 1

0 𝑄(𝑢|𝜃)𝑢𝑟𝑑𝑢 from parametric families 
of distributions. Hosking (1986) provides closed-form formulae for the probability-weighted moments of several families of 
distributions, including those from the Generalised Pareto (GPD) and Generalised Extreme Value (GEV) families that are popular in 

5 We maintain the indexing of 𝑅 by 𝑇  implicit to keep the notation concise. In this setting, the phrase ‘‘as 𝑇 ,𝑅 → ∞’’ should be read as meaning that a 
property holds in the limit 𝑇 → ∞, for any sequence (𝑅𝑇 )𝑇∈N with lim𝑇→∞ 𝑅𝑇 = ∞. The phrase ‘‘as 𝑇 ,𝑅 → ∞ with 𝜙(𝑅, 𝑇 ) → 𝑐’’, where 𝜙 ∶ N2 ↦ R and 𝑐 ∈ R, 
should be read as meaning that a property holds in the limit 𝑇 → ∞, for any sequence (𝑅𝑇 )𝑇∈N with lim𝑇→∞ 𝑅𝑇 = ∞ and lim𝑇→∞ 𝜙(𝑅𝑇 , 𝑇 ) = 𝑐.

6 As it will become clear in Section 3, our framework nests the setting with fixed 𝑅 as a special case by properly filling the weighting matrix 𝑊 𝑅 with zeros.
7 In the Supplemental Appendix, we consider an alternative setting where the estimation target consists of linear combinations of the model parameters, and 

also verify gains in adopting our approach.
8 The latter phenomenon is corroborated by our theoretical results in Section 3 for the estimator based on 𝜆̂ , which allow 𝑅 to be much larger that 𝑇 .
𝑟
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the modelling of extreme events, and which we consider in the Monte Carlo exercise of Section 4.9 For those distributions where 
the integral does not admit a closed-form expression, the R package lmom (Hosking, 2024) provides access to Fortran routines that 
compute probability-weighted moments using numerical integration.

Remark 2 (L-Moment Estimation as a Computationally Attractive Alternative to the MLE). There are instances where L-moment-based 
parameter estimates are easily computable, whereas maximum likelihood estimation can be computationally complicated. One 
example is that given by quantile mixtures, e.g. when the quantile function of the distribution of interest is given by 𝜃1𝑄1(𝑢)+𝜃2𝑄2(𝑢), 
with 𝜃1 and 𝜃2 unknown constants and 𝑄1 and 𝑄2 known quantile functions whose L-moments are easily computable. In this case, the 
conventional method-of L-moment estimator collapses to solving a linear system, and finding our generalised method-of-L-moment 
estimator amounts to solving a quadratic program. In contrast, estimation of quantile mixtures through maximum likelihood can 
be much more complicated computationally, as it involves, for each candidate parameter value, differentiation of the inverse of 
the quantile function, which is generally unavailable in closed-form. The estimation of quantile mixtures through the method-of-
L-moments has been studied by Karvanen (2006) and Gourieroux and Jasiak (2008) in the context of modelling asset returns, 
while Alvarez and Orestes (2023), building on our proposed generalised-method-of-L-moment estimator, study quantile mixture 
models as a general tool for approximating a distribution of interest, with a particular focus in causal inference on distributional 
outcomes in observational settings.

3. Asymptotic properties of the generalised method of L-moments estimator with many moments

3.1. Setup

As in the previous section, we consider a setting where we have a sample with 𝑇  identically distributed observations, 𝑌1, 𝑌2 … 𝑌𝑇 , 
𝑌𝑡 ∼ 𝐹  for 𝑡 = 1, 2… 𝑇 , where 𝐹  belongs to a parametric family {𝐹𝜃 ∶ 𝜃 ∈ 𝛩}, 𝛩 ⊆ R𝑑 ; and 𝐹 = 𝐹𝜃0  for some 𝜃0 ∈ 𝛩. We will analyse 
the behaviour of the estimator: 

𝜃̂ ∈ arg inf
𝜃∈𝛩

𝑅
∑

𝑘=1

𝑅
∑

𝑙=1

(

∫

𝑝̄

𝑝

[

𝑄̂𝑌 (𝑢) −𝑄𝑌 (𝑢|𝜃)
]

𝑃𝑘(𝑢)𝑑𝑢

)

𝑤𝑅
𝑘,𝑙

(

∫

𝑝̄

𝑝

[

𝑄̂𝑌 (𝑢) −𝑄𝑌 (𝑢|𝜃)
]

𝑃𝑙(𝑢)𝑑𝑢

)

, (7)

where 𝑄̂𝑌 (⋅) is the empirical quantile process given by (4); 𝑄𝑌 (⋅|𝜃) is the quantile function associated with 𝐹𝜃 ; {𝑤𝑅
𝑘,𝑙}1≤𝑘,𝑙≤𝑅 are a 

set of (possibly estimated) weights; {𝑃𝑘}1≤𝑘≤𝑅 are a set of quantile ‘‘weighting’’ functions with ∫ 1
0 𝑃𝑘(𝑢)2𝑑𝑢 = 1; and 0 ≤ 𝑝 < 𝑝̄ ≤ 1. 

This setting encompasses the generalised-method-of-L-moment estimator discussed in the previous section. Indeed, by choosing 
𝑃𝑘(𝑢) =

√

2(2𝑘 − 1) ⋅ 𝑃 ∗
𝑘−1(𝑢), where 𝑃 ∗

𝑘 (𝑢) are the shifted Legendre polynomials on [0, 1], and 0 = 𝑝 < 𝑝̄ = 1, we have the generalised 
L-moment-based estimator in (6) using (3) as an estimator for the L-moments.10 We leave 𝑝 < 𝑝̄ fixed throughout.11 All limits are 
taken jointly with respect to 𝑇  and 𝑅.

To facilitate analysis, we let 𝐏𝑅(𝑢) ∶= (𝑃1(𝑢), 𝑃2(𝑢)…𝑃𝑅(𝑢))′; and write 𝑊 𝑅 for the 𝑅 × 𝑅 matrix with entry 𝑊 𝑅
𝑖,𝑗 = 𝑤𝑅

𝑖,𝑗 . We may 
then rewrite our estimator in matrix form as:

𝜃̂ ∈ arg inf
𝜃∈𝛩

[

∫

𝑝̄

𝑝

(

𝑄̂𝑌 (𝑢) −𝑄𝑌 (𝑢|𝜃)
)

𝐏𝑅(𝑢)′𝑑𝑢

]

𝑊 𝑅

[

∫

𝑝̄

𝑝

(

𝑄̂𝑌 (𝑢) −𝑄𝑌 (𝑢|𝜃)
)

𝐏𝑅(𝑢)𝑑𝑢

]

.

3.2. Consistency

In this section, we present conditions under which our estimator is consistent.
We impose the following assumptions on our environment. In what follows, we write 𝑄𝑌 (⋅) = 𝑄𝑌 (⋅|𝜃0). 

Assumption 1 (Consistency of Empirical Quantile Process).  The empirical quantile process is uniformly consistent on (𝑝, 𝑝̄), i.e. 

sup
𝑢∈(𝑝,𝑝̄)

|𝑄̂𝑌 (𝑢) −𝑄𝑌 (𝑢)|
𝑃
→ 0 . (8)

Assumption  1 is satisfied in a variety of settings. For example, if 𝑌1, 𝑌2 . . .𝑌𝑇  are iid and the family {𝐹𝜃 ∶ 𝜃 ∈ 𝛩} is continuous with 
a (common) compact support; then (8) follows with 𝑝 = 0 and 𝑝 = 1 (Ahidar-Coutrix and Berthet, 2016, Proposition 2.1.). Yoshihara 
(1995) and Portnoy (1991) provide sufficient conditions for uniform consistency (8) to hold when observations are dependent. 
We also note that, for the result in this section, it would have been sufficient to assume convergence in probability in the 𝐿2(𝑝, 𝑝̄)
norm.12 We only state results in the sup-norm because convergence statements regarding the empirical quantile process available in 
the literature are usually proved in 𝐿∞(𝑝, 𝑝̄).

9 For completeness, we reproduce the closed-form expressions of these integrals in the GEV and GPD families in Supplemental Appendix M.
10 The rescaling by √2(2𝑘 − 1) is adopted so the polynomials have unit 𝐿2[0, 1]-norm.
11 In Remark  8 later on, we briefly discuss an extension to sample-size-dependent trimming.
12 Under random sampling from a distribution with Lebesgue density 𝑓 such that 𝑢 ↦ 𝑓 (𝑄𝑌 (𝑢)) is continuous on (0, 1), empirical quantiles are consistent in 

𝐿2(0, 1) if one of the two conditions hold: the distribution has finite (2+𝛿)-moment, or there exist real constants 𝐶, 𝑘1 , 𝑘2 such that 𝑓 (𝑄𝑌 (𝑢))−1 ≤ 𝐶𝑢𝑘1 (1−𝑢)𝑘2 ,∀𝑢 ∈
(0, 1). See Supplemental Appendix 𝑁 for a proof.
5 
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Assumption 2 (Quantile Weighting Functions).  The functions {𝑃𝑙 ∶ 𝑙 ∈ N} constitute an orthonormal sequence on 𝐿2[0, 1].

Assumption  2 is satisfied by (rescaled) shifted Legendre polynomials, shifted Jacobi polynomials and other weighting functions.
Next, we impose restrictions on the estimated weights. In what follows, we write, for a 𝑐 × 𝑑 matrix 𝐴, ‖𝐴‖2 =

√

𝜆max(𝐴′𝐴).

Assumption 3 (Estimated Weights).  There exists a sequence of nonstochastic symmetric positive semidefinite matrices 𝛺𝑅 such that, 
as 𝑇 ,𝑅 → ∞, ‖𝑊 𝑅 −𝛺𝑅

‖2 = 𝑜𝑃 ∗ (1)13; ‖𝛺𝑅
‖2 = 𝑂(1).

Assumption  3 restricts the range of admissible weight matrices. Notice that 𝑊 𝑅 = 𝛺𝑅 = I𝑅 trivially satisfies these assumptions. 
By the triangle inequality, Assumption  3 implies that ‖𝑊 𝑅

‖2 = 𝑂𝑃 ∗ (1).

Finally, we introduce our identifiability assumption. For some 𝑋 ∈ 𝐿2[0, 1], let ‖𝑋‖𝐿2[0,1] =
(

∫ 1
0 𝑋(𝑢)2𝑑𝑢

)
1
2 :

Assumption 4 (Strong Identifiability and Suprema of 𝐿2 Norm of Parametric Quantiles).  For each 𝜖 > 0:

lim inf
𝑅→∞

inf
𝜃∈𝛩∶‖𝜃−𝜃0‖2≥𝜖

[

∫

𝑝̄

𝑝

(

𝑄𝑌 (𝑢|𝜃) −𝑄𝑌 (𝑢|𝜃0)
)

𝐏𝑅(𝑢)′𝑑𝑢

]

𝛺𝑅

[

∫

𝑝̄

𝑝

(

𝑄𝑌 (𝑢|𝜃) −𝑄𝑌 (𝑢|𝜃0)
)

𝐏𝑅(𝑢)𝑑𝑢

]

> 0 .

 Moreover, we require that sup𝜃∈𝛩 ‖𝑄𝑌 (⋅|𝜃)1[𝑝,𝑝̄]‖𝐿2[0,1] < ∞.

The first part of this assumption is closely related to the usual notion of identifiability in parametric distribution models. Indeed, 
if 0 = 𝑝 < 𝑝 = 1, 𝛩 is compact, 𝜃 ↦ ‖𝑄(⋅|𝜃)‖𝐿2[0,1] is bounded and (𝜃′, 𝜃′′) ↦ ‖𝑄(⋅|𝜃′)−𝑄(⋅|𝜃′′)‖𝐿2[0,1] is continuous, the {𝑃𝑙}𝑙 constitute 
an orthonormal basis in 𝐿2[0, 1] (this is the case for rescaled shifted Legendre polynomials), and if the smallest eigenvalue of 𝛺𝑅 is 
bounded away from zero uniformly in 𝑅 (for example, if we take 𝑊 𝑅 = I𝑅), then the first part is equivalent to identifiability of the 
parametric family {𝐹𝜃}𝜃 (see Supplemental Appendix C.1 for a proof).

As for the second part of the assumption, we note that boundedness of the 𝐿2 norm of parametric quantiles uniformly in 𝜃 is 
satisfied in several settings. If the parametric family {𝐹𝜃 ∶ 𝜃 ∈ 𝛩} has common compact support, then the assumption is trivially 
satisfied. Alternatively, if we assume 𝛩 is compact and 𝑄𝑌 (𝑢|𝜃) is jointly continuous and bounded on [𝑝, 𝑝̄] × 𝛩, then the condition 
follows from Weierstrass’ theorem, as in this case: sup𝜃∈𝛩 ‖𝑄𝑌 (⋅|𝜃)1[𝑝,𝑝̄]‖𝐿2[0,1] ≤

√

𝑝̄ − 𝑝⋅sup(𝜃,𝑢)∈𝛩×[𝑝,𝑝̄] |𝑄𝑌 (𝑢|𝜃)| < ∞. More generally, 
if the support of the family under consideration is unbounded, then we may ensure that the assumption is satisfied by considering 
compact parameter spaces, or by a proper choice of trimming constants 𝑝 and 𝑝. For example, if we assume that 𝛩 is compact, 
and that 𝜃 ↦ ∫ 𝑝

𝑝 𝑄𝑌 (𝑢|𝜃)2𝑑𝑢 is continuous and bounded on 𝛩, then the condition is satisfied. Supplemental Appendix B shows that, 
for the GEV and GPD families of distributions mentioned in Remark  1 and considered in the Monte Carlo Exercise, the uniform 
boundedness assumption is satisfied with 0 = 𝑝 < 𝑝 = 1 and compact parameter spaces in the region where the distributions have 
finite variance. Moreover, we show that, by taking 0 < 𝑝 and 𝑝 < 1 in the GEV family and 𝑝 < 1 in the GPD family, it is possible to 
extend these parameter spaces to the region where the distributions have infinite variance.14

Under the previous assumptions, the estimator is consistent.

Proposition 1.  Suppose Assumptions  1 to 4 hold. Then 𝜃̂ 𝑃 ∗
→ 𝜃0 as 𝑅, 𝑇 → ∞.

Proof.  See Supplemental Appendix A.1. □

Remark 3.  Note that Proposition  1 does not impose any restrictions on the rate of growth of L-moments. This stands in contrast 
with consistency results in the literature exploring the behaviour of GMM in asymptotic sequences with an increasing number of 
moments. For example, when estimating a finite-dimensional parameter identified by a conditional moment restriction through many 
unconditional moments that span the available restrictions, the series-IV estimator proposed by Donald et al. (2003) is consistent in 
an asymptotic regime where the number of moments 𝑅 satisfies 𝑅∕𝑇 → 0. Intuitively, one needs to impose this growth restriction 
in order to control the variance of an increasing number of moments, even in this particular case where moments are derived 
from series regressors. In contrast, the special structure of L-moments in our setting, being written as the projection coefficients 
of the same quantile function on an orthonormal sequence in 𝐿2[0, 1], enables us to properly control the variance even when 𝑅
is arbitrarily large, for Bessel’s inequality (Kreyszig, 1989, page 157) implies that, for every 𝑅, ‖‖

‖

‖

∫ 𝑝̄
𝑝
(

𝑄̂𝑌 (𝑢) −𝑄𝑌 (𝑢)
)

𝐏𝑅(𝑢)𝑑𝑢
‖

‖

‖

‖2
≤

‖(𝑄̂𝑌 (⋅) − 𝑄𝑌 (⋅))1[𝑝,𝑝̄]‖𝐿2[0,1], with the upper bound crucially not depending on 𝑅. See Supplemental Appendix D for a detailed 
comparison between the consistency arguments underlying our Proposition  1 and Theorem 5.1 of Donald et al. (2003).

13 The notation 𝑜𝑃∗(1) expresses convergence in outer probability to zero. We state our main assumptions and results in outer probability in order to abstract 
from measurability concerns. We note these results are equivalent to convergence in probability when the appropriate measurability assumptions hold.
14 As we show in the Appendix, it is actually possible to extend the parameter space to regions where even the first moment does not exist, since, in this 

case, even though untrimmed L-moments are not defined, trimmed L-moments are. We discuss a data-driven method to select the trimming constants in Remark 
8.
6 
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3.3. Asymptotic linear representation

In this section, we provide conditions under which the estimator admits an asymptotic linear representation. In what, follows, 
define ℎ𝑅(𝜃) ∶= ∫ 𝑝̄

𝑝
(

𝑄̂𝑌 (𝑢) −𝑄𝑌 (𝑢|𝜃)
)

𝐏𝑅(𝑢)𝑑𝑢; and write ∇𝜃′ℎ𝑅(𝜃) for the Jacobian of ℎ𝑅 with respect to 𝜃, evaluated at 𝜃. We assume 
that:

Assumption 5.  There exists an open ball  in R𝑑 containing 𝜃0 such that  ⊆ 𝛩 and 𝑄𝑌 (𝑢|𝜃) is differentiable on , uniformly in 
𝑢 ∈ [𝑝, 𝑝̄]. Moreover, 𝜃 ↦ 𝑄𝑌 (𝑢|𝜃) is continuously differentiable on  for each 𝑢; and, for each 𝜃 ∈ , ∇𝜃′𝑄𝑌 (⋅|𝜃) is square integrable 
on [𝑝, 𝑝̄].

Assumption 6. 
√

𝑇 (𝑄̂𝑌 (⋅) −𝑄𝑌 (⋅)) converges weakly in 𝐿∞(𝑝, 𝑝̄) to a zero-mean Gaussian process 𝐵 with continuous sample paths 
and covariance kernel 𝛤 .

Assumption 7. 𝑄𝑌 (𝑢|𝜃) is twice continuously differentiable on , for each 𝑢 ∈ [𝑝, 𝑝]. Moreover, sup𝜃∈ sup𝑢∈[𝑝,𝑝̄] ‖∇𝜃𝜃′𝑄𝑌 (𝑢|𝜃)‖2 <
∞.

Assumption 8.  The smallest eigenvalue of ∇𝜃′ℎ𝑅(𝜃0)′𝛺𝑅∇𝜃′ℎ𝑅(𝜃0) is bounded away from 0, uniformly in 𝑅.
Assumption  5 requires 𝜃0 to be an interior point of 𝛩. It also implies the objective function is continuously differentiable on a 

neighbourhood of 𝜃0, which enables us to linearise the first order condition satisfied with high probability by 𝜃̂.
Weak convergence of the empirical quantile process (Assumption  6) has been derived in a variety of settings, ranging from iid 

data (van der Vaart, 1998, Corollary 21.5) to nonstationary and weakly dependent observations (Portnoy, 1991). In the iid setting, if 
the family {𝐹𝜃 ∶ 𝜃 ∈ 𝛩} is continuously differentiable with strictly positive density 𝑓𝜃 over a (common) compact support; then weak-
convergence holds with 𝑝 = 0 and 𝑝 = 1. In this case, the covariance kernel is 𝛤 (𝑖, 𝑗) = (𝑖∧𝑗−𝑖𝑗)

𝑓𝑌 (𝑄𝑌 (𝑖))𝑓𝑌 (𝑄𝑌 (𝑗))
. Similarly to the discussion 

of Assumptions  1, 6 is stronger than necessary: it would have been sufficient to assume ‖
√

𝑇 (𝑄𝑌 (⋅) − 𝑄̂𝑌 (⋅))1[𝑝,𝑝̄]‖
2
𝐿2[0,1]

= 𝑂𝑃 ∗ (1), 
which is implied by weak convergence in 𝐿2(𝑝, 𝑝) (see Mason, 1984 and Barrio et al., 2005 for results in this direction).

Assumption  7 is a technical condition which enables us to provide an upper bound to the linearisation error of the first order 
condition satisfied by 𝜃̂.

Assumption  8 is similar to the rank condition used in the proof of asymptotic normality of M-estimators (Newey and McFadden, 
1994), which is known to be equivalent to a local identification condition under rank-regularity assumptions (Rothenberg, 1971). 
In our setting, where 𝑅 varies with sample size, we show in Supplemental Appendix C.2 that a stronger version of Assumption  4 
implies Assumption  8.

Under Assumptions  1–8, we have that:

Proposition 2.  Suppose Assumptions  1–8 hold. Then, as 𝑇 ,𝑅 → ∞, the estimator admits the asymptotic linear representation: 
√

𝑇 (𝜃̂ − 𝜃0) = −(∇𝜃′ℎ
𝑅(𝜃0)′𝛺𝑅∇𝜃′ℎ

𝑅(𝜃0))−1∇𝜃′ℎ
𝑅(𝜃0)′𝛺𝑅(

√

𝑇ℎ𝑅(𝜃0)) + 𝑜𝑃 ∗ (1) . (9)

Proof.  See Supplemental Appendix A.2. □

In the next subsection, we work out an asymptotic approximation to the distribution of the leading term in (9).

Remark 4.  Note that our linearisation result in Proposition  2 does not impose any restrictions on the rate of growth of L-moments, 
which again contrasts with existing results in the GMM literature (Koenker and Machado, 1999; Donald et al., 2003; Han and Phillips, 
2006), where rate restrictions are typically required in order to establish an asymptotic linear representation. This difference may 
again be attributed to the special structure of L-moments in our setting. Indeed, whereas the asymptotic normality result on the 
series-IV estimator discussed in Donald et al. (2003) assumes the rate restriction 𝑅∕𝑇 2 → 0 in order to control a crucial bias term 
in the asymptotic linear representation stemming from correlation between the gradient of the empirical moment condition at the 
true parameter and sample moments at the truth, the fact that, in our setting, the gradient of the difference between empirical and 
theoretical L-moments at the truth is not affected by estimation error of the empirical quantiles 𝑄̂𝑌 , coupled with Bessel’s inequality, 
enables us to control the linearisation error without such restriction. See Supplemental Appendix D for further discussion.

3.4. Asymptotic distribution

Finally, to work out the asymptotic distribution of the proposed estimator, we rely on a strong approximation concept. The idea is to 
construct, in the same underlying probability space, a sequence of Brownian bridges that approximates, in the supremum norm, the 
empirical quantile process. This can then be used to conduct inference based on a Gaussian distribution. In Supplemental Appendix 
H, we alternatively show how a Bahadur–Kiefer representation of the quantile process can be used to conduct inference in the iid 
case. In this alternative, one approximates the distribution of the leading term of (9) by a transformation of independent Bernoulli 
random variables.

We first consider a strong approximation to a Gaussian process in the iid setting. We state below a classical result, due to Csorgo 
and Revesz (1978):
7 
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Theorem 1 (Csorgo and Revesz, 1978).  Let 𝑌1, 𝑌2 … 𝑌𝑇  be an iid sequence of random variables with a continuous distribution function 
𝐹  which is also twice differentiable on (𝑎, 𝑏), where −∞ ≤ 𝑎 = sup{𝑧 ∶ 𝐹 (𝑧) = 0} and 𝑏 = inf{𝑧 ∶ 𝐹 (𝑧) = 1} ≤ ∞. Suppose that 
𝐹 ′(𝑧) = 𝑓 (𝑧) > 0 for 𝑧 ∈ (𝑎, 𝑏). Assume that, for 𝛾 > 0:

sup
𝑎<𝑥<𝑏

𝐹 (𝑥)(1 − 𝐹 (𝑥))
|

|

|

|

𝑓 ′(𝑥)
𝑓 2(𝑥)

|

|

|

|

≤ 𝛾 ,

where 𝑓 denotes the density of 𝐹 . Moreover, assume that 𝑓 is nondecreasing (nonincreasing) on an interval to the right of 𝑎 (to the left of 
𝑏). Then, if the underlying probability space is rich enough, one can define, for each 𝑡 ∈ N, a Brownian bridge {𝐵𝑡(𝑢) ∶ 𝑢 ∈ [0, 1]} such that, 
if 𝛾 < 2: 

sup
0<𝑢<1

|

√

𝑇𝑓 (𝑄𝑌 (𝑢))(𝑄̂𝑌 (𝑢) −𝑄𝑌 (𝑢)) − 𝐵𝑇 (𝑢)|
𝑎.𝑠.
= 𝑂(𝑇 −1∕2 log(𝑇 )) , (10)

and, if 𝛾 ≥ 2

sup
0<𝑢<1

|

√

𝑇𝑓 (𝑄𝑌 (𝑢))(𝑄̂𝑌 (𝑢) −𝑄𝑌 (𝑢)) − 𝐵𝑇 (𝑢)|
𝑎.𝑠.
= 𝑂(𝑇 −1∕2(log log 𝑇 )𝛾 (log 𝑇 )

(1+𝜖)
(𝛾−1) ) , (11)

for arbitrary 𝜖 > 0.

The above theorem is stronger than the weak convergence of Assumption  6. Indeed, Theorem  1 requires variables to be defined 
in the same probability space and yields explicit bounds in the sup norm; whereas weak convergence is solely a statement on the 
convergence of integrals (van der Vaart and Wellner, 1996). Suppose the approximation (10)/(11) holds in our context. Let 𝐵𝑇  be 
as in the statement of the theorem, and assume in addition that ∫ 𝑝

𝑝
1

𝑓𝑌 (𝑄𝑌 (𝑢))2
𝑑𝑢 < ∞. A simple application of Bessel’s inequality then 

shows that: 
√

𝑇 (𝜃̂ − 𝜃0) = −(∇𝜃′ℎ
𝑅(𝜃0)′𝛺𝑅∇𝜃′ℎ

𝑅(𝜃0))−1∇𝜃′ℎ
𝑅(𝜃0)′𝛺𝑅

[

∫

𝑝̄

𝑝

𝐵𝑇 (𝑢)
𝑓𝑌 (𝑄𝑌 (𝑢))

𝐏𝑅(𝑢)𝑑𝑢

]

+ 𝑜𝑃 ∗ (1) . (12)

Note that the distribution of the leading term in the right-hand side is known (by Riemann integration, it is Gaussian) up to 𝜃0. 
This representation could thus be used as a basis for inference. The validity of such approach can be justified by verifying that the 
Kolmogorov distance between the distribution of 

√

𝑇 (𝜃̂−𝜃0) and that of the leading term of the representation goes to zero as 𝑇  and 
𝑅 increase. We show that this indeed is true later on, where convergence in the Kolmogorov distance is obtained as a byproduct of 
weak convergence.

Next, we reproduce a strong approximation result in the context of dependent observations. The result is due to Fotopoulos and 
Ahn (1994) and Yu (1996).

Theorem 2 (Fotopoulos and Ahn, 1994; Yu, 1996).  Let 𝑌1, 𝑌2 … 𝑌𝑇  be a strictly stationary, 𝛼-mixing sequence of random variables, 
with mixing coefficient satisfying 𝛼(𝑡) = 𝑂(𝑡−8). Let 𝐹  denote the distribution function of 𝑌1. Suppose the following Csorgo and Revesz 
conditions hold:

a. 𝐹  is twice differentiable on (𝑎, 𝑏), where −∞ ≤ 𝑎 = sup{𝑧 ∶ 𝐹 (𝑧) = 0} and 𝑏 = inf{𝑧 ∶ 𝐹 (𝑧) = 1} ≤ ∞;
b. sup0<𝑠<1 |𝑓 ′(𝑄𝑌 (𝑠))| < ∞;

as well as the condition:
c. inf0<𝑠<1 𝑓 (𝑄𝑌 (𝑠)) > 0.

Let 𝛤 (𝑠, 𝑡) ∶= E[𝑔1(𝑠)𝑔1(𝑡)]+
∑∞

𝑛=2{E[𝑔1(𝑠)𝑔𝑛(𝑡)]+E[𝑔1(𝑡)𝑔𝑛(𝑠)]}, where 𝑔𝑛(𝑢) ∶= 1{𝑈𝑛 ≤ 𝑢}−𝑢 and 𝑈𝑛 ∶= 𝐹 (𝑌𝑛). Then, if the probability 
space is rich enough, there exists a sequence of Brownian bridges {𝐵̃𝑛 ∶ 𝑛 ∈ N} with covariance kernel 𝛤  and a positive constant 𝜆 > 0 such 
that: 

sup
0<𝑢<1

|

√

𝑇 (𝑄̂𝑌 (𝑢) −𝑄𝑌 (𝑢)) − 𝑓 (𝑄𝑌 (𝑢))−1𝐵̃𝑇 (𝑢)|
𝑎.𝑠.
= 𝑂((log 𝑇 )−𝜆) . (13)

A similar argument as the previous one then shows that, under the conditions of the theorem above: 
√

𝑇 (𝜃̂ − 𝜃0) = −(∇𝜃′ℎ
𝑅(𝜃0)′𝛺𝑅∇𝜃′ℎ

𝑅(𝜃0))−1∇𝜃′ℎ
𝑅(𝜃0)′𝛺𝑅

[

∫

𝑝̄

𝑝

𝐵̃𝑇 (𝑢)
𝑓𝑌 (𝑄𝑌 (𝑢))

𝐏𝑅(𝑢)𝑑𝑢

]

+ 𝑜𝑃 ∗ (1) . (14)

Differently from the iid case, the distribution of the leading term on the right-hand side is now known up to 𝜃0 and the 
covariance kernel 𝛤 . The latter could be estimated with a Newey and West (1987) style estimator.

To conclude the discussion, we note that the strong representation (12) (resp. (14)) allows us to establish asymptotic normality 
of our estimator. Indeed, let 𝐿𝑇  be the leading term of the representation on the right-hand side of (12) (resp. (14)), and 𝑉𝑇 ,𝑅 be its 
variance. Observe that 𝑉 −1∕2

𝑇 ,𝑅 𝐿𝑇  is distributed according to a multivariate standard normal. It then follows by Slutsky’s theorem that 
𝑉 −1∕2
𝑇 ,𝑅

√

𝑇 (𝜃̂ − 𝜃0)
𝑑
→ 𝑁(0, I𝑑 ). Since pointwise convergence of cumulative distribution functions to a continuous distribution function 

implies uniform convergence (Parzen, 1960, page 438), and given that 𝑉 −1∕2
𝑇 ,𝑅  is positive definite, we obtain that: 

lim
𝑇 ,𝑅→∞

sup
𝑐∈R𝑑

|𝑃 [
√

𝑇 (𝜃̂ − 𝜃0) ≤ 𝑐] − 𝑃 [𝐿𝑇 ≤ 𝑐]| = 0 , (15)

which justifies our approach to inference based on the distribution of the leading term on the right-hand side of (12) (resp. (14)).
We collect the main results in this subsection under the corollary below.
8 
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Corollary 1.  Suppose Assumptions  1–8 hold. Moreover, suppose a strong approximation condition such as (10)/(11) or (13) is valid; 
and, in addition, that ∫ 𝑝

𝑝
1

𝑓𝑌 (𝑄𝑌 (𝑢))2
𝑑𝑢 < ∞. Then, as 𝑇 ,𝑅 → ∞, the approximation (12) (resp. (14)) holds. Moreover, we have that, as 

𝑇 ,𝑅 → ∞, 𝑉 −1∕2
𝑇 ,𝑅

√

𝑇 (𝜃̂ − 𝜃0)
𝑑
→ 𝑁(0, I𝑑 ) and that (15) holds.

Remark 5 (Optimal Choice of Weighting Matrix Under Gaussian Approximation). Under (12), the optimal choice of weights that 
minimises the variance of the leading term is: 

𝛺∗
𝑅 = E

[(

∫

𝑝̄

𝑝

𝐵𝑇 (𝑢)
𝑓𝑌 (𝑄𝑦(𝑢))

𝐏𝑅(𝑢)𝑑𝑢

)(

∫

𝑝̄

𝑝

𝐵𝑇 (𝑢)
𝑓𝑌 (𝑄𝑦(𝑈 ))

𝐏𝑅(𝑢)𝑑𝑢

)′]−

, (16)

where 𝐴− denotes the generalised inverse of a matrix 𝐴. This weight can be estimated using a preliminary estimator for 𝜃0. An 
analogous result holds under (14), though in this case one also needs an estimator for the covariance kernel 𝛤 . In Supplemental 
Appendix E, we provide an estimator for 𝛺𝑅 in the iid case when the {𝑃𝑙} are shifted Legendre Polynomials.

Remark 6 (A Test Statistic for Overidentifying Restrictions).  The strong approximation discussed in this subsection motivates a test 
statistic for overidentifying restrictions. Suppose 𝑅 > 𝑑. Denoting by 𝑀(⋅) the objective function of (7), we consider the test-statistic:

𝐽 ∶= 𝑇 ⋅𝑀(𝜃̂𝑇 ) .

An analogous statistic exists in the overidentified GMM setting (Newey and McFadden, 1994; Wooldridge, 2010). Under the null 
that the model is correctly specified (i.e. that there exists 𝜃 ∈ 𝛩 such that 𝑄𝑌 (⋅) = 𝑄𝑌 (⋅|𝜃)), we can use the results in this section to 
compute the distribution of this test statistic. Specifically, if the optimal weighting scheme is adopted, the distribution of the test 
statistic under the null may be approximated by a chi-squared distribution with 𝑅− 𝑑 degrees of freedom. To establish this fact, we 
rely on an anticoncentration inequality due to Götze et al. (2019). See Supplemental Appendix F for details.

Remark 7 (Sample-Size-Dependent Trimming).  It is possible to adapt our assumptions and results to the case where the trimming 
constants 𝑝, 𝑝 are functions of the sample size. In particular, Theorem 6 of Csorgo and Revesz (1978) provides uniform strong 
approximation results for sample quantiles ranging from [1−𝛿𝑇 , 𝛿𝑇 ], where 𝛿𝑇 = 25𝑇 −1 log log 𝑇 . This result imposes fewer restrictions 
on the distribution, and could be used as the basis for inference on a variable-trimming estimator.

Remark 8 (Data-Driven Method to Select Trimming Proportions).  If one wishes to adopt trimming, then, for a given 𝑅, a data-driven 
method for selecting 𝑝 and 𝑝 can be obtained by choosing these constants so as to minimise an estimate of the variance of the leading 
term in (9). See Athey et al. (2023) for a discussion of this approach in estimating the mean of a symmetric distribution; and Crump 
et al. (2009) for a related approach when choosing trimming constants for the estimated propensity score in observational studies.

Remark 9 (Inference Based on the Weighted Bootstrap). In Supplemental Appendix G, we show how one can leverage the strong 
approximations discussed in this section to conduct inference on the model parameters using the weighted bootstrap.

Finally, we observe that, in some settings, we are not interested in conducting inference on 𝜃0, but rather on a sequence of 
scalar functions 𝑔𝑇 (𝜃0). Typical examples include the estimation of tail probabilities and quantiles. The following result, which is 
an immediate consequence of Corollary  1, provides conditions for inference based on the Delta Method to be valid in this setting.

Corollary 2.  Let 𝑔𝑛 ∶ R𝑑 ↦ R, 𝑛 ∈ N, be a sequence of functions such that there exists an open ball  ⊆ R𝑑 containing 𝜃0 with: (1) each 
𝑔𝑛 is continuously differentiable on , and (ii) the gradient functions {∇𝑔𝑛 ∶ 𝑛 ∈ N} are equicontinuous on , with ∇𝑔𝑛(𝜃0) ≠ 0 for every 
𝑛 ∈ N. If the conditions of Corollary  1 are satisfied, then, as 𝑇 ,𝑅 → ∞, 

√

𝑇 (𝑔𝑇 (𝜃̂𝑇 )−𝑔𝑇 (𝜃0))
√

∇𝑔𝑇 (𝜃0)′𝑉𝑇 ,𝑅∇𝑔𝑇 (𝜃0)

𝑑
→ 𝑁(0, 1).

Proof.  The conditions in the statement of the corollary imply that, as 𝑇 ,𝑅 → ∞: 
√

𝑇 (𝑔𝑇 (𝜃̂𝑇 )−𝑔𝑇 (𝜃0)) = ∇𝑔𝑇 (𝜃0)′
√

𝑇 (𝜃̂𝑇 −𝜃0)+𝑜𝑃 ∗ (1). 
The conclusion then follows from Corollary  1. □

3.5. Asymptotic efficiency

Supplemental Appendix I discusses efficiency of our proposed L-moment estimator. Specifically, we show that, when no trimming 
is adopted (0 = 𝑝 < 𝑝 = 1), the optimal weighting scheme (16) is used, the {𝑃𝑙}𝑙 constitute an orthonormal basis in 𝐿2[0, 1] (recall this 
is satisfied by shifted Legendre polynomials), and the data is iid, the generalised method of L-moments estimator is asymptotically 
efficient, in the sense that its asymptotic variance coincides with the inverse of the Fisher information matrix of the parametric 
model.15 We leave details to the Supplemental Appendix, though we briefly outline the argument here. The idea is to consider the 

15 In the dependent case, ‘‘efficiency’’ should be defined as achieving the efficiency bound of the semiparametric model that parametrises the marginal 
distribution of the 𝑌𝑡, but leaves the time series dependence unrestricted up to regularity conditions (Newey, 1990; Komunjer and Vuong, 2010). Indeed, in 
general, our L-moment estimator will be inefficient with respect to the MLE that models the dependency structure between observations. See Carrasco and 
Florens (2014) for further discussion.
9 
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alternative estimator: 
𝜃𝑇 ∈ argmin𝜃∈𝛩

∑

𝑖∈𝑇

∑

𝑗∈𝑇

(𝑄̂𝑌 (𝑖) −𝑄𝑌 (𝑖|𝜃))𝜅𝑖,𝑗 (𝑄̂𝑌 (𝑗) −𝑄𝑌 (𝑗|𝜃)) , (17)

for a grid of 𝐺𝑇  points 𝑇 = {𝑔1, 𝑔2,… , 𝑔𝐺𝑇
} ⊆ (0, 1) and weights 𝜅𝑖,𝑗 , 𝑖, 𝑗 ∈ 𝑇 . This is a weighted version of a ‘‘percentile-based 

estimator’’, which is used in contexts where it is difficult to maximise the likelihood (Gupta and Kundu, 2001). It amounts to choosing 
𝜃 so as to match a weighted combination of the order statistics in the sample. In the Supplemental Appendix, we show that, under 
a suitable sequence of gridpoints and optimal weights, this estimator is asymptotically efficient. We then show, by using the fact 
that the {𝑃𝑙}𝑙 form an orthonormal basis, that estimator (17) can be seen as a generalised L-moment estimator that uses infinitely 
many L-moments. The final step of the argument then consists in observing that a generalised L-moment estimator that uses a finite 
but increasing number of L-moments is asymptotically equivalent to estimator (17), which implies that a generalised L-moment 
estimator under optimal weights is no less efficient than the (efficient) percentile estimator.

4. Monte Carlo exercise

In our experiments, we draw random samples 𝑌1, 𝑌2,… , 𝑌𝑇  from a distribution function 𝐹 = 𝐹𝜃0  belonging to a parametric family 
{𝐹𝜃 ∶ 𝜃 ∈ 𝛩}. Following Hosking (1990), we consider the goal of the researcher to be estimating quantiles 𝑄𝑌 (𝜏) of the distribution 
𝐹𝜃0  by using a plug-in approach: first, the researcher estimates 𝜃0; then she estimates 𝑄𝑌 (𝜏) by setting 𝑄𝑌 (𝜏) = 𝑄𝑌 (𝜏|𝜃̂). As in Hosking 
(1990), we consider 𝜏 ∈ {0.9, 0.99, 0.999}. In order to compare the behaviour of alternative procedures in estimating more central 
quantiles, we also consider the median 𝜏 = 0.5. We analyse sample sizes 𝑇 ∈ {50, 100, 500}. The number of Monte Carlo draws is set 
to 5000.

We compare the root mean squared error of four types of generalised method of L-moment estimators under varying choices of 𝑅
with the root mean squared error obtained were 𝜃0 to be estimated via MLE. We consider the following estimators: (i) the generalised 
method of L-moments estimator that uses the càglàd L-moment estimates (3) and identity weights (Càglàd FS)16; (ii) a two step-
estimator which first estimates (i) and then uses this preliminary estimator17 to estimate the optimal weighting matrix (16), which 
is then used to reestimate 𝜃0 (Càglàd TS); (iii) the generalised method of L-moments estimator that uses the unbiased L-moment 
estimates (5) and identity weights (Unbiased FS); and (iv) the two-step estimator that uses the unbiased L-moment estimator in the 
first and second steps (Unbiased TS). The estimator of the optimal-weighting matrix we use is given in Supplemental Appendix E.

4.1. Generalised Extreme value distribution (GEV)

Following Hosking et al. (1985) and Hosking (1990), we consider the family of distributions

𝐹𝜃(𝑧) =

{

exp{−[1 − 𝜃2(𝑥 − 𝜃1)∕𝜃3]1∕𝜃3}, 𝜃3 ≠ 0
exp{− exp(−(𝑥 − 𝜃1)∕𝜃2)}, 𝜃3 = 0,

and 𝜃0 = (0, 1,−0.2)′.
Table  1 reports the RMSE of each procedure, divided by the RMSE of the MLE, under the choice of 𝑅 that achieves the smallest 

RMSE. Values above 1 indicate the MLE outperforms the estimator in consideration; and values below 1 indicate the estimator 
outperforms MLE. The value of 𝑅 that minimises the RMSE is presented under parentheses. Some patterns are worth highlighting. 
Firstly, the L-moment estimator, under a proper choice of 𝑅 and (estimated) optimal weights (two-step estimators) is able to 
outperform MLE in most settings, especially at the tail of the distribution function. Reductions in these settings can be as large as 
31.9%. At the median, two-step L-moment estimators behave similarly to the MLE. The performance of two-step càglàd and unbiased 
estimators is also quite similar. Secondly, the power of overidentifying restrictions is evident: except in three out of twenty-four 
cases, two-step L-moment estimators never achieve a minimum RMSE at 𝑅 = 3, the number of parameters. Two of these three 
exceptions are found at the smallest sample size (𝑇 = 50), where the benefit of overidentifying restrictions may be outweighed 
by noisy estimation of the weighting matrix.18 Thirdly, the relationship between 𝑇  and the MSE-minimising choice of 𝑅 in the 
two-step Càglàd estimator is monotonic when we move from the smallest (𝑇 = 50) to the largest (𝑇 = 500) sample size.19 This is 

16 To be precise, our choice of weights does not coincide with actual identity weights. Given that the coefficients of Legendre polynomials rapidly scale 
with 𝑅 – and that this increase generates convergence problems in the numerical optimisation – we work directly with the underlying estimators of the 
probability-weighted moments ∫ 1

0 𝑄𝑌 (𝑢)𝑢𝑟𝑑𝑢 (Landwehr et al., 1979), of which L-moments are linear combinations. When (estimated) optimal weights are used, 
such approach is without loss, since the optimal weights for L-moments constitute a mere rotation of the optimal weights for probability-weighted moments, in 
such a way that the optimally-weighted objective function for L-moments and probability-weighted moments coincide. In other cases, however, this is not the 
case: a choice of identity weights when probability-weighted moments are directly targeted coincides with using 𝑫−1′𝑫−1 as a weighting matrix for L-moments, 
where 𝑫 is a matrix which translates the first 𝑅 probability-weighted moments onto the first 𝑅 L-moments. For small 𝑅, we have experimented with using the 
‘‘true’’ L-moment estimator with identity weights, and have obtained the same patterns presented in the text.
17 This preliminary estimator is computed with 𝑅 = 𝑑.
18 Indeed, as we discuss in Supplemental Appendix K, a higher-order expansion of our proposed estimator shows that correlation of the estimator of the 

optimal weighting matrix with sample L-moments plays a key role in the higher-order bias and variance of the two-step estimator.
19 The optimal choice of 𝑅 also increases in three out of four quantiles when we move from 𝑇 = 50 to 𝑇 = 100. The exception occurs at the median, where 

the optimal choice decreases slightly from 𝑅 = 12 to 𝑅 = 11. At 𝑇 = 100, the difference between 𝑅 = 11 and 𝑅 = 12 is negligible, though: choosing 𝑅 = 11 leads 
to a relative RMSE of 1.002787, whereas the choice 𝑅 = 12 leads to a relative RMSE of 1.002800.
10 
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Table 1
GEV : relative RMSE under MSE-minimising choice of 𝑅.
 𝑇 = 50 𝑇 = 100 𝑇 = 500

 𝜏 = 0.5 𝜏 = 0.9 𝜏 = 0.99 𝜏 = 0.999 𝜏 = 0.5 𝜏 = 0.9 𝜏 = 0.99 𝜏 = 0.999 𝜏 = 0.5 𝜏 = 0.9 𝜏 = 0.99 𝜏 = 0.999 
 Càglàd FS 1.026 0.962 0.821 0.737 1.031 0.982 0.950 0.928 1.028 1.000 1.061 1.095  
 (3) (3) (3) (3) (3) (4) (3) (3) (3) (8) (3) (3)  
 Càglàd TS 1.005 0.960 0.818 0.692 1.003 0.981 0.910 0.840 1.004 0.998 0.990 0.979  
 (12) (3) (5) (5) (11) (3) (5) (5) (30) (4) (90) (90)  
 Unbiased FS 1.016 0.951 0.853 0.811 1.027 0.975 0.972 0.979 1.027 0.998 1.065 1.106  
 (3) (5) (3) (3) (3) (6) (3) (3) (3) (9) (3) (3)  
 Unbiased TS 1.000 0.950 0.815 0.681 1.000 0.976 0.904 0.834 1.003 0.994 0.985 0.974  
 (21) (3) (5) (9) (8) (4) (5) (5) (29) (7) (21) (21)  

consistent with our theoretical results: given 
√

𝑇 -consistency of the estimators, as 𝑇  increases, one expects the contribution of the 
bias component in the RMSE to decrease, and, given asymptotic efficiency of the two-step estimator as 𝑅 diverges, a larger choice 
of 𝑅 may lead to variance reduction. Finally, the role of optimal weights is clear: first-step estimators tend to underperform the 
MLE as the sample size increases. In larger samples, and when optimal weights are not used, the best choice tends to be setting 𝑅
close to or equal to 3, which reinforces the importance of weighting when overidentifying restrictions are included.

To better understand the patterns in the table, we report in Fig.  1, the relative RMSE curve for different sample sizes and choices 
of 𝑅. The role of optimal weights is especially striking: first-step estimators usually exhibit an increasing RMSE, as a function of 
𝑅. In contrast, two-step estimators are able to better control the RMSE across 𝑅. It is also interesting to note that the two-step 
unbiased L-moment estimator behaves poorly when 𝑅 is close to 𝑇 . This suggests that, in settings where one may wish to make 
𝑅 large, the càglàd estimator is preferable.20 Finally, we note that, for two-step estimators, the RMSE curve is relatively flat over 
several regions of 𝑅. This implies that, if 𝑅 is chosen in these regions, then the RMSE of the resulting estimator is robust to (local) 
perturbations on the number of L-moments used in estimation. As we discuss in Section 5, this flatness will be convenient when 
designing methods to automatically select 𝑅, since any method that sets this tuning parameter to be in the correct region where RMSE 
is small should perform well. In contrast, if the RMSE curve were locally very sensitive to the choice of 𝑅, it could be unfeasible to 
obtain a sufficiently accurate assessment of the RMSE in finite samples that were to result in a good choice of 𝑅.

4.2. Generalised Pareto distribution (GPD)

Following Hosking and Wallis (1987), we consider the family of distributions:

𝐹𝜃(𝑧) =

{

1 − (1 − 𝜃2𝑥∕𝜃1)−1∕𝜃2 , 𝜃2 ≠ 0
1 − exp(−𝑥∕𝜃1), 𝜃2 = 0,

and 𝜃0 = (1,−0.2)′.
Table  2 and Fig.  2 summarise the results of our simulation. Overall patterns are similar to the ones obtained in the GEV 

simulations. Importantly, though, estimation of the optimal weighting matrix impacts two-step estimators quite negatively in this 
setup. As a consequence, we verify that the choice of 𝑅 = 2 (i.e. a just-identified estimator that effectively does not rely on the 
weights) is optimal for TS estimators at five out of the eight cases in sample size 𝑇 = 50. This behaviour also leads to FS estimators, 
which do not use estimated weights, outperforming TS estimators at the 0.99 and 0.999 quantiles when 𝑇 = 50, and underperforming 
TS estimators in larger sample sizes by much smaller margins than in the GEV design. Finally, we note that, in all cases, L-moment 
estimators compare favourably to the MLE.

Remark 10 (Other Target Parameters).  In this section, we have focused in a setting where the goal is quantile estimation. In 
Supplemental Appendix J.1, we consider instead a situation where the targets are linear combinations 𝛿′𝜃0 of the model parameters. 
Since we do not have any particular linear combination in mind, we consider choices of 𝛿 (directions) that lead to the most and 
least favourable relative RMSE vis-à-vis the MLE. In the GEV design, two-step estimators, under the optimal choice of 𝑅, are able 
to offer RMSE improvements of around 8% in the most favourable direction and smaller sample sizes, while strongly mitigating the 
underperformance of first-step estimators in the least-favourable directions and larger sample sizes. Indeed, in the latter scenario, 
first-step estimators, even under an optimal choice of 𝑅, incur in RMSE losses relatively to the MLE of over 25%; in contrast, this 
underperformance shrinks to only 1.3% when càglàd two-step estimators are adopted. In the GPD design, both first-step and two-step 
estimators perform well relatively to the MLE, even when considering the least favourable directions and largest sample sizes, with 
gains reaching over 16% in the smallest sample size and most favourable direction (and 4% in the smallest sample size and least 
favourable direction).

20 This is also in accordance with our theoretical results for the càglàd-based estimator, which essentially place no restriction on the growth rate of 𝑅.
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Fig. 1. GEV: relative RMSE for different choices of 𝑅.

Table 2
GPD : relative RMSE under MSE-minimising choice of 𝑅.
 𝑇 = 50 𝑇 = 100 𝑇 = 500

 𝜏 = 0.5 𝜏 = 0.9 𝜏 = 0.99 𝜏 = 0.999 𝜏 = 0.5 𝜏 = 0.9 𝜏 = 0.99 𝜏 = 0.999 𝜏 = 0.5 𝜏 = 0.9 𝜏 = 0.99 𝜏 = 0.999 
 Càglàd FS 0.975 0.981 0.806 0.596 0.982 0.991 0.915 0.856 0.998 1.000 0.990 0.982  
 (4) (3) (34) (50) (4) (7) (4) (3) (4) (23) (3) (2)  
 Càglàd TS 0.959 0.981 0.822 0.649 0.978 0.987 0.899 0.837 0.995 0.997 0.980 0.969  
 (3) (2) (3) (2) (3) (3) (3) (3) (5) (100) (3) (100)  
 Unbiased FS 0.942 0.967 0.834 0.711 0.967 0.982 0.931 0.910 0.995 0.997 0.992 0.993  
 (4) (5) (10) (4) (4) (12) (3) (2) (4) (28) (2) (2)  
 Unbiased TS 0.929 0.967 0.845 0.717 0.962 0.980 0.914 0.887 0.991 0.995 0.975 0.974  
 (5) (2) (2) (2) (5) (3) (3) (3) (39) (27) (27) (27)  

Remark 11 (Comparison with Trimming and Tilting Approaches). In both of our Monte Carlo exercises, the distributions exhibit 
heavy tails. In these settings, a natural approach would be to consider maximum likelihood estimators that take additional steps 
to limit the influence of extreme observations. We compare the behaviour of these estimators with our L-moment-based approach 
in Supplemental Appendix J.2. Specifically, we contrast our L-moment-based estimators with a trimming approach that discards 
extreme observations and computes MLE estimates in a restricted dataset, and also with a ‘‘tilted’’ MLE that computes estimates in a 
reweighted dataset. In both the GEV and GDP designs, the Càglàd TS estimator under the RMSE-minimising choice of 𝑅 consistently 
12 
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Fig. 2. GPD: relative RMSE for different choices of 𝑅.

outperforms the trimming approach. As for the tilted MLE, it is able to compete with the L-moment estimator at some combinations 
of tail quantiles and sample sizes, under a suitable amount of tilting. However, the competitiveness and overall performance of the 
tilted MLE estimator is extremely sensitive to the amount of tilting to which the data is subjected to, and, as we discuss in the 
Appendix, to the best of our knowledge, there currently do not exist methods to select the tilting proportion with an aim at MSE 
reductions.

Remark 12 (Size and Coverage of Confidence Intervals Based on the Gaussian Approximation). Supplemental Appendix J.3 assesses the 
coverage and length of confidence intervals (CIs) derived from the normal approximation in Corollaries  1 and 2. We focus on the 
càglàd two-step estimator and provide two sets of results. First, to assess the quality of the normal approximations, we compute 
the coverage and length of confidence intervals for different target quantiles based on normal critical values and the true sampling 
variance of the estimators. We observe that these confidence intervals have coverage close to their nominal level even in the smallest 
sample size and more extreme quantiles, and that, consistent with our theoretical results that do not impose any growth restrictions 
on the number of L-moments in the derivation of the asymptotic normal approximation, coverage is approximately constant across 
choices of 𝑅. Confidence intervals based on the MLE estimator, normal critical values and the true sampling variance also exhibit 
correct coverage; however, their length is no less than the length of confidence intervals based on the generalised L-moment estimator 
under the length-minimising choice of 𝑅. Length reductions provided by the L-moment-based CIs can be substantial, especially at 
tail quantiles. We then compare the coverage and length of feasible versions of these confidence intervals that rely on estimators 
of the asymptotic variance. Both the MLE and L-moment-based confidence intervals display correct coverage at central quantiles in 
small sample sizes and at the tail when we consider larger samples. However, both methods display undercoverage at more extreme 
13 
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quantiles in smaller sample sizes, with L-moment CIs in some cases undercovering more than the MLE in the GEV design (differences 
in undercoverage are insubstantial in the GPD design). As we argue in the Appendix, this is driven partly by correlation between 
the asymptotic variance estimator and the target quantile estimator, which generates distortions in the sampling distribution of 
the 𝑡-test that is inverted to construct the confidence interval. Motivated by our strong approximation results, we provide a simple 
correction to the critical values used in the L-moment confidence interval that improves coverage in smaller sample sizes and more 
extreme quantiles, while still preserving reduced length over (coverage-corrected) MLE-based CIs.

Remark 13.  We note that computation runtime of our L-moment estimators is quite fast in the GEV and GPD families. For example, 
the estimation of the parameters of a GEV distribution with the two-step càglàd L-moment estimator and a random sample with 
𝑇 = 500 observations takes around half a second in a 2017 i7 Macbook Pro with 16 GB RAM when 𝑅 = 100; around three seconds 
when 𝑅 = 500; and around ten seconds when 𝑅 = 1000.

5. Choosing the number of L-moments in estimation

The simulation exercise in the previous section evidences that the number of L-moments 𝑅 plays an important role in determining 
the relative behaviour of the generalised L-moment estimator. Indeed, Figs.  1 and 2 suggest that the RMSE of two-step estimators 
can be sensitive to the number of L-moments. For example, in the GEV design, at 𝑇 = 500 and 𝜏 = 0.999, the RMSE of the two-step 
unbiased L-moment estimator is around 11% larger than the MLE when 𝑅 = 3, and around 2.3% smaller than the MLE when 𝑅 = 6. 
This indicates that designing a proper method to select 𝑅 is essential for competitiveness of the L-moment approach. Moreover, the 
pattern of the curves in Figs.  1 and 2 suggests that there is great hope that such methods will perform well in practice. Indeed, 
given that the RMSE curve is flat over several regions of 𝑅, one should expect any method that sets 𝑅 to be in an appropriate region
where RMSE is small to perform well.21 In contrast, if the RMSE curve were locally very sensitive to the choice of the number of 
L-moments, then one would require a rather sharp assessment of the RMSE to select 𝑅, which could be unfeasible in smaller sample 
sizes.

In light of these points, in this section we introduce (semi)automatic methods to select 𝑅. We briefly outline two approaches, 
with the details being left to Supplemental Appendix K. We then contrast these approaches in the context of the Monte Carlo exercise 
of Section 4.

In Supplemental Appendix K.1, we derive a higher-order expansion of the ‘‘generalised’’ L-moment estimator (7). We then propose 
to choose 𝑅 by minimising the resulting higher-order mean-squared error of a suitable linear combination of the parameters. Similar 
approaches were considered in the GMM literature by Donald and Newey (2001) – where the goal is to choose the number of 
instruments in linear instrumental variable models –, and Donald et al. (2009) – where one wishes to choose moment conditions in 
models defined by conditional moment restrictions (in which case infinitely many restrictions are available). Relatedly, Okui (2009) 
considers the choice of moments in dynamic panel data models; and, more recently, Abadie et al. (2024) use higher order expansions 
to develop a method of choosing subsamples in linear instrumental variables models with first-stage heterogeneity. Importantly, our 
higher-order expansions can be used to provide higher-order mean-squared error estimates of target estimands 𝑔𝑇 (𝜃0), where 𝑔𝑇  is 
a function indexed by sample size. This can be useful when the parameter 𝜃0 is not of direct interest. So, for example, if our goal is 
quantile estimation, we can choose 𝑅 so as to minimise the higher-order mean-squared error of estimating the target quantile.

In Supplemental Appendix K.2, we consider an alternative approach to selecting L-moments by employing 𝓁1-regularisation. 
Following Luo et al. (2015), we note that the first order condition of the estimator (7) may be written as:

𝐴𝑅ℎ
𝑅(𝜃̂) = 0 ,

for a 𝑑 × 𝑅 matrix 𝐴𝑅 which combines the L-moments linearly into 𝑑 restrictions. The idea is to estimate 𝐴𝑅 using a Lasso 
penalty. This approach implicitly performs moment selection, as the method yields exact zeros for several entries of 𝐴𝑅. In a GMM 
context, Luo et al. (2015) introduces an easy-to-implement quadratic program for estimating 𝐴𝑅 with the Lasso regularisation. In 
the Supplemental Appendix, we show how this algorithm may be extended to our L-moment setting and provide conditions for its 
validity.

To conclude, we return to the Monte Carlo exercise of Section 4. We contrast the RMSE (relatively to the MLE) of the original 
L-moment estimator due to Hosking (1990) that sets 𝑅 = 𝑑 (FS) with a two-step L-moment estimator where 𝑅 is chosen so as to 
minimise a higher-order MSE of the target quantile (TS RMSE), and a ‘‘post-lasso’’ estimator that estimates 𝜃0 using only those 
L-moments selected by regularised estimation of 𝐴𝑅 (TS Post-Lasso). For brevity, we focus on estimators based on the càglàd
L-moments (3). Additional details on the implementation of each method can be found in Supplemental Appendix K.3.

Tables  3 and 4 present the results of the different methods in the GEV and GPD exercises. We report in parentheses the average 
number of L-moments used by each estimator. Overall, the TS RMSE estimator compares favourably to both Hosking’s original 
estimator and the MLE. In the GEV exercise, the TS RMSE estimator improves upon both the FS estimator and the MLE when 𝑇 < 500; 
and behaves similarly to the MLE and better than FS in the largest sample size. For example, at 𝑇 = 500, Hosking’s estimator has 
a 6.1% (9.5%) larger root-mean-squared error than then MLE at the 0.99 (0.999) quantile, whereas the relative performance of TS 
RMSE with respect to the MLE is 0.6% (0.9%). As for the GPD exercise, recall that this is a setting where estimation of the optimal 
weighting matrix impacts two-step estimators more negatively. Consequently, gains of TS RMSE over FS are more limited in this 

21 We thank two anonymous referees for pointing this out.
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Table 3
GEV : relative RMSE under different selection procedures.
 𝑇 = 50 𝑇 = 100 𝑇 = 500

 𝜏 = 0.5 𝜏 = 0.9 𝜏 = 0.99 𝜏 = 0.999 𝜏 = 0.5 𝜏 = 0.9 𝜏 = 0.99 𝜏 = 0.999 𝜏 = 0.5 𝜏 = 0.9 𝜏 = 0.99 𝜏 = 0.999 
 FS 1.026 0.962 0.821 0.737 1.031 0.983 0.950 0.928 1.028 1.004 1.061 1.095  
 (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)  
 TS RMSE 1.008 0.964 0.794 0.674 1.004 0.987 0.923 0.865 1.005 0.999 1.006 1.009  
 (16.81) (3.66) (3.3) (3.41) (33.02) (4.17) (4.32) (4.57) (20.29) (35.51) (40.91) (43.17)  
 TS Post-Lasso 1.017 0.975 0.857 0.781 1.010 0.988 0.928 0.866 1.006 0.999 0.999 0.993  
 (7.99) (7.99) (7.99) (7.99) (9.24) (9.24) (9.24) (9.24) (9.95) (9.95) (9.95) (9.95)  

Table 4
GPD : relative RMSE under different selection procedures.
 𝑇 = 50 𝑇 = 100 𝑇 = 500

 𝜏 = 0.5 𝜏 = 0.9 𝜏 = 0.99 𝜏 = 0.999 𝜏 = 0.5 𝜏 = 0.9 𝜏 = 0.99 𝜏 = 0.999 𝜏 = 0.5 𝜏 = 0.9 𝜏 = 0.99 𝜏 = 0.999 
 FS 0.984 0.981 0.824 0.648 0.988 0.993 0.917 0.856 1.007 1.005 0.990 0.982  
 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)  
 TS RMSE 0.964 0.994 0.817 0.640 0.980 0.990 0.896 0.828 0.997 0.999 0.978 0.970  
 (2.86) (4.43) (2.61) (2.96) (3.59) (4.31) (3.02) (3.09) (5.34) (48.42) (31.11) (29.71)  
 TS Post-Lasso 0.995 0.999 0.891 0.741 0.992 0.999 0.950 0.905 0.998 1.000 0.985 0.977  
 (3.52) (3.52) (3.52) (3.52) (3.7) (3.7) (3.7) (3.7) (3.78) (3.78) (3.78) (3.78)  

setting. Indeed, the average gain of TS RMSE over FS in the GPD exercise is 1.0 (relative) percentage points (pp), with the largest 
outperformance being 2.8 pp and an underperformance in 𝑇 = 50 and 𝜏 = 0.9 of 1.3 pp. In contrast, in the GEV exercise, the average 
gain of TS RMSE over FS is 3.2 pp, the largest gain is 8.6 pp and TS RMSE underperforms FS by only 0.4 pp at 𝑇 = 100 and 𝜏 = 0.9. 
More importantly, in both settings, our TS RMSE approach is able to simultaneously generate gains over MLE in smaller samples and 
mitigate inefficiencies of Hosking’s original method in larger sample sizes. This phenomenon is especially pronounced at the tails 
of the distributions.

With regards to the Post-Lasso method, we note that it behaves similarly to TS RMSE in larger sample sizes,22 though it can 
perform somewhat unfavourably vis-à-vis the other L-moment alternatives in the smallest sample size (the method still improves 
upon MLE at tail quantiles in this scenario). As we discuss in Supplemental Appendix K.3, this issue can be partly attributed to a 
‘‘harsh’’ regularisation penalty being used in the selection step. There is room for improving this step by relying on an iterative 
procedure to select a less harsh penalty (see Belloni et al. (2012) and Luo et al. (2015) for examples). We also discuss in the 
Supplemental Appendix that it could be possible to improve the TS RMSE procedure by including additional higher-order terms in 
the estimated approximate RMSE. We leave exploration of these improvements as future topics of research.

Remark 14.  We remark that comparisons between the RMSE and post-Lasso approaches should also take computational concerns 
into consideration. Indeed, as summarised in the pseudo-code in the Supplemental Appendix (Algorithm K.1), our numerical 
implementation of the RMSE approach requires evaluation of cross-products, for different test values of 𝑅, between the gradient and 
Hessian of the theoretical L-moment functions at different choices of 𝑅 (which measure the sensitivity of estimates to the sample 
L-moments); the partial derivatives, with respect to 𝜃, of the quantile density function 𝑄′(𝑢|𝜃) at different values of 𝑢 (measuring 
higher-order terms pertaining to estimation of the optimal weighting matrix); and the gradient and Hessian, with respect to 𝜃, of the 
quantile function 𝑄(𝜏|𝜃) at the quantiles 𝜏 of interest, when the goal is quantile estimation (pertaining to the expansion of the RMSE 
of the target quantile). Even though these derivatives are available in closed form for the GEV and GPD families (see Supplemental 
Appendix M), and while we do provide R code that leverages fast automatic differentiation tools to evaluate the derivatives when 
these expressions are not available in closed form, computation of the RMSE approach is generally slower than the Post-Lasso 
method. Indeed, while the post-Lasso also requires computation of derivatives to estimate the Lasso penalty (see Supplemental 
Appendix K.3 for details), it does not hinge on the evaluation of cross-products of these terms for different choices of 𝑅, which 
speeds up implementation considerably.23 For comparison, in the GEV Monte Carlo exercise, with 500 observations, computing the 
higher-order RMSE estimate for the four target quantiles across test values 𝑅 ∈ {3,… , 100} takes around 42 s in a 2017 i7 Macbook 
Pro with 16 GB RAM (and around 10 s for test values 𝑅 ∈ {3,… , 50}). In contrast, the Post-Lasso selection approach with a maximum 
allowed choice of 𝑅max = 200 takes around 6 s (and around 2 s with 𝑅max = 100). Given that the Post-Lasso approach compares 
favourably to TS RMSE in sample sizes 𝑇 > 50, it may thus be preferable in these settings on computational grounds. One further 
advantage of this approach is its simplicity, as it delivers a single choice of 𝑅 irrespective of the target parameter.

22 In the largest sample size of the GEV distribution, the Post-Lasso performs especially well, incurring in a gain of 10.2 pp over the FS estimator at the 
𝜏 = 0.999 quantile.
23 We remark that evaluation of the cross-products in the RMSE approach can be parallelised across different test values of 𝑅, an approach we adopt in our 

computational implementation. See the R script selection.R in the accompanying online repository for a generic implementation of our selection methods 
to any class of parametric distributions.
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Fig. 3. Empirical application: expenditure patterns in mid-to-late September.

6. Extensions

6.1. ‘‘Residual’’ analysis in semi- and nonparametric models

In this subsection, we consider a setting where a researcher has postulated a model for a scalar real-valued outcome 𝑌 : 
𝑌 = ℎ(𝜖,𝑋; 𝛾0), 𝛾 ∈ 𝛤 ⊆  , (18)

where ℎ is a known mapping, 𝑋 is a vector of observable attributes taking values in  , 𝜖 is an unobservable scalar real-valued 
disturbance, and 𝛾0 is a nuisance parameter that is known to belong to a subset 𝛤  of a Banach space (, ‖ ⋅ ‖). We assume that, for 
each possible value (𝑥, 𝛾) ∈  × 𝛤 , the map 𝑒 ↦ ℎ(𝑒, 𝑥; 𝛾) is invertible, and we denote its pointwise inverse by ℎ−1(⋅, 𝑥; 𝛾).

We further assume that the researcher has access to an estimator of 𝛾0, and that her goal is to estimate a parametric model for 
the distribution of 𝜖, i.e. she considers the model: 

𝜖 ∼ 𝐹𝜃0 , 𝜃0 ∈ 𝛩 ⊆ R𝑑 . (19)

Interest in (19) nests different types of ‘‘residual’’ analyses, where one may wish to estimate (19) with an aim to (indirectly) 
assess the appropriateness of (18) – whenever theory imposes restrictions on the distribution of 𝜖 –, or as a means to construct 
unconditional prediction intervals for 𝑌 .

In Supplemental Appendix L.1, we show how our generalised L-moment approach may be adapted to estimate (19), while 
remaining agnostic about the first-step estimator of 𝛾0. We do so by borrowing insights from the double-machine learning 
literature (Chernozhukov et al., 2018, 2022; Kennedy, 2023). Specifically, we employ sample-splitting and debiasing to construct 
the generalised method-of-L-moment estimator: 

𝜃̂ ∈ arg inf
𝜃∈𝛩

[

∫

𝑝̄

𝑝

(

𝑄̂𝜖(𝑢) −𝑄𝜖(𝑢|𝜃)
)

𝐏𝑅(𝑢)′𝑑𝑢 − 𝑨̂

]

𝑊 𝑅

[

∫

𝑝̄

𝑝

(

𝑄̂𝜖(𝑢) −𝑄𝑌 (𝑢|𝜃)
)

𝐏𝑅(𝑢)𝑑𝑢 − 𝑨̂

]

, (20)

where 𝑄̂𝜖(𝑢) is the empirical quantile function of {ℎ−1(𝑌𝑖, 𝑋𝑖; 𝛾̂) ∶ 𝑖 = 1,… , 𝑇 }, with 𝛾̂ a first-step estimator of 𝛾0 computed 
from a sample independently from {(𝑋𝑖, 𝑌𝑖) ∶ 𝑖 = 1,… , 𝑇 }. The adjustment term 𝑨̂ is an estimator of the first-step influence 
function (Ichimura and Newey, 2022), which reflects the impact of estimating 𝛾̂ on 𝛾 ↦ 𝑄̂ℎ−1(𝑌 ,𝑋;𝛾). The Supplemental Appendix 
provides the form of this correction in three examples. We also show that the asymptotic distribution of 𝜃̂ may be computed as 
in the previous sections, provided that we adjust it to account for first-step estimation error. This correction can also be used to 
compute the optimal-weighting scheme of L-moments.

To illustrate this approach, we rely on expenditure data in a ridesharing platform collected by Biderman (2018). We observe 
weekly expenditures (in Brazilian reais) in the platform during eight weeks between August and September 2018, for a subset of 3961 
users of the service in the municipality of São Paulo, Brazil. For these users, we also have access to survey data on sociodemographic 
traits and commuting motives. We denote by 𝑌  the amount spent by user 𝑖 in week 𝑡, whereas 𝑋  collects their survey information.
𝑖𝑡 𝑖
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Panel 3(a) plots the histogram for the distribution of expenditures in the penultimate week of our sample (mid-to-late September). 
The data clearly exhibits heavy tails: the maximum observed expenditure is 464.34 Brazilian reais, whereas average expenditure 
amounts to 20.81 reais.24 Moreover, 58% of individuals do not spend any money in rides during this period. The solid line presents 
the density of a GPD distribution fit to this data. The parameters of the distribution are estimated via the two-step generalised 
method-of L-moment estimator discussed in Section 4, with 𝑅 = 65, which corresponds to the optimal choice for estimating several 
quantiles across the distribution, according to the RMSE criterion discussed in Section 5. Even though the overidentifying restrictions 
test clearly rejects the null (𝑝-value ≈ 0), we take the plotted density as further confirmation of heavy-tailedness of expenditure 
patterns, since the estimated GPD density understates mass at larger support points.

We seek to understand whether individual time-invariant heterogeneity, along with persistence in expenditure patterns, is able 
to explain the observed heavy-tailedness. To accomplish this, we posit the following model for the evolution of expenditures:

𝑌𝑖𝑡 = 𝛼𝑖 + 𝑎(𝑋𝑖)𝑡 + 𝑏(𝑋𝑖)𝑌𝑖,𝑡−1 + 𝜖𝑖,𝑡 ,

where 𝛼𝑖 is unobserved time-invariant heterogeneity (here treated as a fixed effect), and 𝜖𝑖𝑡 is time-varying idiosyncratic hetero-
geneity that is assumed to be, conditionally on 𝑋𝑖, independent across time. The coefficients 𝑎(𝑋𝑖) and 𝑏(𝑋𝑖) measure respectively 
deterministic trends and persistence in individual consumption patterns. We allow these coefficients to be nonparametric functions 
of survey information. Finally, we also assume that E[𝜖𝑖𝑡|𝑋𝑖] = 0, meaning that (𝑎(𝑋𝑖), 𝑏(𝑋𝑖)) correctly capture mean heterogeneity 
in consumption trends attributable to 𝑋𝑖.

To estimate the above model, we take first-differences to remove the fixed effect, i.e. we consider: 
𝛥𝑌𝑖,𝑡 = 𝑎(𝑋𝑖) + 𝑏(𝑋𝑖)𝛥𝑌𝑖,𝑡−1 + 𝛥𝜖𝑖,𝑡 . (21)

Under the assumption that the 𝜖𝑖,𝑡 are (conditionally on 𝑋𝑖) independent across time, we may then use 𝑌𝑖,𝑡−2 as a valid instrument 
for the endogenous variable 𝛥𝑌𝑖,𝑡−1 (Anderson and Hsiao, 1982; Arellano and Bond, 1991). We estimate (21) using the instrumental 
forest estimator of Athey et al. (2019), which assumes 𝑎 and 𝑏 to be in the closure of the linear span of regression trees.

Panel 3(b) reports the histogram of the residuals 𝛥𝜖𝑖𝑡 in mid-to-late September, where we adopt sample-splitting and estimate the 
functions 𝑎(⋅) and 𝑏(⋅) using data from the weeks prior to the penultimate week in the sample. The distribution is two-sided, with a 
large mass just below zero, suggesting that model (21) somewhat overpredicts expenditure variation in mid-to-late September. 
To assess whether the data exhibits heavy-tails, we estimate a GEV mixture model for the distribution of 𝛥𝜖𝑖𝑡, assuming that 
P[𝛥𝜖𝑖𝑡 ≤ 𝑥] = 𝜔((1−𝛿1)∕2+𝛿1𝐹𝜃1 (𝛿1𝑥))+(1−𝜔)((1−𝛿2)∕2+𝛿2𝐹𝜃1 (𝛿2𝑥)), with 𝜔 ∈ [0, 1], 𝛿1, 𝛿2 ∈ {−1, 1}, and 𝐹𝜃1  and 𝐹𝜃2  belonging to the 
GEV family described in Section 4. Our formulation allows for the left- and right-tails to exhibit different decay, e.g. if 𝛿1 = −1 and 
𝛿2 = −1 and the shape parameter of 𝐹𝜃1  is negative while 𝐹𝜃1  is positive, then the left-tail behaves as a Fréchet, while the right-tail 
behaves as a Weibull distribution. Moreover, if the distributions being mixed by the weights 𝜔 exhibit disjoint supports, then the 
quantile function of the mixture admits a simple closed-form solution (Castellacci, 2012), which enables us to rely on closed-form 
expressions for the L-moments of the GEV family to compute theoretical L-moments. We estimate the parameters (𝜔, 𝛿1, 𝛿2, 𝜃1, 𝜃2)
by relying on the adjusted estimator (20), with two-step optimal weights and the form of correction 𝑨̂ derived in Example 3 in 
Supplemental Appendix L.1.

The solid line in Panel 3(b) reports the fitted density of the GEV mixture, while the shaded area plots a 95% uniform 
confidence band for the density function over the support of 𝛥𝜖𝑖𝑡. The band is computed using the delta-method and sup-t critical 
values (Freyberger and Rai, 2018). Overall, the fit appears adequate, as evidenced by the overidentifying restrictions test not 
rejecting the null at the usual significance levels (p-value ≈ 1). We then use our parameter estimates to test the null hypothesis 
that the left (right) tail exhibits exponentially light decay, against the alternative that it is heavy-tailed. This corresponds to testing 
whether the left-tail (right-tail) shape parameter is in the set [0, 1], against the alternative that it is not.25 Upon computation of a 95% 
confidence interval for the right- (left-) tail shape parameters, we verify that, while the confidence region for the right-tail shape 
parameter is entirely contained in the (1,∞) region, the confidence region for the left-tail shape parameter is [−0.934, 0.124], which 
intersects with [0, 1]. Therefore, at the 5% significance level, we reject the null of exponentially light decay for the right-tail of the 
distribution, though we fail to do so for the left-tail. These results provide evidence that, even after accounting for heterogeneous 
persistence and trends, as well as time-invariant unobserved heterogeneity, weekly expenses still exhibit very positive idiosyncratic 
realisations. Such pattern is consistent with, in any given week, some individuals having to take very long trips (e.g. taking a ride 
to the airport), the demand for which may be hard to anticipate on the basis of observable traits.26

As a final application of our approach, we show how our estimator of the distribution of 𝛥𝜖𝑖𝑡 may be used to construct prediction 
intervals for individual treatment effects (Cattaneo et al., 2021; Chernozhukov et al., 2021a,b), a useful tool in assessing the 
impacts of personalised interventions (Kivaranovic et al., 2020; Lei and Candès, 2021). Specifically, suppose that, in some week, 
the ridesharing company implements a personalised policy in the platform, e.g. a change in a parameter of the pricing algorithm 
that may result in disparate fees being charged across users. In this causal inference setting, the model (21) may be seen as a model 

24 For completeness, in late September 2018, 1USD = 4 Brazilian reais.
25 When the shape parameter equals zero, the GEV distribution collapses to a Gumbel distribution, which has exponentially light tails (Chernozhukov and 

Fernández-Val, 2011). When the shape parameter is strictly greater than zero but smaller than one, the distribution collapses to a Weibull distribution with 
shape parameter greater than one, a region for which the Weibull is known to have exponentially light tails (Foss et al., 2011). The region (−∞, 0) corresponds 
to a Fréchet distribution, whereas the region (1,∞) corresponds to a Weibull with shape parameter strictly greater than zero and strictly less than unity – both 
cases corresponding to heavy-tailed distributions.
26 We thank a referee for providing this interpretation of the conclusion of the test.
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for the untreated potential outcome, 𝛥𝑌𝑖,𝑡(0), that is observed in the periods 𝑡 prior to the intervention at 𝑡∗, where 𝑡∗ is a random 
variable denoting the date when the intervention starts. Under the assumption that 𝑡∗ is independent of 𝛥𝜖𝑖,𝑡∗ ,27 the interval:

𝐼𝑖,1−𝛼 = [𝛥𝑌𝑖,𝑡∗ − 𝑎̂(𝑋𝑖) − 𝑏̂(𝑋𝑖)𝛥𝑌𝑖,𝑡∗−1 −𝑄𝜃̂(1 − 𝛼),∞) ,

is an asymptotically (in a regime where the number of users diverges) valid (1 − 𝛼) prediction region for the individual treatment 
effect 𝑌𝑖𝑡∗ (1)−𝑌𝑖𝑡∗ (0), where 𝑎̂, 𝑏̂ and 𝜃̂ are estimators computed using the pre-intervention sample, and asymptotic validity is meant 
as, when the number of users diverges:

P[𝑌𝑖𝑡∗ (1) − 𝑌𝑖𝑡∗ (0) ∈ 𝐼𝑖,1−𝛼] → 1 − 𝛼 ,

(see Supplemental Appendix L.2 for details). The lower-bound of our one-sided prediction region has a Value-at-Risk type 
interpretation, representing the largest loss 𝑐 with the policy that cannot be rejected, in a test of the null 𝐻0 ∶ 𝑌𝑖𝑡∗ (1) − 𝑌𝑖𝑡∗ (0) ≤ 𝑐
against the alternative 𝐻1 ∶ 𝑌𝑖𝑡∗ (1) − 𝑌𝑖𝑡∗ (0) > 𝑐, at the 𝛼 significance level. Two-sided intervals can also be considered, as well 
as Bonferroni-style corrections to 𝐼𝑖,1−𝛼 in order to account for estimation error of 𝑎̂, 𝑏̂ and 𝜃̂ (see Cattaneo et al. (2021) and 
Supplemental Appendix L.2 for details).

As an illustration of our approach to constructing prediction intervals, we implement the intervals 𝐼𝑖,0.95 in our data, assuming that 
the last week of September is the post-treatment period. Given that there was no known intervention in this period (i.e. 𝑌𝑖𝑡∗ (1)−𝑌𝑖𝑡∗ (0)
is known to be zero for every unit), one would expect that these regions would contain 0 in approximately 95% of the cases. This 
is indeed what we observe in the data: out of the 3961 users in our sample, the corresponding individual prediction intervals do 
not contain zero in only 175 (4.4%) of the cases.

6.2. Conditional quantile models

Let 𝑄𝑌 |𝑋 (⋅|𝑋) be the quantile function of a conditional distribution function 𝐹𝑌 |𝑋 (⋅|𝑋), where 𝑌  is a scalar outcome and 𝑋 is a 
set of controls. Following Gourieroux and Jasiak (2008), we define the 𝑟th conditional L-moment as: 

𝜆𝑟(𝑋) ∶= ∫

𝑝

𝑝
𝑄𝑌 |𝑋 (𝑢|𝑋)𝑃𝑟(𝑢)𝑑𝑢 . (22)

When 0 = 𝑝 ≤ 𝑝 = 1, Gourieroux and Jasiak (2008) note that 𝜆𝑟(𝑋) = E[𝑌 𝑃𝑙(𝐹𝑌 |𝑋 (𝑌 |𝑋))|𝑋]. They suggest estimating 𝐹𝑌 |𝑋
nonparametrically, and, for a fixed number 𝑅 of L-moments, to exploit the following 𝑅𝐾 unconditional moments in the estimation 
of conditional parametric models {𝑄𝑌 |𝑋 (⋅|⋅; 𝜃) ∶ 𝜃 ∈ 𝛩}: 

E

[

𝑤(𝑋)⊗

(

𝑌 𝑷𝑅(𝐹𝑌 |𝑋 (𝑌 |𝑋)) − ∫

1

0
𝑄𝑌 |𝑋 (𝑢|𝑋; 𝜃0)𝑷𝑅(𝑢)𝑑𝑢

)]

= 0 , (23)

where 𝑤(𝑋) is a 𝑅 × 1 vector of transformations of 𝑋.
In spite of its conceptual attractiveness – L-moment estimation is cast as method-of-moment estimation –, formulation (23) does 

not directly extend to settings with trimming.28 Moreover, by working with fixed 𝑅 and 𝐾, it does not fully exploit the identifying 
information in the parametric model. In light of these points, Supplemental Appendix L.3 proposes an alternative method-of-L-
moment estimator for conditional models. We propose to estimate (22) by directly plugging into the representation a nonparametric 
conditional quantile estimator. Following Ai and Chen (2003), we then optimally exploit the conditional L-moment restrictions by 
weighting these using 𝑅 × 𝑅 weighting functionals 𝛺(𝑋). In the Supplemental Appendix, we consider the case where we rely on 
the quantile series regression estimator of Belloni et al. (2019) for preliminary nonparametric estimation, though in principle any 
nonparametric estimator of conditional quantile functions for which an approximation theory is available could be used in this first 
step. Examples of such estimators include local polynomial quantile regression (Yu and Jones, 1998; Guerre and Sabbah, 2012) and 
quantile regression forests (Meinshausen, 2006; Athey et al., 2019). Under regularity conditions, our estimator admits an asymptotic 
linear representation that can be used as a basis for inference, and for finding the optimal choice of functional 𝛺(𝑋). Moreover, by 
suitably taking 𝑅 → ∞, we expect our optimally-weighted estimator to achieve good finite-sample performance, whilst retaining 
asymptotic efficiency – indeed, as we argue in the Supplemental Appendix, the optimally-weighted estimator with no trimming and 
an orthonormal basis choice of {𝑃𝑙}𝑙 is asymptotically efficient as 𝑇 ,𝑅 → ∞.

27 In our example, this assumption allows the decision of when to implement the policy to depend on the values of 𝛼𝑖, 𝑋𝑖 and the 𝑌𝑖,𝑡 prior to the treatment, 
but essentially excludes the possibility of the ridesharing platform, in its decision of when to change the pricing parameter, to rely on better predictions of 
post-treatment values of 𝛥𝑌𝑖𝑡(0) than those obtained from the predictable part of (21), as this would introduce dependence between 𝑡∗ and the post-treatment 
variation in idiosyncratic components driving demand absent the intervention (𝛥𝜖𝑖,𝑡∗ ). See Ferman and Pinto (2021) and Alvarez and Ferman (2024) for a 
discussion on the interpretation of similar assumptions in synthetic control designs.
28 To implement trimming in this formulation would require nonparametric estimation of both the conditional distribution and conditional quantile functions, 

whereas our suggested approach solely relies on the latter.
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7. Concluding remarks

This paper considered the estimation of parametric models using a ‘‘generalised’’ method of L-moments procedure, which extends 
the approach introduced in Hosking (1990) whereby a 𝑑-dimensional parametric model for a distribution function is fit by matching 
the first 𝑑 L-moments. We have shown that, by appropriately choosing the number of L-moments and under an appropriate weighting 
scheme, we are able to construct an estimator that is able to outperform maximum likelihood estimation in small samples from 
popular distributions, and yet does not suffer from efficiency losses in larger samples. We have developed tools to automatically 
select the number of L-moments used in estimation, and have shown the usefulness of such approach in Monte Carlo simulations. We 
have also extended our L-moment approach to the estimation of conditional models, and to the ‘‘residual analysis’’ of semiparametric 
models. We then applied the latter to study expenditure patterns in a ridesharing platform in São Paulo, Brazil.

The extension of the generalised L-moment approach to other semi- and nonparametric settings appears to be an interesting venue 
of future research. The L-moment approach appears especially well-suited to problems where semi- and nonparametric maximum 
likelihood estimation is computationally complicated, but evaluation of integrals of quantiles is not. In followup work, Alvarez and 
Orestes (2023) propose using the generalised method-of-L-moment approach to estimate nonparametric quantile mixture models, 
while Alvarez and Biderman (2024) introduce an efficient generalised L-moment estimator for the semiparametric models of 
treatment effects of Athey et al. (2023). The study of such extensions in more generality is a topic for future research.
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