Área: INO

Síntese de um complexo dinuclear luminescente à base de Eu(III) com ligante bisfosfinóxido em ponte.

<u>Talita Costa Souza</u> (IC),¹ Stefano Angerami de Andrade (PG),¹ Dr. Airton Germano Bispo Junior (PQ),² Dr. Rafael Vieira Perrella (PQ),¹ Italo Odone Mazali (PQ), Fernando Aparecido Sigoli (PQ),¹

t176743@dac.unicamp.br; fsigoli@unicamp.br

¹Instituto de Química, UNICAMP; ² Instituto de Química, USP

Palavras-Chave: Terras raras, luminescência, difração de raios X, complexos.

Highlights

Síntese e caracterização de um complexo dinuclear de Eu^{3+} utilizando-se o ligante (difenil)bisfosfinóxido como ponte e o acetilacetonato como ligante terminal. A ordem de adição dos ligantes permitiu a formação de um composto dinuclear ao invés de um polímero de coordenação, comumente obtido. As caracterizações ópticas e estruturais indicaram que o Eu^{3+} ocupa um sítio de simetria com grupo pontual D_{4d} distorcido.

Resumo/Abstract

Complexos à base de íons lantanídeos (Ln3+) possuem ampla aplicabilidade como materiais emissores de luz. Na área de complexos e polímeros de coordenação destes íons verifica-se relativa dificuldade experimental para controlar a formação de um composto dinuclear ou de um polímero de coordenação, devido às interações intermoleculares que ocorrem entre grupos situados em ligantes terminais. Assim, este trabalho propõe a obtenção de um complexo dinuclear à base de Eu3+, utilizando o acetilacetonato (acac) como ligante terminal e o (difenil)bisfosfinóxido (dppeo) como ligante em ponte. Para isso, uma solução etanólica de dppeo foi adicionada à solução de cloreto de európio (EuCl₃), seguida da adição de uma solução de acac⁻ em etanol. Esta sequência de adição levou a formação de cristais incolores que foram caracterizados por espectroscopia de absorção no infravermelho (FTIR-ATR) e difração de raios X de monocristal (XRD). Os espectros FTIR mostraram que os produtos finais apresentam estiramentos das ligações C=O (1760 e 1710 cm⁻¹) e P=O (1120 cm⁻¹) deslocados para menores números de onda em comparação aos ligantes precursores isolados, sugerindo a coordenação ao centro metálico. Medidas de DRX de monocristal evidenciaram a formação do complexo dinuclear [Eu(acac)₃(µ-dppeo)Eu(acac)₃], que se cristaliza em uma estrutura triclínica (a = 10,8843 Å; b = 12,0573 Å; c = 12.1748 Å; $\alpha = 116.489^\circ$, $\beta = 94.107^\circ$, $\gamma = 91.258^\circ$, V = 1423.76 ų) de grupo espacial $P\overline{L}$. A análise do poliedro de coordenação do íon Eu³⁺ revelou a sua ocupação em um sítio de pseudo simetria D_{4d} . Os cristais também foram analisados por espectroscopia de fotoluminescência. Sob excitação em 350 nm, o sólido apresentou o típico conjunto de emissões do Eu³⁺ na região do laranja-vermelho, atribuídas às transições intraconfiguracionais ${}^5D_0 \rightarrow {}^7F_J$ (J = 0 - 4). O espectro de emissão é dominado pela transição ${}^5D_0 \rightarrow {}^7F_2$, em 612 nm, que é muito mais intensa do que a emissão proveniente da transição ⁵D₀→⁷F₁, em 590 nm. Esse perfil espectral indica que o lantanídeo está inserido em ambientes de simetria sem centro de inversão, o que coincide com a pseudo simetria D_{4d} verificada por DRX. Apesar disso, a presença da transição ${}^5D_0 \rightarrow {}^7F_0$, proibida na simetria D_{4d} , é um indicativo de há abaixamento da simetria do grupo D_{4d} para grupos C_{nv}, C_n ou C_s. Assim, os resultados confirmam que a metodologia proposta conduziu à formação de complexos luminescentes dinucleares de Eu³⁺, com intensa emissão entre 575 e 725 nm. Esta rota de síntese é uma alternativa para a formação de análogos dinucleares, visto que o uso de ligantes terminais contendo fluoretos, como o trifluoroacetilacetonato (tfa-) e o hexafluoracetilacetonato (hfa-), induzem a formação de polímeros de coordenação.

Agradecimentos/Acknowledgments

The authors are grateful to CNPg, FAPESP, CAPES and INOMAT.

[1] LIMA, Deborah A.; BISPO-JR, Airton G.; GALICO, Diogo A.; COELHO, Sergio F. N.; ARAUJO NETO, João H.; ELLENA, Javier A.; PETIOTE, Lanousse; MAZALI, Italo O.; SIGOLI, Fernando A, Tuning the Thermometric Features in 1D Luminescent EuIII and TbIII Coordination Polymers through Different Bridge Phosphine Oxide Ligands. Inorg. Chem, Campinas, v. 62, p. 37125414, 2023