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Introduction

Understanding real-world networks is essential in many 
fields (Jha et al., 2022; Patel et al., 2024; van den Heuvel 
& Hulshoff Pol, 2010; Verma et al., 2022). However, study-
ing their structure can be difficult. For instance, even people 
with the same characteristics may have different brain activ-
ity patterns and functional brain networks. Another example 
is the metabolic networks that can differ between individu-
als in the same group. Because of this variability, networks 
can be seen as random graphs, reflecting underlying random 
processes.

Many models have been created to describe how net-
works form randomly. One of the first of random graphs 
models is the Erdős–Rényi (Erdös & Rényi, 1959), where 
each pair of nodes is connected with a fixed probability 𝑝. 
A more flexible version allows different probabilities 𝑝(𝑖, 
𝑗) for each pair of nodes (𝑖,𝑗). Researchers later introduced 
stochastic block models (SBM) to better comprehend real-
world structures (Frank & Harary, 1982; Lee & Wilkinson, 
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Abstract
Modelling real-world networks allows investigating the structure and the dynamics of such networks, which led to signifi-
cant developments in various scientific fields. One of the most used models in these investigations is the Watts-Strogatz, 
with a structure composed of high clustering and short path lengths known as small-world networks. This model proposes 
an interesting gradient between regular and random networks, but its generating process, which relies on a single rewir-
ing probability parameter, is hard to access and to manipulate. In order to study the mechanics of the Watts-Strogatz 
model, the present work proposes a new method based on deep neural networks that could estimate its probability p. To 
illustrate its applicability, neuroimaging and phenotypic resting-state fMRI data were used from patients with ADHD and 
typical development children, obtained from the ADHD-200 database. The neural network efficiently estimated the prob-
ability parameter, resulting in small-world graphs for functional brain connectivity with a mean ± s.e.m. p distribution of 
0.804 ± 0.003. Despite no difference was found considering the gender or diagnosis of participants, the generalized linear 
model revealed age as a significant predictor of p (mean ± s.e.m.: 4.410 ± 0.877; p < 0.001), indicating a great effect of 
neurodevelopment on the brain network’s structure. The proposed approach is promising in estimating the probability of 
the Watts-Strogatz model, and its application has the potential to improve investigations of network connectivity with a 
relatively efficient and simple framework.
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2019; Ludkin et al., 2018; Mariadassou & Tabouy, 2020). 
The deterministic block model assumes completely inde-
pendent connections, while the SBM considers connections 
that depend on the group assignments of nodes.

Network models go beyond simple connections between 
nodes and capture other structural properties. For example, 
some models consider spatial relationships, like the geomet-
ric random graph (Duchemin & De Castro, 2023), while oth-
ers enforce a fixed number of connections per node, such as 
the 𝑑-regular graph (Huang & Yau, 2023). The Watts–Stro-
gatz (WS) model represents small-world networks (Watts & 
Strogatz, 1998), while the Barabási–Albert model captures 
networks with a power-law degree distribution (Barabási, 
1999). The exponential random graph model (ERGM), a 
more flexible approach, defines connections based on cho-
sen network statistics and external factors (Chatterjee & 
Diaconis, 2013).

Particularly, the Watts-Strogatz model (Watts & Strogatz, 
1998) is a vital network science model that explains the 
small-world effect in many real-world networks. It shows 
how networks can have high clustering (like regular net-
works) and short path lengths (like random networks). This 
balance makes it helpful in studying networks such as brain 
connections, social relationships, neural systems, and the 
Internet. The model helps researchers understand, simulate, 
and analyze how these networks form and function.

However, there is no exact formula for estimating the 
parameters of the Watts–Strogatz model. Some models, like 
ER, SBM, and ERGM, have well-known parameter estima-
tion methods. Although they are essential, these estimators 
only work for their specific models, so new estimation tech-
niques must be developed every time a new network model 
is proposed. Thus, one of the main challenges in network 
analysis is creating a general way to determine the best 
model parameters for a given real-world network.

Takahashi et al. (2012) developed a general method to 
estimate the parameters of random graph models using the 
Kullback–Leibler divergence between graph spectral den-
sities. This method also successfully estimated the param-
eter of the Watts-Strogatz model. Their proposal is based 
on the idea that a network’s spectrum is closely related 
to its structure (Gera et al., 2018). Later, Siqueira Santos 
et al. (2021) proved the consistency of Takahashi et al.’s 
parameter estimator using the L1 norm instead of the Kull-
back-Leibler divergence. Nonetheless, this approach is not 
algorithmically efficient and exhibits poor scalability in 
high-dimensional settings. In contrast, matrix multiplica-
tion – fundamental to neural network architectures such as 
the Multilayer Perceptron – offers significantly greater com-
putational efficiency and scalability, particularly due to its 
amenability to parallelization on GPUs.

Therefore, we propose a novel way based on deep neu-
ral networks to estimate the parameters of Watts-Strogatz 
random graph models. Directly estimating the rewiring 
probability of a small-world network could provide insights 
about its generative processes and allow the gathering of 
additional data in the many research fields which investi-
gate real-world networks, since the application of a MLP 
requires relatively low computational resources. For this 
end, we illustrate the performance of our proposal by simu-
lations, and demonstrate its usefulness in actual fMRI data 
from the ADHD-200 competition.

Methodology

The Watts-Strogatz Model

The Watts-Strogatz model generates small-world networks 
exhibiting high clustering and short average path lengths. 
The Watts-Strogatz model starts with a regular ring lattice 
and rewires each edge with a given probability 𝑝, introduc-
ing randomness while maintaining some structure. Let 𝑁 
be the number of nodes, 𝐾/2 be the number of connected 
neighbors each node connects to on each side (K/2 must be 
even), and 𝑝 be the probability of rewiring each edge. First, 
create a ring lattice, i.e., place 𝑁 nodes in a circle and con-
nect each node to its K/2 nearest neighbors on both sides. 
Then, for each edge (u, v), with probability p, rewire the 
edge, i.e., select a new target node v’ randomly (avoiding 
self-loops and duplicate edges) and replace the edge (u, v) 
with (u, v’). After rewiring all the edges, a small-world net-
work is obtained.

The Watts-Strogatz network model has some interesting 
properties related to the small-world effect seen in many 
real-world networks. For example, when p = 0, we obtain 
a regular ring lattice, i.e., a network with high clustering 
and long path lengths. When 0 < p < 1, we get a small-world 
network, i.e., a network with high clustering and short path 
lengths. Finally, when p = 1, we obtain a random graph, i.e., 
low clustering and short path lengths.

Deep Neural Networks and P Estimation

A neural network is trained on datasets generated from 
simulations of the Watts-Strogatz model, specifically, a 
Multi-Layer Perceptron (MLP), a neural network model to 
tackle a specific predictive task. An MLP is a fundamental 
form of neural network composed of typically three lay-
ers of neurons connected through weighted pathways: (1) 
an input layer that receives the data – in this case a con-
nective matrix; (2) the hidden layers, which computes and 
transforms the data; and (3) an output layer that returns the 

1 3

   57   Page 2 of 8



Neuroinformatics           (2025) 23:57 

desired prediction (Naskath et al., 2023). The current model 
architecturally consists of three densely connected hidden 
layers – composed of 50, 20 and 10 neurons, respectively – 
with a Rectified Linear Unit (ReLU; Eq. 1) activation func-
tion, culminating in a single neuron output layer that uses 
a Scaled Exponential Linear Unit (SeLU; Eq. 2) activation 
function to produce the final estimation. The general archi-
tecture of the MLP is represented in Fig. 1.

 

ReLU(x) =
{

x, if x > 0
0, if x ≤ 0 � (1)

 

SeLU(x) = λ

{
x, if x > 0
α ex − α , if x ≤ 0 � (2)

The primary focus of the training is to estimate the param-
eter p, which represents the probability of rewiring each 
edge within the model, dictating the randomness or regular-
ity of the network structure. This type of idea of training 
on simulations to evaluate numerical quantities of empirical 
data (Tobin et al., 2017; Cranmer et al., 2020) has already 
been applied to resting-state fMRI functional connectivity 
(Cabral-Carvalho et al., 2025). However, the use of a MLP 
has not yet been investigated as a possible methodology for 
estimating these numerical quantities. The training dataset 
comprises 10,000 Watts Strogatz model simulations with 
100 nodes, and the test set has 1,000 samples. The training 
employs the Adam optimizer for its efficiency in managing 
sparse gradients and uses Mean Absolute Error (MAE) as 
the loss function. The model was trained over 100 epochs 

with a learning rate of l = 0.001, and it was built with the 
Tensorflow and Keras framework.

Illustrative Simulations

Monte Carlo simulations were used to illustrate the proposed 
approach’s performance. Since the typical brain parcellation 
in fMRI studies involves hundreds of cortical regions, we 
simulated graphs with 50, 100 and 200 nodes. The average 
number of neighbours was set to 5%, 10%, and 20% of the 
respective number of nodes. The Pearson correlation coef-
ficient r is calculated as a precision metric.

ADHD-200 Dataset

In this study, we analyzed resting-state functional magnetic 
resonance imaging (fMRI) data sourced from the pub-
licly available ADHD-200 dataset provided by the Neuro 
Bureau. This dataset, described comprehensively in Bellec 
et al. (2017), consolidates data collected across eight centers 
using 1.5 Tesla MRI scanners. Participants were initially 
classified into four diagnostic categories: healthy controls, 
ADHD combined subtype, ADHD hyperactive-impulsive 
subtype, and ADHD inattentive subtype. In addition to neu-
roimaging data, detailed phenotypic information was pro-
vided, including age, gender, handedness, IQ, and specific 
ADHD subtype classification.

The data preprocessing was performed using the Athena 
pipeline, explicitly designed for resting-state fMRI and 
voxel-based morphometry (grey matter) analysis, imple-
mented via AFNI and FSL software tools (Bellec et al., 
2017). The preprocessed data were retrieved from the Con-
nectome website (​w​w​w​.​p​r​e​p​r​o​c​e​s​s​e​d​-​c​o​n​n​e​c​t​o​m​e​s​-​p​r​o​j​e​
c​t​.​o​r​g​/​a​d​h​d​2​0​0​/) and included resting-state BOLD signal 

Fig. 1  Representation of the 
designed MLP
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Results

Simulations

The simulation results are shown in Fig. 2. First, note that 
the proposed strategy for p estimation is effective and pro-
vides accurate results in graphs with a scale of 50, 100 and 
200 nodes. Moreover, since more information is available, 
when the number of nodes N or the number of neighbours 
k increases, the quality of the estimate improves, mainly 
because variability is reduced.

Application in ADHD-200 Dataset

The artificial neural network designed in this study could 
estimate a probability p for all tested connectivity matri-
ces of the ADHD-200 dataset. The general estimated p was 
0.804 ± 0.003 (mean ± s.e.m.; Fig. 3). Grouping the probabil-
ity p for each participant according to their gender (Fig. 4) 
or diagnosis (Fig. 5) shows almost no difference in p distri-
bution among these groups.

Indeed, the generalized linear model found no significant 
difference for gender or diagnosis (Table 1). However, a sig-
nificant effect of both subjects’ age and frame displacement 
on the p distribution was found, meaning that these vari-
ables may be considered predictors of p.

Discussion

In the present study, functional neuroimaging data from 
ADHD patients were used to illustrate the applicability 
of a deep neural network in estimating a graph’s rewiring 
probability p, a main parameter of the small-world model 
proposed by Watts and Strogatz (1998). We found no sig-
nificant result regarding the connectivity matrices’ p when 
grouped by patients’ diagnosis or gender. On the other hand, 
parameter p was positively correlated to the individual’s 
age. Consequently, the connection between functional brain 
areas would tend to be less clustered and with shorter path 
length as an individual transitions from infancy to adult-
hood. Such comprehension of the network’s generating pro-
cess, and how its rewiring probability affects the network 
features, could only be carried out with the estimation of p, 
which is the method proposed in this study.

Intense developmental changes in the nervous system 
mark childhood and adolescence. Especially during puberty, 
synaptic strengthening and pruning processes change the 
brain organization and affect cognitive and socioemo-
tional processes (see Vijayakumar et al., 2018). In this line, 
by modeling the brain as a small-world network, Zhao et 
al. (2015) found that both the path length and clustering 

time courses. The preprocessing steps consisted of discard-
ing the first four volumes to achieve magnetic stabilization, 
slice timing correction, head motion correction, spatial 
normalization to Montreal Neurological Institute (MNI) 
standard space at 4 × 4 × 4  mm voxel resolution, temporal 
band-pass filtering (0.009–0.08 Hz), and spatial smoothing 
with a Gaussian kernel of 6  mm full width at half maxi-
mum (FWHM). Further methodological details, including 
site-specific MRI scanner parameters, are thoroughly docu-
mented on the ADHD-200 website (ADHD-200-Webpage, 
2011). We included only the initial scan for participants with 
multiple scanning sessions and uniformly extracted 140 
time points for each subject.

Excluding phenotypic missing data, the sample utilized 
for the illustrative application had a total of 525 individuals. 
Sex differences in age distribution were examined, and their 
mean ± standard deviation are described as follows, reveal-
ing similar ages for males (12.19 ± 3.47 years) and females 
(12.293 ± 3.818 years). The impact of the ADHD subtype on 
age distribution was also assessed, yielding mean ages as 
follows: Typically Developing Children, 12.567 ± 3.69 years 
years; ADHD-Combined subtype, 11.358 ± 3.4 years years; 
ADHD-Hyperactive/Impulsive subtype, 13.371 ± 4.533 
years; and ADHD-Inattentive subtype, 11.628 ± 2.943 years.

Illustrative Application

For the functional connectivity analysis, matrices were cre-
ated from the ADHD-200 dataset. Those connectivity matri-
ces consisted of a 334 × 334 matrix for each subject, with 
connectivity indexes considered as present (1) if equal or 
greater than 0.2, or absent (0), otherwise. The connectiv-
ity matrices were submitted to the neural network, which 
then simulated different matrices with the same N and k 
to estimate the probability p for the entry matrix correctly. 
Considering these estimated p as dependent variable, a gen-
eralized linear model (GLM) was applied, with site of data 
collection, and subject’s gender, age, diagnosis (ADHD(C): 
ADHD-Combined subtype; ADHD(H/I): ADHD-Hyperac-
tive/Impulsive subtype; ADHD-I: ADHD-Inattentive sub-
type) and frame displacement (FD) as predictors (Eq. 3). A 
significance level of 0.05 was adopted.

 

Yi = β0 + β1 · genderi + β2 · agei
+β3 · ADHD(C)i + β4 · ADHD(H/I)i
+β5 · ADHD(I)i + β6 · FDi + ϵi

� (3)
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Fig. 4  Distribution of p for each gender

 

Fig. 3  Distribution of probability p

 

Fig. 2  Simulations results. Scatter-plot between estimated and actual p 
parameter for different values of the number of nodes (N) and the mean 
number of neighbours (k, as a percentage of the number of nodes). 

Note that the variability of estimates is reduced when both N and k 
increase. The coefficient r is the Pearson correlation value between 
estimated and actual p parameters
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probability p. By directly accessing p from the functional 
connectivity graphs, the methods presented in this study 
indicate that these networks’ features variates with age, 
which, in turn, can be explained by variations in the model’s 
rewiring probability p.

Despite there being no difference found regarding the 
estimated p and the ADHD diagnosis, several studies indi-
cate that such disorder profoundly affects the brain con-
nectivity. Beare et al. (2017), through a graph theory-based 
approach, found that the white matter network of children 
and adolescents diagnosed with ADHD had a higher cluster-
ing coefficient and weighted normalized path length com-
pared to typically developing controls. Differences between 
groups’ networks features were also found regarding func-
tional connectivity: Wang et al. (2019), however, found that 
both normalized clustering coefficient and path length were 
reduced in diagnosed children from the ADHD-200 data-
base. Furthermore, such changes seem to be dependent on 
the subtype of ADHD, as the structure of brain networks 
for Inattentive and Combined subtypes does not differ from 
control or even between these diagnoses (Saad et al., 2021).

Even so, the estimated value and its possible impact 
on brain functioning analysis need further investigation, 
as their values are limited by the parameters used in the 
deep neural network implementation. For example, a fixed 
threshold affects the graph’s parameters, changing its struc-
ture according to the connectivity values (Telesford et al., 
2011). Hence, one of the limitations of the present study 
is to adequately address the weights of the connections or 
even the usage of a gradient of possible thresholds. Future 
studies may complement their data collection and network 
modelling with the methods proposed in this paper, and help 
to address the proper applicability of such an approach in 
studying brain connectivity.

Conclusion

The deep neural network proposed in this study could 
directly estimate the probability p of a Watts-Strogatz 
model. Using a brain functional connectivity database, the 
network application could provide new information on the 
graph’s structure, pointing to the relevance of neurodevel-
opmental processes in the brain’s functionality. Such an 
analysis could be easily implemented in future research, 
expanding the knowledge of its applicability and the inves-
tigated graph’s structure. However, some parameters of the 
neural network function, such as defining an optimal thresh-
old for connectivity data, still need to be considered when 
implementing such a methodology.

Acknowledgements  This study is supported by the São Paulo 
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coefficient of the white matter network follow an inverted U 
pattern, with a peak at the third decade related to the matura-
tion of these structures. There is, however, a gap in under-
standing the relationship between structural and functional 
connectivity, as functional networks present a more com-
plex behavior, quickly changing its organization over time 
and being able to act upon indirect structural connections, 
for example (Liao et al., 2017).

In this context, Gu et al. (2015) showed that cognitive 
systems tend to differentiate along development and estab-
lish their functional roles. Their results indicate a decrease 
in global between-system connectivity, but some modules 
do the opposite, especially the default mode network and 
the sensorimotor system. In this sense, the increase of a 
between-system connectivity suggests a diversification of 
functions performed by each brain region and would imply 
a shortening in the network’s path length. On the other hand, 
Smit et al.‘s (2012) results of EEG activity indicate a net-
work’s pattern towards order, as the alpha, beta and theta 
frequency bands had an increase in both clustering and path 
length over age: they only showed a shift to randomness in 
an older age (55+).

It is important to note that all these studies investigated 
only the path length and the clustering coefficient, which 
are described as functions of the network models’ rewiring 

Table 1  General linear model considering p as dependent variable
Parameter Estimate (e-3) p-value
Gender (male) −1.261 ± 6.564 0.847
Age 4.410 ± 0.877 < 0.001 

***
Diagnosis (ADHD-Combined) 6.022 ± 8.073 0.456
Diagnosis (ADHD-Hyperactive/
Impulsive)

13.54 ± 21.89 0.536

Diagnosis (ADHD-Inattentive) −4.169 ± 10.42 0.689
Frame displacement −0.003 ± 0.001 0.009 

**
Values are expressed as mean ± standard error.

Fig. 5  Distribution of p for each ADHD diagnosis
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