

Research review

Painting the plant body: pigment biosynthetic pathways regulated by small RNAs

Author for correspondence: Carlos Hernán Barrera-Rojas Email: carlos.barrera@unesp.br

Received: 30 August 2024 Accepted: 2 November 2024 Carlos Hernán Barrera-Rojas¹, Fabio Tebaldi Silveira Nogueira² and Cássio van den Berg¹

¹Plant Molecular Systematics Laboratory (LAMOL), Universidade Estadual de Feira de Santana (UEFS), Feira de Santana, Bahia, CEP: 44036-900, Brazil; ²Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), Universidade de São Paulo (USP), Piracicaba, São Paulo, CEP: 13.418-900, Brazil

New Phytologist (2024) doi: 10.1111/nph.20287

Key words: biosynthetic pathways, development and growth, metabolism, plant pigments, posttranscriptional regulation, small RNAs.

Summary

Plant pigments are diverse natural molecules involved in numerous biological functions such as development, growth, and metabolism. As plants age, not only new organs will be formed, but also, they will acquire the necessary pigments in response to the environment and endogenous programming in order to achieve reproductive success. Among the endogenous cues, the small RNAs (sRNAs), an endogenous group of ubiquitous regulatory molecules, may regulate the pigments-associated biosynthetic pathways at posttranscriptional level. Although plant pigments and sRNAs have been comprehensively studied in several processes throughout the entire plant cycle in model and nonmodel species, connections among these central players must be revised. Studying these complex networks allow us not only to know the progress that has been made in this area, but also generate research questions to be explored in order to unravel novel mechanisms for improving plant yield; therefore, in this review we have summarized the emerging roles of sRNAs-regulated nodes in mediating plant pigmentation-associated biosynthetic pathways, focused on chlorophylls, flavonoids, carotenoids, and betalains. In addition, we discuss perspectives related to the manipulation of those genes associated with plant pigments for obtaining genetically improved plants.

Introduction

Plant pigments are substances that control different processes during development, growth, and metabolism (Sudhakar et al., 2016). They are involved in diverse functions, including photosynthesis, pollinator attraction and/or repelling herbivores, seed dispersion, and protective mechanisms; in addition, they are economically important for human nutrition and health, and industry such as floriculture (Lee, 2005). Pigments can be grouped into two main groups: lipid-soluble and water-soluble. The first one can be divided into chlorophylls (Chls) and carotenoids, and the second one into flavonoids and betalains (Solovchenko et al., 2019; López-Cruz et al., 2023; Rodríguez-Mena et al., 2023).

Chlorophylls are the most important and abundant lipid-soluble pigments in plants and indispensable for photosynthesis (Qiu et al., 2019; Hu et al., 2021). They are found mainly in vegetative tissues, but also occur in other plant parts such as flowers and fruits (Zhou et al., 2022). Among the different types of Chls, plants

contain Chla and Chlb (Hu et al., 2021). The biosynthetic pathways of Chl production and the key enzymes have been well characterized (Review in Qiu et al., 2019). Briefly, the precursor D-Aminolevulinic acid is converted into Chla and Chlb through a complex enzymatic process that includes DIVINYL REDUC-TASE (DVR) to convert 3,8-divinyl-protochlorophyllide into protochlorophyllide (Qiu et al., 2019) and PROTOCHLORO-PHYLLIDE OXIDOREDUCTASES (POR) that convert protochlorophyllide into chlorophyllide a (Bollivar, Additionally, chlorophylls must be degraded by a fine-tuneregulated metabolism to allow color modifications in leaves and fruits, from green to yellow or red during plant development and growth (Hu et al., 2021). Carotenoids, the second most abundant lipid-soluble pigments, are found especially in leaves, flowers and fruits, but also in roots and stems (Maoka, 2020). Carotenoid biosynthesis has been widely studied, and it initiates with the precursors isopentenyl pyrophosphate and dimethylallyl pyrophosphate via plastid-localized methylerythritol 4-phosphate pathway (Review in Sun *et al.*, 2022). Several enzymes are required for carotenoids biosynthesis, including LYCOPENE B-CYCLASE (LCYB), that leads to the formation of β - and α -carotene and LYCOPENE ϵ -CYCLASE (LCYE), which is involved in α -carotene production from Lycopene (Sun *et al.*, 2022).

In the subgroup of water-soluble pigments, flavonoids are the most common pigments, being anthocyanins the most studied in many plant species (Hughes et al., 2021; Wong et al., 2022). Anthocyanin production is regulated by a set of genes acting between the general phenylpropanoid pathway and the specific flavonoid pathway (Review in Sunil & Shetty, 2022). The PHENYLALANINE AMMONIA LYASE (PAL), 4-COUMARATE--COA LIGASE (4CL), and FLAVONOL-3-GLUCOSYLTRANSFERASE (3GT) act in the general phenylpropanoid pathway to convert phenylalanine into 4-coumaryl-CoA. The flavonoid pathway, in turn, is divided into initial and final stages. The initial stage encompasses biochemical reactions whose precursor is 4-coumaryl-CoA. In this stage, the CHAL-CONE SYNTHASE (CHS), CHALCONE ISOMERASE (CHI), FLAVANONE 3-HYDROXYLASE (F3H), FLAVONOID 3'-HYDROXYLASE (F3 'H), and FLAVONOL SYNTHASE (FLS) are responsible for producing flavonol and other flavonoids. In the final stage, the ANTHOCYANIDIN SYNTHASE (ANS), FLAVONOID 3',5'-HYDROXYLASE (F3'5'H), GLUCOSE-FLAVONOID 3-O-GLUCOSYLTRANSFERASE (UFGT), and DIHYDROFLAVONOL 4-REDUCTASE (DFR), among other enzymes, are involved to obtain the anthocyanins (Khusnutdinov et al., 2021). Besides these genes, anthocyanins production is also regulated at transcriptional level by the transcription factor complex MYELOBLASTOSIS/BASIC HELIX-LOOP-HELIX/WD REPEAT PROTEIN (MYBbHLH-WD40), which is highly conserved in plants (Review in Ramsay & Glover, 2005).

Finally, betalains, another group of water-soluble pigments, are present in flowers, fruits and occasionally in vegetative tissues by replacing anthocyanins in plants of the order Caryophyllales (Khan & Giridhar, 2015). In fact, no plants have been found to biosynthesize both pigments, which has been comprehensively studied (Davies, 2015; Timoneda *et al.*, 2019). The biosynthetic pathway derives from the amino acid L-tyrosine and involve several genes including *AROGENATE DEHYDROGENASE 1* (HuADH1), *HuCYP76AD1* (a cytochrome P-450 R), 4,5-DOPA DIOXYGENASE EXTRADIOL (HuDODA1) and DOPA 5-O-GLUCOSYLTRANSFERASE (DOPA5GT1) to obtain betacyanins and betaxanthins (Review in Timoneda *et al.*, 2019).

Chlorophylls, Flavonoids, Carotenoids, and Betalains production is subject to environmental and endogenous cues. To achieve appropriate levels, endogenous regulators such as transcription factors (TF) and small RNAs (sRNAs) act through a complex network involving transcriptional, posttranscriptional and posttranslational regulation (Table 1). sRNAs are single-stranded RNAs that recognize endogenous targets and regulate them through the RNA-induced silencing complex (Bartel, 2004). sRNAs in plants are classified in two main groups, hairpin RNAs (hpRNAs) from a single-stranded precursor, and small interfering RNAs (siRNA) from a double-stranded precursor (Axtell, 2013).

In the hpRNAs group, microRNAs (miRNAs) stand out for being involved in numerous biological processes. miRNAs biogenesis and function have been extensively discussed (Barrera-Rojas et al., 2021; Shang et al., 2023). In plants, miRNAs orchestrate development and growth from embryogenesis (Willmann et al., 2011) to senescence (Munk et al., 2017), including the development of meristems (Ferigolo et al., 2023), roots (Barrera-Rojas et al., 2020), leaves (Palatnik et al., 2003), shoots (Barrera-Rojas et al., 2023), flowers and fruits (da Silva et al., 2017). On the other hand, siRNAs comprises sRNA molecules derived from a double-stranded RNA, normally synthesized by a RNA-dependent RNA polymerase such as the *Trans*-acting Small interference RNAs (TAS), acting also in several plant processes (Yoshikawa, 2013).

Both sRNAs and plant pigments have been extensively studied during plant development, growth, and metabolism of model and nonmodel species; therefore, understanding the connections among these players allow us to identify molecular mechanisms for improving plant yield. Therefore, in this review, we have summarized the available information regarding the role of sRNAs in mediating pigment-associated biosynthetic pathways, focusing on Chlorophylls, Flavonoids, Carotenoids, and Betalains. Moreover, we discuss perspectives focused on manipulating these pathways for obtaining genetically improved plants.

The role of sRNAs during chlorophyll biosynthesis

Chlorophylls play a pivotal role in plant development and growth; however, alterations in Chl levels can be critical for the plant (Hu et al., 2021). To achieve a fine-tune balance, Chl biosynthesis and degradation must be precisely regulated (Yin & Bauer, 2013); thus, sRNAs contribute to appropriate endogenous Chl levels. Several miRNAS, have been reported as modulators of Chl content by regulating the expression of Chl biosynthesis-associated genes in several species, including rice, *Arabidopsis, Medicago*, Bermudagrass, Broccoli and Blueberry (Table 1).

In rice, alterations in miR171 levels trigger changes in Chl content. miR171 is a highly conserved miRNA that regulates members of the GRAS TFs family (Pei et al., 2023). In leaves, while miR171b overexpression enhances Chl accumulation, the mimicry strategy-based miR171 inhibition leads to reduced Chl content. Up- and downregulation of miR171-targeted SCARECROW-LIKE6-IIa (OsSCL6-IIa), OsSCL6-IIb, and OsSCL6-IIc, three negative regulators of Chl biosynthesis, correlates with inhibition or overexpression of miR171b, respectively (Tong et al., 2017). These results resemble the alteration in Chl content in Arabidopsis cotyledons, stems and leaves by downregulating of AtSCL6-II, AtSCL6-III and AtSCL6-IV through loss-of-function or miR171c overexpression (Wang et al., 2010; Fig. 1).

Other miR171-regulated *SCL* genes involved in Chl biosynthesis are *AtSCL27* from *Arabidopsis*, and *BolSCL6* and *BolSCL27* from Broccoli. Overexpression of a miR171-resistant *AtSCL27* version decreases Chl content in *Arabidopsis* leaves by inhibiting the *AtPOR* expression (Ma *et al.*, 2014). Similarly, miR171b modifies Chl content in Broccoli through *BolSCL6* and *BolSCL27* (Li *et al.*, 2018). In Bermudagrass, miR171 also affects Chl

loaded from https://nph.onlineitbray.wiely.com/doi/10.1111/nph.20287 by CAPES, Wiley Online Library on [02/12/2024]. See the Terms and Conditions (https://onlineitbrary.wiely.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Table 1 List of sRNAs and direct or indirect targets that act in the Chlorophyll, Anthocyanin, Carotenoids and Betalains production in the plant body of the different species studied.

Pigments	sRNA	Targets	Specie	Tissue	References
Chlorophylls	miR171	OsSCL6-IIa/b/c	Rice	Leaves	Tong et al. (2017)
		AtSCL6-II/III/IV	Arabidopsis	Cotyledons, Stems, Leaves	Wang et al. (2010)
		AtSCL27	Arabidopsis	Leaves	Ma et al. (2014)
		BolSCL6/27	Broccoli	Leaves	Li et al. (2018)
		CdLHC1	Bermudagrass	Leaves	Fan <i>et al</i> . (2023)
		MtLHC1	Medicago	Leaves	Fan <i>et al</i> . (2023)
	miR398	AtCSD2	Arabidopsis	Leaves	Lu et al. (2013)
	miR156	VcSPL12, VcDVR, VcPORA, VcLPA3, VcCIA2	Blueberry	Fruits	Sun et al. (2022), Li et al. (2024)
		VcSPL12	Arabidopsis	Leaves	X. Li et al. (2020)
Anthocyanin	miR828/ta- siRNAs	MYB12	Lilies	Flowers	Yamagishi & Sakai (2020) Suzuki et al. (2016)
		AtTAS4, AtPAP1/2, AtMYB113	Arabidopsis	Vegetative tissues	Luo et al. (2012)
		StTAS4, StR2R3MYB, StMYB36284	Potato	Tuber skin, Tuber flesh	Bonar <i>et al</i> . (2018)
		VvMYB114, VvFLS, VvF3MO	Grapes	Fruits	Tirumalai et al. (2019)
		MdTAS4, MdbHLH3, MdbMYB1, MdDFR, MdANS, MdUFGT	Apple	Fruits	Zhang et al. (2020)
		AtMYB113, AtMYB75, AtMYB90, AtDFR, AtCHS, AtF3H	Arabidopsis	Seedlings	Zhang et al. (2020)
		BrPAP1, BrMYB82, BrTAS4	Turnip	Hypocotyl	Zhou et al. (2020)
	miR156	AtSPL9, AtANS, AtF3'H, AtDFR, AtMYB, AtbHLH, AtWD40, AtPAP1	Arabidopsis	Internodes	Gou et al. (2011) Cui et al. (2014)
		PpMYB10, PpMYB, PpbHLH, PpWD40, PpPpCHS, PpCHI, PpF3H, PpANS, PpUFGT	Pear	Fruits	Qian et al. (2017)
		PsSPL2, PsF3'H, PsDFR	Peony	Petals	Luo et al. (2022)
		NtF3'H, NtDFR	Tobacco	Leaves	Luo et al. (2022)
		AtSPL1, AtDFR	Arabidopsis	Lateral branches	Zhao <i>et al</i> . (2017)
		VcSPL12, VcPALs, Vc4CLs, VcCHSs, VcF3Hs, VcUFGTs, VcMYBA, VcF3′5′H, VcANS	Blueberry	Fruits	Li et al. (2024)
		Unravel	Poplar	Stems, leaves, and petioles	Wang et al. (2020)
		PAL, DFR, ANS, F3'H, F3H, bHLH1	Phalaenopsis	Sepals	Zhao <i>et al</i> . (2019)
	miR858	AaMYBC1, AabHLH42, AaCHS, AaF3H,	Kiwifruit	Fruits	Li <i>et al</i> . (2019)
		AaUFGT MdMYB9, MdMYBPA1, MdANS, MdUFGT	Apple	Fruits	Y. Li <i>et al</i> . (2020) Wang <i>et al</i> . (2020)
		SIMYB7-like, SIMYB48-like, SIPAL, SICHS, SIDFR, SIANS, SI3GT	Tomato	Seedlings, leaves, stems	Jia et al. (2015)
		PePAL, PeDFR, PeANS, PeF3'H, PeF3HI, PeF3H, PebHLH1	Phalaenopsis	Petals	Zhao <i>et al</i> . (2019)
	miR399	McMYB10, McPAL, McCHS, McANS	Apple	Leaves	Peng et al. (2020)
	miR778	AtPAP1, AtSUVH6	Arabidopsis	Roots, flowers	Wang et al. (2015)
Carotenoids	miR1857	CcLYCb	Orange	Fruits	Xu et al. (2010)
	miR159	DcLCYE	Carrot	Taproot	Bhan et al. (2019) Wang et al. (2023)
Betalains	miR156	HuSPL12, HuWRKY40, HuCYP76AD1, HuMYB132, HuWRKY42	Pitaya	Fruit	Zeng et al. (2023)

production. By heterologous overexpression, miR171 induced morphological changes in *Medicago* including greener leaves suggesting that miR171, through the *LIGHT HARVESTING COMPLEX1* (*LHC1*), regulates Chl production (Fan *et al.*, 2023). Collectively, these data suggest a conserved role of miR171 in Chl accumulation. However, further analyses involving loss- and/or gain-of-function mutants of miR171 targets are necessary to

unravel more precisely this molecular mechanism (Fig. 1). Besides miR171, another miRNA that positively regulates Chl production is miR398, a conserved miRNA that controls stress responses and plant growth. This miRNA has both conserved and species-specific target genes (Li *et al.*, 2022), including the *COPPER/ZINC SUPEROXIDE DISMUTASE 2 (CSD2)* involved in detoxifying superoxide radicals in response to oxidative stress

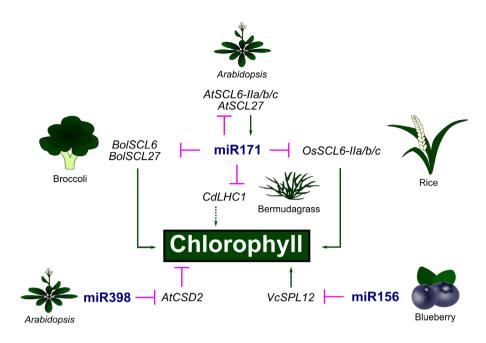


Fig. 1 Harpin-derived sRNAs during Chlorophyll (Chl) biosynthesis. Schematic representation of the sRNAs-regulated Chl production in Arabidopsis, Bermudagrass (Cynodon dactylon), Rice (Oryza sativa), Broccoli (Brassica oleracea) and Blueberry (Vaccinium corymbosum).

miRNAs are highlighted in bold blue. Green arrows indicate positive regulation, magenta blunt-ended bars indicate negative regulation, and dashed lines or dashed arrows indicate hypothetical interactions.

(Sunkar *et al.*, 2006). *Arabidopsis* plants overexpressing a miR398-resistant version of the *AtCSD2* display reduced Chl content (Lu *et al.*, 2013), indicating that the miR398/*AtCSD* module is involved in Chl production; nevertheless, it needs to be further investigated (Fig. 1).

While miR171 and miR398 promote Chl accumulation, miR156 acts in the opposite way. This highly conserved miRNA and its targets, members of the SQUAMOSA PROMOTER-BINDING-LIKE (SPL) genes, have been extensively studied (Morea et al., 2016; Yuan et al., 2023). In blueberry, miR156 overexpression reduces Chl content by downregulating VcDVR and VcPORAs, two important Chl biosynthesis-associated genes, and LOW PSII ACCUMULATION3 (VcLPA3) and CHLOROPLAST IMPORT APPARATUS 2 (VcCIA2), two important genes associated with Chl-protein complex formation and chloroplast biogenesis, respectively (Li et al., 2024). Among the miR156-targeted VcSPLs, VcSPL12 enhanced Chl accumulation by altering the expression of several Chl-associated genes; in fact, heterologous expression of the VcSPL12 in Arabidopsis also enhanced Chl accumulation (X. Li et al., 2020). In addition, VcSPL12 promotes Chl accumulation in blueberries by increasing the expression of *VcDVR* by binding to its promoter (Li *et al.*, 2024; Fig. 1). Thus, Chl production-associated regulators such as SPL12 and/or homologous genes are potential candidates for genome editing at the miRNA response element through CRISPRmediated single base edition to obtain gain-of-function mutants and consequently increased Chl levels.

sRNA-dependent regulation of anthocyanin production

While Chl is responsible for the green pattern on plant body, anthocyanin is the main pigment responsible for reddish, bluish, and purple hues (Qian *et al.*, 2017). Some studies have shown

antagonism between these pathways that deserve a comprehensive review (X. Li *et al.*, 2020; Li *et al.*, 2024). The molecular mechanisms of anthocyanin production have been extensively studied in different species. Such pathways are conserved among plant groups and demonstrate the protagonism of sRNAs. Among them, miR828 has been extensively studied in *Arabidopsis*, potato, grapes, lilies, Turnip and apples, and miR156 in *Arabidopsis*, the Chinese peony, blueberry, the tree peony, and pear (Table 1).

The miR828, a highly conserved miRNA, negatively regulates anthocyanin-derived pigment patterns by repressing the expression of R2R3-MYB genes in flowers, vegetative tissues, tubers and fruits through a mechanism involving the trans-acting small interfering RNA4 (TAS4)-derived sRNAs (ta-siRNAs; Hsieh et al., 2009). In flowers of the Asiatic-hybrid lilies, the miR828-mediated regulation of MYB12 inhibits the anthocyanin biosynthesis, which leads to a bicolor pattern. The MYB12 is a member of the R2R3-MYB TF family with a central role in anthocyanin-dependent pigmentation. Interestingly, the miR828-guided cleavage of MYB12-derived transcripts triggers the production of secondary siRNAs that can potentially regulate downstream targets, even anthocyaninassociated genes, as previously found in other species (Review in Sanan-Mishra et al., 2021) which requires further analysis. Both, miR828 and MYB12 are expressed at lower levels in tepals; however, differential transcript accumulation in the tepals is the responsible for the anthocyanin-associated bicolor patterns in lilies (Yamagishi & Sakai, 2020; Suzuki et al., 2016; Fig. 2).

Besides flowers, miR828 regulates anthocyanin production in vegetative tissues. In *Arabidopsis*, the miR828-guided cleavage of *AtTAS4* triggers the production of ta-siRNAs. These ta-siRNAs target *PRODUCTION OF ANTHOCYANIN PIGMENT* 1 (*PAP1*), *PAP2*, and *MYB113*, and, consequently, suppress anthocyanin biosynthesis (Luo *et al.*, 2012; Fig. 2). In addition, miR828 is also associated with the formation of purple tuber skin and flesh color in potato, through a similar mechanism of *TAS4*-

loaded from https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.20287 by CAPES, Wiley Online Library on [02/12/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

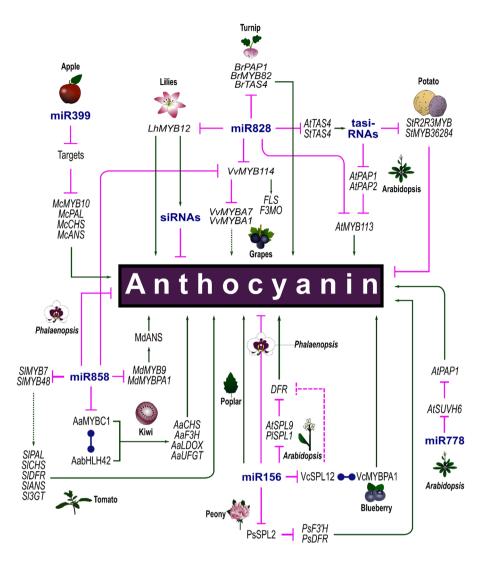


Fig. 2 Small RNA-controlled anthocyanin biosynthesis. Schematic representation of the sRNAs-regulated anthocyanin production in Apple (Malus domestica), Lilies (Lilium sp.), Turnip (Brassica rapa), Potato (Solanum tuberosum), Arabidopsis, Grapes (Vitis vinifera), Phalaenopsis, Tomato (Solanum lycopersicum), Kiwi (Actinidia arguta), Poplar (Populus sp.), Peony (Paeonia × suffruticosa), and Blueberry (Vaccinium corymbosum). Small RNAs are highlighted in bold blue. Green arrows indicate positive regulation, magenta blunt-ended bars indicate negative regulation, dashed lines or dashed arrows indicate hypothetical regulation, and blue lines with circular termination indicate protein-protein interactions.

derived siRNAs production; while high levels of miR828 and *StTAS4* transcripts were detected on pigmented sectors, low levels were detected in nonpigmented sectors. The miR828-dependent ta-siRNA4s target *StR2R3MYB* and *StMYB36284*, two MYB TFs and important inhibitors of anthocyanin biosynthesis, forming a regulatory pathway to control the purple tuber skin and flesh color in potatoes (Bonar *et al.*, 2018; Fig. 2).

In grapes, miR828 positively regulates anthocyanin accumulation by targeting *VvMYB114*. The miR828-directed *VvMYB114* cleavage triggers the production of RNA-dependent RNA polymerase 6 (RDR6)-dependent siRNAs that can potentially regulate the expression of downstream targets. miR828 is predominantly expressed in anthocyanin-rich grapes while *VvMYB114* is weakly expressed. Interestingly, transgenic grapes overexpressing *VvMYB114* display higher accumulation of flavonols through the upregulation of *FLS* and *FLAVONOID 3'-MONOOXYGENASE* (*F3MO*) expression, a downstream regulator of *FLS* (Tirumalai *et al.*, 2019; Fig. 2) indicating that *VvMYB114* negatively regulates anthocyanin production and also induces flavonols biosynthesis.

In apples and turnips, miR828 negatively regulates anthocyanin production. By transient overexpression of miR828 in fruit peel the MdTAS4, MdbHLH3, MdbMYB1, MdDFR, MdANS, and MdUFGT expression, and consequently, anthocyanin content were reduced; on the other hand, transient overexpression of MdbHLH3 promoted MdTAS4, MdbMYB1, MdDFR, MdANS, and MdUFGT expression, triggering anthocyanin accumulation. Interestingly, MdMYB1 promotes miR828 expression by binding to its promoter forming a feedback regulatory loop to control anthocyanin content in apple peel. Besides that, heterologous overexpression of MdmiR828 in Arabidopsis inhibited anthocyanin accumulation through the downregulation of the anthocyanin biosynthesis-related genes AtMYB113 AtMYB75 and AtMYB90, and the structural genes AtDFR, AtCHS, and AtF3H (Zhang et al., 2020; Fig. 2). Moreover, in Turnip, miR828 negatively regulates light-induced anthocyanin production in the hypocotyl by targeting BrPAP1, BrMYB82, and BrTAS4 genes. Although it was demonstrated that BrPAP1 participates in anthocyanin production in Turnip, BrMYB82, and BrTAS4 functions need to be confirmed (Zhou et al., 2020; Fig. 2). Those data reveal that the

miR828-regulated anthocyanin production is a complex genetic regulatory pathway involving several players that constitute a source for reverse genetics studies to improve the anthocyanin content in economically important species.

Another well-studied miRNA and regulator of pigment biosynthesis of vegetative tissues, flowers and fruits in Arabidopsis, pear, tree peony, blueberry, poplar and, also, Phalaenopsis is miR156. Arabidopsis plants overexpressing miR156 exhibits hyperaccumulation of purple pigments in the internodes, whereas the mimicry strategy-based miR156 inhibition causes loss of these pigments. These observations indicate that miR156 positively regulates anthocyanin production. Among the Arabidopsis miR156-targeted SPLs, AtSPL9 and AtSPL15 have key roles in anthocyanin accumulation because the spl9;spl15 double-mutant does not accumulate these pigments, suggesting redundant regulation of anthocyanin biosynthesis. Indeed, plants expressing a miR156-resistant version of AtSPL9 show reduced anthocyanin accumulation by downregulation of AtANS, AtF3 'H, and AtDFR genes, through destabilization of the MYB/bHLH/WD40 transcriptional activation complex (Gou et al., 2011; Fig. 2). This indicates that upregulation of AtSPL9 is responsible for the phenotype of mimicry plants, and suggests that miR156-targeted SPLs negatively regulate anthocyanin biosynthesis genes.

The miR156-mediated anthocyanin accumulation is higher under stress and bagging conditions. A comprehensive review about noncoding RNAs during stress-induced anthocyanin biosynthesis has been reported (Zhou et al., 2023). In Arabidopsis, while miR156 expression was higher under salt and drought stress compared to nonstressed conditions, the AtSPL9 responded in an opposite manner; thus, stress-mediated anthocyanin production correlates with miR156 and the AtSPL9 expressions. In addition, the *DFR* and the *PAP1* were also responsive to stress, indicating that the miR156/SPL9/DFR is a stress-dependent circuit (Cui et al., 2014; Fig. 2). Because this molecular circuit may be conserved in regulating stress tolerance in plants, studying this mechanism in two separated groups of plants, such as monocots and eudicots, could confirm this hypothesis. Regarding bag treatments, in the Chinese sand pear, miR156 increases in response to bagging treatments. The miR156-mediated SPL genes regulation leads to the PpMYB10 upregulation and, consequently, the formation of the MYB/bHLH/WD40 complex that activate the expression of PpCHS, PpCHI, PpF3H, PpANS, and PpUFGT genes (Qian et al., 2017; Fig. 2); these data suggest that miR156 and SPL genes should be targets for further research during bagging.

In plants of Paeonia, blueberry and poplar, miR156 also positively regulates anthocyanin accumulation. In the tree peony, miR156 promotes the anthocyanin production in petals by negatively regulating the PsSPL2. Total anthocyanins were negatively correlated with PsSPL2. While plants with silenced PsSPL2 display increased PsF3 'H and PsDFR expression in petals, heterologous overexpression of PsSPL2 in tobacco resulted in downregulation of NtF3'H and NtDFR transcripts and consequently decrease in anthocyanin content (Luo et al., 2022; Fig. 2), indicating that PsSPL2 may regulate PsF3 'Hor PsDFR expression. In addition, heterologous overexpression of the Chinese peony MIR156E precursor in Arabidopsis triggers anthocyanin

accumulation in lateral branches by repressing AtSPL1, a homolog of the PISPL1, and consequently leading to AtDFR expression (Zhao et al., 2017; Fig. 2). This molecular mechanism was also observed in blueberry, tomato and Arabidopsis. Heterologous overexpression of VcMIR156a in tomato enhances anthocyanin biosynthesis, and overexpression of the miR156-targeted VcSPL12 in Arabidopsis downregulates anthocyanin biosynthetic and regulatory genes, including DFR, PAP1, F3H, ANS by a physical interaction between VcSPL12 and VcMYBPA1, a MYBPA1-type TF that regulates proanthocyanidin synthesis (X. Li et al., 2020; Fig. 2). In addition, blueberry plants overexpressing miR156 display higher content of anthocyanin and correlated upregulation of anthocyanin production-related genes such as VcPALs, Vc4CLs, VcCHSs, VcF3Hs and VcUFGTs and VcMYBA. Thus, miR156 enhances anthocyanin by promoting not only biosynthetic genes, but also anthocyanin regulatory genes. In fact, anthocyanin content decreased in plants overexpressing VcSPL12 due to the VcSPL12dependent repression of CHS F3H, F3'5'H, ANS, UFGT. These findings indicated that VcSPL12 regulates color change in blueberries by affecting the expression of anthocyanin as well as Chl-associated genes as previously shown (Li et al., 2024; Fig. 2). As in peony and blueberry, in poplar miR156 promotes anthocyanin production as observed in plants overexpressing miR156 that increase the accumulation of anthocyanins via multiple factors (Wang et al., 2020), however, whether this complex regulatory network of anthocyanin biosynthesis is conserved in poplar deserves further research.

While in Arabidopsis, pear, tree peony, blueberry, and poplar, miR156 enhances anthocyanin accumulation, in *Phalaenopsis* this miRNA seems to act in an opposite way. miR156 has different expression patterns from spot and nonspot sepal tissues of Phalaenopsis cv. 'Panda', being higher in nonspotted sepals where the anthocyanin amount is lower compared to the spotted ones. Moreover, the expression level of anthocyanin-associated genes, including PAL, DFR, ANS, F3'H, F3H, bHLH1, was lower (Zhao et al., 2019; Fig. 2), suggesting that downstream targets of miR156 might fulfill opposite roles in different clades. Because this work does not present functional experiments, it is hard to assess whether the miR156-dependent circuit acts differently in this orchid; thus, more detailed experiments are necessary to evaluate the role of miR156 and downstream genes in the anthocyanin pathway of Phalaenopsis and other Orchidaceae members.

In addition to miR828 and miR156, the miRNAs miR858, miR399 and miR778 were also reported as players in anthocyanin regulation. While miR858 regulates anthocyanin content in kiwifruit, apple, tomato and Phalaenopsis, miR399 and miR778 regulate it in apple and Arabidopsis, respectively. A preliminary study of fruit coloring-involved sRNAs identified miR858, a miRNA that regulates members of the MYB TFs family, as a strong candidate involved in anthocyanin biosynthesis in kiwifruit (Li et al., 2019; Fig. 2). Further analysis confirmed that miR858 negatively regulates anthocyanin biosynthesis by repressing AaMYBC1. Transient overexpression of miR858 in kiwifruit fruits decrease the transcript levels of AaMYBC1, AabHLH42, AaCHS, AaF3H, and AaUFGT and, consequently, reduced anthocyanin content; this effect phenocopies the AaMYBC1 silencing.

aded from https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.20287 by CAPES, Wiley Online Library on [02/12/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/rerms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses

Fig. 3 Small RNAs modulate carotenoid and betalain biosynthesis. (a) Schematic representation of the misRNAs-regulated carotenoid production in Orange (Citrus sinensis) and Carrot (Daucus carota). (b) Schematic representation of the small RNAs-regulated betalains production in Pitaya (Hylocereus sp.). miRNAs are highlighted in bold blue. Green arrows indicate positive regulation, magenta blunt-ended bars indicate negative regulation, dashed lines or dashed arrows indicate hypothetical regulation, and blue lines with circular termination indicate protein—protein interactions.

Moreover, AaMYBC1 interacts with AabHLH42 to form a transcriptional complex and activate anthocyanin biosynthesis genes (Y. Li et al., 2020; Fig. 2).

In apples, miR858 is expressed in the fruit flesh and its expression increases during development. In red-fleshed apples, the miR858 expression is significantly lower compared to white-fleshed ones, indicating a negative correlation between miR858 and anthocyanin content. Alteration in miR858 levels confirms this observation, high levels of miR858 decreased the *MdANS* and *MdUFGT* transcript levels leading to inhibition of anthocyanin accumulation. On the other hand, the mimicry strategy-based miR858 inhibition leads to an increase in *MdANS* and *MdUFGT* transcript levels, promoting anthocyanin biosynthesis. In addition, *MdMYB9* and *MdMYBPA1*, targets of miR858, participate in anthocyanin accumulation by binding to *MdANS* promoter and triggering anthocyanin biosynthesis (Li *et al.*, 2023; Fig. 2).

In tomato and *Phalaenopsis*, miR858 is also a negative regulator of anthocyanin biosynthesis in young seedlings, leaves, stems and leaf buds and petals. Tomato miR858 mediates the cleavage of *SlMYB7-like* and *SlMYB48-like*, two R2R3 MYB TFs. Mimicry strategy-based inhibition of miR858 increased expression of these genes, and also several anthocyanin biosynthesis genes, including *SlPAL*, *SlCHS*, *SlDFR*, *SlANS* and *Sl3GT* (Jia *et al.*, 2015). In *Phalaenopsis* cv. 'Panda', expression of miR858 is higher in nonspotted sepals where the anthocyanin amount is lower compared to the spotted ones, and the gene expression level of anthocyanin structure and regulation genes, including *PePAL*, *PeDFR*, *PeANS*, *PeF3'H*, *PeF3HI*, *PeF3H*, *PebHLH1* among others was lower as well (Zhao *et al.*, 2019), indicating that the mechanism of negative regulation on anthocyanin content by miR858 is highly conserved (Fig. 2).

In apples, miR399 promotes anthocyanin content. miR399 is involved in the phosphorus homeostasis. In leaves, anthocyanin and inorganic phosphorus display opposite patterns, indicating that low-phosphate concentrations induce miR399 expression to positively regulate anthocyanin biosynthesis. In fact, miR399 overexpressing plants display higher anthocyanin content in leaves

and stems by upregulating anthocyanin-related biosynthesis genes *McMYB10*, *McPAL*, *McCHS*, and *McANS*; however, silenced miR399 did not induce these anthocyanin-related genes under phosphorus deficiency, indicating that inorganic phosphorus indirectly modulates anthocyanin content through miR399 expression (Peng *et al.*, 2020; Fig. 2).

In *Arabidopsis*, miR778 enhances anthocyanin production by increasing the expression of *AtPAP1* probably through its target *KRYPTONITE* (*AtSUVH6*), a SET domain-containing protein involved in regulation of histone methylation. Phosphate deficiency enhances miR778 expression and, under this condition, miR778 overexpression increases *AtPAP1* and decreases *AtSUVH6* expression compared to WT. In addition, *AtPAP1* and *AtSUVH6* transcript levels were lower in MIM778 plants compared to WT (Wang *et al.*, 2015; Fig. 2).

The sRNA-controlled biosynthesis of carotenoids and betalains

Few studies have shown, at posttranscriptional level, the role of the sRNAs, especially miRNAs in carotenoids production (Table 1). Those studies were carried out in oranges and carrots. In the sweet orange, differentially expressed miRNAs and putative targets were identified between the red-flesh mutant and WT; among them, miR1857 and a putative target LYCOPENEB-CYCLASE (LYCb) were identified as possible regulators of carotenoids biosynthesis (Xu et al., 2010; Fig. 3a); however, further experiments need to be done to confirm whether miR1857 is a regulator of carotenoids production. In addition, a preliminary study in carrots found that miR159 seems to be involved in the regulation of carotenoids biosynthesis and accumulation (Bhan et al., 2019). miR159 displayed higher expression in the orange red variant compared to the purple black one; orange red carrots display dark orange color by the accumulation of carotenoids. miR159 seems to regulate LYCOPENE EPSILON-CYCLASE (DcLCYE), a key enzyme in the carotenoids biosynthetic pathway, likely through its targets (Wang et al., 2023; Fig. 3a); thus, miR159 emerges as a potential

4698137, 0, Downloaded from https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.20287 by CAPES, Wiley Online Library on [02/12/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenses

regulator of carotenoids accumulation, although additional research needs to be done to confirm this hypothesis.

Betalains provide plants with purple color shades by totally replacing anthocyanins (Khan & Giridhar, 2015). Betalain biosynthesis is simpler compared to other pigments; however, the study of their regulation, especially at transcriptional level, is incipient. So far, the role of sRNAs in betalain biosynthesis has been poorly explored. Pitaya has been the focus of research because it is the only large-scale commercially grown fruit containing abundant betalains. Therefore, an initial work has identified several candidate miRNAs and their target genes related to pitaya fruit coloration and betalain accumulation, including miR157, miR160, miR6020, miR828 and miR858 (Chen et al., 2020); nevertheless, for a better understanding of betalain biosynthesis in Pitaya, further analyses involving up- and downregulation of these miRNAs and its targets are necessary. A recent study has found that miR156 seems to positively regulate betalain biosynthesis in Pitaya (Zeng et al., 2023; Fig. 3b). The higher expression of miR156 the higher the content of betalains whereas, intriguingly, the higher HuSPL12 expression, one of miR156 targets in Pitaya, the lower the content of betalains, indicating that *HuSPL12* negatively regulates betalain biosynthesis during fruit development. Further analysis confirmed that HuSPL12 is involved in betalain biosynthesis by repressing the promoter activity of HuWRKY40, a TF involved in betalain biosynthesis. This repression influences the expression of HuCY-P76AD1, a key structural gene. In addition, HuSPL12 interacts at protein level with HuMYB1, HuMYB132, and HuWRKY42, three positive regulators involved in pitaya betalain biosynthesis. These interactions seem to block the gene expression of betalain biosynthesis-related structural genes including HuADH1, HuCY-P76AD1, HuDODA1 and DOPA5GT1 (Zeng et al., 2023); however, these expression patterns deserve further analyses.

Future directions

The study of the regulation of pigment production by sRNAs has increased during the last decades in both model and nonmodel species. This knowledge allows us not only to know the interactions of these players but also being the basis for future research aimed to manipulate these pathways; thus, investigating how pigment biogenesis is modulated by sRNAs may help to open new venues to manipulate economically important plants in a world of growing population, climate change and limited land use.

Few sRNAs, mostly miRNAs, have been explored during the processes associated with pigment production; thus, further studies are still necessary to unravel novel sRNAs that might contribute to pigment biogenesis. Moreover, new technologies should be employed to manipulate pigment-associated biosynthetic pathways via sRNAs, which may help improve yield productivity. In this sense, miRNA/sRNA targets are potential candidates for CRISPR-mediated single base editing to fine-tuning control the levels of the desired pigment. In addition, knocking out the negative regulators of pigment production to generate transgenic-free lines is an approach that should be explored. More recently, exciting progress has been made on the roles of extracellular miRNAs in plant to

plant communication (Betti *et al.*, 2021; Strzyz, 2021). The controlled delivery of extracellular sRNAs to plants may become in the near future a new transgenic-free technology to modulate pigment production in a tissue- and developmental-specific manner.

While sRNA-mediated regulation of anthocyanins dominate this research field, Chls, carotenoids and betalains are still in the beginning; thus, further research, including spatio-temporal regulation, devoted to those pigments that were not fully explored will allow a better understanding of the regulatory mechanisms of plant pigments. The results of these studies may help us to envision novel technologies in areas such as pharmacy and human nutrition, main areas of great commercial interest where obtaining plants with higher pigment content or the development of alternative systems for pigments production, such as cell factories, could bring benefits to human health.

Another field of interest involving pigments is floriculture. In some plant genera, the traditional development of new commercial cultivars, through intra- and interspecies crossings, can be time consuming, labor intensive and highly expensive due to the unpredictable interaction between genomes. Thus, getting new varieties of ornamental plants, by molecular approaches, is an important issue that needs to be explored; therefore, the knowledge of the regulation of pigments biosynthesis by sRNAs can guide these efforts in order to editing pigmentation-associated genes for obtaining new commercial cultivars and, consequently, save time and efforts.

Conclusion

Each of the plant pigment groups is synthesized endogenously to fully support the plant 's needs. These biosynthetic pathways involve environmental signals and multiple endogenous factors at different levels through complex networks, including TFs, and sRNAs, specially miRNAs. Although advances in research suggest a complexity of these processes, we are still at the beginning of fully elucidating the regulation of plant pigments by sRNAs. Understanding the complexity of these molecular mechanisms will provide novel insights to modify the biological systems in order to improve nutritional value of food crops, obtain new commercial cultivars of ornamental plants, and develop new ways to obtain high levels of pigments for industry, especially in a world of increasing nutritional and health demands.

Acknowledgements

We thank the National Council for Scientific and Technological Development (CNPq) from Brazil for the funding (Postdoctoral fellowships No 176785/2023-0 and PROTAX/441555/2020-9), and Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB TO PTX001/2023).

Competing interests

None declared.

Author contributions

CHB-R conceptualized and wrote the manuscript. CHB-R, FTSN, and CvdB reviewed the manuscript. All authors have read and agreed to the published version of the manuscript.

ORCID

Carlos Hernán Barrera-Rojas D https://orcid.org/0000-0001-9808-6778

Cássio van den Berg https://orcid.org/0000-0001-5028-0686 Fabio Tebaldi Silveira Nogueira https://orcid.org/0000-0001-6613-4069

References

- Axtell MJ. 2013. Classification and comparison of small RNAs from plants. *Annual Review of Plant Biology* 64: 137–159.
- Barrera-Rojas CH, Otoni WC, Nogueira FTS. 2021. Shaping the root system: the interplay between miRNA regulatory hubs and phytohormones. *Journal of Experimental Botany* 72: 6822–6835.
- Barrera-Rojas CH, Rocha GHB, Polverari L, Pinheiro Brito DA, Batista DS, Notini MM, da Cruz ACF, Morea EGO, Sabatini S, Otoni WC *et al.* 2020. miR156-targeted SPL10 controls Arabidopsis root meristem activity and root-derived *de novo* shoot regeneration via cytokinin responses. *Journal of Experimental Botany* 71: 934–950.
- Barrera-Rojas CH, Vicente MH, Pinheiro Brito DA, Silva EM, Lopez AM, Ferigolo LF, Do Carmo RM, Silva CMS, Silva GFF, Correa JPO et al. 2023. Tomato miR156-targeted SISBP15 represses shoot branching by modulating hormone dynamics and interacting with GOBLET and BRANCHED1b. *Journal of Experimental Botany* 74: 5124–5139.
- Bartel DP. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function.
- Betti F, Ladera-Carmona MJ, Weits DA, Ferri G, Iacopino S, Novi G, Svezia B, Kunkowska AB, Santaniello A, Piaggesi A et al. 2021. Exogenous miRNAs induce post-transcriptional gene silencing in plants. Nature Plants 7: 1379–1388.
- Bhan B, Koul A, Sharma D, Manzoor MM, Kaul S, Gupta S, Dhar MK. 2019. Identification and expression profiling of miRNAs in two color variants of carrot (*Daucus carota* L.) using deep sequencing. *PLoS ONE* 14: e0212746.
- **Bollivar DW. 2006.** Recent advances in chlorophyll biosynthesis. *Photosynthesis Research* **90**: 173–194.
- Bonar N, Liney M, Zhang R, Austin C, Dessoly J, Davidson D, Stephens J, McDougall G, Taylor M, Bryan GJ *et al.* 2018. Potato miR828 is associated with purple tuber skin and flesh color. *Frontiers in Plant Science* 9: 1742.
- Chen C, Xie F, Hua Q, Tel-Zur N, Zhang L, Zhang Z, Zhang R, Zhao J, Hu G, Qin Y. 2020. Integrated sRNAome and RNA-Seq analysis reveals miRNA effects on betalain biosynthesis in pitaya. *BMC Plant Biology* 20: 437.
- Cui LG, Shan JX, Shi M, Gao JP, Lin HX. 2014. The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. *The Plant Journal* 80: 1108–1117.
- Davies KM. 2015. Swapping one red pigment for another. Nature Genetics 47: 5–6.
 Fan S, Amombo E, Avoga S, Li Y, Yin Y. 2023. Salt-responsive bermudagrass microRNAs and insights into light reaction photosynthetic performance.
 Frontiers in Plant Science 14: 1141295.
- Ferigolo LF, Vicente MH, Correa JPO, Barrera-Rojas CH, Silva EM, Silva GFF, Carvalho A Jr, Peres LEP, Ambrosano GB, Margarido GRA et al. 2023.

 Gibberellin and miRNA156-targeted SISBP genes synergistically regulate tomato floral meristem determinacy and ovary patterning. Development 150: dev 201961.
- Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW. 2011. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. *Plant Cell* 23: 1512–1522.
- Hsieh LC, Lin SI, Shih AC, Chen JW, Lin WY, Tseng CY, Li WH, Chiou TJ. 2009. Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. *Plant Physiology* 151: 2120–2132.

- Hu X, Gu T, Khan I, Zada A, Jia T. 2021. Research progress in the interconversion. Turnover and Degradation of Chlorophyll. Cells 10: 3134.
- Hughes NM, Connors MK, Grace MH, Lila MA, Willans BN, Wommack AJ. 2021. The same anthocyanins served four different ways: Insights into anthocyanin structure-function relationships from the wintergreen orchid, Tipularia discolor. *Plant Science* 303: 110793.
- Jia X, Shen J, Liu H, Li F, Ding N, Gao C, Pattanaik S, Patra B, Li R, Yuan L. 2015.
 Small tandem target mimic-mediated blockage of microRNA858 induces anthocyanin accumulation in tomato. *Planta* 242: 283–293.
- Khan MI, Giridhar P. 2015. Plant betalains: chemistry and biochemistry. *Phytochemistry* 117: 267–295.
- Khusnutdinov E, Sukhareva A, Panfilova M, Mikhaylova E. 2021. Anthocyanin biosynthesis genes as model genes for genome editing in plants. *International Journal of Molecular Sciences* 22: 8752.
- Lee D. 2005. Plant pigments and their manipulation. *Annals of Botany* **96**: 1332–1333.
- Li H, Wang S, Zhai L, Cui Y, Tang G, Huo J, Li X, Bian S. 2024. The miR156/SPL12 module orchestrates fruit colour change through directly regulating ethylene production pathway in blueberry. *Plant Biotechnology Journal* 22: 386–400.
- Li H, Zhang Q, Li L, Yuan J, Wang Y, Wu M, Han Z, Liu M, Chen C, Song W et al. 2018. Ectopic overexpression of bol-miR171b increases chlorophyll content and results in sterility in Broccoli (Brassica oleracea L var. italica). Journal of Agricultural and Food Chemistry 66: 9588–9597.
- Li J, Song Q, Zuo ZF, Liu L. 2022. MicroRNA398: a master regulator of plant development and stress responses. *International Journal of Molecular Sciences* 23: 10803.
- Li X, Hou Y, Xie X, Li H, Li X, Zhu Y, Zhai L, Zhang C, Bian S. 2020. A blueberry MIR156a-SPL12 module coordinates the accumulation of chlorophylls and anthocyanins during fruit ripening. *Journal of Experimental Botany* 71: 5976–5989.
- Li Y, Cui W, Qi X, Lin M, Qiao C, Zhong Y, Hu C, Fang J. 2020. MicroRNA858 negatively regulates anthocyanin biosynthesis by repressing AaMYBC1 expression in kiwifruit (*Actinidia arguta*). *Plant Science* 296: 110476.
- Li Y, Cui W, Wang R, Lin M, Zhong Y, Sun L, Qi X, Fang J. 2019. MicroRNA858-mediated regulation of anthocyanin biosynthesis in kiwifruit (*Actinidia arguta*) based on small RNA sequencing. *PLoS ONE* 14: e0217480.
- Li Z, Liu W, Chen Q, Zhang S, Mei Z, Yu L, Wang C, Mao Z, Chen Z, Chen X et al. 2023. Mdm-miR858 targets MdMYB9 and MdMYBPA1 to participate anthocyanin biosynthesis in red-fleshed apple. *The Plant Journal* 113: 1295–1309.
- López-Cruz R, Sandoval-Contreras T, Iñiguez-Moreno M. 2023. Plant pigments: classification, extraction, and challenge of their application in the food industry. *Food and Bioprocess Technology* 16: 2725–2741.
- Lu X, Guan Q, Zhu J. 2013. Downregulation of CSD2 by a hear-inducible miR398 is required for thermotolerance in Arabidopsis. *Plant Signaling & Behavior* 8: e24952.
- Luo QJ, Mittal A, Jia F, Rock CD. 2012. An autoregulatory feedback loop involving PAP1 and TAS4 in response to sugars in Arabidopsis. *Plant Molecular Biology* 80: 117–129.
- Luo X, Luo S, Fu Y, Kong C, Wang K, Sun D, Li M, Yan Z, Shi Q, Zhang Y. 2022.
 Genome-wide identification and comparative profiling of microRNAs reveal flavonoid biosynthesis in two contrasting flower color cultivars of tree peony.
 Frontiers in Plant Science 12: 797799.
- Ma Z, Hu X, Cai W, Huang W, Zhou X, Luo Q, Yang H, Wang J, Huang J. 2014.
 Arabidopsis miR171-targeted scarecrow-like proteins bind to GT cis-elements and mediate gibberellin-regulated chlorophyll biosynthesis under light conditions. PLoS Genetics 10: e1004519.
- Maoka T. 2020. Carotenoids as natural functional pigments. *Journal of Natural Medicines* 74: 1–16.
- Morea EG, da Silva EM, Silva GF, Valente GT, Barrera Rojas CH, Vincentz M, Nogueira FT. 2016. Functional and evolutionary analyses of the miR156 and miR529 families in land plants. BMC Plant Biology 16: 40.
- Munk R, Panda AC, Grammatikakis I, Gorospe M, Abdelmohsen K. 2017.
 Senescence-associated MicroRNAs. International Review of Cell and Molecular Biology 334: 177–205.
- Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D. 2003. Control of leaf morphogenesis by microRNAs. *Nature* 425: 257–263.

4698137, 0, Downloaded from https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.20287 by CAPES, Wiley Online Library on [02/12/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

- Pei LL, Zhang LL, Liu X, Jiang J. 2023. Role of microRNA miR171 in plant development. *PeerJ* 11: e15632.
- Peng Z, Tian J, Luo R, Kang Y, Lu Y, Hu Y, Liu N, Zhang J, Cheng H, Niu S et al. 2020. MiR399d and epigenetic modification comodulate anthocyanin accumulation in Malus leaves suffering from phosphorus deficiency. Plant, Cell & Environment 43: 1148–1159.
- Qian M, Ni J, Niu Q, Bai S, Bao L, Li J, Sun Y, Zhang D, Teng Y. 2017. Response of miR156-SPL module during the red peel coloration of bagging-treated chinese sand pear (*Pyrus pyrifolia Nakai*). Frontiers in Physiology 8: 550.
- Qiu NW, Jiang DC, Wang XS, Wang BS, Zhou F. 2019. Advances in the members and biosynthesis of chlorophyll family. *Photosynthetica* 57: 974–984.
- Ramsay NA, Glover BJ. 2005. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. *Trends in Plant Science* 10: 63–70.
- Rodríguez-Mena A, Ochoa-Martínez LA, González-Herrera SM, Rutiaga-Quiñones OM, González-Laredo RF, Olmedilla-Alonso B. 2023. Natural pigments of plant origin: classification, extraction and application in foods. *Food Chemistry* 398: 133908.
- Sanan-Mishra N, Abdul Kader Jailani A, Mandal B, Mukherjee SK. 2021. Secondary siRNAs in plants: biosynthesis, various functions, and applications in virology. *Frontiers in Plant Science* 12: 610283.
- Shang R, Lee S, Senavirathne G, Lai EC. 2023. microRNAs in action: biogenesis, function and regulation. *Nature Reviews. Genetics* 24: 816–833.
- da Silva EM, Silva GFFE, Bidoia DB, da Silva Azevedo M, de Jesus FA, Pino LE, Peres LEP, Carrera E, López-Díaz I, Nogueira FTS. 2017. microRNA159-targeted SIGAMYB transcription factors are required for fruit set in tomato. *The Plant Journal* 92: 95–109.
- Solovchenko A, Yahia EM, Chen C. 2019. Chapter 11–pigments. In: Yahia EM, ed. *Postharvest physiology and biochemistry of fruits and vegetables.* Cambridge, UK: Woodhead Publishing, 225–252.
- Strzyz P. 2021. MicroRNA communication in plants. Nature Reviews. Molecular Cell Biology 22: 775.
- Sudhakar P, Latha P, Reddy PV. 2016. Chapter 15 plant pigments. In: Sudhakar P, Latha P, Reddy PV, eds. Phenotyping crop plants for physiological and biochemical traits. Cambridge, MA, USA: Academic Press, 121–127.
- Sun T, Rao S, Zhou X, Li L. 2022. Plant carotenoids: recent advances and future perspectives. *Molecular Horticulture* 2: 3.
- Sunil L, Shetty NP. 2022. Biosynthesis and regulation of anthocyanin pathway genes. *Applied Microbiology and Biotechnology* **106**: 1783–1798.
- Sunkar R, Kapoor A, Zhu JK. 2006. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. *Plant Cell* 18: 2051–2065.
- Suzuki K, Suzuki T, Nakatsuka T, Dohra H, Yamagishi M, Matsuyama K, Matsuura H. 2016. RNA-seq-based evaluation of bicolor tepal pigmentation in Asiatic hybrid lilies (*Lilium* spp.). *BMC Genomics* 17: 611.
- Timoneda A, Feng T, Sheehan H, Walker-Hale N, Pucker B, Lopez-Nieves S, Guo R, Brockington S. 2019. The evolution of betalain biosynthesis in Caryophyllales. *New Phytologist* 224: 71–85.
- Tirumalai V, Swetha C, Nair A, Pandit A, Shivaprasad PV. 2019. miR828 and miR858 regulate VvMYB114 to promote anthocyanin and flavonol accumulation in grapes. *Journal of Experimental Botany* 70: 4775–4792.
- Tong A, Yuan Q, Wang S, Peng J, Lu Y, Zheng H, Lin L, Chen H, Gong Y, Chen J et al. 2017. Altered accumulation of osa-miR171b contributes to rice stripe virus

- infection by regulating disease symptoms. *Journal of Experimental Botany* **68**: 4357–4367.
- Wang L, Mai YX, Zhang YC, Luo Q, Yang HQ. 2010. MicroRNA171c-targeted SCL6-II, SCL6-III, and SCL6-IV genes regulate shoot branching in Arabidopsis. Molecular Plant 3: 794–806.
- Wang L, Zeng J HQ, Song J, Feng SJ, Yang ZM. 2015. miRNA778 and SUVH6 are involved in phosphate homeostasis in Arabidopsis. *Plant Science* 238: 273–285.
- Wang Y, Liu W, Wang X, Yang R, Wu Z, Wang H, Wang L, Hu Z, Guo S, Zhang H et al. 2020. MiR156 regulates anthocyanin biosynthesis through SPL targets and other microRNAs in poplar. Horticulture Research 7: 118.
- Wang YH, Zhang YQ, Zhang RR, Zhuang FY, Liu H, Xu ZS, Xiong AS. 2023. Lycopene ε-cyclase mediated transition of α-carotene and β-carotene metabolic flow in carrot fleshy root. *The Plant Journal* 115: 986–1003.
- Willmann MR, Mehalick AJ, Packer RL, Jenik PD. 2011. MicroRNAs regulate the timing of embryo maturation in Arabidopsis. *Plant Physiology* 155: 1871–1884.
- Wong DCJ, Perkins J, Peakall R. 2022. Anthocyanin and Flavonol glycoside metabolic pathways underpin floral color mimicry and contrast in a sexually deceptive orchid. Frontiers in Plant Science 13: 860997.
- Xu Q, Liu Y, Zhu A, Wu X, Ye J, Yu K, Guo W, Deng X. 2010. Discovery and comparative profiling of microRNAs in a sweet orange red-flesh mutant and its wild type. BMC Genomics 11: 246.
- Yamagishi M, Sakai M. 2020. The microRNA828/MYB12 module mediates bicolor pattern development in asiatic hybrid lily (*Lilium* spp.) Flowers. *Frontiers in Plant Science* 11: 590791.
- Yin L, Bauer CE. 2013. Controlling the delicate balance of tetrapyrrole biosynthesis. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 368: 20120262.
- Yoshikawa M. 2013. Biogenesis of *trans*-acting siRNAs, endogenous secondary siRNAs in plants. *Genes & Genetic Systems* 88: 77–84.
- Yuan J, Wang X, Qu S, Shen T, Li M, Zhu L. 2023. The roles of miR156 in abiotic and biotic stresses in plants. *Plant Physiology and Biochemistry* 204: 108150.
- Zeng J, Chen J, Shah K, Xie F, Chen C, Chen J, Zhao J, Hu G, Zhang Z, Qin Y. 2023. Identification of HuSPL family and key role of HuSPL12 in regulation of betalain biosynthesis in pitaya. *Physiologia Plantarum* 175: e13923.
- Zhang B, Yang HJ, Yang YZ, Zhu ZZ, Li YN, Qu D, Zhao ZY. 2020. mdm-miR828 participates in the feedback loop to regulate anthocyanin accumulation in apple peel. Frontiers in Plant Science 11: 608109.
- Zhao A, Cui Z, Li T, Pei H, Sheng Y, Li X, Zhao Y, Zhou Y, Huang W, Song X et al. 2019. mRNA and miRNA expression analysis reveal the regulation for flower spot patterning in phalaenopsis 'Panda'. International Journal of Molecular Sciences 20: 4250.
- Zhao D, Xia X, Wei M, Sun J, Meng J, Tao J. 2017. Overexpression of herbaceous peony miR156e-3p improves anthocyanin accumulation in transgenic *Arabidopsis thaliana* lateral branches. *3 Biotech* 7: 379.
- Zhou B, Leng J, Ma Y, Fan P, Li Y, Yan H, Xu Q. 2020. BrmiR828 targets BrPAP1, BrMYB82, and BrTAS4 involved in the light induced anthocyanin biosynthetic pathway in *Brassica rapa*. *International Journal of Molecular Sciences* 21: 4326.
- Zhou B, Zheng B, Wu W. 2023. The ncRNAs involved in the regulation of abiotic stress-induced anthocyanin biosynthesis in plants. *Antioxidants* 13: 55.
- Zhou F, Liu Y, Feng X, Zhang Y, Zhu P. 2022. Transcriptome analysis of green and white leaf ornamental kale reveals coloration-related genes and pathways. Frontiers in Plant Science 13: 769121.