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In this paper, a set of fault detection methods that use variations of autoencoder based DNN was implemented over
simulated data that emulates the behavior of a generating unit of a hydropower plant. These variations comprise the
modulation of different hyperparameters, numbers, and types of layers, such as dense, long-short term memory
(LSTM) and convolutional neural network (CNN). The use of advanced abnormality detections techniques for this
kind of machinery, in special the deep learning related, have not been so explored if compared to the ones focused
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1. Introduction applications in complex rotating machines are
still in an early stage of development (Melani et
al. 2021) However, with the increasing presence
of sensors in industrial plants and the increasing
ease of storing and managing monitoring data, the

Condition-based maintenance (CBM), whose
primary objective is to identify upcoming
equipment failure so that maintenance is
proactively scheduled only when necessary, has o . :
been increasingly used in the industrial sector to feasibility of applying the CBM strategy in the
improve asset's reliability, safety and increase industrial context has risen significantly.

overall system availability. Critical to the Recently, deep learning-based techniques
application of CBM, fault detection methods have ~ for machine health monitoring and fault diagnosis
been extensively studied, but industrial have gained a lot of attention due to their
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versatility and efficiency in extracting features
from monitored data (Zhao et al. 2019). Deep
neural networks (DNN), in particular, have been
increasingly applied in fault detection due to their
ability to perform sensor data fusion, i.e., to
combine different monitored variables aiming at
increasing accuracy over the detection results.

In this paper, a set of fault detection methods
that use variations of autoencoder based DNN
was implemented over simulated data that
emulates the behaviour of a generating unit of a
hydropower plant. These variations comprise the
modulation of different hyperparameters,
numbers, and types of layers, such as dense, long-
short term memory (LSTM) and convolutional
neural network (CNN). The use of advanced
abnormality detections techniques for this kind of
machinery, in special the deep learning related,
have not been so explored if compared to the ones
focused on assets of other power generating
modalities. Hence, this study aims to investigate
the feasibility and compare the performance of
each one of the proposed methods in order to
select potential candidates to be implemented in
real operational scenarios.

The paper is organized as follows: Chapter
2 presents a very brief introduction of the
autoencoder based DNNSs, offering several
bibliographic references on the subject; Chapter 3
presents the proposed method for using
autoencoder based DNNs for data drive fault
detection in Hydroelectric Power Plants (HPPs);
Chapter 4 shows the results obtained by applying
the method to simulated failure data from a HPP
and; Chapter 5 presents the conclusions derived
from this work.

2. Autoencoder based DNNs

As an extension of traditional artificial neural
networks, DNNs can be seen as a stack of neural
networks, or as a network composed of several
layers (Das and Roy 2019). There are several
types of DNN models, such as CNNs, recurrent
neural  networks (RNNs), LSTM and
autoencoders (Subasi 2020).

Autoencoders based DNNs introduce a
bottleneck on the network layers to create a
compressed representation of the input data. Such
compression helps the network to capture the
dependencies or correlations present in the input
data, contributing to the elimination of mutually
dependent features (Koul and Manvi 2021).
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Figure 1 presents the general structure of an
autoencoder based DNN. Here, the input vector,
x, is transformed by the encoder into the
compressed feature vector, z, as shown in Eq. (1).

Input
Layer

Output

Compressed Layer

Feature Vector
z

Encode Decode

Fig. 1. Structure of a basic autoencoder based DNN.
z = f(Wyx + by) (1)

where f'is the encoder activation function, W7 is
the weight matrix and b; is the bias vector. The
compressed feature vector is then reconstructed
back into X via the decoder, as shown in Eq. (2).

X = g(Wyx + by) (2)

where, similarly to Eq. (1), g is the decoder
activation function, W2 is the weight matrix and
b: is the bias vector.

For an autoencoder based DNN to be
properly trained, it is first necessary to define a set
of hyperparameters that characterize the structure
of the network to be used. It has to be defined, for
instance, the number and type of layers to be used
in the network. Such layers can be, for example,
dense, LSTM (Zhang and Qiu 2022) or CNN
(Jana et al. 2022). The bottleneck size, i.e., the
compressed feature vector size, is another
hyperparameter to be tuned in the network, as it
decides how much compression the data has to go
through.

As the hyperparameters substantially impact
the result obtained by the network, it is possible
to test sets of different hyperparameters and
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choose the one that presents the best overall
performance.

Autoencoder based DNNs and its variations
have been used to solve problems of fault
detection and diagnosis (Wu et al. 2021; Yang,
Baraldi, and Zio 2022; Liu et al. 2019; Meng et al.
2018), prognostics health management (Zhao et
al. 2019) and remaining useful life (Kong et al.
2019). In this paper, they will be used for fault
detection in Hydroelectric Power Plants (HPPs).

3. Proposed Method

A dataset with 26 entries that represent common
variables usually monitored in a hydro generator
unit provides a general panorama of their
subsystems. For the current study, 18 experiments
have been simulated, six for each fault type
described in Table 1, recording the machine
behavior after and before the symptoms of
degradation are inserted. For the simulations
under normal operating conditions, before the
symptoms of degradation, data from a real hydro
generator were taken as a basis. Correlations were
defined between the monitored parameters and
their operational limits. In this operational
condition, the simulated data follows a random
walk between the defined limits, seeking to
respect both the distribution and the oscillatory
pattern of the real data. After entering degradation
symptoms, exponential gains (Faults 1 and 2) and
an additive gain (Fault 3) are added to simulate
each type of degradation. Such a solution for
generating synthetic data was previously adopted
by (Melani et al. 2021)

Furthermore, a simulated experiment
comprises 5749 data points, 5000 in normal
operating conditions, and 749 in a degraded state,
such that the 5000 entry is the turning point for
the abnormality. The collection interval between
observations of the sensors is set to 4 hours.

Table 1. Simulated fault types.

Faults  Description Expected
Behavior

1 Generator Shaft Exponential
Excessive Vibration trend

2 Stator copper insulation Exponential
degradation 0° Fault trend

3 Temperature Sensor of Amplitude
Generator Combined increase
Bearing Outlet (hot)
Water Fault

The data preparation procedure consists in
standardizing the data by removing the mean and
scaling to unit variance and then generating a set
of subsequences that will feed the deep learning
models. There is an adoption of a moving window
with a temporal iteration step of one to sample the
subsequences of size m. As expected, the
autoencoders are trained with subsequences that
represent the normal operating conditions and
validated using a fraction of 10 % of the
preprocessed samples. The samples labelled as
fault are used to test the abnormality detection
capability in the sense of indicating accurately the
transition for the degraded state, so an offset of
700 points before the turning point is jointed with
these samples, making possible the perception of
false positives alarms. The performance of the
models on the referred task is measured by the
detection coverage, Eq. (3), over the data points
labeled as abnormal and the false-positive
coverage, Eq. (4), over the ones labeled as normal.
Then, in a given experiment j on the faulty
condition i:

dij = 2ta; * 100 (3)
Z[t’d
— &
fij = Tor 100 (4)

Where €, is the length of the interval I,
which the system is in the degraded state and £€,¢

refers to the length of the interval I,,, which the
system is in the normal state. ), € qi Stands for the
sum of all subintervals of I; signaled by the
method as an abnormality and X, €; is the sum of
subintervals of I,, highlighted on the same
condition.

Moreover, the convergence of the
autoencoders for the training and validation sets
are also an assessment criterion, since overfitting
and poor time series reconstruction capacity are
unwanted, because it leads to either: false-positive
occurrences or undetection of the fault. For the
context of this work, false positives are
considered all the abnormality indications linked
to the indexes before the beginning of the
degradation pattern.

The decision criteria to classify whether an
entry is abnormal or not is based on a threshold
defined by the maximum reconstruction error E
over the entire sets of training and validation. That
is, the autoencoder input x; with shape (26, n)
and prediction x, are compared through mean
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squared error, returning a vector of length n, that
sequentially organizes the pointwise errors of the
feature space retrieval. The average of the
components of this vector is what is understood as
the reconstruction error addressed for the index of
the data point that marks the end of the
subsequence.

To avoid discontinuities in abnormally
signaled intervals, a specified amount of
consecutive entries must have E above the
threshold value. It is established as % of the input
length. If this parameter is below 200, thus that
quantity is fixed in 50.

As mentioned previously, three
autoencoders with different kinds of layers have
been assembled, which are convolutional
unidimensional layers, stacked Long Short Term

Memory, and a simple dense multilayer
perceptron. A summary of the models'
hyperparameters is presented in Table 2,

highlighting that some of them are modulated into
a grid-search experiment with the objective of an
ablation study and tunning to the proposed
finality. The kinds of architectures are detailed in
Table 3 to 5.

Table 2. Hyperparameters specification of the
analyzed autoencoders.

Global Hyperparameters
Number of layers — Encoder 2
only
Dropout rate* 0,3
Loss Function MSE
Optimization Technique Adam
Subsequences Size [60, 200, 300,
400, 500, 700]
Validation data fraction 10%
1D-CNN Hyperparameters
Strides 2
Learning Rate 0,001
Number of filter units See Table 8
Kernel Size See Table 10
Padding ‘same’
Activation Function LeakyReLU
Epochs 80
LSTM Hyperparameters
Activation Function tanh
Number of LSTM units See Table 8
Epochs 100
MLP Hyperparameters
Activation Function LeakyReLU
Neurons See Table 8

Epochs 500
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Table 3. Description of the 1D-convolutional
architecture. Sequential layers ordered from the input
to output of the network.

Ne Layer Activation Output
Shape
1 Input Layer (200,26)
2 1D-Conv. LeakyReLU (100,32)
3 Dropout (100,32)
4 1D-Conv. LeakyReLU (50,16)
5 1D-Conv. LeakyReLU (100,16)
Transpose
6 Dropout (100,16)
7 1D-Conv. LeakyReLU (200,32)
Transpose
8 1D-Conv. (200,26)
Transpose

Table 4. Description of the LSTM architecture.

Ne Layer Activation Output
Shape
1 Input Layer (200,26)
2 LSTM tanh (200,128)
3 LSTM tanh (,64)
4 Repeat Vector (200,64)
5 LSTM tanh (200,64)
6 LSTM tanh (200,128)
7  Time Distributed (200,26)
(Dense)

Table 5. Description of the dense architecture.

Ne Layer Activation Output

Shape
1 Input Layer (200,26)
2 Dense LeakyReLU (200,32)
3 Dropout (200,32)
4 Dense LeakyReLU (200,16)
5 Dropout (200,16)
6 Dense LeakyReLU (200,16)
7 Dropout (200,16)
8 Dense LeakyReLU (200,32)
9 Dense LeakyReLU (200,26)

4. Results

From all the trained models on the
hyperparameters search space, only a fraction
could accomplish convergence that presents loss
on the validation set lower than 0.4, as observed
in Figure 2, which is considered the limit for the
purposes required in this study. A new grid search
would be necessary if the objective were to
produce a fine-tuning of the models.
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Fig. 2. Validation loss for all the trained models
grouped by kind of hidden layer.

Still according to Figure 2, it has perceived
that multilayer perceptron achieves the best fitting
between the three kinds of layers because it has
been trained with a higher number of neurons and
during more epochs. Also by its simplicity,
multilayer perceptron is the one that introduces
the smallest among of operations on the input data
and then have had less capacity to codify
information in the time and feature domain. The
fidelity of the reproduction allows inferring that it
acts more like a common neural network than
specifically an autoencoder. Although MLP
performs better in terms of detection coverage, it
also has the highest false-positive coverage,
which could be interpreted from the Figures 3 and
4, being a fact that corroborates with the previous
affirmation.

The modulation of the subsequence size has
a small influence on the detection coverage in
general for the convolution-based detectors,
slightly raising for the third fault in Table 1 when
bigger timesteps are adopted (500,700) - see
Table 9. However, this hyperparameter, when
increased, negatively influences the false-positive
coverage, which is counterintuitive, considering
the decision criteria applied and because longer
subsequences tend to smooth traits that could be
recognized as abnormalities. The possible
explanation is that at a certain point (700) it is
necessary compensate the subsequence size with
a greater number of filters or neuronal units to be
able to extract features properly.

The kernel size held a small influence on
detection and false-positive coverage. The most
prominent one is the decrease of the false positive
rate for the higher tested kernel (25,15),
generated by the diffusion of the irregular patterns
per convolutional window. Besides this effect, the
higher dimensioned kernel shows up poor average
fitting in comparison with the others settings.

convd
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Detection Coverage

Fig. 3. Detection coverage for the tree kind of layers in
each simulated fault.
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Fig. 4. False-positive coverage for the tree kind of
layers in each simulated fault.

The number of units has been the argument
that affected the most the fitting of the model. Its
modulation allows perceiving the transition from
an underfitting to an overfitting condition. On the
first, there are low false-positive coverage and
low detection coverage, and on the second, the
two present themselves high. The same could be
observed with the number of LSTM units per
layer or neurons on a dense type. Additionally, the
number of units determines the output space
dimension, thus affecting the compressibility
capacity of the autoencoder.

In general, the examined models have
demonstrated better performance over the two
first kinds of faults in Table 1, which have similar
damage evolution behaviour. The third fault, on
the other hand, has presented the worst detection
coverage by almost all the combinations of
hyperparameters.
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Tables 6 and 7 displays the best optimized
models, ordered according to the weighted
average w, = 0.7d,, + 0.3f,,, with d,, and
fom being the mean of metrics described in Sec. 3
for all the samples tested in a named version,
considering only elements that reached d,,, > 70
and f, < 30. Notably, unidimensional
convolution is the most recurrent kind on this
table, but because it was the predominant type
among the generated instances. The chosen kernel
and number of units are in agreement with the
discussed above. The subsequences length does
not pronounce great impact on performance,
which could be perceived also by the Table 9. For
this study, both LSTM and 1d-convolutional
autoencoder are equally suitable if well tunned.

Figures 5 to 7 show the progression of the
reconstruction error for the best representative of
each type in Table 6.

Table 6. Parameters setting for the best-optimized
models according to the weighted average w, of
the performance metrics.

Model  Kind L Units Kernels
1 convld 300 (32, 16) (10, 5)
2 Istm 200 (128, 64)

3 convld 200  (32,16) (10, 5)
4 convld 700 (32, 16) (10, 10)
5 convld 400 (32,16) (10, 10)
6 convld 60 (32, 16) (10, 10)
7 convld 500 (32, 16) (10, 10)
8 mlp 200  (64,32)

9 convld 500 (32, 16) (10, 5)
10 mlp 500  (64,32)

Table 7. Performance metrics and their weighted
average W, for the best-optimized models.

Model dm fm Validation W,
loss

1 76.51 21.09 0.25 77.23
2 78.46 27.18 0.15 76.77
3 76.87 24.12 0.22 76.58
4 75.79 23.02 0.29 76.15
5 71.84 15.35 0.27 75.69
6 71.74 15.37 0.28 75.61
7 75.62 25.66 0.24 75.24
8 7491 24.2 0.24 75.18
9 74.99 24.78 0.24 75.06
10 74.07 22.89 0.25 74.98
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Fig. 5. Evolution of the reconstruction error through the
test labelled index for the tree kinds of AE, when fault
1 related degradation is inserted at index 5000. The
variable is normalized by the threshold E, such that a
potential abnormality is indicated by values above 0.
95 % c.i. over the five experiments.
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Fig. 6. Evolution of the reconstruction error, when fault
2 related degradation is inserted as in Fig. 6.
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Fig. 7. Evolution of the reconstruction error, when fault
3 related degradation is inserted as in Fig. 6.

5. Conclusions

The examined autoentoencoders could detect
abnormalities in the simulated conditions of the
hydro generator, although with limitations. It is
perceived that the tested architectures are, in
purpose of investigation, the consolidated ones,
without embracing the recent advances in this
kind of network. Thereupon, there is space for
performance improvements by either exploring
the abnormality decision criteria, model design,
or featuring engineering the data, especially with
contributions enable to handle many input
channels and multiple fault types, since it prevails
in real industrial applications.
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Appendix A. Evaluation metrics for the
modulated parameters

Table 8. Detection, false positive coverage and
standards deviation s computed by the number of
units per encoder layer. As an example (32,16),
means 32 first hidden layer units and 16 second

hidden layer wunits. The decoder has an
antisymmetric disposition.

ID-CNN
Units T I )
(32, 16) 63.38  32.61 14.97 23.41
(16, 8) 56.43 309 8.23 17.91
(16,4) 41.76 2825  3.43 14.3
(8,4) 3849 257 2.49 10.28

LSTM
(128,64) 78.46 2823  27.18 27.92
(128,32) 52.65 2955 151 4.01
(128,16)  50.76 2433  3.39 9.01
(64, 32) 60.04 2729  5.64 11.76
(64, 16) 56.83 2975 335 6.76
(32, 16) 58.1 31 11.69 20.47
(32, 8) 36.35 274 3.6 15.22
(16, 8) 41.6 26.9 2.85 4.94
(16, 4) 3247 226 0 0
8,4) 3343 2349 041 1.75
(64, 64) 81.06  26.38  37.23 24.79

MLP

(128,64) 9255 229 53.8 26.99
(64, 32) 7449 3079  23.54 27.7
(32, 16) 54.16 3099  8.07 18.1
(16, 4) 3951 24.63  2.02 5.46
(8,4) 3286 20.63  0.17 0.71

Table 9. Detection, false positive coverage and
standards deviation s computed by the
subsequence size.

1D-CNN
ts dm S(dm) fm S(fm.L
60 28.01 38.75 5.21 14.48
200 41.06 42.93 9.99 19.02
400 41.33 43.41 6.03 13.04
500 43.91 43.79 8.54 17.93
700 49.89 44.83 15.45 28.87
LSTM
60 36.56 35.79 5.17 10.01
200 39.36 42.31 10.98 21.06
400 583 48.8 11.21 17.77
500 78.08 35.13 32.05 22.19
700 55.21 45.06 11.83 28.84
MLP
60 2491 32.48 0.66 2.27
200 47.13 44.69 20.17 28.71
400 40.3 47.7 0.95 2.33
500 56.3 45.29 22.34 28.37

700 47.73 50.38 10.4 17.8
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Table 10. Detection, false positive coverage and
standards deviation s computed by the kernels size
of the 1D-CNN architecture.

Kernels dn s(dy) fm s(fin)
(15,10) 4223 4265  7.23 15.25
(10, 5) 43.12 43.93 11.04 21.36
(25, 10) 34.62 41.27 4.27 13.07
(10, 10) 39.48 43 41 9.41 20.53
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