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Abstract: Predicting road freight prices is a challenging task influenced by multiple factors.
Understanding which variables have the greatest impact is essential for building more
accurate models, and consequently for enhancing the competitiveness of Brazilian soybeans
in the global market. This study aims to evaluate the influence of different exogenous
variables on soybean freight prices and to analyze how this influence varies across different
distance ranges. To achieve this, a combination of machine learning techniques was applied
to a comprehensive dataset containing information on freight costs, regional characteristics,
production, fuel prices, storage, and commercialization. The results indicate that distance is
the most significant variable in determining freight costs, directly reflecting operational ex-
penses such as fuel consumption and labor costs. Additionally, macroeconomic factors such
as the exchange rate and export volume play a crucial role, highlighting the global context
of Brazil’s soybean exports. Stratified analysis by distance ranges reveals distinct patterns;
short-distance freight is predominantly related to domestic markets, while medium- and
long-distance freight are strongly linked to export logistics.

Keywords: agricultural logistics; classification; freight price determinants; regression;
road freight

1. Introduction

Brazil’s efficiency in agricultural sectors such as soybeans, corn, sugar, orange juice,
coffee, and meat is highly recognized on the international stage. This recognition is primar-
ily attributed to productivity gains in the field, technological innovations, and continuous
investments in research [1]. Products such as soybeans have complex supply chains in-
fluenced by factors such as climate, seasonality, price fluctuations, equipment availability,
logistical congestion, transportation delays, ownership of the cargo, and requirements
related to sustainability and product quality [2].

The main challenge faced by the Brazilian agricultural sector is the infrastructure
necessary for the movement and flow of agricultural products [3]. Logistical functions and
the costs associated with transportation are critical factors that directly impact soybean
exports [4]. Brazil’s transportation sector has faced significant structural challenges, which
are largely attributed to a lack of integrated planning in infrastructure development [5].

Due to the lack of an adequate rail and waterway network, the road transportation
system is the main mode for transporting agricultural products in Brazil, which restricts
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the adoption of a more efficient multimodal transport system [6,7]. Logistical efficiency
and low transportation costs are essential in order for Brazilian agriculture to maintain its
competitiveness internationally, especially compared to other commodity-producing and
commodity-exporting countries [8].

In the European Union, long-distance deliveries typically span around 600 km, with most
freight being transported over distances between 300 km and 999 km and only a few routes
exceeding 1000 km [9]. In Canada, which covers 9.9 million km?, railways account for 55% of
freight transport, while in the United States, with an area of 9.8 million km?, rail transport makes
up 53% of total freight movement [10,11]. In contrast, Brazil presents a very different scenario.
The country’s freight transportation system is heavily dependent on road transport, with a
distribution across road, rail, and waterways that differs significantly from other countries of
similar size. Brazil’s infrastructure includes 1.564 million kilometers of roads (only 13% paved),
30.6 thousand kilometers of railways (of which only one-third are commercially active), and
41.7 thousand kilometers of navigable waterways (with only 19.5 thousand kilometers being
economically viable) [12]. With a land area of 8.5 million km?, in 2024, road transport handled
50% of agricultural bulk cargo, while 33% was transported by rail and 17% by waterways [13].
A notable example is the road route spanning over 1500 km that connects Mato Grosso, one
of Brazil’s largest soybean-producing states, to the port of Santos, a key export hub. These
extensive distances directly affect domestic logistics costs, including road transportation and
vessel wait times at ports, which contribute significantly to the final cost of soybeans [4,14].

Freight price forecasting plays a fundamental role in the commodities trade as well
as in price analysis for the agricultural sector. Traditionally, research has focused on
production and yield forecasting [15-18] and on price forecasting in agricultural product
markets [19-21]. Machine learning (ML) methods such as Random Forest and SVM are
widely used in agriculture to improve the accuracy of yield forecasts and anomaly detection,
contributing to better management of agricultural systems [22].

However, when evaluating production, we must consider its critical factor, namely the
selling price. One of the critical components in price formation is agricultural freight, which
directly influences the final cost of commodities. Despite this, few studies have advanced
analysis of the multidimensionality of variables that impact the price formation process [23].
Therefore, understanding and predicting variations in freight costs becomes essential in
supporting negotiations and promoting more accurate price analyses, in turn contributing
to strategic decision-making in the sector. In this sense, as discussed by Sarker [24], the
application of ML techniques offers an effective means of analyzing exogenous variables
such as distance and seasonality as well as of identifying patterns that influence road freight
prices, enabling greater accuracy in predictions and decision-making in the logistics and
agricultural sectors.

Machine learning models such as KNN, LightGBM, and Logistic Regression have
demonstrated great efficacy in handling large datasets with temporal and spatial variabil-
ity [25], making them suitable for evaluating the costs of road freight such as soybean
transportation. Furthermore, the application of supervised techniques such as Random
Forest and Decision Tree allows for the capture of complex patterns in supply and demand,
productivity, and transportation factors [19].

Analyzing and comparing different ML algorithms has become a common focus in the
literature. For example, Kulkarni et al. [26] evaluated KNN, Random Forest, XGBoost, and
LightGBM to predict freight costs, identifying the most influential factors and determining
which model offers the best accuracy. Similarly, Tsolaki et al. [27] used Logistic Regression,
Decision Tree, Random Forest, and XGBoost to model transportation costs in various
scenarios, considering vehicle routing, transportation demand, and route optimization.
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Previous studies have also adapted predictive techniques from stock market analysis,
addressing the prediction of soybean freight prices as either a regression or classification
task [28]. As highlighted by prior research, framing this problem as a classification task
has been shown to “provide better information for decision-making” [28]. Building on this
foundation, our study explores both regression and classification approaches to predict
soybean freight prices. Through our experiments, we demonstrate that classification offers
greater explainability, whereas regression lacks this critical advantage.

From other perspectives, Das et al. [29] and Wu et al. [30] investigated the applica-
tion of deep learning techniques such as graph neural networks and sentiment analysis to
forecast stock prices using social media data, an approach that could also be adapted for pre-
dicting soybean road freight price trends. Their studies integrated historical price data with
sentiment analysis extracted from textual sources, demonstrating how machine learning
techniques can effectively combine diverse data types to improve prediction accuracy.

Other works have employed time series approaches. For instance, Fan et al. [31]
introduced an innovative method for predicting soybean futures prices by utilizing a Long
Short-Term Memory (LSTM) model with dual-stage attention augmented by sequence
decomposition and feature expansion. Sequence decomposition is executed using the
Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN)
technique, which effectively extracts patterns and removes noise. Dual-stage attention
is then applied to capture the spatiotemporal relationships between the input features
and the target sequence. Similarly, another study [32] employed LSTM models to classify
soybean future prices as high or low. They focused on the classification perspective rather
than on predicting exact price values, thereby reducing the impact of noise when relying
on regression.

However, regardless of the technique employed—whether traditional machine learn-
ing methods or deep learning approaches—not all studies have utilized a diverse range of
input features. As noted by Silva et al. [28], many prominent works have primarily relied on
environmental variables such as climate-related factors [33], the type of vehicle and cargo
weight [34], or a limited set of features [26]. In contrast, our study incorporates multiple
data sources as model inputs, including regional characteristics, production volumes, fuel
prices, storage capacities, and other relevant factors, thereby offering a more comprehensive
framework for prediction.

In addition to machine learning-based approaches, econometric models for freight
and demand forecasting have also been explored. For example, ARIMA, ARIMAX, and
SARIMAX have been compared to Artificial Neural Networks (ANN) in studies using
European market data, particularly on the Netherlands-to-Italy route. Findings indicate
that Multi-Layer Perceptron (MLP) neural networks outperform in freight rate predictions,
while ARIMA models excel in demand forecasting due to lower prediction errors [35].

In contrast, our approach proposes the use of classical ML models to ensure explain-
ability through feature importance analysis, thereby avoiding the high computational costs
of deep learning models. By adopting more efficient models, we aim to provide clear
insights into the factors influencing predictions while balancing model accuracy with com-
putational feasibility. This approach allows for a deeper understanding of how different
features impact the results, which is crucial in practical applications where explainability
is essential. Moreover, in the context of increasingly complex and interconnected global
supply chains, real-time logistics management supported by advanced decision-support
systems plays a pivotal role in improving operational efficiency and reducing costs, directly
contributing to global trade competitiveness and sustainability [36].

Therefore, the goal of this research is to assess whether the price of soybean road
freight is influenced by a set of associated exogenous variables and tp determine how the
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Categorical Freight(freight value) =

influence of these variables varies across different distances and models. Our hypothesis is
that by utilizing a dataset that includes not only macroeconomic variables, it will be possible
to predict the price of grain road transportation and identify association patterns in freight
behavior. For this, we use eight ML methods for regression and classification: Decision Tree,
ExtraTrees, KNN, LightGBM, Logistic Regression, Random Forest, Passive-Aggressive, and
XGBoost. Additionally, we leverage Al explainability techniques to assess the importance
of each variable in order to gain deeper insights into the influence of exogenous variables
on the predictions.

2. Materials and Methods
2.1. Dataset

The data used in this study were obtained from official sources provided by the Federal
Government and research institutes. Data collection was conducted on a monthly basis,
covering the period from 2015 to 2019. The guiding principle for constructing the database
was the recording of freight values by month. Each record contains information about
the freight cost for transporting soybeans from an origin municipality to a destination
municipality considering a specific distance and a specific month of a given year.

It is important to note that the freight records exhibit particularities related to the
seasonality and variability of routes, which are typical of soybean transportation by road;
therefore, the presence of a freight record in a specific month does not imply its repeti-
tion in subsequent months, reflecting the dynamics of the market and the variability in
transportation demand and supply.

The data for each variable were initially organized across one or more files, which
were then consolidated into a single dataset. To achieve this unification, data cleaning
and outlier identification were essential. The first step in the unification process involved
compiling the different databases into a single detailed format, while also addressing data
corrections such as improper formatting, duplicate and/or ambiguous values, and missing
values. The rationale behind the selection of these variables is detailed in Table 1.

Data points were classified into four scenarios (all data points, three price ranges: low,
medium, and high, with 85,280 records, which are available in the Supplementary Materials,
Table S1) based on specific thresholds for historic freight values, following Equation (1).
Table 1 lists the input variables and the reasoning behind their choice, and additionally
includes descriptions of each variable and the number of occurrences for each classification.
This distinction is necessary because freight prices behave differently depending on the
distance traveled [37,38].

Scenario 1. All data points

Scenario 2. Low if freight value < 60
Scenario 3. Medium if 60 < freight value < 100
Scenario 4. High if freight value > 100

(1)

Table 1. Overview of the (exogenous) variables in each group along with their corresponding
motivations and supporting references.

Groups Variables Motivations References
. Freight Price, Distance, Origin, Evalu.ate the relationship between Kengpol et al. [39],
Freight L the distance traveled and the cost . g
Destination, Month and Year . . Miérquez and Cantillo [40]
of road freight transportation
Origin State, Destination State, .
Region Origin Municipality and Analyze the impact of transport Péra et al. [41]

Destination Municipality corridors on freight prices.
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Table 1. Cont.

Groups Variables

Motivations

References

Planted Area by Municipality,
Planted Area by State,
Municipality Harvested Area,
State Harvested Area,
Municipality Production, State
Production, Average State Yield
and Municipality Yield,
Municipality Production Value
and Harvest Period

Production

Assess how regional productivity
levels, productive potential, and
the seasonality of transport
demand influence the pricing of
transport freight.

Melo et al. [42],
Cicolin and Oliveira [43]

Maximum, Average and
Minimum Price of Diesel,
Maximum, Average and
Minimum Price of Ethanol,
Maximum, Average and
Minimum Price of Gasoline

Fuel

Examine how operational
transport factors and fluctuations
in diesel prices impact the overall
cost of road freight transportation.

Filippi and Guarnieri [44],
Teixeira et al. [45], Wetzstein et al.
[46]

Storage Capacity by Origin State
and Storage Capacity by
Destination State

Storage

Analyze how the capacity of grain
storage facilities at both origin
and destination points influences
the pricing trends of freight
transportation.

Melo et al. [42],
Cicolin and Oliveira [43]

International Price
(CBTO),Soybean Price (Parity),
National Market, Crushing

Investigate how factors such as
international and national market

Commercialization

Capacity Industry by Origin State,
Crushing Capacity Industry by
Destination State, Average
Monthly Exchange Rate, Diesel
Imports, Monthly Export Tonnage
by Origin State and Yearly Export
Tonnage by Origin State

dynamics, crushing capacities,
exchange rates, diesel oil imports,
and export volumes influence the
freight pricing of agricultural
products.

Asai et al. [47], Sonaglio et al. [48]

2.2. Splitting the Data for Training and Testing

Let T = {X,Y} be our desired classification or regression task 7, composed
of the single original preprocessed dataset A, where each pair of elements (x,y) for
x € Xandy € Y constitutes a data point. In this context, x € & contains the inde-
pendent variables, while y € ) represents the dependent variable. To train the machine
learning model M for predicting freight, we partition the dataset D = {(x, yx)})_;, with
size N, using cross-validation. Specifically, the dataset D is divided into K folds (i.e., parti-
tions), each of approximately equal size, which are stratified according to the distribution
of the target variable y within D.

In this process, fold D; is used to evaluate the model based on predefined metrics and
trained on the complementary dataset D \ D;. Afterwards, the average of all folds D; is used
as the final metric. This cross-validation approach helps to mitigate bias and provides a
more robust estimation of model performance compared to single-split methods. Moreover,
when dealing with classification tasks, the stratified K-fold approach is employed to ensure
that the class distribution is approximately maintained across all folds, which can provide
a better representation of the data. We used K = 5 for our experiments.

2.3. Preprocessing

Preprocessing techniques such as filling in missing values, data normalization, and
representing categorical features as numerical vectors were employed to enable use of the
dataset by the machine learning algorithms and improve the performance of the models.

2.3.1. KNN Imputer

To fill in the missing values, we used a KNN Imputer. This method selects the K closest
neighbors of the element 7 to be filled based on some distance metric d(x,y). Afterwards, a
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measure is computed as mean of the the K closest neighbors and used to fill in the missing
values, following Equation (2):

Rl
™=

y= Yi 2)

1

where 7 is the imputed value and y; represents the values of the K nearest neighbors.

The process of filling missing values is vital for machine learning models, as most of
them cannot process data with missing values. We employed K = 5 and used the Euclidean
distance as the distance metric.

2.3.2. Z-Score Normalization

The dataset & is composed of d-dimensional feature vectors x;. Due to the potential
variability in the values across the i-th dimension of different data points, normalization
becomes essential for effective operation with machine learning models. To address this,
we normalize the feature set X = {x1,xy,...,xy}, producing a transformed set of features
X' = {x{,x},...,x}y}, where each feature is rescaled for consistency across dimensions
as follows:

X

1 _Xn— M
n= ®)
where x), is the z-score normalized feature vector and x;, represents the original vector.
The vectors p and o denote the mean and standard deviation, respectively, for each
i-th dimension across all feature vectors in X'
This operation is particularly useful for allowing different features to be compared
with each other, helping to prevent features with higher values from overshadowing the
others. Furthermore, z-score normalization results in dimensionless values, facilitating

interpretation and analysis of the data.

2.3.3. One-Hot Encoding

Let X, ; denote j-th feature across all data points, where each x;,; represents the value
of the j-th feature for the n-th data point. Suppose that the j-th feature X’ ; is categorical
and takes values from a finite set of m distinct categories C = {c1,¢y,...,cm} across all
data points. We apply one-hot encoding to this feature to transform it into a set of binary
vectors, allowing the machine learning models to handle the categorical data.

For each distinct category ¢, € X, j, we create a new feature vector X ; for each data
point n containing only binary values, where a 1 appears in the position corresponding
to the category present in x,; and 0 appears elsewhere. After that, the dataset contains
k new binary features, with the j-th feature being removed. This process is executed
for each categorical feature that is present in the dataset. This transformation ensures
that the categorical feature X’ ; is converted into a numerical form suitable for machine
learning models.

2.4. Models

Given the distinct nature of the tasks at hand, namely, classification and regression, we
employ eight classical machine learning models to address both tasks effectively: K-Nearest
Neighbors (KNN), Logistic Regression, Passive-Aggressive, Decision Tree, Random Forest,
ExtraTrees, LightGBM, and XGBoost. The primary motivation for using these models is,
first, to accurately classify freight price data points as low, medium, or high, second, to
predict the freight value through regression, and finally, to identify the most influential
independent variables for classification. We achieve the first goal by training on historical
data, and rely on explainability techniques to attain the third.
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KNN is a simple yet powerful model that classifies instances based on their proximity
to other data points. For classification, the most frequent class among the nearest neighbors
is selected, while for regression the average value of the neighbors is computed. While
straightforward, KNN excels at capturing local patterns in the data without making strong
assumptions about the distribution, which sets it apart from traditional analytical methods
that rely on fixed functional forms.

Logistic Regression is a probabilistic classifier that models the relationship between
input features and the probability of an instance belonging to a particular class. It is a
foundational algorithm in machine learning, providing interpretable coefficients and a
robust framework for binary and multinomial classification. Unlike traditional statistical
methods, logistic regression allows for more flexible handling of feature interactions and
nonlinear decision boundaries, making it more adaptable to real-world data.

The Passive-Aggressive model is a linear model that excels in online learning scenar-
ios, adjusting its weights dynamically based on prediction accuracy. It remains passive
when making correct predictions, but aggressively updates weights when errors are made,
allowing it to quickly adapt to changes in the data. This iterative learning process is es-
pecially useful in streaming or dynamic environments where data distributions change
over time, representing an advantage over traditional analytical models that often rely on
static assumptions.

Decision Tree is a nonparametric approach to classification and regression that splits
data according to learned thresholds. This model’s ability to visualize decision boundaries
enhances interpretability and provides valuable insights into how different variables con-
tribute to predictions. In contrast to traditional analytical models, Decision Tree models are
more flexible and do not assume any predefined functional form, which makes them ideal
for modeling complex nonlinear relationships.

Ensemble models such as Random Forest, Extra Trees, LightGBM, and XGBoost
build upon the Decision Tree algorithm by aggregating multiple trees to form a more
robust and generalized model. These techniques significantly reduce the risk of overfitting
by introducing randomness and increasing model diversity. Moreover, they provide a
wealth of hyperparameters that can be tuned to improve model performance, surpassing
the limitations of traditional analytical methods that often struggle with complex high-
dimensional datasets. These ensemble methods offer higher accuracy and stability, espe-
cially in the presence of noisy or imbalanced data, making them superior to many traditional
statistical approaches.

All of these machine learning models overcome several limitations of traditional
analytical methods, which often rely on rigid statistical assumptions such as normal dis-
tributions or linearity in relationships between variables. For example, many statistical
methods require data to meet specific conditions, such as homoskedasticity or indepen-
dence, which are not always present in real-world datasets. Additionally, models such
as Linear Regression and ANOVA can become ineffective when dealing with nonlinear
relationships or complex interactions between variables, something that machine learning
models, particularly those based on decision trees and ensembles, can efficiently capture.
Unlike traditional methods, machine learning models do not require these assumptions,
and are ale to handle high-dimensional data, large data volumes, and even noisy data, pro-
viding greater flexibility and accuracy in their predictions. This enables them to overcome
the limitations of traditional methods, offering a more robust and adaptive approach to
complex forecasting and classification tasks.
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2.5. Hyperparameter Tuning

The machine learning models have hyperparameters that directly impact performance,
making their selection crucial for both classification and regression tasks. The optimiza-
tion method employed in this paper was the Tree-structured Parzen Estimator (TPE),
which utilizes Bayesian techniques to efficiently select hyperparameters even for complex
and high-dimensional search spaces [49]. Compared to traditional search methods such
as random search or grid search, the TPE reduces the number of iterations required to
find hyperparameters.

To test a certain combination of hyperparameters, a metric m is computed to evaluate
the quality of the parameters, resulting in a discrete distribution of the parameter values
concerning the metric m. Afterwards, it is possible to estimate the probability density using
Kernel Density Estimation (KDE), obtaining two distributions: one /(x) that is below a
threshold v and another g(x) that is above the threshold. The first distribution represents
promising parameters, while the second represents less promising ones; thus, the goal is to
maximize the ratio between [(x) and g(x) in order to identify promising search spaces.

This process is iterative; testing a new hyperparameter alters the distribution based on
previous results, improving the estimate of the probability density of quality hyperparam-
eters. During our experiments, 20 iterations were conducted. For each experiment with
a chosen set of hyperparameters, we computed a metric m to evaluate the iteration. We
selected the model based on the best iteration, measured by the best metric m.

Table 2 presents the hyperparameter tuning details and corresponding values along
with the best parameters identified for each model in both classification and regres-
sion tasks.

Table 2. Hyperparameter tuning parameters and best values for classification and regression tasks for
KNN, Logistic Regression, Passive-Aggressive, Decision Tree, Random Forest, ExtraTrees, LightGBM,

and XGBoost.
Model Tuning Parameters Values Best Classification Best Regression

K [3, 500] 14 13
KNN weights uniform, distance distance distance
metric cityblock, cosine, euclidean cityblock cityblock

C [107°,10°] ! 2.11-10° -

Logistic Regression

penalty None, 11, 12 11 -
C [1074,10'] ! 0.01 1.28-107*
tol [10-%,107 1] 432-107° 2.85-107%

Passive Aggressive hinge (classification)
loss sthr}ge (ClaSSlflCE.ltlon) hinge sqepsilon
epsilon (regression)
sqepsilon (regression)
gini (classification)
o entropy/(classification) .
criterion log loss (classification) gini squared error
squared error(regression)
Decision Tree max depth [2,10] 9 7
min samples split [2,10] 8 7

min samples leaf [1, 4] 3
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Table 2. Cont.

Model Tuning Parameters Values Best Classification Best Regression
n estimators [50, 500] 471 218
gini (classification)
criterion f;grlzl:s) Z((jziszllzz?lz?l)) gini squared error
Random Forest squared error(regression)

max depth [2,10] 10 10

min samples split [2,10] 8 8

min samples leaf [1, 4] 1 3
n estimators [50, 500] 183 207

gini (classification)
criterion fgﬁ?)};z((f:ﬁ:lffizzgﬁ)) entropy squared error
squared error(regression)

Extra Trees max depth [2,10] 10 10
min samples split [2,20] 20 20

min samples leaf [1,20] 12 1
max features [0.5,1.0] 0.64 0.87
n estimators [50, 500] 321 263

max depth [2,10] 8 6

max leaves [2, 5] 0 0
learning rate [0.01, 0.3] 0.29 0.04
XGBoost colsample bytree [0.5,1.0] 0.92 0.64
lambda [0.0, 10.0] 212 5.92
alpha [0.0,10.0] 1.81 7.25
gamma [0.0, 10.0] 1.83 5.16
n estimators [50, 500] 130 348

max depth [2,10] 9 6

max leaves [2,31] 23 11
learning rate [0.01, 0.3] 0.23 0.17
colsample bytree [0.5, 1.0] 0.68 0.95

LightGBM

lambda [0.0, 10.0] 6.86 9.70
alpha [0.0, 10.0] 2.31 7.75

min child samples [1,10] 7 10
min split gain [0.0, 5.0] 0.08 0.92

In log scale. Sqhinge is squared hinge, epsilon is epsilon insensitive, and sqepsilon is squared epsilon insensitive.

2.6. Feature Importance

In the context of Al, explainability focuses on providing insights into why a model

makes a particular decision. If we can successfully determine the reasons behind a model’s

prediction of the freight value as high, medium, or low, we can gain valuable insights into

how specific variables influence these outcomes. This understanding allows us to prioritize

one dimension over another when necessary; for example, if certain variables, such as

distance or weight, have a stronger impact on the prediction of high freight costs, then

we could adjust these factors to optimize pricing decisions. By leveraging explainability

techniques, we can make more informed decisions, potentially favoring one set of variables
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over another depending on their influence on the final classification. Here, we used the
feature importance, specifically using the permutation approach to determine the top K
features of the dataset.

First, we trained a machine learning model M on all d features of the dataset and
evaluated its performance using a specified metric. Next, to assess the importance of
each feature, we considered a specific feature X, ;. A permutation 7t was applied to this
feature such that each element x;; is mapped to another element x;; according to the bijector
function 7t(x;j) = xy;.

After randomly shuffling the values of the rows along a single feature j, we evaluated
the previously trained model on this newly corrupted dataset to check the impact of
shuffling the data. If the metric for the permuted dataset was worse than the one for the
original dataset, this result indicates that feature j is important for the problem. On the
other hand, if the metric for the corrupted dataset is the same or better than on the original
dataset, then feature j is not of great relevance. This process was repeated for all features
and for n_repetitions iterations, providing greater consistency in the selection of the most
important features. In this work, we used n_repetitions = 5.

3. Evaluation Metrics
3.1. Classification

To evaluate the classification problem, we used the accuracy, precision, recall, and
Fl-score.

3.1.1. Accuracy
Accuracy measures the proportion of correct predictions made by the model in relation
to all predictions, as represented by Equation (4):
TP+TN
TP+ TN +FP+FN

where TP is true positives, TN is true negatives, FP is false positives, and FN is

Accuracy =

(4)

false negatives.

3.1.2. Precision

Precision measures the proportion of true positives correctly detected relative to the
total number of actual positive values, as represented by Equation (5).

TP

Precision = TP+ FD

(5)

3.1.3. Recall

Recall measures the proportion of true positives correctly detected by the model, as
represented by Equation (6).
TP

Recall = TP+ EN (6)

3.1.4. F1-Score

The Fl-score is the harmonic mean of recall and precision, as represented by
Equation (7).
Precision - Recall

Fl-Score =2 Precision + Recall @)




Sustainability 2025, 17, 1067

11 of 23

3.2. Regression

To evaluate the regression problem, we used the Mean Squared Error (MSE), Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE), Median Absolute Error (MdAE), and R2.

3.2.1. MSE

The MSE measures the average of the squares of the errors, which are the differences
between predicted and actual values, as represented by Equation (8).

14 .
MSE = — Y (vi—9:)? 8)
=

3.2.2. RMSE

The RMSE measures the square root of the average of the squares of the errors, which
are the differences between the predicted and actual values, as represented by Equation (9).

RMSE = vVMSE = (y; — 1;)2 )

|-
=

i=1

3.2.3. MAE

The MAE measures the average of the absolute values of the errors, which are the
differences between predicted and actual values, as represented by Equation (10).

1
MAE = =} lyi — i (10)
i=1

3.2.4. MdAE

The MdAE measures the median of the absolute values of the errors, which are the
differences between predicted and actual values, as represented by Equation (11).

MJAE = median(|y; — 7;|) (11)

325 R?

R?, also known as the coefficient of determination, measures the proportion of variance
in the dependent variable that can be explained by the independent variable, as represented
by Equation (12).

n

)2
R2 =1 i=1 (yl yl) (12)

4. Results
4.1. Model Metrics

The accuracy, precision, recall, and F1-score metrics provide valuable insights into the
performance of the machine learning models used to assess the influence of exogenous
variables on soybean road freight prices. Accuracy measures the overall correctness of the
model’s predictions, while precision reflects the proportion of true positive predictions
among all positive predictions, indicating how reliable the model is when it predicts a
positive outcome. On the other hand, recall captures the model’s ability to identify all
relevant positive instances, while the F1-score balances precision and recall, providing a
comprehensive view of the model’s performance, especially in cases of imbalanced data.

Analyzing Table 3, it is evident that LightGBM outperformed the other models across
all metrics, demonstrating its superiority for the classification task. Additionally, the close
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values of the metrics underscore the model’s stability and consistent performance. However,
XGBoost delivered comparable results, further emphasizing the strong performance of tree-
based algorithms. Both models excel in handling large datasets and effectively extracting
the most relevant features. Moreover, they offer a broad set of parameters, enabling
extensive hyperparameter tuning to further optimize performance.

It can be observed that the obtained standard deviations are small values, demonstrat-
ing that the results do not experience significant variations between the folds.

Table 3. Classification results for Decision Tree, Extra Trees, KNN, LightGBM, Logistic Regression,
Passive-Aggressive, Random Forest, and XGBoost evaluated using accuracy, precision, recall, and
F1-score. Bold font is used to indicate the best result based on the F1-score.

Model Accuracy Precision Recall F1-Score
Decision Tree 0.7524+0.007 0.748 £0.007 0.752£0.007 0.748 £ 0.006
Extra Trees 0.757£0.011 0.760£0.012 0.757£0.011 0.744 £0.012
KNN 0.737 £0.007 0.732+0.007 0.737+£0.007 0.732 £ 0.007
LightGBM 0.7914+0.007 0.788 £0.008 0.791 +£0.007 0.788 £ 0.008
Logistic Regression  0.686 +0.008  0.6814+0.009 0.686 +0.008 0.682 £ 0.009
Passive Aggressive  0.671 £0.008 0.665+0.009 0.67140.008 0.661 4+ 0.010
Random Forest 0.710+0.002 0.737£0.003 0.710£0.002  0.675 =+ 0.003
XGBoost 0.786+0.009 0.783£0.009 0.786 £0.009 0.782 4 0.009

For the regression task, analyzing Table 4, the XGBoost model shows an advantage
for the MSE, RMSE, and MAE metrics. Despite this, its performance is similar to that of
LightGBM, which has a slight advantage in the MdAE metric. Regarding the R? metric,
the Passive-Aggressive model performs better, which was expected because the R? metric
measures the linearity of the data and the Passive-Aggressive model is linear, allowing it to
minimize this metric more efficiently compared to the other models.

Table 4. Regression results for Decision Tree, Extra Trees, KNN, LightGBM, Passive-Aggressive,
Random Forest, and XGBoost evaluated using MSE, RMSE, MAE, MdAE, and R2. Bold font is used to
indicate the best result for each metric (column).

Model MSE RMSE MAE MdJAE R?
Decision Tree 861969 + 46.459  29.351 4 0.790 19.620 + 0.400 11.733 + 0.218 0.686 =+ 0.018
Extra Trees 754.412 + 34273 27.461 + 0.620 18.240 + 0.363 10.629 + 0.116 0.725 + 0.011
KNN 914181 +£31.191  30.232 + 0.514 21.389 + 0.419 14.665 + 0.282 0.667 + 0.011
LightGBM 706.650 +24.156  26.580 + 0.455 17.062 + 0.362 9.442 + 0.269 0.742 + 0.010
Passive 1325.033 £51.281  36.396 + 0.702 25.804 + 0.296 17.330 + 0.376 0.517 + 0.014
Aggressive
Random Forest ~ 719.125+35900  26.810 + 0.669 17.240 + 0.394 9.640 + 0.156 0.738 + 0.013
XGBoost 697.468 +23.423  26.407 0443  17.022 +0.285 9.454 + 0.175 0.746 + 0.009

Thus, it can be observed that the LightGBM and XGBoost models are extremely com-
petitive with each other, and achieve better results than the other models for both tasks. This
is due to their robust tree structure and the presence of various hyperparameters, allow-
ing for better optimization. However, LightGBM generally exhibits better computational
efficiency compared to XGBoost, an aspect that deserves attention.

4.2. Exogenous Variables Influences

Analysis of the predictive variables in the regression and classification models using
the unstratified dataset (i.e., the complete dataset D) revealed the predominance of the
“Distance” variable as the most influential factor in determining the price of soybean road
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freight. This finding aligns with the expectation of direct influence in this process, as there
is a clear relationship with operational costs such as fuel expenses, travel time, tire and
parts wear, maintenance, and labor. “Average Monthly Exchange Rate” and “Yearly Export
Tonnage by Origin State” emerged as the second and third most relevant variables, re-
spectively, highlighting the importance of the macroeconomic context of Brazilian soybean
exports. The exchange rate directly influences the competitiveness of the product in the
international market, affecting demand, and consequently the export volume. In turn,
the export volume impacts the demand for road freight to transport the production to
export ports. Furthermore, for the evaluated models, we observed the presence of simi-
lar variables in both scenarios: “Year”, “Crushing Capacity of Industry by Origin State”,
“Destination: Paranagud”, “ Average Price of Ethanol”, and “Destination State: Sdo Paulo”
(Figures 1 and 2).

The “Year” variable can capture macroeconomic trends, structural changes in the
domestic market, and regulatory adjustments, such as the Truckers’ Law—Lei dos Cam-
inhoneiros (Law No. 13,103/2015), which regulated aspects such as working hours, rest
periods, waiting times, and the establishment of a minimum floor for freight rates. Addition-
ally, this variable may reflect specific events, such as the 2018 truckers’ strike, which halted
cargo transportation nationwide and particularly impacted the agricultural sector [50].

Decision Tree Extra Trees A KNN LighGBM @ Random Forest 4 Passive Aggressive X XGBoost
X
X
A
'S X
X
A A

State: D ion State: Dy i Distance International Price Crushing Capacity Minimun Price of Month Year Yearly Export
MT sp Paranagué (CBTO) of Industry by Diesel Tonnage by Origin
Destination State State

Figure 1. Key variables identified by the regression models along with their importance values
determined through permutation importance.

Also pointed out as an influential variable is “Crushing Capacity of Industry”, which
is a differentiating factor in soybean marketing, as greater milling capacity leads to stronger
bargaining power [51]. In contrast, soybeans that do not undergo industrial processing
are largely destined for the external market. In this context, the Port of Paranagud stands
out as one of the main hubs for exporting Brazilian soybeans to the international market,
especially to China. Its relevance on the national stage is comparable to that of other major
export ports, such as the Port of Santos located in Sdo Paulo [52]. The strategic location of the
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Port of Santos provides insights into the importance of the "Destination State: Sdo Paulo”
variable in the analyzed models.

The data stratification reveals the influence of additional variables in determining
the freight price for soybeans. The analysis of high freight rates (Figure 3) also highlights
the influence of the “Yearly Export Tonnage by Origin State” variable, especially for the
Decision Tree, ExtraTrees, and XGBoost models. Distance is particularly influential for the
LightGBM and Random Forest models. “Volume of Exports by State of Origin per Year” is
especially relevant in the XGBoost and Decision Tree models. Variables related to the final
destination suggest a correlation with the location of the main producing states, as Mato
Grosso and Goids, both large soybean producers, used the Port of Santos as the main export
route for most of the period under study. In contrast, Parand and Mato Grosso do Sul, both of
which are also significant producers, directed their output to the Port of Paranagud [53].

Decision Tree Extra Trees A KNN LightGBM @ Random Forest 4 Passive Aggressive X XGBoost

L 4

x
[ ]
A
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*
A ®
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A

Avarege Price of Average Monthly ~ Destination: ~ Destination: Sio ~ Distance  Monthly Export ~ Yearly Export Maximum Price  Crushing ~ Minimun Price  Municipality ~ Storage Capacity Year

Ethanol

Exchange Rate

Paranagua Paulo Tonnage by Tonnage by of Ethanol Capacity of Ethanol Yield by Destination

Origin State Origin State Industry by State
Origin State

Figure 2. Key variables identified by the classification models along with their importance values
determined through permutation importance.

Another variable that appears in high-value freight is “Storage Capacity by Destination
State”. Storage has a significant impact on prices of agricultural commodities, as it allows
for better marketing strategies [54]. In the Brazilian scenario, the storage network does
not keep pace with the dynamism of the sector, resulting in a storage deficit. This leads to
the so-called sales rush, i.e., when there is a peak in the harvest with a large supply of the
product. At this time, soybean prices are low due to the abundant supply, while freight
prices are high. Storage is essential for the transfer of production to processing and export
centers, as Brazil’s main soybean-producing areas are located far from the export ports [55].
Innovative strategies such as rural storage cooperatives are being adopted by producers to
reduce costs and improve logistical efficiency [56].

The “Soybean Price (Parity)” variable, which refers to the relationship between domes-
tic soybean prices and international prices, is relevant in the KNN and LightGBM models.
Price parity directly impacts producers’ marketing strategies, influencing their bargaining
power with companies.

Similar to high freight rates, the average freight rate (Figure 4) highlights the impor-
tance of the final destination, such as the Ports of Paranagud and Sdo Luis, which unlike
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the Port of Santos are located closer to the main soybean-producing areas. The Port of Sio
Luis, in particular, has become increasingly relevant for soybean exports from Mato Grosso,
with international destinations such as Hamburg, Germany and Shanghai, China. The
increased use of the Arco Norte routes, including Sdo Luis, presents an efficient alternative
that can reduce logistical costs and ease the burden on southern ports, improving Brazil’s
competitiveness in the global soybean market [52].

Decision Tree ExtraTrees A KNN LightGBM @ Random Forest 4 Passive Aggressive X XGBoost
0.5
X
X
X
014X PY
0.05 +
x 4
A
. A
A . A A
0.01 + ‘
0.005 =
Avarage Price  Average  Destinati Destination: ~ Destinati Distance Mercado Crushing Crushing  Minimun Price Municipality ~ Origin State: ~ State Storage Year Yearly Export
of Ethanol Monthly State: S Paranagua Santos Internacional Capacity Capacity of Ethanol Production GO Capacity at Tonnage by
Exchange Rate Paridade  Industryby  Industry by Value Destination Origin State
Destination Origin State
State
Figure 3. Key variables identified by the classification models for high freight rates along with their
importance values determined through permutation importance.
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Figure 4. Key variables identified by the classification models for medium freight rates along with
their importance values determined through permutation importance.
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In short-distance freight (Figure 5), we observe a different scenario from that of
medium- and long-distance freight. While long-distance freight clearly indicates the trans-
portation of soybeans destined for export, short-distance freight is more associated with
domestic supply. The four cities that appear as short-distance destinations are Barreiras,
Maringd, Osvaldo Cruz, and Uberlindia. All of these cities have soybean crushing facili-
ties [57] dedicated to the production of oil and meal products, which are widely used in
animal feed and biofuel production in the domestic market.

The stratification of the database using the same models highlights the influence of
freight rate division on the relevance of predictive variables. While the general scenario
analysis identified thirteen variables with significant influence, segmentation by price
ranges revealed a gradual increase in this number: fifteen variables in the high freight
price scenario, eighteen in the medium freight price scenario, and nineteen in the low
freight price scenario. The variables “Year”, “Average Monthly Exchange Rate”, “Distance”,
and “Minimum Price of Ethanol” consistently proved to be influential across all scenarios,
suggesting their fundamental importance in determining freight costs regardless of the
price range. This variation in the number of relevant variables in each stratum demonstrates
how stratification can allow for a more granular analysis that captures the influence of
different variables in each price range and reaffirms the dynamics of the freight market.

In Brazil, transportation of grains such as soybeans generally begins with road trans-
port, which connects farm production to final destinations such as industries or export
ports. In some cases, cargo is initially sent to warehouses or transshipment terminals, from
where it proceeds to the final destination via other transport modes such as railways or
waterways. This intermodal system aims to reduce costs and optimize the logistics of
production flow. Although distance is a determining factor in the road freight price for
agricultural products, the negotiation process between market agents has a fundamental
impact. The grain transport market is highly competitive, and is marked by an imbalance
of power between demand (represented by agricultural trading companies) and supply
(composed of small transport companies and independent truck drivers). The trading
companies, mostly transnational corporations, use their large cargo volumes to negotiate
better freight conditions, taking advantage of fragmentation among transport providers.
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Figure 5. Key variables identified by the classification models for low freight rates along with their
importance values determined through permutation importance.

Additionally, the behavior of commodity markets such as the soybean market is
complex, and can be influenced by a variety of factors over time. Different elements
can determine the prices of these commodities during certain periods, for instance the
availability of soybeans during the off-season [58]. Many forecasting models use only
historical prices of commodities [59]; however, large price fluctuations can impact not only
production and consumption costs but also government regulatory policies [60].

5. Discussion

The results of this study demonstrate the effectiveness of incorporating a wide range of
variables when predicting freight costs, such as economic indicators, regional productivity,
and logistical infrastructure.

Distance is recognized as the primary factor in determining freight prices due to its
direct and significant impact on transportation operational costs [36]. The link between
distance and freight cost is both intuitive and supported by empirical evidence, as longer
journeys typically demand higher fuel consumption, increased labor hours, and elevated
vehicle maintenance expenses [61]. These elements collectively lead to greater costs for
logistics providers, which are subsequently transferred to customers.

Furthermore, the findings in this paper highlight the complexity of this relationship
within specific logistical frameworks such as agricultural supply chains. In the context of
soybean logistics, distance not only quantifies the physical gap between origin and desti-
nation but also encapsulates challenges related to infrastructure quality, road conditions,
and connectivity, all of which can escalate costs. In areas with inadequate infrastructure,
the financial repercussions of distance are even more significant, as poor road conditions
prolong travel time, increase fuel usage, and accelerate vehicle deterioration.

Additionally, distance frequently influences the selection of transportation modes,
thereby shaping pricing dynamics. Shorter distances may favor road transport due to its
flexibility, whereas longer distances might necessitate rail or waterways to achieve cost
efficiency. As revealed in the study, this segmentation illustrates how distance interacts
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with other variables such as macroeconomic factors (e.g., fuel prices and exchange rates) to
affect freight prices across various scenarios.

By quantifying the influence of distance and integrating it into predictive models,
this research offers a nuanced perspective on how this variable governs freight pricing,
especially in intricate and variable settings such as agricultural logistics. This understanding
can enable stakeholders to better anticipate cost fluctuations and strategically optimize
their transportation operations.

From a financial and management point of view, our findings highlight the importance
of systematically monitoring and updating road freight costs. This periodic systematiza-
tion can serve as a valuable managerial tool, empowering agricultural traders and grain
producers to negotiate transportation service contracts more effectively. In addition, access
to accurate and regularly updated data on road transportation costs enhances stakeholders’
ability to secure favorable terms and optimize logistics expenditures, ultimately contribut-
ing to more efficient supply chain management.

Based on the findings of this research, several public policy recommendations can be
proposed to improve freight cost management, logistical efficiency, and sustainability in
agricultural supply chains.

First, investment in transportation infrastructure, particularly road networks, is es-
sential for fostering economic growth, enhancing logistical efficiency, and ensuring the
competitiveness of agricultural supply chains. Roads serve as the primary mode of trans-
portation in many regions, particularly in developing countries. Importantly, they connect
production hubs, processing facilities, and export terminals. Improved road infrastructure
reduces transportation costs, minimizes delays, and enhances the reliability of freight
movement, directly benefiting sectors such as agribusiness that are heavily reliant on ef-
ficient logistics. Furthermore, investments in road infrastructure contribute to regional
development by bridging urban and rural areas, facilitating market access for small-scale
producers, and fostering socioeconomic inclusion.

Second, investment in multimodal transport infrastructure should be prioritized. This
includes improving railways, waterways, and port facilities in order to reduce depen-
dency on road transportation and diversify logistical options. Additionally, addressing
regional disparities in infrastructure investment is essential for ensuring equitable access
to efficient transportation systems, particularly for agricultural producers in remote or
underserved areas.

Third, investment in data infrastructure for freight cost monitoring is crucial. Gov-
ernments should establish public systems to collect, organize, and disseminate freight
cost data while integrating metrics such as economic indicators, regional productivity,
logistical infrastructure, and sustainability measures. Public—private partnerships can play
a vital role in ensuring that these systems are comprehensive, up-to-date, and accessible to
all stakeholders.

Finally, to ensure fairness in pricing, regulatory frameworks should be developed to
prevent exploitation of disparities between regions or transportation modes. For example,
price caps could protect smaller producers from inflated road freight rates. Transparency
in pricing across all transportation modes should also be encouraged to facilitate fair
competition and better decision-making by logistics agents.

A direct comparison with other studies is challenging due to variations in the datasets,
particularly as our study relies on a uniquely created dataset. Instead, we evaluate other
factors, such as the variables involved, the specific characteristics of the datasets, and the
modeling approaches employed. Due to these variations, solely relying on evaluation
metrics such as accuracy or Fl-score would not result in a reliable comparison, as they
would measure entirely different contexts and datasets.
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Compared to the work of [26], which focused primarily on a limited set of features,
our approach provides a more comprehensive understanding of the factors influencing
transportation costs. While [26] achieved reasonable accuracy using ensemble models such
as LightGBM and XGBoost, their narrower scope potentially overlooked critical variables
that contribute to freight dynamics, particularly in contexts with high variability such
as agricultural logistics. By including additional explanatory variables and leveraging
permutation importance to assess their impact for different models, our findings underscore
the importance of a holistic approach to freight cost prediction, offering deeper insights
and greater applicability to complex logistical scenarios.

Furthermore, our work is focused on analyzing the impacts of exogenous variables
on soybean freight costs in Brazil, offering distinctive contributions compared to the study
of [34]. While the latter emphasized operational variables such as vehicle type and cargo
weight to determine transportation costs, our study highlights the role of macroeconomic
factors, including exchange rates and export volumes, thereby providing a broader and
more tailored analysis for the agribusiness context. Additionally, by segmenting our results
across short, medium, and long transportation distances and employing explainability
techniques, our approach ensures greater interpretability and practical applicability. This
supports the international competitiveness of Brazilian soybeans within complex logistics
chains. Consequently, our work expands the understanding of freight pricing by integrating
economic and geographic dimensions beyond traditional operational factors.

6. Ethical Implications

The application of machine learning models in predicting freight prices has significant
ethical implications that must be carefully considered. One key concern is the potential
for bias in the data used for training these models. Historical data may reflect systemic
inequalities, such as regional disparities in infrastructure investment or socioeconomic im-
balances, which could inadvertently be perpetuated by predictive models. Thus, ensuring
fairness in predictions is crucial in order to avoid reinforcing existing inequities in logistics
and transportation planning [62].

Another concern involves the environmental and logistical implications of optimizing
transportation logistics. While machine learning can lead to increased efficiency and
reduced costs, these optimizations might unintentionally encourage overuse of certain
routes or resources, exacerbating environmental degradation and creating new logistical
challenges. For instance, the concentration of freight traffic on specific routes could result in
congestion, increased wear on infrastructure, and delays in transportation. Thus, a balanced
approach is needed in order to incorporate sustainability metrics such as carbon footprint
and resource consumption into predictive models while also considering strategies for
distributing traffic evenly and preventing overloading on critical routes.

Finally, the privacy of data sources, such as sensitive commercial or logistical informa-
tion, must be safeguarded; adopting robust data protection measures is essential to prevent
unauthorized access or misuse and comply with legal frameworks such as the General
Data Protection Regulation (GDPR) in applicable jurisdictions [63].

Addressing these ethical considerations is fundamental to ensuring that the deploy-
ment of machine learning in freight prediction contributes positively to society and aligns
with broader ethical standards.

7. Conclusions

Transportation is a crucial component in the final cost of soybeans with a complex and
nonlinear relationship. The different variables associated with each price range of soybean
freight emphasize the nonlinearity of this behavior across the spectrum. When evaluating
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variable classification, the LightGBM model proved to be the most accurate, while the
XGBoost, Passive-Aggressive, and LightGBM models stood out in our regression analysis.

Distance is the most significant variable in determining freight costs, aligning with
operational expenses such as fuel and labor. This study advances the theoretical under-
standing of this variable, demonstrating that while distance remains the primary determi-
nant of freight prices, macroeconomic factors such as exchange rates and export volumes
significantly impact price variations across different logistic scenarios.

Our findings also contribute to the theory of supply chain management. First, this
study suggests that machine learning models for efficiently forecasting freight costs can
assist economic agents in agricultural supply chains in mitigating the financial impact of
transportation. Second, our identification of the stratified impact of different variables
depending on the distance of transport (short, medium, and long) adds a more detailed
perspective to transportation cost theories, suggesting that different models should be
applied according to the scope of the supply chain. Short-distance freight is more related
to domestic supply, such as transportation to soybean crushing plants for the production
of oil and meal; in contrast, medium- and long-distance freight are predominantly tied to
export logistics. The segmentation of our dataset also highlights an increase in the number
of relevant variables for each price range, underscoring the importance of a more granular
analysis to capture freight dynamics.

The practical contributions of this study provide a robust foundation for improving
predictive models of freight costs. By incorporating a wide range of variables, including
economic indicators, regional productivity, and logistical infrastructure, this research offers
insights for building efficient models to anticipate market fluctuations. This approach
highlights the importance of considering factors beyond traditional metrics, offering a more
detailed understanding of cost dynamics in the transportation sector.

From a managerial perspective, our results provide actionable insights for logistics
managers and transportation planners. Understanding that distance, exchange rates, and
export volumes are key determinants of freight costs allows managers to better anticipate
price fluctuations and strategically plan logistics operations. For instance, managers could
optimize routing and scheduling decisions by considering macroeconomic indicators in
addition to their operational expenses. This predictive capability can support decision-
making processes such as choosing optimal transport routes and timing shipments to
minimize costs.

Moreover, the different variables can interact with each other, meaning that the impact
of one variable partially depends on the values of others. For instance, the influence of
distance on freight costs can be amplified or reduced by factors such as road infrastructure
and weather conditions. The inclusion of additional variables such as these, along with
public policies, can further enhance the analysis, providing a more detailed and accurate
view of freight price formation.

One promising direction is to model the transportation problem as a graph in which the
nodes represent municipalities, production centers, and ports and the edges correspond to
transportation routes with attributes such as distance, cost, and capacity. Leveraging graph-
based learning techniques such as Graph Neural Networks (GNNs) or Graph Convolutional
Networks (GCNs) could provide a deeper understanding of the structural and relational
factors influencing freight costs. These methods are particularly well suited to capturing
complex interactions between variables, and could improve prediction accuracy while
offering new insights into logistical optimization.

Another potential avenue for future research is expanding the analysis to include
data from other countries, particularly in South America. Understanding the dynamics
of soybean freight costs across different regions could provide a more comprehensive
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view of the global market and help to identify regional factors that influence pricing. This
geographical expansion would contribute to a better understanding of logistical challenges
and improve the generalizability of the model.

Furthermore, incorporating variables related to sustainability, such as the carbon
footprint of transportation and greener agricultural practices, could provide insights into
not only financial costs but also the environmental impact of the soybean freight process.
This would allow for a more holistic approach that addresses both economic and ecological
concerns within the logistics sector.
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