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Abstract

Shape is known as an important source of information in object analyzes and has

been studied for many years for this context. In the object classification task,

several challenges such as variations in rotation and scale, noise, and degrada-

tion make the problem even harder. This paper proposes the Distance Trans-

form Network (DTN), which combines the power of networks and the richness

of information provided from Euclidean distance transform for shape analysis.

First, a distance map is obtained by the application of the Euclidean distance

transform on each contour. Thus, each radius of dilatation is modeled as a net-

work. Then, degree measurements of the dynamic evolution network are used

to characterize the contour. Finally, a robust feature vector is composed by

characteristics of different radiuses of dilatation. The methodology was tested

in seven benchmarks available databases, including two otolith and three sets

containing shape of leaves species which presents challenging contours with a

lot of intra-class variations. The results against literature methods show that

the proposed DTN is effective for natural shapes classification according to the

higher success rates obtained in all cases. The advantages of our approach in-

clude robustness to degradation and noise, and tolerance to variations in the

shapes scale and orientation.

Keywords: Shape classification, Shape analysis, Complex network, Euclidean

distance transform



1. Introduction

Shape is a classical visual attribute and it is the most important feature for

object characterization with first studies dated from the 60’s [5, 1]. Furthermore,

the interest on this type of feature is inspired by biological systems where shape

matching in biochemical reactions is necessary [13].

Over the years, different approaches have been proposed to represent shapes

and can be classified into three main classes: skeleton-based, region-based and

contour-based techniques [28]. The category of a method is attributed based

on how features are extracted from shape [44]. Skeleton-based methods, for in-

stance, use the medial axes of the shape to extract its features. These methods

have as an advantage the robustness for shapes with occlusion and articula-

tion. Backes and Bruno [2] proposed a method in this category that uses the

dynamical evolution of the graph, generated by the skeleton, to obtain robust-

ness. The authors create a representation of the shape by a composition of the

multi-scale fractal dimension, minimum, average and maximum degree of each

network produced by a set of thresholds. Furthermore, path similarity of skele-

ton segments are achieved by Gaussian smoothing over distances in a pair of and

the correspondence is performed by Bayesian analyzes in [7]. Other examples of

this category are found in Refs. [11, 9]. Region-based techniques, on the other

hand, focus on a global analysis of the image to extract features (e.g., Zernike

moments [48] and Hu moments-based methods [23, 26]). Although, the ability

to apply the method in generic shapes, the category cannot distinguish objects

that are very similar such as different species of leaves.

Finally, contour-based methodologies, considered in this paper, use only the

contour information of the shape to extract characteristics. Some examples

of this category include Fourier descriptors [43], Curvature Scale Space [31]

and Multi-scale fractal dimension [33, 42]. Most of these methods consider

the contour as an ordered set of connected points, an intuitive way to deal

with a sequence of dots. However, usually, contour-based techniques suffers

when silhouette is not complete and the lack of points or occlusion of a shape
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region can affect the results [6]. To avoid this drawback, Backes, Casanova and

Bruno [3] propose to use complex networks (CNs). The introduction of networks

to model shapes allows this contour descriptor to deal with non-perfect contours

that suffered degradation and are often found in nature.

Inspired by the work proposed in [3], which models the contour pixels as a

complex network we developed a novel approach for feature extraction. Differ-

ent from the previous method, in this paper, the Euclidean distance transform

(EDT) is applied on the contour image and then model the pixels that belong to

a given radius of dilatation r as a network. The characteristics of different radius

of dilatation are used to describe the shape. Therefore, the proposed method

adds information about wave propagation and collision of the EDT on the con-

tour. The EDT method calculates the minimum distance from an image pixel to

a region of interest [35]. It is a well-known method and largely used in computer

vision, shape analysis and pattern recognition [18]. In summary, the EDT has a

strong link with morphological mathematics and can be understood as a series

of consecutive dilatations. Also, the Euclidean distance transform and morpho-

logical mathematics have been successfully used for decades in shape analysis

[18]. The reason of this study it is to combine both complex networks model

and EDT method with the goal of creating a method that can take advantage of

both approaches. While the networks proved to be robust and powerful to shape

analysis [3], the EDT of a shape contour can contain rich information since it

carries all the information of the contour wave propagation and collisions [18].

Therefore, in this paper, we propose a new shape descriptor, called Distance

Transform Network (DTN). In summary, a Euclidean distance transform is ap-

plied over the binary image of the contour, as presented in Figure 1 (a)-(b). In

the scheme, pixels that belong to a given value of radius of dilatation r are mod-

eled as a network. Then, a set of thresholds are applied to transform the regular

network into a t-scale complex network. Thus, given the t-scale network the av-

erage and maximum degree are obtained as features, this step is described in

Figure 1(c). Finally, for shape representation, degree measurements for different

values of thresholds and radius of dilatation are used to obtain the respective
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feature vector (see Figure 1(d)).

Experiments were performed in two well-known benchmarks: generic shapes

and ETH-80. Experimental results on these databases showed the e�ectiveness

of our method compared to other shape methods. Furthermore, the proposed

method was applied to the analysis of natural shapes which is the focus of our

study, due to the diversity found in nature. For instance, natural objects such

as plants contain a variety of di�erences within the same class, i.e., the same

species of a plant can contain smaller or bigger leaves. Therefore, �ve natural

databases were used to evaluate the proposed method: three of leaves species

and two for �sh recognition. Additionally, in one of the leaves databases, shapes

were intentionally reshaped to analyze characteristics such as noise tolerance,

scale invariance, rotate invariance and robustness. Experimental results show

that the proposed method obtains higher accuracy rates compared to other

shape methods even in the presence of degradation, noise, and rotation.

The paper is divided as follows. Section 2.1 shows an introduction of com-

plex networks and the Section 2.2 presents the methodology capable to modify

the contour, the Euclidean Distance Transform. In Section 3 the proposal to

combine complex networks and EDT is presented. Then, experimental setups

are described in Section 4. Finally, recognition results are presented in Section

5. The section also compares and discuss results among all shape descriptors

analyzed in this paper. Section 6 presents the conclusion of the paper.

2. Background

2.1. Networks

The networks �eld can be interpreted as the intersection between graph

theory and tools of statistical mechanics which gives a natural multidisciplinary

to it, combining Computer Science, Mathematics and Physics [12]. In the 50's,

researchers in graph theory conducted by [16, 15] provided the basis of the �eld.

Studies in complex network area were motived by the investigations about small-

world networks [45], scale-free networks [8], community structure in networks
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[20] and sets of models found in most real networks [12]. The main reason for

its popularity is the 
exibility and capacity to represent any given structure,

natural or discrete, such as real complex systems and computer vision problems

[14].

The network theory has been successfully adopted to develop methods in

computer vision and pattern recognition. These methods, such as [21, 34, 4],

include the study of modeling a problem into a complex network, the analysis of

their topological structure and feature extraction. For instance, an image can be

modeled as a network and its patterns represented by network measures related

to its connectivity. In the literature, the problems of computer vision based on

CN include: texture analysis (e.g. [10]), re�ne edge (e.g. [19]), boundary shape

analysis (e.g. [3, 47]), etc.

2.2. Euclidean Distance Transform

The next method presented in this paper is the Euclidean Distance Trans-

form, the EDT. The technique has been used in several tasks such as computer

vision, graphics, shape analysis, pattern recognition, among others [18]. In

shape analysis, for instance, the method has been used to match objects with

the advantage of providing better and smoother results when transformed im-

ages are compared [41]. Also, EDT is able to compute morphological operations

such as dilations and erosion. Thus, as shown in [30], a multi-scale analysis can

be created by the application of these operations. According to [30], the ap-

pearance of an object is very dependent on the scale analyzed, which makes the

addition of di�erent scales important to obtain a complete comprehend of the

object observed. For this reason, EDT is applied in this context to enrich the

shape characterization.

Basically, Euclidean distance transform of a binary imageI �nds the mini-

mum distance of the background pixelsB to an object C in the foreground. In

this context, the output of the EDT is named distance map S. This distance

map is a 2-D matrix with values R 2 r and each set ofSr 2 S contains all pixels

with a minimum distance r to the closest point in the object C, the contour,
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i.e, Sr has all pixels with the same radius of dilatation r of the interest object.

The radiuses of dilatation forms isolines, pixels with the same value that

are an important source of analysis in the distance map. These lines contain

important information about the propagation of waves of the EDT and the com-

plexity of the contour. The "shock" between the waves are directly associated

with speci�c characteristics of the object such as curves and size. Therefore,

each set of pixels with a radius of dilation,Sr 2 S, can be analyzed separately

and roughly understood as a di�erent scale. Consequently, characteristics of

di�erent 'scales' can be combined to obtain more robust features. In order to

reduce the computational complexity, this paper uses a linear implementation of

the exact Euclidean distance transform from Ref. [29] and available on software

Matlab 9.2.

3. Distance Transform Network

In this section, we describe the distance transform network method, also

referenced here as DTN, for boundary shape analysis. The proposed method

combines complex networks and Euclidean distance transform, taking advantage

of the robustness of the former and the extra shape information provided by

the latter to create a strong and robust shape descriptor. In the following

subsections, we describe: (i) the modeling of a radius of dilatation as a network,

(ii) the proposed signature, and (iv) the parameters evaluation.

3.1. Modeling radius of dilatation as network

In this section, we describe the proposal to model the radiuses of dilation as a

complex network. First, the Euclidean distance transform is applied considering

the contour C as the object of interest (Figure 1(a)). The output of the EDT

method is a distance mapS shown in Figure 1(b). S is composed by several

radiuses of dilatation R formed by pixels at the same distancer of the contour.

The goal of this study is to compute the information of how an object progresses

along di�erent radiuses of dilation, provided by the EDT, and then analyze
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Figure 1: Summarization of the proposed method.
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each isoline separately and combine the features of eachr to achieve a robust

classi�cation. Looking closer, each radiusr is composed by a set of points (or

pixels) Sr 2 S and each point is addressed assi = [ x i ; yi ](si 2 Sr ), where x i

and yi are discrete values that correspond the coordinates of the pointi in the

map.

In order to use the complex networks theory for the problem the subset

Sr 2 S is modeled as a graphGr = ( E r ; Vr ). It is important to highlight that in

this study, the points of a radius of dilatation, Sr , are connected to create the

graph and not the contour pixels as in the C.N. Degree [3] method. Therefore,

a graph is built, where each point si of a radius of dilatation r is represented

as a vertex v 2 Vr of the graph (i.e., Sr = Vr ). The set of non-directed edges

E r : Vr � Vr is de�ned by connecting of all vertices in Vr to each to other. For

each edgeei;j 2 E r (where nodesi and j are connected), a non-negative weight

wij is de�ned:

wij = d(si ; sj ) =
q

(x i � x j )2 + ( yi � yj )2: (1)

Thus, the network is represented by aN � N weight matrix Wr ,

Wr ([wi ; wj ]) = d(si ; sj ): (2)

Also, for invariance purposes, the weight matrix is normalized into the in-

terval [0; 1], according to the highest weight:

Wr =
Wr

maxw ij 2 W r

: (3)

Figure 2(a) presents examples of graph generated by pixels with the same

distance in S. Once the network is obtained from a radius of dilatation r ,

measures of their topological properties can be extracted for pattern recognition.

This task is described in the following sections.

3.2. Signature

In a �rst stage, all vertices of a given radius of dilatation r are connected

forming a regular network. However, a regular network has not any topological
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(a)

(b)

Figure 2: Examples of network modeling: (a) di�erent radiuses of dilatation r modeled as a

complex network; (b) radius of dilatation r = 0 modeled as a transformed network by di�erent

values of threshold t .
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property and it is not considered a complex network. In this way, it is necessary

to transform it to highlight important properties that characterize the studied

problem.

An approach to transforming the network is to apply a threshold t on its

edges, which produces a new set of edgesE 0 [12]. This transformation consists

in selecting edges whose weights are smaller than a given thresholdt. This strat-

egy can convert an initial regular network that models a contour in a complex

network that presents small-world properties [45], a characteristic presented in

many real networks [3]. Thus, we propose to apply a transformation� t (Wr )

with di�erent values of t over the regular network that models a radius of di-

latation r of the EDT. Then, we use degree measures in each output small-world

network evolution as feature vector (Figure 1(c)). The adjacency matrix A r
t of

the network Gr
t produced by pixels with distance r from the contour and with

the application of a threshold t, is obtained by:

A r
t = � t (Wr ) = 8w 2 Wr

8
><

>:

aij = 0 if wij � t

aij = 1 if wij > t:
(4)

As mentioned before, we use a set of thresholdst 2 T to transform regu-

lar networks with no signi�cant properties to graphs that may contain intrinsic

features of the system. This set is de�ned by an initial threshold t0 and in-

cremented at a regular interval t i until a �nal threshold t f , creating di�erent

networks for each radius r . Figure 2(b) shows the dynamic evolution of the

network that models a radius of dilatation ( r = 0) for di�erent threshold values.

As noticed in the �gure, as the threshold increases, the number of edges in the

curves also increases.

To characterize each networkGr
t produced by the proposed method, degree

descriptors are computed from the unweighted matrixA r
t . To compose the fea-

ture vectors we use two measurements: the average degree�k and the maximum

degreek̂ of each network derived from the dynamic evolution. However, before

computing these measures, a normalization of the degree of the vertices by the

10



number of vertices in the network is performed (Equation 5). The purpose of

the normalization is to reduce the network size in
uence in the representation.

8ki =
ki

N
(5)

To describe the topology of the network Gr , which models a radius of di-

latation r , we proposed a feature vector#r composed of the average degree�k

and the maximum degreek̂. This feature vector consists of the concatenation

of �k and k̂ values for each evaluated thresholdt:

#r = [ �k(t0); k̂(t0); �k(t0 + t i ); k̂(t0 + t i ); :::; �k(t f ); k̂(t f )]: (6)

Notice that the previous feature vector #r , in Equation 6, only computes

features for one radiusr and several thresholds. However, to obtain a robust

feature vector with di�erent information about the shape contour, we concate-

nate feature vectors#r for di�erent values of radiuses of dilatation r , as showed

in Figure 1(d). To illustrate this approach, Figure 3 presents the �nal feature

' vector composed by the average degree and maximum degree of di�erent ra-

diuses of dilatation r . As noticed, each radius modeled as network contains

di�erent information, which increases the performance in the �nal shape clas-

si�cation task. To create the feature vector, the radius values ranges between

the interval r 0 � r � r f , which is evaluated in Section 3.4. Thus, the feature

vector ' is given by:

' = [ #r 0 ; #r 1 ; #r 2 ; :::; #r f ]: (7)

The feature vector ' is able of represent a shape considering desirable prop-

erties in the shape classi�cation task, such as: rotation and scale invariance,

obtained through degree normalization; noise intolerance, reached by the ap-

plication of the EDT; and degradation invariance, from the fact that the EDT

and network modeling does not require the extraction of ordered points from

the contour.
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(a) Average degree features (b) Max degree features

Figure 3: Degree features of three radiuses of dilatation of a same contour.

3.3. Computational complexity

In order to evaluate the performance of DTN method in terms of compu-

tational cost, we performed a computational complexity analysis. First, the

proposed method applies the binary Euclidean distance transform on a shape

image, it means that the computational cost of this method must the taken

into consideration. Fortunately, The exact EDT of a binary image may be

computed in linear time according to the total number of contour pixels (i.e.

Np) [29], which deals with a computational complexity of O(Np). Then, the

next step is to create the network. Considering a radius of dilation with Nd

points, each point is connected to all other points of the contour. Therefore

O(Nd + N d (N d � 1)
2 ) operations are required to build the complex network. Next,

to create meaningful networks, we apply a set of thresholdsT over the network,

wherekTk = n is the number of thresholds applied. The graph cut is performed

over a set of radius of dilation of sizem. Sincen and m are values independent

of Nd and n � Nd and m � N (e.g n = 13, m = 49 and N = 5000), we can

ignore n and m in the complexity, leading to a computational complexity of

O(Np + Nd + N d (N d � 1)
2 ).

3.4. Parameter Evaluation

In this section, we present an evaluation of the parameters of the proposed

method and its consequence on shape recognition. DTN method assumes the
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following parameters: (i) set of thresholdsT of the dynamic evolution of the

network, and (ii) the initial and �nal radius of dilatation, r 0 and r f . To ac-

complish this task, we use three databases: ETH-80, USP Leaves, and Generic

shapes. The classi�cations of the feature vectors were performed using the LDA

classi�er [17].

We start by analyzing the behavior of the method for di�erent threshold

sets using a constant radius of dilatation r = 0 (Table 1 presents the correct

classi�cation rate (CCR) for 11 di�erent con�gurations of threshold set ( T1, T2,

T3, ..., T11)). The set of thresholds consists on an initial thresholdt0, which

is incremented by a valuet i until a �nal value t f . Note that, regardless of the

threshold set used, the proposed method still return good results. As noticed

in the table, it is not necessary a large number of network transformations,

i.e. the size of T is small, to achieve good results. The output also suggests

that a small increment t i is more appropriate for classi�cation. In the three

databases, the best correct classi�cation rate was achieved with the same set

of thresholds. Given this evidence, we decided to adopt the set of threshold

T1; t0 = 0 :025; t i = 0 :075; t f = 0 :950 for all experiments.

Then, after de�ning the threshold set, we tested di�erent combination of

radiuses of dilatation. Similarly to what occurs for the thresholds, the combi-

nation of radiuses of dilatation used to compose the feature vector is de�ned by

an initial radius r 0 and a �nal radius r f (in this case, always with increments of

1). Figure 4 presents plots of the correct classi�cation rate for di�erent values of

r 0 and r f for Generic shapes, ETH-80 and USP Leaves databases, respectively.

Notice that, in the majority of the values of initial and �nal radiuses used in

the three databases, the proposed method achieves good results. This high-

lights that the proposed method is not sensitive to these parameters. However,

according to the plots, the method achieves the best performance in the three

databases forr 0 = 0 and r f = 113.

This analysis suggests that the parameters found for the proposed method

will achieve good results in any classi�cation con�guration besides the databases

evaluated in the parameter selection. Therefore, we believe that it is not nec-
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Table 1: Results of the proposed method for di�erent sets of threshold T and using radius of

dilatation r = 0.

T t0 t i t f N. of Features ETH80 USPLeaves Generic

T1 0.025 0.075 0.950 26 72.43 84.00 97.00

T2 0.025 0.100 0.925 20 71.09 83.50 97.00

T3 0.025 0.125 0.900 16 70.03 82.16 95.00

T4 0.025 0.050 0.500 20 72.22 79.16 92.88

T5 0.025 0.175 0.900 12 67.71 76.16 95.00

T6 0.050 0.150 0.950 14 68.32 81.00 91.88

T7 0.050 0.100 0.950 20 70.51 82.83 95.00

T8 0.050 0.075 0.800 22 70.60 79.33 97.00

T9 0.050 0.025 0.500 38 72.16 77.66 94.00

T10 0.100 0.050 0.900 34 71.00 82.16 94.88

T11 0.100 0.100 0.900 18 69.35 83.00 95.00

essary a comprehensively search for the parameters of the proposed method for

di�erent databases.

4. Experimental Setup

To evaluate the proposal of this paper, seven di�erent databases were tested:

Generic Shapes [38], ETH-80 [25], USP Leaves [3], Swedish Leaves [40], Por-

tuguese Leaves [39], Otolith [36] and Aforo Otolith [27]. USP Leaves database

is also evaluated under di�erent conditions: rotation, continuous and random

degradation, noise and scale variance. We also compare the results of our

method with seven literature shape methods. Finally, we use two machine

learning algorithms for classi�cation: Linear Discriminant Analysis (LDA) [17]

and Support Vector Machine (SVM) [22].

4.1. Shape databases

Generic shapes

The �rst database has 99 shape images classi�ed in 9 classes with 11 shapes

each [38]. It contains shapes such as rabbits, men, airplanes, tools, and �sh. In
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