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Abstract:

This study evaluated the use of Double Pulse Laser-Induced Breakdown Spectroscopy (DP-LIBS) combined with
machine learning to detect asymptomatic soybean leaves infected by Aphelenchoides besseyi, the causal agent of
Green Stem and Foliar Retention Syndrome (GSFR). Spectral lines corresponding to macro- and micronutrients were
selected as input features for classification models. The Support Vector Machine achieved 95.7% accuracy, while the
Multilayer Perceptron reached 92.9%. The enhanced sensitivity of DP-LIBS allowed detection of additional
micronutrient signals, enhancing classification accuracy. Results demonstrate the potential of LIBS as a rapid, non-
destructive diagnostic tool for early disease detection in precision agriculture.
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This study evaluated the use of Double Pulse Laser-Induced
Breakdown Spectroscopy (DP-LIBS) combined with machine
learning to detect asymptomatic soybean leaves infected by
Aphelenchoides besseyi, the causal agent of Green Stem and Foliar
Retention Syndrome (GSFR). Spectral lines corresponding to
macro- and micronutrients were selected as input features for
classification models. The Support Vector Machine achieved 95.7%
accuracy, while the Multilayer Perceptron reached 92.9%. The
enhanced sensitivity of DP-LIBS allowed detection of additional
micronutrient signals, enhancing classification accuracy. Results
demonstrate the potential of LIBS as a rapid, non-destructive
diagnostic tool for early disease detection in precision agriculture.

Keywords—LIBS, Aphelenchoides besseyi, early diagnosis,
machine learning, leaf analysis

1. INTRODUCTION

Soybean (Glycine max) is currently one of the most
important agricultural crops worldwide, holding a central role
in the production of food, animal feed, biofuels, and various
industrial derivatives. According to data from the Brazilian
National Supply Company (Conab, 2024), Brazil remains the
world’s largest soybean exporter, accounting for
approximately 52% of global export volume. However, efforts
to increase productivity have faced significant challenges,
particularly losses caused by emerging pests and diseases,
such as green stem and foliar retention syndrome (GSFR) [1].

GSFR has been associated with the presence of the
nematode Aphelenchoides besseyi and can lead to yield
reductions of up to 60%, especially in Brazilian states such as
Maranhao, Tocantins, Para and Mato Grosso. Early detection
of the disease remains a major challenge, as infected plants
can remain visually healthy (asymptomatic) for extended
periods, hindering effective management and increases the
risk of disease spread and economic losses.

In recent years, laser-induced breakdown spectroscopy
(LIBS) [2] has emerged as a promising technique for rapid,
multielement analysis of biological and agricultural materials
[3], [4]. The ability of LIBS to detect macro- and
micronutrients [5] in plant tissues quickly, without chemical
preparation, and with potential for field applications makes it
a strategic tool for diagnosing diseases that impact the
nutritional metabolism of crops.

Previous studies [6] suggest that imbalances in nutrients
such as calcium (Ca), potassium (K), and magnesium (Mg)
may be related to the onset of GSFR. However, distinguishing
healthy from asymptomatic infected leaves still lacks

This work was supported by CNPq (grants 440226/2021-0,
384173/2024-1 and 162231/2024-5) and FAPESP (grant 2013/07276-1 and
2022/05451-0).

objective, sensitive, and scalable methods. In this context, the
integration of machine learning techniques with LIBS can
provide innovative solutions for classifying samples based on
their spectral profiles.

In this study, we propose the targeted selection of
representative spectral lines of macro- and micronutrients in
LIBS spectra of soybean leaves to enable the differentiation
between healthy and asymptomatic GSFR-infected samples.
To achieve this, supervised classification models were
developed using artificial neural networks (ANN) and support
vector machines (SVM), with a focus on early and reliable
diagnosis.

II. MATERIALS AND METHODS

A. Leaf Samples and Preparation

Soybean leaf samples were obtained from an experiment
at Embrapa Soja (Londrina, PR, Brazil) using the Brasmax
Apolo RR cultivar. Ninety pots were prepared: 45 inoculated
with Aphelenchoides besseyi and 45 controls. Leaves were
collected on the 4th, 7th, and 11th days after inoculation,
selecting the uppermost fully expanded trifoliate leaf from
each plant. In total, 135 asymptomatic samples from
inoculated plants and 135 from healthy plants were collected.

In the laboratory, samples were washed, dried at 36 °C for
72 h, ground in liquid nitrogen, sieved (<250 um), and pressed
into 12.5 mm pellets (300 mg) under 2.4 kbar. Pellets were
stored under controlled humidity.

B. LIBS Measurements

LIBS analysis used two Nd:YAG lasers: one at 1064 nm
(50 mJ, 8 ns, 119 J/em?) and another at 532 nm (70 mJ, 4 ns,
600 J/cm?), operated in a double-pulse (DP-LIBS)
configuration. Emission was captured by an Echelle
spectrometer (275770 nm, 21-37 pm resolution) with an
ICCD detector (500 ns gate width). One hundred shots were
taken per pellet using an automated XY stage. Emission lines
were identified via the NIST database. Data processing
included outlier removal, spectral averaging, baseline
correction, and peak fitting.

C. Data Processing and Analysis

The evaluation of the DP-LIBS spectra was conducted by
quantifying the spectral areas corresponding to the following
elements: AIIL BI,CL,Call, Fe I, KI, Mg I, Mn II, P I, Si
I, Zn 11, as well as the CN molecular band. In total, the analysis
considered 12 emission lines.
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Data processing was performed using machine learning
algorithms implemented in Python within the Google Colab
environment, where the support vector machine (SVM) and
the multilayer perceptron (MLP) neural network achieved the
best performance.
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Fig. 1: Workflow illustrating the process of sample preparation, LIBS
analysis, and classification. (i) Collection of soybean leaf samples, (ii)
Pellet obtained from dried and ground leaf samples, (iii) DP- LIBS
plasma generation on the pellet surface, (iv) Acquired emission spectra
representing multiple elements and molecular bands, (v) Example of a
processed spectral line selected for model input, (vi) Confusion matrix
summarizing the classification performance of the machine learning
models, differentiating healthy and asymptomatic GSFR-infected
samples.

During the classification workflow, each sample was first
transformed into a numerical feature vector representing the
spectral intensities of the selected elements. The vectors were
processed by the classification algorithms, which applied
mathematical  transformations to  identify  patterns
distinguishing the classes. For example, in the case of the
MLP, the input data are propagated through multiple layers of
artificial neurons. Each neuron computes a weighted sum of
the inputs and applies a nonlinear activation function, enabling
the network to learn complex relationships among variables.
The network is trained to minimize classification error by
adjusting the internal connection weights iteratively through
backpropagation.

In the case of the SVM, the algorithm seeks the optimal
hyperplane that maximally separates vectors from different
classes. To achieve this, it uses a kernel function to project the
data into a higher-dimensional space, where the separation can
be performed more effectively. The SVM then makes
predictions based on the relative position of input vectors to
this decision boundary.

Regardless of the model used, the final step consists of
applying the learned transformations to new samples to
determine, based on their position in the decision space, the
class to which they most likely belong. This approach enables
the classifiers to accurately identify whether a sample
corresponds to a healthy or an asymptomatic leaf.

The original dataset contained 270 samples and was
divided into two groups: 74% (200 samples) used for training
and 26% (70 samples) reserved for testing. As the data were
labeled, the task was framed as supervised classification.
Model training was validated using 10-fold cross-validation to
ensure robustness and reliability of the results.

III. RESULTS AND DISCUSSION

Initially, specific emission lines of chemical elements with
recognized importance in soybean leaf analysis were selected:
AIILBLCLCall, Fe ILKI, MgIl, MnII, P 1, Si I, Zn II,
and the CN molecular band. The areas of these spectral lines,

extracted from LIBS measurements, were calculated and used
as input variables for machine learning models. For model
development and cross-validation, 74% of the samples were
used for training, while the remaining 26% composed the test
set for final validation.

These elements and the CN molecular band were chosen
because they play essential roles in soybean physiology and
metabolism. They are involved in processes such as
photosynthesis, protein synthesis, nutrient transport, osmotic
regulation, and defense against biotic and abiotic stresses. The
central hypothesis was that healthy and infected leaves would
exhibit subtle alterations in the concentrations or emission
profiles of these nutrients, detectable through spectroscopic
analysis. For example, carbon and nitrogen (reflected by the
CN molecular band) are indicators of general metabolic status,
while calcium, magnesium, and potassium are fundamental to
osmotic balance and enzymatic activity. [ron, manganese, and
zinc participate in redox processes and photosynthesis;
phosphorus contributes to energy metabolism; boron and
silicon are associated with structural integrity and stress
tolerance; and aluminum, although potentially toxic, can
signal changes in nutrient absorption or environmental stress.
By selecting these chemically meaningful wvariables, the
analysis focused on emission lines most likely to reflect
physiological changes associated with disease progression.

The classification models achieved high accuracy in
differentiating healthy soybean leaves from asymptomatic
leaves infected by Aphelenchoides besseyi, the causal agent of
green stem and foliar retention (GSFR). Among the
algorithms evaluated, the support vector machine (SVM)
model achieved the highest performance, reaching an
accuracy of 95.7%, followed by the multilayer perceptron
(MLP), which achieved 92.9% accuracy on the test set (Table
10).

TABLE I. CONFUSION MATRICES FOR THE MLP AND SVM
CLASSIFIERS. ROWS CORRESPOND TO THE ACTUAL CLASS LABELS,
AND COLUMNS INDICATE PREDICTED LABELS FOR EACH MODEL.

MLP MLP SVM SVM
Predicted: Predicted: Predicted:  Predicted:
Healthy GSFR Healthy GSFR
Actual: Healthy 34 1 33 2
Actual: GSFR 2 33 3 32

These results are particularly relevant given the challenge
of early GSFR diagnosis, especially during the asymptomatic
infection stage ( << 11 days). In this early phase, visual
inspection is ineffective, as infected plants often appear
normal, making timely control measures difficult and
increasing the risk of disease spread and economic losses. The
ability of the SVM and MLP models to detect subtle
physiological alterations solely from spectral data underscores
the potential of LIBS, combined with machine learning, as a
promising tool for early, rapid, and non-destructive plant
health monitoring.

Furthermore, the literature already highlights the effective
use of LIBS for quantifying nutrients in soybean leaves [5],
even under the influence of matrix effects—physical and
chemical variations among samples that can interfere with
spectral emission. This evidence supports the robustness of the
technique for both qualitative and quantitative analysis of
plant tissues, consolidating its applicability within precision
agriculture.
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TABLE II. STATISTICAL METRICS OF PREDICTED RESULTS

Metrics MLP SVM
Correctly classified 67 65
Accuracy (%) 95.7 92.9

A key methodological advance of this study lies in the
targeted selection of spectral lines corresponding to macro-
and micronutrients relevant to soybean metabolism. Unlike
conventional approaches that rely on the full-spectrum LIBS
—which may include noise and non-informative emissions—
the strategy adopted here prioritizes only chemically
meaningful spectral regions. This filtering reduces the
inclusion of spurious variables, enhances model
interpretability, and improves classification accuracy.

It is important to highlight that all misclassified samples
(Table I) corresponded to the first collection carried out on the
4th day after inoculation. In contrast, the classification
performance for samples collected on the 7th and 11th days
was 100% accurate for both models. This finding suggests that
the earliest stages of infection may result in less distinct or
consistent spectral features, making differentiation more
challenging. As the infection progresses, however, the
physiological and biochemical changes become more
detectable by LIBS, significantly improving the reliability of
the classification process.

The high performance achieved (Table I1)—95.7%
accuracy for SVM and 92.9% for MLP—confirms the
discriminative power of the selected variables and reinforces
the hypothesis that nutritional imbalances induced by early-
stage infection generate detectable spectral signatures, even in
the absence of visible symptoms. Accordingly, this study
validates the use of DP-LIBS, combined with supervised
learning algorithms and intelligent feature selection, as an
effective, precise, and scalable approach for plant disease
diagnosis.

One of the main advantages of using the DP-LIBS system
is its enhanced sensitivity compared to conventional single-
pulse configurations [7], [8]. The application of a pre-ablation
laser pulse followed by a second excitation pulse significantly
increases the plasma temperature and lifetime, resulting in
stronger and more stable emission signals. This improved
sensitivity enabled the detection of a broader range of
elements in the samples, particularly micronutrients that
typically produce weaker spectral lines under single-pulse
conditions. Consequently, the inclusion of these additional
micronutrient emissions in the model contributed to higher
discriminatory power and improved the overall classification
performance.

Overall, this work demonstrates that integrating LIBS with
careful spectral line selection and machine learning algorithms
offers a diagnostic alternative that is more robust, accurate,
and interpretable than approaches relying on full-spectrum
analysis. The results contribute significantly to advancing
precision agriculture and developing innovative tools for plant
health management.

IV. CONCLUSIONS

This study demonstrated the potential of LIBS, combined
with machine learning algorithms, as an effective tool for the
early diagnosis of GSFR in soybean plants. The proposed
approach, based on the careful selection of spectral emissions
from both macro- and micronutrients, enabled the
development of highly accurate classification models capable
of differentiating healthy and asymptomatic infected leaves.

The SVM and MLP algorithms achieved accuracies of
95.7% and 92.9%, respectively, demonstrating the ability of
selected spectral features to capture subtle nutritional
imbalances induced by Aphelenchoides besseyi infection. By
avoiding the indiscriminate use of the entire LIBS spectrum
and focusing on agronomically relevant variables, this
strategy also improved the interpretability and robustness of
the models.

Beyond confirming the feasibility of LIBS as a rapid, non-
destructive, reagent-free technique for precision agriculture
applications, the results pave the way for the development of
portable field diagnostic systems. Overall, this approach
represents a significant advancement in plant health
monitoring and integrated disease management, with strong
potential to directly impact the productivity and sustainability
of soybean cultivation.
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