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Abstract:  In  this  study,  we  investigate  the  Hawking  radiation  in  higher  dimensional  Reissner-Nordström  black
holes as received by an observer located at infinity. The frequency-dependent transmission rates, which deform the
thermal radiation emitted in the vicinity of the black hole horizon, are evaluated numerically. In addition to those in
four-dimensional  spacetime,  the  calculations  are  extended  to  higher  dimensional  Reissner-Nordström metrics,  and
the results are observed to be sensitive to the spacetime dimension to an extent. Generally, we observe that the trans-
mission coefficient practically vanishes when the frequency of the emitted particle approaches zero. It increases with
frequency and  eventually  saturates  to  a  certain  value.  For  four-dimensional  spacetime,  the  above  result  is  demon-
strated to be mostly independent of the metric's parameter and the orbital quantum number of the particle, when the
location of the event horizon,  ,  and the product of the charges of the black hole and the particle qQ are known.
However,  for  higher-dimensional  scenarios,  the  convergence  becomes  more  gradual.  Moreover,  the  difference
between states with different orbital quantum numbers is observed to be more significant. As the magnitude of the
product of charges qQ becomes more significant, the transmission coefficient exceeds 1. In other words, the result-
ant spectral flux is amplified, which results in an accelerated process of black hole evaporation. The relationship of
the calculated outgoing transmission coefficient with existing results on the greybody factor is discussed.
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I.  INTRODUCTION

The four laws of black hole mechanics were initially
proposed  [1] as  mere  analogies  to  the  four  laws  of   ther-
modynamics. The notion of the Bekenstein-Hawking en-
tropy  [2-4] provided  insights  into  the  microscopic   de-
grees of freedom of black holes. It has an important func-
tion in the holographic principle [5, 6] and the AdS/CFT
correspondence  [7,  8].  From  a  different  perspective,
Hawking's  approach  [9,  10]  indicates  that  black  holes
emit  radiation  according  to  a  thermal  spectrum,  which
demonstrates consistency  with  Bekenstein's  results.  Wil-
czek et  al.  [11, 12]  further  considered  the  effect  of  self-
interaction correction to the metric. By employing a semi-
classical approximation [12], the related physical process
is interpreted as a particle traversing the horizon from in-

side while moving inward. Mathematically, the interpret-
ation is  closely  related  to  the  relevant  contribution   in-
volving  only  a  small  interval  bounded  by  the  initial  and
final  radii  in  the  immediate  vicinity  of  the  horizon  [12].
Therefore, the tunneling rate is calculated with respect to
the position of the horizon.

The above semi-classical  method introduced by Wil-
czek has incited many subsequent studies (see, e.g., Refs.
[13,  14]).  Furthermore,  it  has  inspired  other  approaches
[15-18]. Angheben et al. proposed [16] a method of eval-
uating the imaginary part of the action via the Hamilton-
Jacobi equation, which is an extension of the approach by
Srinivasan  and  Padmanabhan  [15].  The  method  can  be
applied  to  static  metrics,  which  might  be  singular  at  the
horizon. Moreover,  the  proposed  procedure  is   independ-
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ent  of  any  particular  selection  of  spatial  coordinates.
However,  the  formal  solution  of  the  Hamilton-Jacobi
equation partly relies on the symmetries of a specific met-
ric. Moreover, as the particle's self-gravitation is ignored,
the  resultant  particle  emission  rate  considers  only  the
leading term  linear  in  energy.  The  method  has  been   ex-
amined in the context of a broader class of spacetimes, as
well  as  different  types of  fields,  where consistent  results
are obtained [17, 19-21].

γ(ω)

The  particle  emission  occurring  at  the  horizon  of  a
black  hole  experiences  an  effective  potential  during  its
course to the spatial infinity. In other words, the resultant
spectral flux received by an observer at infinity is further
deformed by  a  frequency-dependent  transmission  coeffi-
cient,  . To be specific, for an observer located at in-
finity, the expectation value for the number of a particu-
lar particle species of frequency ω is 

⟨n(ω)⟩ = γω

eβω±1
, (1)

where β  is  the  inverse  of  Hawking  temperature,  and  the
plus (minus) sign is for fermions (bosons). Here, 

γ(ω) =
∣∣∣∣∣TI

∣∣∣∣∣2 (2)

T Iis the greybody factor [22], where   and   are the amp-
litudes of  the  transmission  and  incident  waves,   respect-
ively. However, in literature, the latter is usually defined
in  the  context  of  an  incoming wave from infinity  with  a
known  frequency ω,  interpreted  as  the  probability  of  it
reaching the horizon of the black hole. Nonetheless, it can
be  demonstrated  [23] that  the  above  probability   coin-
cides with that of an outgoing wave in the mode ω to es-
cape  to  infinity  through  the  effective  potential  of  the
black hole. Therefore, Wilczek's perspective of Hawking
radiation  measures  the  tunneling  probability  the  barrier
penetration governed by the black hole metric. In asymp-
totically flat spacetimes, it is directly associated with the
S-matrix element.

At small  frequencies,  analytical  results  on  the   grey-
body factor  can  be  obtained  using  the  perturbative   ap-
proach [24]. In contrast, for frequencies with a large ima-
ginary  part,  the  monodromy  method  [25] has  been   util-
ized [23, 26].  Estimations on the bound of  the greybody
factor  have  also  been  conducted  [27]. However,   gener-
ally,  as  the  forms  of  the  effective  potentials  are  rather
complicated,  the  exact  solution  for  a  particular  metric  is
not straightforward. As a result, numerical approaches are
usually used.

This study involves an attempt to numerically invest-
igate the Hawking radiation and the frequency-dependent
transmission  coefficient  in  Reissner-Nordström  black
hole spacetimes. The remainder of the paper is organized

as follows. In Section II, we briefly review the Hawking
radiation on the horizon of  a  black hole.  The frequency-
dependent transmission  coefficient  is  obtained   numeric-
ally  for  various  types  of  fields  in  Section III.  Additional
discussions  and  concluding  remarks  are  provided  in  the
final section. 

II.  TUNNELING RADIATION BY THE
SEMI-CLASSICAL APPROACH

In this  section,  we  briefly  review  the  Hawking   radi-
ation  at  the  horizon  of  a  Reissner-Nordström black  hole
in  terms of  the  Hamilton-Jacobi  method [16]. The back-
ground n dimensional metric  and electromagnetic  poten-
tial are expressed as 

ds2 =− f (r)dt2+
dr2

f (r)
+ r2dΩn−2

dA =At(r)dt, (3)

where 

f = 1− 8Γ((n−1)/2)M
(n−2)π(n−3)/2rn−3 +

4Γ((n−1)/2)Q2r2(3−n)

(n−2)(n−3)π(n−3)/2

At =
Qr3−n

(3−n)
dΩn−2 n−2

rh

ri = brh

and  .   is a   dimensional unit sphere.
M  and Q  are the  mass  and  charge  of  the  black  hole,   re-
spectively.  The  event  horizon    and  inner  horizon

 satisfy the relationship

M =
(n−2)π(n−3)/2(1+bn−3)

8Γ((n−1)/2)
rn−3

h

and

Q =
bn−3(n−2)π(n−3)/2

2Γ((n−3)/2)
r2(n−3)

h .

As  a  semi-classical  approximation,  the  dynamics  of
particles  with  various  spin  satisfy  the  Hamilton-Jacobi
equation [15, 16, 19-21], namely, 

gµν
(
∂S
∂xµ
−qAµ

)(
∂S
∂xν
−qAν

)
+m2 = 0, (4)

where m and q are the mass and charge of a particle, re-
spectively.  For a  static  four-dimensional  metric,  we may
seek a solution in the form 

S = −ωt+R(r)+Y(θ,ϕ, · · ·). (5)

By  substituting  the  specific  forms  of  the  metric  and
electromagnetical  potential  into  the  above  equation,  we
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obtain  the  following  radial  equation  after  separating  the
variables: 

− 1
f

(ω+qAt)2+ f R′2+m2 =
λ

r2 , (6)

where λ  is  a constant.  Therefore,  near the event horizon,
we obtain 

R =
∫

dr

√
(ω−ωh)2− f (r)(m2−λ/r2)

f (r)

→
∫

dσ
σ

2
√

(ω−ωh)2− f ′(rh)(r− rh)(m2−λ/r2)
f ′(rh)

,

where 

ωh = −qQ/rh. σ =

∫
dr√

f
=

2
√

r− rh√
f ′(rh)

is  the  leading contribution of  the  invariant  distance.  The
integral  is  calculated  by  deforming  the  contour  to  avoid
the  singularity  at  the  horizon,  which  picks  up  half  a
residue: 

ℑS = ℑR =
2π(ω−ωh)

f ′(rh)
. (7)

Note  that  the  result  is  invariant  with  respect  to  time
recalibration  and  spatial  diffeomorphism  [16].  Sub-
sequently, the quantum tunneling rate from horizon is ex-
pressed as 

Γ = exp
(−2ℑS

)
= exp

(
−4π
ω−ωh

f ′(rh)

)
(8)

and the Hawking temperature at the horizon is 

Th =
f ′(rh)

4π
. (9)

Here, the Hawking radiation is purely thermal.
In the  following,  we  evaluate  the  function  of  the   ef-

fective  potential  on  the  resultant  spectral  flux,  as  the
emitted  particle  further  penetrates  the  barrier  toward  an
observer at spatial infinity. 

III.  FREQUENCY-DEPENDENT TRANSMISSION
COEFFICIENT IN REISSNER-NORDSTRÖM

SPACETIME

For  a  non-rotating  metric,  the  equation  of  motion  of
various fields can be usually simplified using the method
of separation of variables, and the radial part of the result-

ant field equation is 

d2Ψ

dr2
∗
+

(
(ω+qAt)2−V(r)

)
= 0. (10)

r∗ =
∫

dr/ f

V(r→ rh) = 0 V(r→∞) = V∞

The above equation is a Schrodinger-type one, where
 is the tortoise coordinate, and V, which is the

effective potential, is governed by the specific spacetime
and  particle  state.  For  asymptotically  flat  spacetimes,

  and  ; therefore,  the   solu-
tions assume the following asymptotic forms at the hori-
zon and infinity [22]: 

Ψ ∼
Re−ikHr∗ +IeikHr∗ r→ rh,

T eik∞r∗ +Ae−ik∞r∗ r→∞.
(11)

The equation of motion implies that the Wronskians 

W(r→ rh) =−2ikh(|R|2− |I|2),

W(r→∞) =2ik∞(|T |2− |I|2), (12)

are conserved; thus, we obtain the following relationship: 

|T |2− |A|2 = − kH

k∞
(|R|2− |I|2). (13)

I
For the scenario in this paper, the incident wave propag-
ates outward with amplitude  , and we also require that 

A≡ 0. (14)

For a  massless  scalar  field,  the  relevant  effective   poten-
tial  in  the  Reissner-Nordström spacetime  can  be  derived
from the Klein Gordon equation, which is 

V =
f

r2

[
l(l+n−1)+

n−2
2

r f ′+
(n−4)(n−2)

4
f
]
, (15)

where  l  is  the  orbital  quantum  number  of  the  particle
state.

Here,  the  problem  is  reduced  to  that  of  the  one-di-
mensional barrier penetration. To obtain the transmission
coefficient,  we  resort  to  solving  Eq.  (10)  numerically
with the boundary conditions Eqs. (11) and (14).

In this study, we use an approach based on numerical
integration. We have provided the technical details of the
numerical  scheme  in  the  appendix,  and  the  results  are
shown in Figs. 1-6. ∣∣∣TI ∣∣∣2Figs.  1-4  show  the  resultant  transmission  coefficient
as  a  function  of  the  frequcency,    vs. ω, for  a  mass-
less scalar field. The calculations are performed by vary-
ing the parameter of the metric b and the orbital quantum
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∣∣∣TI ∣∣∣2
rh = 1 qQ = 1

8 l = 0

Fig. 1.    (color online) Calculated transmission coefficient   for a massless scalar field as a function of the frequency ω for differ-
ent values of b. The calculations are performed with  ,  , and  .

 

ω≪ Th ωrh ≪ 1Fig. 2.    (color online) Same as Fig. 1 but for the low frequency region   and  . The calculated results are compared with
the low frequency limit obtained in Refs. [23, 28].
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ω≪ Th ωrh≪ 1

rh

number  l.  We  observe  that  the  transmission  coefficient
monotonically  increases  with  increasing  frequency.  As
shown in Fig. 2, the values are in agreement with univer-
sal  analytic  results  [23,  28]  in  the  low  frequency  region

 and  , as it increases from zero where the
frequency vanishes.  The physical  interpretation is  that  at
very low frequencies, the size of the wavelength is signi-
ficantly larger than that of a black hole. Therefore an in-
cident  wave  from  infinity  is  virtually  unaffected  by  the
presence of the latter. In contrast, the transmission coeffi-
cient eventually saturates to a certain value at the limit of
high  frequency.  In  Fig.  4,  the  obtained  results  are  also
compared against the lower bound estimated in Ref. [27].
As  shown in Figs.  1 and 3, for  four  dimensions,  we ob-
serve that resultant transmission coefficients all converge
to the same curve for given   and qQ values and differ-
ent  values  of  b  and  l.  However,  for  higher-dimensional
scenarios,  the  convergence  becomes  more  gradual.
Moreover,  the  difference  between states  with  different b
and l becomes more significant.

l = 0

In Figs. 5 and 6, we investigate the transmission coef-
ficient  as  a  function  of  the  product  of  the  charge  of  the
particle and the black hole qQ.  For all  the scenarios,  the
transmission rate  is  observed  to  be  a  monotonically   de-
creasing function of qQ. The dependence is mostly linear
for the given b value and for  . For larger l values, the
curves  exhibit  twisted characteristics,  and in  the  four-di-
mensional scenario, they are observed to converge even-

qQ < 0

5+1 6+1
l = 0

5+1
l = 1,2,3

tually.  In  particular,  for  , as  the  magnitude   be-
comes more  significant,  the  transmission coefficient   fur-
ther  increases  and  eventually  exceeds  1.  In  other  words,
the resultant spectral flux is amplified by the effective po-
tential. This characterisitc is reminiscent of the superradi-
ance [29], which occurs when the frequency is less than a
particular value related to the charge of the black hole. By
comparing the results for different spacetime dimensions,
we observe that the difference between states with differ-
ent b and l becomes more pronounced for higher dimen-
sional spacetimes. The slope of the monotonical depend-
ence decreases as l increases, and it becomes more evid-
ent as the dimension of spacetime increases. For example,
for  the    and    metrics, the  transmission   coeffi-
cient  of    increases  mostly  linearly  with  decreasing
qQ, except that the slope for   is larger. However, the
corresponding slopes for  the scenarios with   are
much less significant compared with the former. 

IV.  CONCLUDING REMARKS

In  summary,  we  have  studied  the  Hawking  radiation
in  the  Reissner-Nordström  black  hole  spacetime  for  an
observer located  at  infinity.  We  have  evaluated  the   fre-
quency-dependent transmission  coefficient  after   discuss-
ing the thermal radiation emitted in the vicinity of the ho-
rizon. We  have  observed  that  the  transmission   coeffi-
cients  approaches  zero  as  the  frequency  of  the  emitted

rh = 1 qQ = 1
8 b = 1

4Fig. 3.    (color online) Same as Fig. 1 for different values of l. The calculations are performed with  ,  , and  .
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rh

qQ < 0

particle vanishes.  It  is  a  monotonically  increasing   func-
tion of the frequency and saturates when the frequency is
more significant. In four-dimensional spacetime, this fea-
ture  is  demonstrated  to  be  mostly  independent  of  the
parameters for particular   and qQ values. For higher-di-
mensional spacetimes, the difference between states with
different b and l becomes more pronounced. In particular,
we  observe  that  the  transmission  coefficient  exceeds  1
when    and  the  magnitude  becomes  sufficiently
large. This indicates that the spectral flux is further amp-
lified during  the  course  of  traversing  the  curved   space-
time. 

APPENDIX: AN ADAPTED METHOD FOR
NUMERICAL INTEGRATION

x = 1− rh

r
x = 1 r→∞ x = 0 r = rh

x = 0 x = 1

This method was initially used to calculate superradi-
ance [22]. For this study, it can be readily adapted for the
numerical calculations. The code is implemented in terms
of the Mathematica notebook. For the aims of this paper,
we introduce the following adaptations. First,  we rewrite
the  radial  equation  using  the  coordinate  transform

,  such  that    as    and    as  .
By expanding the function at   and  , we can nu-

rh = 1
qQ = 0
Fig. 4.    Same as Fig. 1 for different values of b and l in (3+1) dimensional spacetime. The calculations are performed with   and

. The calculated results (indicated by solid curves) are compared with the low boundary (indicated by dotted curves) obtained in
Ref. [27].
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∣∣∣TI ∣∣∣2
rh = 1 ω = 1 l = 0

Fig. 5.    (color online) Calculated transmission coefficient   for a massless scalar field as a function of qQ for different values of b.
The calculations are performed with  ,  , and  .

 

∣∣∣TI ∣∣∣2
rh = 1 ω = 1 b = 1

4

Fig. 6.    (color online) Calculated transmission coefficient   for a massless scalar field as a function of qQ for different values of l.
The calculations are performed with  ,  , and  .
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x = 0 x = 1
merically  integrate  the  Schrodinger-type  equation  from
the  region  near    to  that  near  . The  code's   effi-

ciency lies in its significant accuracy of the numerical im-
plementation for integration in Mathematica.
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