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In this paper, a set of fault detection methods that use variations of autoencoder based DNN was implemented over 
simulated data that emulates the behavior of a generating unit of a hydropower plant. These variations comprise the 
modulation of different hyperparameters, numbers, and types of layers, such as dense, long-short term memory 
(LSTM) and convolutional neural network (CNN). The use of advanced abnormality detections techniques for this 
kind of machinery, in special the deep learning related, have not been so explored if compared to the ones focused 
on assets of other power generating modalities. Hence, this study aims to investigate the feasibility and compare the 
performance of each one of the proposed methods in order to select potential candidates to be implemented in real 
operational scenarios. 
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1. Introduction 
Condition-based maintenance (CBM), whose 
primary objective is to identify upcoming 
equipment failure so that maintenance is 
proactively scheduled only when necessary, has 
been increasingly used in the industrial sector to 
improve asset's reliability, safety and increase 
overall system availability. Critical to the 
application of CBM, fault detection methods have 
been extensively studied, but industrial 

applications in complex rotating machines are 
still in an early stage of development (Melani et 
al. 2021) However, with the increasing presence 
of sensors in industrial plants and the increasing 
ease of storing and managing monitoring data, the 
feasibility of applying the CBM strategy in the 
industrial context has risen significantly. 

Recently, deep learning-based techniques 
for machine health monitoring and fault diagnosis 
have gained a lot of attention due to their 
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versatility and efficiency in extracting features 
from monitored data (Zhao et al. 2019). Deep 
neural networks (DNN), in particular, have been 
increasingly applied in fault detection due to their 
ability to perform sensor data fusion, i.e., to 
combine different monitored variables aiming at 
increasing accuracy over the detection results. 

In this paper, a set of fault detection methods 
that use variations of autoencoder based DNN 
was implemented over simulated data that 
emulates the behaviour of a generating unit of a 
hydropower plant. These variations comprise the 
modulation of different hyperparameters, 
numbers, and types of layers, such as dense, long-
short term memory (LSTM) and convolutional 
neural network (CNN). The use of advanced 
abnormality detections techniques for this kind of 
machinery, in special the deep learning related, 
have not been so explored if compared to the ones 
focused on assets of other power generating 
modalities. Hence, this study aims to investigate 
the feasibility and compare the performance of 
each one of the proposed methods in order to 
select potential candidates to be implemented in 
real operational scenarios. 

The paper is organized as follows: Chapter 
2 presents a very brief introduction of the 
autoencoder based DNNs, offering several 
bibliographic references on the subject; Chapter 3 
presents the proposed method for using 
autoencoder based DNNs for data drive fault 
detection in Hydroelectric Power Plants (HPPs); 
Chapter 4 shows the results obtained by applying 
the method to simulated failure data from a HPP 
and; Chapter 5 presents the conclusions derived 
from this work. 

2. Autoencoder based DNNs 
As an extension of traditional artificial neural 
networks, DNNs can be seen as a stack of neural 
networks, or as a network composed of several 
layers (Das and Roy 2019). There are several 
types of DNN models, such as CNNs, recurrent 
neural networks (RNNs), LSTM and 
autoencoders (Subasi 2020).  

Autoencoders based DNNs introduce a 
bottleneck on the network layers to create a 
compressed representation of the input data. Such 
compression helps the network to capture the 
dependencies or correlations present in the input 
data, contributing to the elimination of mutually 
dependent features (Koul and Manvi 2021). 

Figure 1 presents the general structure of an 
autoencoder based DNN. Here, the input vector, 
x, is transformed by the encoder into the 
compressed feature vector, z, as shown in Eq. (1). 

 

 
Fig. 1. Structure of a basic autoencoder based DNN. 
 
  (1) 

where f is the encoder activation function, W1 is 
the weight matrix and b1 is the bias vector. The 
compressed feature vector is then reconstructed 
back into  via the decoder, as shown in Eq. (2). 

  (2) 

where, similarly to Eq. (1), g is the decoder 
activation function, W2 is the weight matrix and 
b2 is the bias vector. 

For an autoencoder based DNN to be 
properly trained, it is first necessary to define a set 
of hyperparameters that characterize the structure 
of the network to be used. It has to be defined, for 
instance, the number and type of layers to be used 
in the network. Such layers can be, for example, 
dense, LSTM (Zhang and Qiu 2022) or CNN 
(Jana et al. 2022). The bottleneck size, i.e., the 
compressed feature vector size, is another 
hyperparameter to be tuned in the network, as it 
decides how much compression the data has to go 
through. 

As the hyperparameters substantially impact 
the result obtained by the network, it is possible 
to test sets of different hyperparameters and 
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choose the one that presents the best overall 
performance. 

Autoencoder based DNNs and its variations 
have been used to solve problems of fault 
detection and diagnosis (Wu et al. 2021; Yang, 
Baraldi, and Zio 2022; Liu et al. 2019; Meng et al. 
2018), prognostics health management (Zhao et 
al. 2019) and remaining useful life (Kong et al. 
2019). In this paper, they will be used for fault 
detection in Hydroelectric Power Plants (HPPs). 

3. Proposed Method 
A dataset with 26 entries that represent common 
variables usually monitored in a hydro generator 
unit provides a general panorama of their 
subsystems. For the current study, 18 experiments 
have been simulated, six for each fault type 
described in Table 1, recording the machine 
behavior after and before the symptoms of 
degradation are inserted. For the simulations 
under normal operating conditions, before the 
symptoms of degradation, data from a real hydro 
generator were taken as a basis. Correlations were 
defined between the monitored parameters and 
their operational limits. In this operational 
condition, the simulated data follows a random 
walk between the defined limits, seeking to 
respect both the distribution and the oscillatory 
pattern of the real data. After entering degradation 
symptoms, exponential gains (Faults 1 and 2) and 
an additive gain (Fault 3) are added to simulate 
each type of degradation. Such a solution for 
generating synthetic data was previously adopted 
by (Melani et al. 2021) 

Furthermore, a simulated experiment 
comprises 5749 data points, 5000 in normal 
operating conditions, and 749 in a degraded state, 
such that the 5000th entry is the turning point for 
the abnormality. The collection interval between 
observations of the sensors is set to 4 hours.  

Table 1. Simulated fault types. 

Faults Description Expected 
Behavior  

1 Generator Shaft 
Excessive Vibration 

Exponential 
trend 

2 Stator copper insulation 
degradation 0° Fault 

Exponential 
trend 

3 Temperature Sensor of 
Generator Combined 
Bearing Outlet (hot) 
Water Fault 

Amplitude 
increase 

 
The data preparation procedure consists in 

standardizing the data by removing the mean and 
scaling to unit variance and then generating a set 
of subsequences that will feed the deep learning 
models. There is an adoption of a moving window 
with a temporal iteration step of one to sample the 
subsequences of size . As expected, the 
autoencoders are trained with subsequences that 
represent the normal operating conditions and 
validated using a fraction of 10 % of the 
preprocessed samples. The samples labelled as 
fault are used to test the abnormality detection 
capability in the sense of indicating accurately the 
transition for the degraded state, so an offset of 
700 points before the turning point is jointed with 
these samples, making possible the perception of 
false positives alarms. The performance of the 
models on the referred task is measured by the 
detection coverage, Eq. (3), over the data points 
labeled as abnormal and the false-positive 
coverage, Eq. (4), over the ones labeled as normal. 
Then, in a given experiment  on the faulty 
condition : 

   (3) 

   (4) 

Where  is the length of the interval  , 
which the system is in the degraded state and   
refers to the length of the interval , which the 
system is in the normal state.  stands for the 
sum of all subintervals of  signaled by the 
method as an abnormality and  is the sum of 
subintervals of  highlighted on the same 
condition. 

Moreover, the convergence of the 
autoencoders for the training and validation sets 
are also an assessment criterion, since overfitting 
and poor time series reconstruction capacity are 
unwanted, because it leads to either: false-positive 
occurrences or undetection of the fault. For the 
context of this work, false positives are 
considered all the abnormality indications linked 
to the indexes before the beginning of the 
degradation pattern.  

The decision criteria to classify whether an 
entry is abnormal or not is based on a threshold 
defined by the maximum reconstruction error  
over the entire sets of training and validation. That 
is, the autoencoder input  with shape  
and prediction  are compared through mean 
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squared error, returning a vector of length , that 
sequentially organizes the pointwise errors of the 
feature space retrieval. The average of the 
components of this vector is what is understood as 
the reconstruction error addressed for the index of 
the data point that marks the end of the 
subsequence. 

To avoid discontinuities in abnormally 
signaled intervals, a specified amount of 
consecutive entries must have  above the 
threshold value. It is established as ¼ of the input 
length. If this parameter is below 200, thus that 
quantity is fixed in 50.  

As mentioned previously, three 
autoencoders with different kinds of layers have 
been assembled, which are convolutional 
unidimensional layers, stacked Long Short Term 
Memory, and a simple dense multilayer 
perceptron. A summary of the models' 
hyperparameters is presented in Table 2, 
highlighting that some of them are modulated into 
a grid-search experiment with the objective of an 
ablation study and tunning to the proposed 
finality. The kinds of architectures are detailed in 
Table 3 to 5.  

Table 2. Hyperparameters specification of the 
analyzed autoencoders. 

Global Hyperparameters 
Number of layers – Encoder 
only 

2 

Dropout rate* 0,3 
Loss Function MSE 
Optimization Technique Adam 
Subsequences Size [60, 200, 300, 

400, 500, 700] 
Validation data fraction 10% 

1D-CNN Hyperparameters 
Strides 2 
Learning Rate  0,001 
Number of filter units See Table 8 
Kernel Size See Table 10 
Padding ‘same’ 
Activation Function LeakyReLU 
Epochs 80 

LSTM Hyperparameters 
Activation Function tanh 
Number of LSTM units See Table 8 
Epochs 100 

MLP Hyperparameters 
Activation Function LeakyReLU 
Neurons See Table 8 
Epochs 500 

Table 3. Description of the 1D-convolutional 
architecture. Sequential layers ordered from the input 
to output of the network. 

Nº Layer Activation Output 
Shape 

1 Input Layer  (200,26) 
2 1D-Conv. LeakyReLU (100,32) 
3 Dropout  (100,32) 
4 1D-Conv. LeakyReLU (50,16) 
5 1D-Conv. 

Transpose 
LeakyReLU (100,16) 

6 Dropout  (100,16) 
7 1D-Conv. 

Transpose 
LeakyReLU (200,32) 

8 1D-Conv. 
Transpose 

 (200,26) 

Table 4. Description of the LSTM architecture. 

Nº Layer Activation Output 
Shape 

1 Input Layer  (200,26) 
2 LSTM tanh (200,128) 
3 LSTM tanh (,64) 
4 Repeat Vector  (200,64) 
5 LSTM tanh (200,64) 
6 LSTM tanh (200,128) 
7 Time Distributed 

(Dense) 
 (200,26) 

Table 5. Description of the dense architecture. 

Nº Layer Activation Output 
Shape 

1 Input Layer  (200,26) 
2 Dense LeakyReLU (200,32) 
3 Dropout  (200,32) 
4 Dense LeakyReLU (200,16) 
5 Dropout  (200,16) 
6 Dense LeakyReLU (200,16) 
7 Dropout  (200,16) 
8 Dense LeakyReLU (200,32) 
9 Dense LeakyReLU (200,26) 

 

4. Results 
From all the trained models on the 
hyperparameters search space, only a fraction 
could accomplish convergence that presents loss 
on the validation set lower than 0.4, as observed 
in Figure 2, which is considered the limit for the 
purposes required in this study. A new grid search 
would be necessary if the objective were to 
produce a fine-tuning of the models.  
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Fig. 2. Validation loss for all the trained models 
grouped by kind of hidden layer. 

Still according to Figure 2, it has perceived 
that multilayer perceptron achieves the best fitting 
between the three kinds of layers because it has 
been trained with a higher number of neurons and 
during more epochs. Also by its simplicity, 
multilayer perceptron is the one that introduces 
the smallest among of operations on the input data 
and then have had less capacity to codify 
information in the time and feature domain. The 
fidelity of the reproduction allows inferring that it 
acts more like a common neural network than 
specifically an autoencoder. Although MLP 
performs better in terms of detection coverage, it 
also has the highest false-positive coverage, 
which could be interpreted from the Figures 3 and 
4, being a fact that corroborates with the previous 
affirmation. 

The modulation of the subsequence size has 
a small influence on the detection coverage in 
general for the convolution-based detectors, 
slightly raising for the third fault in Table 1 when 
bigger timesteps are adopted (500,700) - see 
Table 9. However, this hyperparameter, when 
increased, negatively influences the false-positive 
coverage, which is counterintuitive, considering 
the decision criteria applied and because longer 
subsequences tend to smooth traits that could be 
recognized as abnormalities. The possible 
explanation is that at a certain point (700) it is 
necessary compensate the subsequence size with 
a greater number of filters or neuronal units to be 
able to extract features properly.  

The kernel size held a small influence on 
detection and false-positive coverage. The most 
prominent one is the decrease of the false positive 
rate for the higher tested kernel , 
generated by the diffusion of the irregular patterns 
per convolutional window. Besides this effect, the 
higher dimensioned kernel shows up poor average 
fitting in comparison with the others settings.  

 

 
Fig. 3. Detection coverage for the tree kind of layers in 
each simulated fault. 
 

 
Fig. 4. False-positive coverage for the tree kind of 
layers in each simulated fault. 

 
The number of units has been the argument 

that affected the most the fitting of the model. Its 
modulation allows perceiving the transition from 
an underfitting to an overfitting condition. On the 
first, there are low false-positive coverage and 
low detection coverage, and on the second, the 
two present themselves high. The same could be 
observed with the number of LSTM units per 
layer or neurons on a dense type. Additionally, the 
number of units determines the output space 
dimension, thus affecting the compressibility 
capacity of the autoencoder.  

In general, the examined models have 
demonstrated better performance over the two 
first kinds of faults in Table 1, which have similar 
damage evolution behaviour. The third fault, on 
the other hand, has presented the worst detection 
coverage by almost all the combinations of 
hyperparameters.  
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Tables 6 and 7 displays the best optimized 
models, ordered according to the weighted 
average , with and 

being the mean of metrics described in Sec. 3  
for all the samples tested in a named version, 
considering only elements that reached  
and . Notably, unidimensional 
convolution is the most recurrent kind on this 
table, but because it was the predominant type 
among the generated instances. The chosen kernel 
and number of units are in agreement with the 
discussed above. The subsequences length does 
not pronounce great impact on performance, 
which could be perceived also by the Table 9. For 
this study, both LSTM and 1d-convolutional 
autoencoder are equally suitable if well tunned.  

Figures 5 to 7 show the progression of the 
reconstruction error for the best representative of 
each type in Table 6. 

 

Table 6. Parameters setting for the best-optimized 
models according to the weighted average  of 
the performance metrics.  

Model Kind  Units Kernels 
1 conv1d 300 (32, 16) (10, 5) 
2 lstm 200 (128, 64) 

 

3 conv1d 200 (32, 16) (10, 5) 
4 conv1d 700 (32, 16) (10, 10) 
5 conv1d 400 (32, 16) (10, 10) 
6 conv1d 60 (32, 16) (10, 10) 
7 conv1d 500 (32, 16) (10, 10) 
8 mlp 200 (64, 32) 

 

9 conv1d 500 (32, 16) (10, 5) 
10 mlp 500 (64, 32) 

 

 

Table 7. Performance metrics and their weighted 
average  for the best-optimized models. 

Model   Validation 
loss 

 

1 76.51 21.09 0.25 77.23 
2 78.46 27.18 0.15 76.77 
3 76.87 24.12 0.22 76.58 
4 75.79 23.02 0.29 76.15 
5 71.84 15.35 0.27 75.69 
6 71.74 15.37 0.28 75.61 
7 75.62 25.66 0.24 75.24 
8 74.91 24.2 0.24 75.18 
9 74.99 24.78 0.24 75.06 
10 74.07 22.89 0.25 74.98 

Fig. 5. Evolution of the reconstruction error through the 
test labelled index for the tree kinds of AE, when fault 
1 related degradation is inserted at index 5000. The 
variable is normalized by the threshold , such that a 
potential abnormality is indicated by values above 0.  
95 % c.i. over the five experiments. 
 

 
Fig. 6. Evolution of the reconstruction error, when fault 
2 related degradation is inserted as in Fig. 6. 
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Fig. 7. Evolution of the reconstruction error, when fault 
3 related degradation is inserted as in Fig. 6. 
 

5. Conclusions 
The examined autoentoencoders could detect 
abnormalities in the simulated conditions of the 
hydro generator, although with limitations. It is 
perceived that the tested architectures are, in 
purpose of investigation, the consolidated ones, 
without embracing the recent advances in this 
kind of network. Thereupon, there is space for 
performance improvements by either exploring 
the abnormality decision criteria, model design, 
or featuring engineering the data, especially with 
contributions enable to handle many input 
channels and multiple fault types, since it prevails 
in real industrial applications. 
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Appendix A. Evaluation metrics for the 
modulated parameters 

Table 8. Detection, false positive coverage and 
standards deviation  computed by the number of 
units per encoder layer. As an example  
means 32 first hidden layer units and 16 second 
hidden layer units. The decoder has an 
antisymmetric disposition. 

1D-CNN 
Units     
(32, 16) 63.38 32.61 14.97 23.41 
(16, 8) 56.43 30.9 8.23 17.91 
(16, 4) 41.76 28.25 3.43 14.3 
(8, 4) 38.49 25.7 2.49 10.28 

LSTM 
(128, 64) 78.46 28.23 27.18 27.92 
(128, 32) 52.65 29.55 1.51 4.01 
(128, 16) 50.76 24.33 3.39 9.01 
(64, 32) 60.04 27.29 5.64 11.76 
(64, 16) 56.83 29.75 3.35 6.76 
(32, 16) 58.1 31 11.69 20.47 
(32, 8) 36.35 27.4 3.6 15.22 
(16, 8) 41.6 26.9 2.85 4.94 
(16, 4) 32.47 22.6 0 0 
(8, 4) 33.43 23.49 0.41 1.75 
(64, 64) 81.06 26.38 37.23 24.79 

MLP 
(128, 64) 92.55 22.9 53.8 26.99 
(64, 32) 74.49 30.79 23.54 27.7 
(32, 16) 54.16 30.99 8.07 18.1 
(16, 4) 39.51 24.63 2.02 5.46 
(8, 4) 32.86 20.63 0.17 0.71 

Table 9. Detection, false positive coverage and 
standards deviation  computed by the 
subsequence size. 

1D-CNN 
     

60 28.01 38.75 5.21 14.48 
200 41.06 42.93 9.99 19.02 
400 41.33 43.41 6.03 13.04 
500 43.91 43.79 8.54 17.93 
700 49.89 44.83 15.45 28.87 

LSTM 
60 36.56 35.79 5.17 10.01 

200 39.36 42.31 10.98 21.06 
400 58.3 48.8 11.21 17.77 
500 78.08 35.13 32.05 22.19 
700 55.21 45.06 11.83 28.84 

MLP 
60 24.91 32.48 0.66 2.27 

200 47.13 44.69 20.17 28.71 
400 40.3 47.7 0.95 2.33 
500 56.3 45.29 22.34 28.37 
700 47.73 50.38 10.4 17.8 
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Table 10. Detection, false positive coverage and 
standards deviation  computed by the kernels size 
of the 1D-CNN architecture. 

Kernels     
(15, 10) 42.23 42.65 7.23 15.25 
(10, 5) 43.12 43.93 11.04 21.36 

(25, 10) 34.62 41.27 4.27 13.07 
(10, 10) 39.48 43.41 9.41 20.53 
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