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SUSTAINABLE SOLUTIONS ANALYSIS OF A BI-OBJECTIVE GREEN
INVENTORY ROUTING PROBLEM WITH HETEROGENEOUS FLEET AND

DIFFERENT TYPES OF FUELS

Arianne A.S. Mundim1,* , Maristela O. Santos1 and Reinaldo Morabito2

Abstract. One of the main agents responsible for global warming is greenhouse gases, especially
carbon dioxide (CO2) associated with fuel combustion. Most works in the literature address logistics
transportation from an economic perspective, giving little attention to the existing trade-off with sus-
tainability. In this work, we develop a bi-objective approach to the inventory routing problem with
heterogeneous fleet, where we minimize costs while simultaneously reducing CO2 emissions. First, we
present an explicit vehicular equation developed to calculate CO2 emissions for different types of ve-
hicles and fuels. We demonstrate that this equation is statistically precise by conducting a study with
a database in which machine learning techniques were applied to assess the predictive accuracy of
CO2 emissions. The comparison between the explicit equation and machine learning models proves
its efficacy as a suitable approximation for practical applications. Then, we propose an augmented 𝜖-
constrained method to find the efficient Pareto frontier using a branch-and-cut method. Computational
experiments were conducted on 285 instances, of which 125 were adapted from the literature, solving
the augmented 𝜖-constrained optimally. Result analysis indicates the ability of the approach to trade off
between economy and sustainability, where, on average, lexicographic solutions show a 58% reduction
in emissions and a 36% increase in costs. We conclude with a managerial analysis providing insights
into the proposed approach, highlighting the advantages of using different vehicles and fuels.
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1. Introduction

The Inventory Routing Problem (IRP) is one of the most extensively studied problems in the literature,
beginning with the pioneering work of [15]. Hundreds of works consider the minimization of transportation
and inventory costs, as highlighted in the following review papers [7, 17, 23, 24, 55]. Despite IRP being studied
since the 1980’s, according to [65], the number of works addressing sustainable issues in the supply chain has
increased only in recent years.
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One reason for the growing interest in sustainable works is due to global warming, and the situation is now
at another level because “global boiling” is an expression used by the Secretary-General of the United Nations
(UN) to describe the current phase of accelerated global warming and climate change.

This issue has emerged as one of the greatest challenges of our era, as emphasized by [11,37,69]. Measurements
taken at the Earth’s surface indicate an average increase of 0.74 ∘C over the past century. Projections suggest
that if carbon emissions remain unchanged, average temperatures could rise by up to 3.4 ∘C by the end of
this century, as stated by [26, 72]. One of the primary drivers of global warming is greenhouse gases, with
approximately 73% of emissions composed of CO2, according to [76]. While global carbon emissions dropped
significantly (−8.8%) in the first half of 2020 due to the pandemic’s effects [44], the most recent data show a
strong rebound, and carbon emissions are approaching 2019 levels [67].

The increase in CO2 emissions has raised concerns related to the topic of sustainable development. These
concerns have driven a growing interest in alternative approaches to logistics since transportation plays a
fundamental role in the context of sustainable development, as discussed in the studies by [28, 43]. Different
aspects of gas mitigation can be observed in the works [32,75].

Sustainable development has been incorporated into supply chain management [61] and logistics systems [19].
This is due to the significant impact that logistics and supply chain activities have on economic growth and
competitiveness [46]. Additionally, it plays a crucial role in managing non-renewable resources and mitigating
emissions of gases [63].

In the supply chain, the transportation sector is the largest contributor to carbon dioxide emissions [29]. The
Intergovernmental Panel on Climate Change reported that transportation was responsible for 14% of greenhouse
gas emissions by economic sectors in 2010 [53].

In this study, we explore the concept of sustainable IRP, also known as green IRP, which simultaneously
addresses inventory management decisions, vehicle routing, and product delivery scheduling from an environ-
mentally responsible perspective. Our goal is to minimize CO2 emissions while maintaining economic viability.

The IRP was chosen over traditional Vehicle Routing Problem (VRP) models due to its potential for signifi-
cant reductions in CO2 emissions through integrated inventory management and delivery scheduling. This choice
is particularly effective in scenarios where inventory costs are not prohibitive, allowing for strategic stockpiling
that reduces frequent shipments, thereby lowering overall emissions.

Previous references, such as [3, 4, 21, 64], have dealt with these issues. However, these studies simplify the
problem by combining different objectives into a single objective function, limiting the discussion of conflicting
solutions in economic and environmental terms.

An overlooked area in the green IRP literature is the use of multiple fuel types and various modes of trans-
portation, such as rail, waterway, and others. While [21] address green IRP with a heterogeneous fleet, consid-
ering only one type of fuel and using a nonlinear equation that incorporates variable speed, Xiao et al. [74] also
consider a single type of fuel, with emissions depending on the vehicle’s load state, empty or full. This gap in the
literature deserves attention due to the complexity of green IRP with multiple fuel types and a heterogeneous
fleet in terms of capacity, where different modes can be considered.

The formulations proposed in [21, 74] are currently used to estimate 𝐶𝑂2 emissions; however, in addition to
considering only one type of fuel, they lack an assessment of the associated error in this estimate. Cheng et al.
[21] use the formulation from [13], where the authors themselves state that the model needs to be periodically
updated to adequately represent current vehicles in any fleet. Aware of these limitations, we present an explicit
equation that can be applied to different types of vehicles and fuels, and conduct an error evaluation study
using a test set of several thousand vehicles produced between 1995 and 2022. To validate the effectiveness of
our approach, we compare the results obtained with widely used Machine Learning methods in the specialized
literature. Our results reveal that our approach has high explanatory power and performs comparably to Machine
Learning methods, highlighting its utility and reliability.

Our research aims to address the highlighted gaps by introducing a multi-objective approach and presenting
an explicit vehicular equation applicable to transportation problems. Below, we outline the main contributions
of this study:
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(1) Gathering data and information to clearly describe a mathematical expression that estimates 𝐶𝑂2 emissions
based on vehicle efficiency, 𝐶𝑂2 emitted per fuel consumption, and distance traveled. The proposed explicit
vehicular equation is applicable to five different types of fuels, making it adaptable to a wide range of routing
problems.

(2) Computational analysis of the explicit vehicular equation, indicating an explanatory power above 99%, ensur-
ing an average error of 0.98%. Additionally, implementation and comparison with seven Machine Learning
methods.

(3) Presentation of a sustainable bi-objective model that aims to minimize both economic and sustainability
compromises for a heterogeneous fleet.

(4) Application of an exact scalarization method, called the augmented 𝜖-constrained, to estimate the Pareto
frontier of the proposed problem, providing adaptations of well-known instances from the literature.

(5) Analysis of computational results providing an understanding of the method’s effectiveness and managerial
insights on the use of multiple fuels and analysis of Pareto frontier solutions.

This paper is organized as follows. The literature review is conducted in Section 2. The presentation of
the Explicit Equation for estimating 𝐶𝑂2 emissions is in Section 3. In Section 4, we present a mathematical
modeling of the bi-objective green IRP and a solution method. In Section 5, computational experiments are
presented. The conclusions of the work and prospects are outlined in Section 6.

2. Literature review

In this section, we organize the main studies that underpin the development of our work. In Section 2.1,
we present the formulations employed for estimating 𝐶𝑂2 emissions. In Section 2.2, we provide an overview of
studies investigating sustainable approaches in logistics problems. In Section 2.3, we discuss works that consider
green IRP with conflicting objectives. Finally, we present a tabular review of studies related to our research.

2.1. Numerical alternatives for calculating 𝐶𝑂2 emissions

There are different numerical alternatives for estimating 𝐶𝑂2 emissions. For example, Xiao et al. [74] consider
vehicle load, both full and empty, and this formulation is generally used for problems involving packing or
multiple products, as applied in [33]. The [18, 35] formulations are most commonly used in transportation
problems in the agricultural sector.

Demir et al. [30], Asghari and Mirzapour Al-e-hashem [10] propose various solutions to address the issue
of carbon dioxide emissions. In particular, Asghari and Mirzapour Al-e-hashem [10] highlights the approach
put forth by Barth et al. [13], which has gained widespread recognition in the scientific literature. Barth et
al. [13] describe the emissions model for heavy diesel trucks, using a physical energy demand approach. When
developing the model, Barth et al. [13] attempted to capture many important aspects of vehicle operation and
its impact on tailpipe emissions. However, the authors saw the need for many variables, making it impossible
to model all aspects with a high level of detail. Furthermore, the authors state that the model needs to be
periodically updated to adequately represent current vehicles in any fleet. Future vehicle fleets will certainly
include new technologies that are not represented in this version of the emission model.

Bektaş and Laporte [14] adapted the formula proposed by Barth et al. [13] for the pollution-routing problem,
and [21], in turn, adapted it for the IRP with a heterogeneous fleet, obtaining an mixed integer problem (MIP),
modeled with a non-linear objective function. To handle the non-linearity of the model, Cheng et al. [21] added
a new variable for linearizing the velocity variable 𝑣, following [14]. The authors consider the IRP restricted to
three types of diesel combustion vehicles, i.e., different types of vehicles and one type of fuel.

Based on [13] and adapted from [21], in Appendix A, we present equation (A.1), which quantifies the emission
of 𝐶𝑂2 in kilograms for a vehicle of type 𝑘, depending on the distance 𝑑 (km) and the velocity 𝑣 (km/h). In
addition to [13], who propose equation (A.1), [14, 30] provide an explanatory summary of its derivation and
mention that they initially include terms related to the fuel rate, such as engine power second by second and
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the total tractive power applied to the vehicle’s wheels, which for a given arc (𝑖, 𝑗) of length 𝑑 consider 𝑣 as the
vehicle velocity variable traveling that arc.

While the equation proposed by Barth et al. [13] is comprehensive, its impracticality arises from the use of
over thirty parameters. This complexity renders it unfeasible for practical applications in our context, where we
examine fleets comprising more than three distinct vehicles and consider multiple fuels. It is essential to note
that the formulation by Barth (2005) is specifically applicable to diesel and lacks scalability for larger fleets.
Nonetheless, presenting this expression aims to provide readers with insight into one of the most frequently
employed approaches in the existing literature.

Recent papers in machine learning and artificial intelligence have also brought studies in estimating 𝐶𝑂2

emissions, such as [38, 52, 71]. Machine learning, a subarea of artificial intelligence, empowers systems to learn
and improve based on data-derived experience. Among the existing methods, supervised learning is notable for
using labeled data sets to train algorithms, which learn to make predictions. The main goal is to efficiently map
inputs to desired outputs, eventually adjusting parameters to minimize errors between predictions and actual
values.

In this context, Wen et al. [71] proposes a Random Forest algorithm to estimate 𝐶𝑂2 emissions from large
cities, using 272 indicators such as road characteristics, population density, and information on dirt roads to
train the model. Niroomand et al. [52] uses Deep Learning techniques to assess the differences in 𝐶𝑂2 emissions
among different vehicle classes and categories. Jiménez et al. [38] discusses the factors that dictate the difference
between official and actual vehicle efficiency and 𝐶𝑂2 emissions, reviewing the influence of vehicle classification,
vehicle features, vehicle brand, and reference year on real-world 𝐶𝑂2 emissions. They used a database of 650
passenger cars to explain the impact of these factors on the gap between real-world and homologation emission
values.

This study aims to explore applying supervised machine learning methods to understand their functionality
and performance as numerical alternatives for estimating CO2 emissions. To this end, we employed various
commonly used supervised learning methods, Mahesh [45], to predict CO2 emissions. Each method offers a
distinct approach to managing the complexity of the data, providing a comprehensive overview of the predictive
capabilities of machine learning. A comparative study involving these methods was conducted to demonstrate
their effectiveness in emission prediction, which will be presented later.

2.2. Overview of logistics problems considering 𝐶𝑂2 emissions

One of the most widely used ways in the literature to calculate carbon dioxide emissions is based on the
expression proposed by Barth et al. [13], where the authors describe the emissions model for heavy diesel trucks,
using a physical energy demand approach. Many research studies in logistics problems, specifically sustainable
IRP, use Barth’s formulation, such as [3, 21,41,48,64,66].

Other studies on sustainable logistics problems can be seen in: [20, 31, 39, 41, 73] and simpler emission for-
mulations can be seen in: [12,33,42,57,68,74]. Although each formulation has its particularities, they all share
the same purpose of mitigating the negative impacts of human activity on the environment and promoting
sustainability. Through these studies, they aim to reduce and estimate emissions, among other more conscious
and sustainable practices.

Alkawaleet et al. [4] investigate the effect of CO2 emissions, considering the acquisition of carbon rights in
IRP decisions, determined over a time horizon. A heterogeneous fleet is considered, but in each time period,
at most one vehicle is used for product distribution to each customer. The results indicate that emission costs
influence inventory and routing decisions. Fixed known values are considered for emissions.

In [68], in addition to the classic definition of IRP, 𝐶𝑂2 emissions are determined and added to the objective
function using a carbon price. The IRP is then solved with the goal of minimizing total costs. The authors
use the formulation of [13] as a set of constraints for the model. The model is applied to a case study in the
petrochemical industry. The study considers a homogeneous fleet.

Soysal et al. [64] present a multi-period IRP model that includes truckload-dependent distribution costs,
analysis of CO2 emissions and fuel consumption, perishability, and a service level constraint to meet uncertain
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demand. Considering a homogeneous fleet, the results suggest that the proposed integrated model can achieve
total cost savings while meeting service level requirements.

Cheng et al. [21] study an IRP with the objective of minimizing the sum of inventory and routing costs, where
the latter includes driver salary, vehicle fixed cost, fuel costs, and emissions, with fuel consumption determined
by load, distance, speed, and vehicle characteristics. Numerical tests were conducted to quantify the benefits
of using a comprehensive objective and heterogeneous vehicles. Managerial insights are also extracted from
parameter analyses. However, it is limited to three types of diesel trucks, which may not be practical with large
heterogeneous fleets and different fuel types. Additionally, the authors suggest a multi-objective analysis of the
problem.

Alinaghian et al. [3] propose a mathematical model for the green IRP with time windows (GIRP-TW). The
goal is to minimize fuel consumption cost, driver cost, inventory cost, and vehicle usage cost, taking into account
several factors, similar to what was done in [21]. To solve the problem, three metaheuristic methods are designed,
including the original and augmented Tabu Search algorithms and the Differential Evolution algorithm. The
authors consider a fleet that consumes diesel.

Most of the works presented in this section address gas reduction by minimizing emissions in the model’s
objective function. In this article, we choose to concentrate on minimizing carbon dioxide emissions and opera-
tional costs within the context of the IRP.

2.3. Multi-objective IRP with 𝐶𝑂2 emissions

The literature on multi-objective methods for studying the IRP is still limited compared to the literature on
single-objective papers. However, there are studies that address green IRP from a multi-objective perspective,
such as [34,58].

Franco et al. [34] introduce the multi-objective algorithm NISE (Non-Inferior Set Estimation), which uses
the column generation technique to solve an IRP with two objectives. The authors do not describe in details
the data they use to calculate CO2 emissions.

In the article by Rahbari et al. [58], a bi-objective IRP is addressed, in which three vehicles distribute products
from various suppliers to a retailer to meet product demand. The customer-associated demand is assumed to be
time-variable and deterministic. Transshipment is considered in the model. The authors consider given values
for emissions and minimize the costs of emitted CO2. The proposed model is implemented and solved using the
modeling language GAMS and its solvers.

In recent years, the multi-objective approach has received attention from researchers regarding other related
problems, as seen in [49,56,59].

Misni et al. [49] consider a problem of the Location-Inventory-Routing Problem (LIRP) based on the economic
order quantity model with environmental concerns. The study aims to minimize the total cost of operational
facilities, inventory, and vehicle distance as the first objective and minimize the cost of CO2 emissions as the
second objective. The Multi-Objective Hybrid Simulated Annealing Harmony Search Algorithm (MOHS-SA) is
applied to find the trade-off between these two objectives.

Rabbani et al. [56] present a multi-objective optimization model for a sustainable urban solid waste manage-
ment system. The objective functions minimize: (i) the net total cost, (ii) the greenhouse gas emissions, and
(iii) the total waste collection and treatment time. The model is implemented in a case study and solved using
AUGMECON2 (enhanced 𝜖-constrained). The authors consider that the values of CO2 emissions come from the
literature and do not provide an estimation of how to calculate this value.

Rahbari et al. [59] study an LIRP with a fleet of heterogeneous vehicles aiming to minimize supply chain
risk, supply chain costs, and reduce greenhouse gas emissions. A meta-heuristic algorithm called MOBWO
(Multi-Objective Binary Whale Optimization) is presented to solve multi-objective optimization problems. The
algorithm’s performance is compared with MOSA and NSGA-II.

Among the presented works, [34,56] use exact methods to address the multi-objective IRP. Franco et al. [34]
use NISE along with column generation, and [56] use the augmented 𝜖-constrained method. Both works consider
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Table 1. Summary of sustainable logistics problems literature.

References Main problem Fleet Sustainability M. O. Objective Expression type Types of fuels Solution method
Ho. He. Constr. Obj. E Sus. D G E Unk.

Xiao et al. [74] VRP
√ √ √

Linear
√

Modified S. A.

Demir et al. [31] VRP
√ √ √ Non-

linear

√
ALNS

Alkawaleet et al. [4] IRP
√ √ √

Linear
√

MIP
Treitl et al. [68] IRP

√ √ √ √
Linear

√
MIP

Koc et al. [41] VRP
√ √ √ Non-

linear

√ Evolutionary
metaheuristic

Soysal et al. [64] IRP
√ √ √ Non-

linear

√
MIP

Franco et al. [34] IRP
√ √ √ √ √

Linear
√ Column generation

and NISE

Cheng et al. [21] IRP
√ √ √ √ Non-

linear

√
B&C

Rahbari et al. [57] IRP
√ √ √ √ √

Linear
√

MIP and S. A.

Balamurugan et al. [12] IRP
√ √ √

Linear
√ Evolutionary

algorithm
Ferreira et al. [33] VRP

√ √ √
Linear

√
B&C

Alinaghian et al. [3] IRP
√ √ √ Non-

linear

√ Augmented
Tabu search and
heuristics

Rabbani et al. [56] LIRP
√ √ √ √ Non-

linear

√
𝜖-constrained

Rahbari et al. [59] LIRP
√ √ √ √ √

Linear
√ MOBWO, MOSA

and NSGA II

Our research IRP
√ √ √ √ √

Linear
√ √ √ B&C and

𝜖-constrained

fixed known values for CO2 emissions. The difference in our work is that we explore different trade-offs of green
IRP compromises with different values for 𝜖.

Table 1 presents a summary of these reviewed studies on green logistics and a comparison between them
and our work. In it, we have the references, highlighting the main problem of the article, whether the fleet
is homogeneous or heterogeneous, whether they address sustainability as a constraint and/or as an objective,
whether the article considers multi-objective optimization, whether the objective(s) are economic and/or sus-
tainable, whether the terms used to measure 𝐶𝑂2 emissions are linear or nonlinear, which fuels are used by
the fleet, and what solution method is used. We use in the table: Ho: Homogeneous, He: Heterogeneous, Cons:
Constrained, Obj: Objective, E: Economic, Sus: Sustainable, D: Diesel, G: Gasoline, E: Ethanol, Unk: Unknown.
Acronyms used: VRP: Vehicle Routing Problem, M. O.: Multi-Objective. MIP: Mixed-Integer Programming,
ALNS: Adaptive Large Neighborhood Search, B&C: branch-and-cut, S. A.: Simulated Annealing.

We estimate CO2 emissions through an explicit linear equation, which is considered one of the objectives to
be minimized alongside operational costs. To solve this problem, we apply the augmented 𝜖-constrained method.

3. Machine learning methods and explicit vehicular equation for estimating
𝐶𝑂2 emissions

3.1. Machine learning methods

Machine learning empowers systems to learn and improve based on data-derived experience. Among the
existing methods, supervised learning is notable for using labeled data sets to train algorithms, which learn
to make predictions. The process eventually involves adjusting the model settings so that the learned function
minimizes the error between the model-specific settings and the actual values in the training data. Over time,
and with exposure to training data, the model becomes more effective at predicting results for new data sets,
adapting to provide accurate flexibility based on learned characteristics of the data.

In this work, we analyzed annual databases from 1995 to 2022, totaling 26, 146 vehicles fabricated in Canada
and we employed seven supervised learning methods including Decision Trees, K-Nearest Neighbors (KNN),
Lasso Regression, Random Forest, Linear Regression, Ridge Regression, and Support Vector Regression (SVR) to
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Table 2. Different error measures for comparing machine learning methods used in emission
estimation.

Method ME MGD MAPE MSE r2

Decision tree 30,75 0,75% 0,01% 7,44 99,83%
KNN 70,50 0,90% 0,02% 13,61 99,69%
Lasso 52,95 1,15% 0,05% 29,24 99,32%
Random Forest 23,38 0,79% 0,01% 7,63 99,82%
Linear Regression 52,95 1,15% 0,05% 29,24 99,32%
Ridge 52,94 1,15% 0,05% 29,24 99,32%
SVR 108,98 0,81% 0,01% 11,09 99,74%

predict CO2 emissions. From the entire database, we processed the data to remove duplicates, resulting in a total
of 20, 358 examples. Each example in databases stores the following information: year of manufacture, brand,
model, vehicle class, engine size, number of cylinders, transmission type, fuel type, city consumption, highway
consumption, combined consumption, miles per gallon (MPG), and 𝐶𝑂2 emissions in grams per kilometer.
The number of examples by fuel types is: gasoline (11,367), premium gasoline (7,790), ethanol (857), diesel
(365), and natural gas (37). Some features in the model description include whether the vehicle has: four-
wheel drive, all-wheel drive, is a hybrid vehicle, whether the wheelbase is short, long, or extended. The vehicle
class informs whether it is a small or large SUV, compact, two-seater, pickup truck, truck, or others. The
database is available on the Canadian government’s website: https://open.canada.ca/data/en/dataset/
98f1a129-f628-4ce4-b24d-6f16bf24dd64. The Canadian database is also available at the following link from
the Github repository: https://github.com/ariannesilvamundim/RAIRO-OR.

We compared the results of the seven methods studied to estimate vehicle 𝐶𝑂2 emissions, as presented in
Table 2. We allocated 70% of the dataset for training and tested the algorithms on the remaining 30% of the
data. In this test subset, the actual value 𝑦𝑖 is compared with the predicted value 𝑦𝑖 to evaluate the performance
of each method. The columns indicate the method used, the maximum error found (ME), the mean gamma
deviation (MGD), the mean absolute percentage error (MAPE), the mean squared error (MSE), and the R-
squared (r2). The description of these metrics can be found in Appendix B. These measures are widely used
to assess the quality of proposed methods. We can observe that the proposed Explicit Vehicular Equation had
the lowest maximum error, with ME = 20.17, while SVR had ME = 108.98. On the other hand, Decision Tree
and Random Forest were the best methods in terms of MGD, MSE, and r2. For MAPE, the best methods are
Decision Tree, Random Forest, and SVR.

Although using any of the tested machine learning methods to estimate 𝐶𝑂2 emissions is possible, given that
all applied metrics resulted in very accurate predictions, we opted for a different approach. Instead of using
these methods, we will employ a formula that is easy to apply. This formula is not only practical to use but also
offers the flexibility to adapt the fleet in terms of fuel type and vehicle capacity. The only information required
is the average efficiency (fuel consumption) of the available vehicles in the fleet. Furthermore, as the formula is
statistically accurate, we will demonstrate its performance subsequently, reinforcing our decision to use it, as it
can be easily integrated into the investigated mathematical model.

In Section 3.2, we introduce a method for calculating gas emissions. Next, in Section 3.3, we assess the
accuracy of this approach and compare it to Machine Learning methods to measure the quality of emission
estimation.

3.2. Proposed approach for green IRP

In this section, we gather data and provide a clear and explicit presentation of our methodology for estimating
𝐶𝑂2 emissions in kilograms, simplifying the requirement for detailed vehicle-specific information. When referring

https://open.canada.ca/data/en/dataset/98f1a129-f628-4ce4-b24d-6f16bf24dd64
https://open.canada.ca/data/en/dataset/98f1a129-f628-4ce4-b24d-6f16bf24dd64
https://github.com/ariannesilvamundim/RAIRO-OR
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to this approach, we will term it the “Explicit Vehicular Equation”. To develop it, we utilized data on 𝐶𝑂2

emission factors for multiple fuel types published by the Canadian government (see [51]).
During a vehicle’s travel on the road, the internal combustion engine converts the energy stored in the fuel

into mechanical energy to drive the vehicle’s propulsion system, resulting in the emission of carbon dioxide as a
byproduct of this process. According to [51], burning 1 liter of gasoline produces approximately 2.3 kg of 𝐶𝑂2.
This means that an average vehicle, burning 2000 liters of gasoline per year, releases about 4600 kg of 𝐶𝑂2 into
the atmosphere. From chemical studies, it is known that 1 liter of gasoline, weighing 0.75 kg, produces 2.3 kg of
𝐶𝑂2, as gasoline contains carbon and hydrogen atoms. During combustion, the carbon (C) in the fuel combines
with the oxygen (O2) in the air to produce 𝐶𝑂2. The additional weight comes from oxygen.

As [70] consider, the density of gasoline is 0.75 kg/L, and the conversion factor from gasoline to 𝐶𝑂2 is 3.7
(C/𝐶𝑂2). They emphasize that in some countries, such as Brazil, the volume of ethanol mixed with gasoline,
which is approximately between 18% and 25%, should be subtracted. In this case, each liter of gasoline blended
with ethanol has a maximum of 82% pure gasoline, which should be the focus of greenhouse gas emissions
originating from fossil fuels in transportation. Thus, based on the study by Wang et al. [70], the calculation is as
follows: 1 liter of gasoline = 1×0.82×0.75×3.7 = total kilograms of 𝐶𝑂2 emitted per liter. For example, for a daily
commute in the city of 20 kilometers (km) with a car that has a consumption rate of, for instance, 10 km/liter,
its consumption will be 2 liters. For this example, the total emissions are given by: 2×0.82×0.75×3.7 = 4.55 kg
of 𝐶𝑂2. Now, if approximately 1 gasoline tank (50 liters) is used per week, driving 500 km/week, in a car that
travels 10 km per liter of gasoline, the gas emission will be: 50× 0.82× 0.75× 3.7 = 114 kg of 𝐶𝑂2 per week.

Emissions from a vehicle vary depending on the type of fuel due to different densities. More dense hydrocarbon
fuels, such as diesel, contain more carbon and, therefore, produce more 𝐶𝑂2 for a given volume of fuel. Emissions
from various types of transportation fuels are well-defined and known, as documented in [51]. The relationship
between a vehicle’s consumption (efficiency) in kilometers per liter and 𝐶𝑂2 emissions is known, Pinto and
Oliver-Hoyo [54]. Thus, the liters of fuel consumed on a given route, based on the vehicle’s average consumption,
is given by:

distance
avg veh cons

(km)
(km/L)

, (1)

which implies:

distance
avg veh cons

(L). (2)

Equation (1) represents the ratio between the distance in kilometers and the average consumption of a vehicle,
which involves the distance traveled and the amount of fuel used, in kilometers per liter. Thus, by simplifying
units of measurement, Expression 2 provides how many liters of fuel are spent to cover a distance 𝑑, knowing
the average consumption of the vehicle. Knowing the direct relationship between how many kilograms of 𝐶𝑂2

are emitted for each liter of fuel consumed, multiplying the 𝐶𝑂2 emission in Expression 2, we have:

CO2 emission (kg/L) × distance
avg veh cons

(L). (3)

Thus,

CO2 emission × distance
avg veh cons

(kg). (4)

Therefore, Expression 4 provides how many kilograms of 𝐶𝑂2 were emitted to cover a distance 𝑑, knowing
in advance the average consumption of the vehicle for any type of fuel used. In other words, this well-defined
expression accommodates a heterogeneous fleet of vehicles. That’s why this equation will be used in the proposed
green IRP model in this work.
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Table 3. Different error measures for comparing results from the explicit vehicular equation
in emission estimation.

Method ME MGD MAPE MSE r2

Explicit Veh Eq. 𝐹 𝑘
𝐶𝑂2 20,17 0,98% 0,02% 12,23 99,72%

So, to obtain a sustainable approach to the IRP, it is necessary to calculate 𝐶𝑂2 emissions, as they are
intended to be minimized. For this, a practical way to calculate how many kilograms of gas are emitted to cover
a certain distance is to know the average consumption of the vehicle used, regardless of vehicle deterioration,
new vehicle technologies, and other factors. The equation is given below, written for each type of vehicle/fuel 𝑘:

𝐹 𝑘
𝐶𝑂2

=
𝑓𝑘

(︁
kg
L

)︁
× 𝑑 (km)

𝑐𝑣𝑘
(︀

km
L

)︀ =
𝑓𝑘 × 𝑑

(︀
kg km

L

)︀
𝑐𝑣𝑘

(︀
km
L

)︀ =
𝑓𝑘 × 𝑑

𝑐𝑣𝑘
(kg) , (5)

where,

– 𝑓𝑘 represents the kilograms of 𝐶𝑂2 emitted for each liter of fuel consumed by vehicle/fuel 𝑘 (kg CO2 / L),
– 𝑑 is the distance traveled by the vehicle (km),
– 𝑐𝑣𝑘 is the average consumption of fuel of vehicle/fuel 𝑘 (km/L).

The Explicit Vehicular Equation, 𝐹 𝑘
𝐶𝑂2

given by 5, defines how many kilograms of CO2 are emitted into the
atmosphere based on the average vehicle consumption. This expression is considered generic, providing greater
scalability to the problem by allowing the consideration of various fuels and types of vehicles. Additionally, it
is straightforward to apply, requiring few parameters and can be adapted as needed.

In general terms, the first step is to obtain the average consumption of the vehicle/fuel, which may vary
depending on the driver, vehicle condition, maintenance, and weight changes. Then, we use the following values
for 𝑓𝑘 for different types of fuels (e.g., Gasoline, E10 (10% ethanol and 90% gasoline), E85 (85% ethanol and
15% gasoline), Diesel, B5 (5% biodiesel and 95% diesel), B20 (20% biodiesel and 80% diesel)): 2.29, 2.21, 1.61,
2.66, 2.65, 2.62, respectively.

3.3. Validation of the proposed formulation and comparison with machine learning
methods

In this section, we evaluate the performance of the explicit vehicular equation compared to machine learning
methods, using the same metrics and test data. Following the comparison, we demonstrate the validation of
the formula across the entire dataset. The results of applying the Explicit Vehicular Equation to the test data,
previously segregated for analysis, are presented in Table 3.

It is essential to highlight that all estimates, 𝐹 𝑘
𝐶𝑂2

and the methods, were useful in estimating 𝐶𝑂2 emissions.
An r2 above 99% is an excellent result for an approximation. However, the simplicity and quality of the approach
proposed in this work compared to Machine Learning Methods are undeniable.

The proposed equation is easy to interpret, which is a significant advantage compared to other proposed
algorithms that are often treated as black boxes or are challenging to interpret, except for the decision tree
algorithm. Additionally, the proposed equation is computationally efficient because it can be directly used to
predict gas emissions without the need for significant data collection and preprocessing steps or hyperparameter
training and optimization to generate a prediction model.

In summary, applying the data to our Explicit Vehicular Equation, we obtained an R-squared (r2) of 99.72%.
An r2 above 99% means that the values predicted by the proposed equation can account for more than 99% of
gas emissions. In addition, since the Explicit Vehicular Equation can be directly applied to the entire dataset,
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we applied it to all 20,416 instances and obtained a mean absolute error of 1.07%. For more details on the data,
see Appendix B.

In this section, we adapt the Explicit Vehicular Equation 𝐹 𝑘
𝐶𝑂2

, so that we can assess its accuracy on a public
dataset. Our equation uses the known values of the amount of kilograms of CO2 emitted for each liter of fuel and
the average consumption to develop an expression. This expression, when multiplied by the distance traveled,
results in a unique unit of measurement: kilograms of CO2 emitted by the vehicle over the corresponding
distance.

The required adaptation to apply the Explicit Vehicular Equation involved only simple algebraic manipula-
tions, enabling the estimation of the amount of CO2 emitted in grams per kilometer. Thus, the equation to be
employed to validate the dataset is presented below:

𝐹𝐶𝑂2

(︁ g
km

)︁
= 𝑓𝑘

(︂
𝑘𝑔

𝐿

)︂
× 𝐹𝐶𝐶

(︂
L

100 km

)︂
= 10× 𝑓𝑘 × 𝐹𝐶𝐶

(︁ g
km

)︁
,

where 𝐹𝐶𝐶 represents the value in the “Fuel Consumption Comb” column of the dataset, measured in liters
per 100 kilometers.

In the following, we use the described dataset to evaluate the Explicit Vehicular Equation for estimating
𝐶𝑂2 emissions, simultaneously comparing its effectiveness with traditional Machine Learning methods. Seven
regression algorithms were implemented, [40], with the purpose of estimating 𝐶𝑂2 emissions: Decision Tree,
KNN, Lasso, Random Forest, Linear Regression, Ridge, and SVR. A detailed description of each algorithm and
parameter calibration can be found in Appendix B. It is relevant to emphasize that all employed algorithms are
of the supervised type, meaning they have the ability to learn from previously provided data. For this study,
we split the dataset into two distinct parts: allocating 70% of the data for the model training process, while the
remaining 30% were used to test the algorithms’ performance.

The database contains independent variables (or features) and the target variable (the 𝐶𝑂2 emissions). The
features are: engine size in liters (Engine Size), the number of cylinders (Cylinders), average fuel consumption
(Fuel Consumption Comb), and fuel type (Fuel Type).

To apply the Explicit Vehicular Equation to this dataset, the process is straightforward: for each entry in the
“Fuel Type” variable, we use the following symbols: X for regular gasoline, Z for premium gasoline, D for diesel,
E for ethanol (E85), and N for natural gas. Then, for each type of fuel, we use the corresponding values of 𝑓𝑘:
2.29 for regular gasoline, 2.29 for premium gasoline, 2.66 for diesel, 1.61 for ethanol, and 0 for natural gas.

Consider an example taken from the database: a 2022 Toyota Corolla that uses regular gasoline (𝑓𝑘 =
2.29 kg/L), has a fuel consumption of 𝐹𝐶𝐶 = 7.1 L/100 km, and emits 165 g/km of 𝐶𝑂2. Simply multiply the
fuel consumption (𝐹𝐶𝐶) by the corresponding fuel type value to obtain the amount of 𝐶𝑂2 in grams per
kilometer using the following equation:

𝐹𝐶𝑂2

g
km

=
10
10
× 2.29

kg
L
× 7.1

L
100 km

= 162.59
g

km
·

Note that we included the factor of ten divided by ten for unit conversion to grams per kilometer (g/km) to
ensure consistency in the dataset’s unit of measurement. Thus, the estimated value is 162.59 g/km, while the
actual value is 165 g/km, resulting in a difference of −1.46%.

4. Problem modeling and solution methods

In Section 4.1, we introduce the model that we developed. Subsequently, in Section 4.2, we provide the
essential definitions for the multi-objective problem, along with an explanation of the augmented 𝜖-constrained
approach.



SUSTAINABLE SOLUTIONS ANALYSIS OF A BI-OBJECTIVE GREEN IRP WITH HETEROGENEOUS FLEET 559

Table 4. Sets and parameters of the GIRP.

Sets:
V Set of all vertices
A Set of edges

V
′

Set of customers
K Set of vehicles
𝜏 Set of time periods
Parameters:
𝐶𝑘 Capacity of each vehicle
𝑐𝑖𝑗 Transportation cost between nodes 𝑖 and 𝑗
𝑝𝑖𝑗 Euclidean distance of the path between nodes 𝑖 and 𝑗
ℎ𝑡

𝑖 Inventory holding cost at node 𝑖 at the end of time period 𝑡
𝐶𝑖 Storage capacity at customer 𝑖
𝑟𝑡 Quantity available at the supplier in time period 𝑡
𝐼0

𝑖 Initial inventory at node 𝑖
𝑑𝑡

𝑖 Customer 𝑖 demand in time period 𝑡
𝑓𝑘 𝐶𝑂2 emitted for each liter of fuel consumed by vehicle 𝑘 (kg𝐶𝑂2/L)
𝑐𝑣𝑘 Average consumption of fuel of vehicle 𝑘 (km/L)

4.1. Mathematical model GIRP and B&C algorithm

The proposed mathematical formulation for the green IRP, referred to as GIRP, which minimizes the emissions
of kilograms of 𝐶𝑂2 as seen in Expression 5, is subject to constraints that arise from the IRP with heterogeneous
fleet, based on [5, 24].

The problem is defined on an undirected graph G = (V, A), where V = {0, . . . , 𝑛} is the set of vertices, and
A = {(𝑖, 𝑗), |, 𝑖, 𝑗 ∈ V, , 𝑖 < 𝑗} is the set of edges. Vertex 0 represents the supplier, and the remaining vertices in
V′ = V∖{0} represent 𝑛 customers. The supplier has a heterogeneous fleet composed of 𝐾 vehicles, denoted by
the set K = {1, . . . ,𝐾}, where each vehicle 𝑘 ∈ K has unique characteristics, such as capacity 𝐶𝑘 and the type
of fuel it consumes (i.e., each 𝑘 ∈ K denotes a vehicle/fuel). Each vehicle can perform a route per time period
to deliver products from the supplier to a subset of customers. A travel associated with all the edges (𝑖, 𝑗) ∈ A
have a cost 𝑐𝑖𝑗 and a distance 𝑝𝑖𝑗 . Both the supplier and the customers have unit inventory holding costs ℎ𝑡

𝑖 at
the end of each time period, 𝑖 ∈ V, and each customer has a storage capacity 𝐶𝑖, 𝑖 ∈ V. The planning horizon
size is 𝑇 , and in each time period 𝑡 ∈ 𝜏 = {1, . . . , 𝑇}, the production/quantity of product available at the
supplier is 𝑟𝑡. We assume that the supplier has sufficient stock to meet the total customer demand during the
planning horizon, and all demand must be satisfied; in other words, backlogging is not allowed, and inventories
cannot be negative. The variables 𝐼0

0 and 𝐼0
𝑖 are defined as the initial inventories at the supplier and customer

𝑖 ∈ V′, respectively. At the beginning of the planning horizon, the decision-maker knows the demand 𝑑𝑡
𝑖 of each

customer 𝑖 for each time period 𝑡.

The model uses variables 𝑥𝑘𝑡
𝑖𝑗 equal to the number of times edge (𝑖, 𝑗) with 𝑖 < 𝑗 is used in the route of vehicle

𝑘 in period 𝑡. Binary variables 𝑦𝑘𝑡
𝑖 are equal to 1 if and only if node 𝑖 (the supplier or a customer) is visited by

vehicle 𝑘 in period 𝑡. Let 𝐼𝑡
𝑖 be the inventory level at vertex 𝑖 ∈ V at the end of time period 𝑡 ∈ 𝜏 . 𝑞𝑘𝑡

𝑖 is the
quantity of product delivered from the supplier to customer 𝑖 using vehicle 𝑘 in time period 𝑡.

Table 4 summarizes all the notation introduced above.

With this, the GIRP consists of determining when customers will be visited, the quantity of product that
will be delivered to each customer, and which routes should be taken to make these deliveries. The objective is
to minimize the total operational cost, as well as minimize the emission of 𝐶𝑂2 kilograms.
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The MIP model for GIRP is presented below:

Minimize 𝐹𝐼𝑅𝑃 =
∑︁
𝑖∈V

∑︁
𝑖∈𝜏

ℎ𝑡
𝑖 𝐼𝑡

𝑖 +
∑︁
𝑖∈V

∑︁
𝑗∈V,𝑖<𝑗

∑︁
𝑘∈K

∑︁
𝑡∈𝜏

𝑐𝑖𝑗 𝑥𝑘𝑡
𝑖𝑗 (6)

Minimize 𝐹𝐶𝑂2 =

∑︀
𝑖∈𝑉

∑︀
𝑗∈𝑉,𝑖<𝑗

∑︀
𝑘∈K

∑︀
𝑡∈𝑇 𝑓𝑘 𝑝𝑖𝑗 𝑥𝑘𝑡

𝑖𝑗∑︀
𝑘∈K 𝑐𝑣𝑘

(7)

Subject to

𝐼𝑡
0 = 𝐼𝑡−1

0 + 𝑟𝑡 −
∑︁
𝑘∈K

∑︁
𝑖∈V′

𝑞𝑘𝑡
𝑖 , 𝑡 ∈ 𝜏, (8)

𝐼𝑡
𝑖 = 𝐼𝑡−1

𝑖 +
∑︁
𝑘∈K

𝑞𝑘𝑡
𝑖 − 𝑑𝑡

𝑖, 𝑖 ∈ V′ , 𝑡 ∈ 𝜏, (9)

∑︁
𝑘∈K

𝑞𝑘𝑡
𝑖 ≤ 𝐶𝑖 − 𝐼𝑡−1

𝑖 , 𝑖 ∈ V′ , 𝑡 ∈ 𝜏, (10)

𝑞𝑘𝑡
𝑖 ≤ 𝐶𝑖 𝑦𝑘𝑡

𝑖 , 𝑖 ∈ V′ , 𝑘 ∈ K, 𝑡 ∈ 𝜏, (11)∑︁
𝑖∈V′

𝑞𝑘𝑡
𝑖 ≤ 𝐶𝑘 𝑦𝑘𝑡

0 , 𝑘 ∈ K, 𝑡 ∈ 𝜏, (12)

∑︁
𝑗∈V,𝑖<𝑗

𝑥𝑘𝑡
𝑖𝑗 +

∑︁
𝑗∈V,𝑗<𝑖

𝑥𝑘𝑡
𝑗𝑖 = 2 𝑦𝑘𝑡

𝑖 , 𝑖 ∈ V, 𝑘 ∈ K, 𝑡 ∈ 𝜏, (13)

∑︁
𝑖∈S

∑︁
𝑗∈S,𝑖<𝑗

𝑥𝑘𝑡
𝑖𝑗 ≤

∑︁
𝑖∈S

𝑦𝑘𝑡
𝑖 − 𝑦𝑘𝑡

𝑔 , S ⊆ V′ , 𝑘 ∈ K, 𝑡 ∈ 𝜏,∀𝑔 ∈ S, (14)

∑︁
𝑘∈K

𝑦𝑘𝑡
𝑖 ≤ 1, 𝑖 ∈ V, 𝑡 ∈ 𝜏, (15)

𝐼𝑡
𝑖 ≥ 0, 𝑖 ∈ V, 𝑡 ∈ 𝜏, (16)

𝑞𝑘𝑡
𝑖 ≥ 0, 𝑖 ∈ V′ , 𝑘 ∈ K, 𝑡 ∈ 𝜏, (17)

𝑥𝑘𝑡
0𝑗 ∈ {0, 1, 2} , 𝑗 ∈ V′ , 𝑘 ∈ K, 𝑡 ∈ 𝜏, (18)

𝑥𝑘𝑡
𝑖𝑗 ∈ {0, 1} , 𝑖, 𝑗 ∈ V′ : 𝑖 < 𝑗, 𝑘 ∈ K, 𝑡 ∈ 𝜏, (19)

𝑦𝑘𝑡
𝑖 ∈ {0, 1} , 𝑖 ∈ V, 𝑘 ∈ K, 𝑡 ∈ 𝜏. (20)

The objective function 6 𝐹𝐼𝑅𝑃 minimizes inventory and transportation costs, while 7 𝐹𝐶𝑂2 minimizes the kilo-
grams of carbon dioxide emitted, through the proposed formulation described in 5. Constraints (8) and (9) define
inventory levels at the supplier and customers, respectively. Constraints (10) impose a maximum inventory level
at the customers. Constraints (11) associate the quantity of products delivered with routing variables, allowing
a vehicle to deliver products to a customer only if that customer is visited by that vehicle. Constraints (12)
ensure that vehicle capacities are respected, while constraints (13) and 14 are degree constraints and subcycle
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elimination constraints, respectively. Constraints (15) state that each customer can be visited at most once
in each period. Constraints (16) prevent stockouts at the supplier and customers, and Constraints (17)–(20)
impose non-negativity and integrality conditions on the variables.

To solve this model exactly, we employed a basic branch-and-cut (B&C) algorithm based on [6]. Several
authors in the IRP literature use exact B&C methods, as in [8, 9, 23]. Green IRP studies also employ this type
of method, such as in [21,22,27,60]. The GIRP and 𝜖-GIRP models contain an exponential number of subcycle
elimination constraints (14), so a B&C-type algorithm was applied in this work. These constraints are relaxed
in the formulation and added iteratively whenever they are violated in the nodes of the branch-and-bound tree.

In the implementation, an exact separation algorithm is used to solve a series of minimum cut problems to
identify the violated constraints for each vehicle and time period. At each node of the branch-and-bound tree,
let 𝑦𝑘𝑡

𝑖 and 𝑥̄𝑘𝑡
𝑖𝑗 be the values of the visit (𝑦) and flow (𝑥) variables in the solution, respectively. A graph is

constructed for each vehicle 𝑘 and time period 𝑡 for the nodes with 𝑦𝑘𝑡
𝑖 > 0, defining the edge weights of the

new graph as 𝑥̄𝑘𝑡
𝑖𝑗 , ∀(𝑖, 𝑗) ∈ A.

Next, we will present some definitions of multi-objective optimization and describe the augmented epsilon-
constrained method for GIRP.

4.2. Multi-objective optimization for GIRP and augmented e-constrained method

A multi-objective (or multicriteria) problem is characterized by the existence of a set of feasible solutions
defined through a set of constraints, where the objectives are specified through an objective function. In gen-
eral, in multi-objective problems, there is no solution that optimizes all objective functions simultaneously [2],
therefore, they involve the optimization of a vector composed of scalar functions chosen as a way to assess the
impact of feasible decisions in the problem, according to different performance indices.

The multi-objective approach seeks to find the set of optimal points for the components of the vector objective
function (the vector is composed of the objective functions to be optimized), where, unlike mono-objective
optimization, the solution to the problem is a set of efficient points (solutions). Each efficient solution is optimal
in the sense that no improvement can be achieved in one component of the vector function without worsening
at least one of the remaining components of the vector function [62]. Within the set of efficient solutions, the
decision-makers will choose the one they find most satisfactory.

Here are some definitions, which can also be found in [25]:

– Dominated solution: A solution is dominated if and only if there exists another solution that is better in at
least one criterion/objective, without being worse in any of the others.

– Efficient solution (Non-Dominated or Pareto Optimal): A solution is efficient if and only if it is not dominated
by any feasible solution, meaning that in multicriteria formulation, a non-dominated solution is a solution
that outperforms another solution in all objectives, or it is a solution that cannot be improved in terms of
one objective without worsening at least one other objective.

– Weakly efficient solution: A solution is weakly efficient if it can be improved in terms of one objective without
worsening at least one other objective.

– Efficient set (Pareto Set): It is the set of non-dominated solutions.
– Pareto Front : It is the image of non-dominated solutions of the Pareto set in the objective values space.

Professionals in various fields often face situations where it is necessary to consider multiple objectives and
evaluate the possibility of relaxing constraints to achieve a better fit of the model to the real-world problem,
Aliano Filho et al. [1]. For example, when planning product deliveries to meet customer demand, managing
inventory, and determining vehicle routes, it can be stated that executing this plan will emit a certain amount
of 𝐶𝑂2. Therefore, subjecting this plan to emissions as a constraint in the model, limited to acceptable emission
values, is an interesting way to analyze the trade-off behavior between costs and emissions.

In this context, within the scope of the GIRP, this work conducts an analysis of solutions with the aim of
capturing the trade-off between costs and emissions, through the development of a multi-objective optimization
model, as suggested by [21,66].
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The 𝜖-constrained method overcomes some difficulties of previous methods. Proposed in [36], this method
scalarizes a multi-objective problem by selecting one function as the objective and restricting the others with
specified limits. When these limits vary appropriately, efficient solutions can be obtained.

In this study, we apply the augmented 𝜖-constrained method, Mavrotas [47], as it avoids weakly efficient
solutions when slightly modifying the contours of the objective to be optimized. We achieve this by prioritizing
the costs of IRP in the GIRP model, described in Expression 6 as 𝐹𝐼𝑅𝑃 , and adding a term that introduces
sustainability to the model, computing the emission of gas described in Expression 7 as 𝐹𝐶𝑂2 multiplied by
𝜌 ≈ 0. Finally, we include the emission of 𝐶𝑂2 as a constraint limited to 𝜖. Although the literature formulation
𝐹 𝑘 can be used in the multi-objective approach, we chose to use the gas emission estimate proposed in this
work, given by equation (5), which is the 𝐹𝐶𝑂2 of the GIRP model. With this, the model is named 𝜖-GIRP:

Minimize 𝐹𝐼𝑅𝑃 + 𝜌 𝐹𝐶𝑂2 (21)

Subject to

𝐹𝐶𝑂2 ≤ 𝜖, (22)

constraints (8)−(20). (23)

With 𝜌 ≈ 0, we slightly modify the contours of the objective to be optimized. The objective function 21
minimizes inventory and transportation costs plus the emission of kilograms of 𝐶𝑂2. While the set of con-
straints (22) ensures that the established 𝜖 is considered, i.e., the 𝐶𝑂2 emission will be limited to 𝜖 values.
Constraints (8)–(20) are described earlier. The way 𝜖 is defined will be described in Section 5.3.

5. Computational experiments, results, and discussions

We present the entire testing environment and data in Section 5.1, with details of the general data. And we
present its results in Section 5.2. In Section 5.3, we show the results of the 𝜖-GIRP model. Finally, in Section 5.4
we also discuss managerial insights from the decision-maker’s perspective.

5.1. Testing environment and data for GIRP

The algorithms were implemented in the C++ programming language, and the computational experiments
were conducted on a machine with an Intel Core i5-11400H @ 2.70 GHz × 12, 16 GB RAM, and Ubuntu 20.04.3
LTS as the operating system. The model was solved with IBM ILOG CPLEX 12.9, considering its default
settings and a time limit of 3600 s as the stopping criterion.

The instances are inspired by Archetti et al. [8]. For all models, we used the following data: The number of
customers: 𝑛 = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50; inventory costs at customers, ℎ𝑖 = [0.1, 0.5] and at the supplier
ℎ0 = 0.3 (denoted as H, representing high costs) and ℎ𝑖 = [0.01, 0.05] and at the supplier ℎ0 = 0.03 (denoted
as L, representing low costs); thus, they were named H3, L3, H6, L6 for 𝑇 = 3 and 6, representing the planning
horizon size; demand 𝑑𝑡

𝑖 is randomly generated as an integer in the range [10, 100] and remains constant over
time, i.e., 𝑑𝑡

𝑖 = 𝑑𝑖; the product quantity 𝑟𝑡 =
∑︀

𝑖∈V′ 𝑑𝑖 at time 𝑡; the maximum inventory level at customer 𝑖 is
generated between 0 and 500; the initial inventory level at the supplier is the sum of the maximum inventory level
of all customers; the initial inventory level at customer 𝑖 is the maximum inventory level minus 𝑑𝑖. Euclidean
distance is considered for 𝑝𝑖𝑗 , where the points (𝑋𝑖, 𝑌𝑖) and (𝑋𝑗 , 𝑌𝑗) in the plane are obtained by automatic
generation of each coordinate as an integer in the range [0, 500]. As done by literature, travel costs correspond
to Euclidean distances rounded to the nearest integer, i.e., ⌊𝑝𝑖𝑗⌋ = 𝑐𝑖𝑗 . This totals 32 groups of instances, as [8]
in their benchmark configure five variations for each group, totaling 160 instances used in this article.

For instances where the model did not find the optimal solution, we calculated the solution gap, obtained by
𝑈𝐵−𝐿𝐵

𝑈𝐵 , where 𝑈𝐵 is the upper bound and 𝐿𝐵 is the lower bound.
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Table 5. Data used in the proposed instances for GIRP.

Type of fuel 𝐶𝑂2 emissions (kg/L) 𝑐𝑣𝑘

Gasoline 2.29 8
E10 (10% ethanol + 90% gasoline) 2.21 10
E85 (85% ethanol + 15% gasoline) 1.61 12
Diesel 2.66 2
B5 (5% biodiesel + 95% diesel) 2.65 3
B20 (20% biodiesel + 80% diesel) 2.62 5

For the computational tests, we generated instances with different fleet sizes, six types of fuels, and distinct
vehicle capacity proportions. Based on [51], the fuels are gasoline, E10, E85, diesel, B5, and B20, along with their
respective emission factors 𝑓𝑘 for each vehicle/fuel 𝑘, as shown in the second column of Table 5. Fleet sizes include
6, 18, and 30 vehicles, which are described below. In this table, we have data for each vehicle that makes up the
fleets and instances proposed for GIRP. The table rows provide information for each vehicle/fuel 𝑘, including
their respective emissions and vehicle efficiency 𝑐𝑣𝑘. With this data, the table illustrates the configuration of a
fleet with 6 vehicles, where each vehicle consumes a specific type of fuel. The fleet with 6 vehicles is such that
each vehicle consumes a specific fuel type. The fleet with 18 vehicles includes three gasoline vehicles, seven E10
vehicles, three E85 vehicles, one diesel vehicle, one B5 vehicle, and three B20 vehicles. The largest fleet with 30
vehicles includes four gasoline vehicles, eight E10 vehicles, ten E85 vehicles, two diesel vehicles, two B5 vehicles,
and four B20 vehicles.

The vehicle capacity 𝐶𝑘 is estimated based on the capacity created by Archetti et al. [8], where vehicles with
higher capacity are diesel, B5, B20, followed by gasoline, E10, and E85, with capacities of 90%, 85%, 70%, 25%,
20%, and 5% of the Archetti instances’ capacity.

5.2. GIRP results

We conducted extensive computational tests for GIRP. In the result tables in this section, we show the
solutions obtained from the model for each of the objective functions separately. This allows us to analyze how
𝐶𝑂2 emissions impact IRP costs and how costs influence emissions. The tests cover fleets of different sizes and
configurations to analyze the model’s performance and effectiveness. Once again, it should be noted that the
model proposed in this work allows us to include more vehicles in the problem with different fuels.

In Tables 6, 7 and 8, each row contains the average solution of a group of five instances, totaling 160 in each
table, arranged as follows: in the first column is the number 𝑛 of customers; the second column contains the
number 𝑝 of planning periods, which are 3 and 6, accompanied by the letters H and L, representing high and
low inventory costs, respectively; the third column “𝐶𝑂2 o. f.” shows the amount of 𝐶𝑂2 emitted from the
GIRP model when minimizing only 𝐶𝑂2, GIRP (min 𝐶𝑂2); in the fourth column “IRP v.”, the resulting cost
value when minimizing 𝐶𝑂2 is presented; the fifth column displays the computational time in seconds, and the
sixth column shows the solution gap. The last four columns present the results obtained from the GIRP model
when minimizing only costs, GIRP (min transp c + invent c), which include: minimized costs in “IRP o. f.”,
the 𝐶𝑂2 emission value in “𝐶𝑂2 v.”, the time, and the gap, respectively.

Some observations about the tables should be highlighted: Each row in the tables contains the result of the
average of five instances, but for some groups, this was not possible. To represent the group of instances for
which the algorithm did not find feasible solutions for at least one of them, an asterisk (*) is subscripted in the
tabulated values. All analyses and considerations between the models were made for the groups for which it was
possible to calculate the averages of the five, i.e., groups for which the algorithm found viable and/or optimal
solutions within the 3600 s time limit.
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Table 6. Computational results for the proposed model, for 6 vehicles.

GIRP (min 𝐶𝑂2) IRP (min transp c + invent c)
𝑛 𝑝 𝐶𝑂2 o. f. IRP v. Runtime Gap % IRP o. f. 𝐶𝑂2 v. Runtime Gap %

5 H3 794.8 4367.2 15.1 0 3674.7 1999.4 2.5 0
15 H3 818.7 5769.1 188.1 0 4531.6 2289.8 3.4 0
20 H3 946.0 7457.8 1525.8 1 5992.3 2631.7 89.2 0
25 H3 1039.1 8639.2 2303.0 8 7409.1 2680.9 52.9 0
30 H3 1025.9 10579.1 2786.1 20 8770.0 3014.0 41.2 0
35 H3 1157.4 11943.4 3600.6 20 9267.8 3121.2 802.0 0
40 H3 1219.5 12755.4 3600.0 30 10048.9 3229.4 144.0 0
45 H3 1554.0 15217.8 3600.0 40 11119.8 3364.8 821.9 0
50 H3 2549.4* 22019.6* 3600.0* 64* 12354.9 3128.0 2333.3 1
5 H6 1407.1 6160.1 39.0 0 5041.6 3724.2 4.9 0
10 H6 2052.0 10674.3 3259.5 10 8113.6 5532.4 678.4 0
15 H6 2273.7 14563.1 3600.0 22 10637.7 5748.9 598.8 0
20 H6 2905.5 17821.6 3600.0 32 13403.1 6755.2 2459.7 1
25 H6 3495.1* 22309.2* 3600.0* 35* 15482.1 7537.5 2416.6 1
30 H6 3534.0* 27693.9* 3600.0* 46* 18498.6 7455.4 3600.0 1
5 L3 523.6 1875.9 0.9 0 1246.7 1454.4 0.4 0
10 L3 794.8 2549.1 15.5 0 1863.4 1935.9 3.4 0
15 L3 818.7 3342.3 193.3 0 2118.0 2249.7 4.9 0
20 L3 946.0 4023.1 1561.3 1 2589.5 2647.6 64.7 0
25 L3 1039.1 4124.0 2310.1 8 2940.4 2627.3 164.8 0
30 L3 998.4 4752.5 3600.0 13 3066.7 2947.9 44.2 0
35 L3 1160.5 5966.7 3600.0 21 3303.0 3353.7 1217.0 0
40 L3 1269.0 6588.7 3600.0 32 3463.3 3083.7 190.2 0
45 L3 1544.0 7671.6 3600.0 40 3666.3 2946.1 1074.8 0
50 L3 –* –* –* –* 4121.9 3709.2 2395.2 3
5 L6 1407.1 4247.1 39.6 0 3143.7 3622.3 4.2 0
10 L6 2049.3 7158.8 3269.4 9 4712.5 5680.6 915.9 0
15 L6 2273.1 9011.4 3600.0 22 5402.8 5953.4 980.5 0
20 L6 2900.1 11064.2 3600.0 32 6584.5 7198.2 2979.4 2
25 L6 3512.6* 14596.7* 3600.0* 35* 7258.4 7374.6 3365.3 2
30 L6 3522.7* 15863.5* 3600.0* 46* 7635.5 7709.5 3600.0 3

In Table 6, solutions are presented for a fleet with 6 vehicles, each consuming a different type of fuel as
described in Table 5. There are 160 instances in total, for which the GIRP (min transp c + invent c) model
found solutions for all instances, while the GIRP (min 𝐶𝑂2) model did not find a solution for at least one
instance in each of the following groups: 𝑛 = 50 and H3; 𝑛 = 25, 30, and H6; 𝑛 = 50 and L3; 𝑛 = 25, 30,
and L6, within the time limit. In terms of optimality proof, the GIRP (min 𝐶𝑂2) model was able to prove the
optimality of 35.62% of the instances compared to 79.37% for the IRP (min transp c + invent c) model. For this
fleet of vehicles, GIRP (min 𝐶𝑂2) obtained an average gap of 13.88%, while the gap for the GIRP (min transp c
+ invent c) model was less than 1%. Nevertheless, the 𝐶𝑂2 emissions from GIRP (min 𝐶𝑂2) were impressive,
achieving a 61% reduction. In terms of computational time, GIRP (min 𝐶𝑂2) was 76.7% more costly.

In Table 7, solutions are presented for a fleet of 18 vehicles, with three gasoline vehicles, seven E10 vehicles,
three E85 vehicles, one diesel vehicle, one B5 vehicle, and three B20 vehicles. There are 160 instances in total,
for which the GIRP (min transp c + invent c) model found solutions for all instances, while the GIRP (min
𝐶𝑂2) model did not find a solution for at least one instance in each of the four groups: 𝑛 = 50 and H3; 𝑛 = 5
and H6; 𝑛 = 50 and L3; and 𝑛 = 5 and L6, within the time limit. In terms of optimality proof, the GIRP (min
𝐶𝑂2) model was able to prove the optimality of 5.63%, while the GIRP (min transp c + invent c) model proved
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Table 7. Computational results for the proposed model, for 18 vehicles.

GIRP (min 𝐶𝑂2) IRP (min transp c + invent c)
𝑛 𝑝 𝐶𝑂2 o. f. IRP v. runtime gap % IRP o. f. 𝐶𝑂2 v. runtime gap %

5 H3 518.9 2834.8 854.7 0 1934.3 1386.4 1.2 0
10 H3 771.3 4994.23 3600.0 19 3674.7 2045.2 19.9 0
15 H3 806.2 6423.3 3600.0 32 4531.6 2278.6 52.5 0
20 H3 1034.7 8711.7 3600.0 39 5992.3 2546.8 1029.4 0
25 H3 1039.4 9847.9 3600.0 33 7409.1 2715.7 1936.0 0
30 H3 1302.9 12749.0 3600.0 51 8770.0 2993.3 783.8 0
35 H3 1737.2 14881.3 3600.7 55 9290.9 3141.9 2449.4 1
40 H3 6642.5 26733.2 3600.8 90 10073.4 2894.5 2448.8 1
45 H3 8426.3 32019.9 3591.3 92 11549.9 2914.0 3490.5 4
50 H3 13286.9* 43212.3* 3600.1* 94* 12653.9 3819.1 3600.3 4
5 H6 1147.1* 5899.3* 3600.0* 8* 5041.6 3533.8 30.2 0
10 H6 2030.8 12308.5 3600.0 25 8118.6 5416.6 2568.3 1
15 H6 2604.1 17055.5 3600.0 47 10638.9 5672.9 3231.9 1
20 H6 5621.2 33522.8 3600.0 67 13503.8 6737.8 3600.0 2
25 H6 10067.9 41083.4 3600.0 75 15632.6 7735.9 3600.0 2
30 H6 12983.2 47232.5 3600.1 88 35718.2 11072.1 3600.1 38
5 L3 518.9 2143.3 850.2 0 1246.7 1456.8 1.2 0
10 L3 771.3 3170.4 3600.0 20 1863.4 2014.5 23.8 0
15 L3 795.8 3961.3 3600.0 31 2118.0 2219.2 77.4 0
20 L3 1038.2 5340.0 3600.0 40 2589.5 2652.4 963.2 1
25 L3 1037.5 5314.8 3600.0 33 2940.4 2445.1 1743.7 1
30 L3 1371.0 7051.5 3600.3 52 3066.7 2961.4 581.9 0
35 L3 1718.6 8753.8 3600.0 54 3322.8 3213.4 2332.0 3
40 L3 6625.4 19623.6 3600.0 90 3463.3 3250.0 2128.6 1
45 L3 8370.7 24353.6 3600.0 92 3962.4 2760.5 3568.9 9
50 L3 13286.9* 35196.0* 3600.1* 94* 4330.3 3662.4 3600.0 9
5 L6 1424.4* 4296.4* 3600.0* 10* 3143.7 3703.4 42.6 0
10 L6 2025.3 8897.5 3600.0 25 4646.9 5103.9 2705.6 2
15 L6 2600.9 11819.4 3600.0 47 5408.8 5659.2 3546.9 2
20 L6 5617.3 26701.0 3600.0 67 6696.8 7061.3 3600.1 4
25 L6 10572.4 33972.5 3600.03 76 7558.9 7733.3 3600.0 7
30 L6 12983.2 36259.5 3600.0 88 16809.7 9673.3 3600.1 40

it for 53.75%. With this fleet of available vehicles, GIRP (min 𝐶𝑂2) obtained solutions with an average gap
of 51%, while the gap for the GIRP (min transp c + invent c) model was less than 4.43%. Unexpectedly, 𝐶𝑂2

emissions also reduced by 5.2%. The computational time for GIRP (min 𝐶𝑂2) was approximately 40% more
costly.

In Table 8, solutions are presented for 30 vehicles, including four gasoline vehicles, eight E10 vehicles, ten
E85 vehicles, two diesel vehicles, two B5 vehicles, and four B20 vehicles. There are 160 instances in total, for
which the GIRP (min transp c + invent c) model found solutions for all instances, while the GIRP (min 𝐶𝑂2)
model did not find a solution for at least one instance in each of the following groups: 𝑛 = 10 and H3; 𝑛 = 50
and H3; 𝑛 = 25, 30, and H6; 𝑛 = 50 and L3; 𝑛 = 25, and L6; and 𝑛 = 30 and L6, within the time limit. In terms
of optimality proof, the GIRP (min 𝐶𝑂2) model was able to prove the optimality of 5.62% of the instances,
while the GIRP (min transp c + invent c) model proved it for 35%. Now, considering a larger fleet of vehicles,
the 𝐶𝑂2 emission solutions of the GIRP (min 𝐶𝑂2) model were slightly more polluting due to a gap of over
52%, while the average gap for the GIRP (min transp c + invent c) model was 3%. In terms of computational
time, GIRP was 33% more costly.
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Table 8. Computational results for the proposed model, for 30 vehicles.

GIRP (min 𝐶𝑂2) IRP (min transp c + invent c)
𝑛 𝑝 𝐶𝑂2 o. f. IRP v. Runtime Gap % IRP o. f. 𝐶𝑂2 v. Runtime Gap %

5 H3 522.4 2879.0 1655.2 1 1934.3 1436.5 3.2 0
10 H3 820.8 * 5005.3 * 3600.0 * 24* 3674.7 2156.5 139.3 0
15 H3 812.2 6582.2 3600.0 34 4531.6 2323.5 420.3 0
20 H3 1043.2 8779.6 3600.0 42 5992.3 2673.0 1560.8 1
25 H3 2079.7 15399.7 3600.0 52 7416.6 2699.8 2318.4 1
30 H3 3081.8 18991.7 3600.0 77 8852.7 2728.7 2880.8 1
35 H3 8133.2 31484.5 3600.1 90 9304.3 3159.6 3060.3 2
40 H3 8619.5 31453.2 3600.1 90 10178.6 2939.8 3600.0 2
45 H3 8621.7 32431.9 3600.1 92 11323.3 3864.4 3604.2 3
50 H3 8253.1* 37474.2* 3600.1* 90* 22690.7 7968.7 3600.0 29
5 H6 1416.5 6830.0 3600.0 10 5041.6 3712.6 319.9 0
10 H6 2033.1 11850.1 3600.0 26 8118.6 5438.5 3600.0 3
15 H6 2593.1 17761.0 3600.0 47 10656.9 5927.5 3600.0 2
20 H6 7338.4 38517.4 3600.0 77 13741.3 6684.4 3600.0 4
25 H6 11718.0* 43346.2* 3600.1* 83* 15758.7 8327.9 3600.0 3
30 H6 7696.2* 43232.8* 3601.7* 80* 43311.8 12429.3 3600.1 57
5 L3 522.4 2184.1 1683.7 1 1246.7 1397.8 2.3 0
10 L3 771.6 3094.1 3600.0 21 1863.4 1992.7 188.4 0
15 L3 816.5 4234.8 3591.3 34 2118.0 2305.5 424.9 0
20 L3 1038.1 5345.3 3600.0 41 2589.5 2730.3 1608.2 2
25 L3 2054.8 10758.4 3600.0 50 2948.2 2690.9 2943.6 4
30 L3 3106.1 13472.9 3600.0 77 3071.0 3048.0 2786.0 1
35 L3 8156.6 25150.4 3600.1 90 3332.3 3303.4 2706.6 3
40 L3 8619.5 24813.0 3600.1 90 3831.6 2864.1 3600.2 11
45 L3 8621.7 24833.0 3600.1 92 4540.8 3493.5 3602.6 20
50 L3 8253.1* 29585.5* 3600.1* 90* 12023.4 6892.6 3600.0 36
5 L6 1415.9 4933.9 3600.0 11 3143.7 3638.3 449.3 0
10 L6 2037.0 8478.2 3600.0 26 4726.6 5393.0 3600.0 5
15 L6 2824.2 13407.9 3600.3 51 5411.1 5889.1 3600.0 3
20 L6 7338.4 31625.7 3600.0 77 6958.1 7610.3 3600.0 8
25 L6 11718.0* 35391.1* 3600.1* 83* 17478.6 10524.5 3600.1 27
30 L6 7696.2* 34551.4* 3609.4* 80* 20155.9 8098.4 3600.8 43

Therefore, we conducted computational tests to evaluate the model’s performance, considering various fleet
configurations that differ in the number of vehicles and types of fuels used. We observed a substantial reduction
in emissions of the pollutant gas by the model, aligning with the objectives of our research. However, we noted
that, for fleets with more than 18 vehicles, the model faces greater challenges in achieving efficient solutions,
particularly in larger instances with numerous clients.

Upon examining the obtained solutions, we emphasized the trade-off between the commitments of the GIRP:
𝐶𝑂2 emissions and IRP costs. When minimizing one objective function, the other function reaches its maximum
value and vice versa. Additionally, for each instance where the model achieves an optimal solution for both
objectives, we can see the difference between the values of each commitment when the function is minimized
and when it is not. From these observations, we identified the opportunity to address the problem through
multi-objective methods.
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5.3. 𝜖-GIRP results

In this section, we present the details of the data and computational experiments of the 𝜖-constrained multi-
objective method for GIRP. In Section 5.4, we present some perceptions from a managerial point of view.

To find the feasible range of 𝜖 values, we define the minimum and maximum values, which are denominated
by lexicographic points, for each instance, as follows:

– L𝐶𝑂2: Left lexicographic (lower limit of 𝐶𝑂2): Result obtained by solving the GIRP model (𝐹𝐶𝑂2), that is,
the objective function minimizes the emission of kilograms of 𝐶𝑂2, and

– U𝐶𝑂2: Right lexicographic (upper limit of 𝐶𝑂2): Result of the amount of 𝐶𝑂2 emitted by solving the GIRP
model (𝐹𝐼𝑅𝑃 ), where we have the cheapest solution from the IRP point of view.

The GIRP model, with only the objective function 𝐹𝐶𝑂2 , minimizes the carbon dioxide 𝐶𝑂2 emissions and
obtains the minimum value for the interval (L𝐶𝑂2). For the other extreme of the interval, we solve the GIRP
model, with only the objective function 𝐹𝐼𝑅𝑃 , which minimizes the operational costs of the IRP, and compute
the gas emissions, obtaining the maximum value for the interval (U𝐶𝑂2). In other words, the model is solved
twice, using the B&C method, to find the interval [𝐿𝐶𝑂2, 𝑈𝐶𝑂2]. This interval is divided into 5 parts, with
each division named 𝜖𝑖 (with 𝑖 ranging from 1 to 5), where a higher value of 𝑖 indicates a more relaxed constraint
𝜖, and a lower value indicates a more restricted space of feasible solutions. The steps to obtain the values of the
5 𝜖’s are: (i) calculate the interval size 𝑑𝑖𝑓𝑓 = 𝑈𝐶𝑂2 − 𝐿𝐶𝑂2; (ii) calculate the step size 𝑠𝑡𝑒𝑝 = 𝑑𝑖𝑓𝑓

5 ; (iii) for
each 𝑖 = 1..5, calculate 𝜖𝑖 = 𝐿𝐶𝑂2 + (𝑠𝑡𝑒𝑝× (𝑖− 1)).

Due to the sensitivity of the input data and to validate the proposed approach for 𝜖-GIRP, we generated 5
fleet configurations for each instance from [8], such as variations of the instance presented in Table 5, where we
defined alternative values for 𝑣𝑐𝑘 and 𝐶𝑘 for each vehicle/fuel type.

For each calculated 𝜖 value, the 𝜖-GIRP model is executed, and thus we obtain the efficient solutions, which
constitute the efficient set.

In this section, computational experiments for the augmented 𝜖-constrained method for the GIRP model,
called 𝜖-GIRP, represented by equations (21)–(23), will be presented. This formulation uses a multicriteria
approach and was developed for GIRP, where we prioritize and minimize the costs of IRP restricted to gas
emissions limited by an 𝜖, in addition to the other sets of constraints of the IRP model. Thus, it is possible to
find intermediate solutions within a feasible interval for each value of 𝜖.

Values of 𝜖 were obtained through initial experiments, where we sought the optimal lexicographic points within
a time limit of 3600 s. Intermediate non-dominated solutions from the efficient set were found, on average, within
13 min. For instances that required more computational time, the model found the solutions in less than 50 min.

Table 9 presents the solutions for a fleet with 3 vehicles (gasoline, E85, and diesel) and 𝑇 = 3. Each row
represents the average of the five generated fleet configurations. The first column represents the instance from
the literature, the second column (nC) is the number of customers i.e., 𝑛− 1, followed by the efficient solutions
obtained by applying the 𝜖-constrained method for 5 values of 𝜖. It can be observed that, for each 𝜖, the emission
function increases while the cost function decreases. Calculating the average variation across all instances in
the table between 𝜖1 and 𝜖5, we find that the average of the lexicographic solutions indicates a 58% reduction
in emissions while costs increased by 36%.

Therefore, we can observe the behavior of the solutions as the Pareto set is obtained. Thus, we highlight the
importance of multi-objective analysis in problems where the involved trade-offs are conflicting.

For a better visualization of this analysis, Figure 1 is the Pareto frontier with 5 non-dominated points for
the abs3 instance with 5 customers and a fleet of 3 vehicles, presented in Table 9. The frontier is steep in the
proximity of the emission minimum (left side) and becomes flatter towards the IRP cost minimum (right side).
This means that small changes in 𝐶𝑂2 emissions lead to sharp differences in costs, while solutions with relatively
low costs generate notably different emissions. This suggests that our choice of identifying three Pareto-optimal
solutions between the two lexicographic solutions provides a reasonably representative sample.

The Table 10 presents the solutions for a fleet of 6 vehicles, with each vehicle consuming a type of fuel, and
Table 11 presents the solutions when the fleet consists of 12 vehicles, with every two vehicles consuming a type
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Table 9. Results of the 𝜖-GIRP model, for a fleet with 3 vehicles and 𝑇 = 3.

𝜖1 𝜖2 𝜖3 𝜖4 𝜖5
nC 𝐶𝑂2 emission IRP costs 𝐶𝑂2 emission IRP costs 𝐶𝑂2 emission IRP costs 𝐶𝑂2 emission IRP costs 𝐶𝑂2 emission IRP costs

abs1 5 386.8 2852.3 543.7 2430.1 920.6 2350.3 1110.6 2097.4 1542.6 1933.7
abs2 5 510.9 2993.0 597.1 2907.7 741.3 2816.3 887.7 2383.1 1250.2 1615.7
abs3 5 1250.1 4911.7 1472.7 4046.7 1830.3 3249.2 2062.3 3116.7 2635.2 2977.1
abs4 5 1036.1 2983.8 1216.2 2590.9 1339.3 2440.9 1602.5 2322.1 1951.6 2113.4
abs5 5 486.0 3009.9 663.2 2336.0 679.4 2303.7 919.0 2093.2 1343.8 1952.3
abs1 10 1072.1 5917.5 1235.7 5186.5 1538.3 4833.9 1658.6 4414.6 2150.6 4032.5
abs2 10 1415.1 6344.6 1698.0 5452.3 1970.3 4652.4 2435.8 4509.5 2840.8 4260.0
abs3 10 908.3 5320.9 1240.3 4432.9 1491.4 3758.4 1923.2 3727.1 2442.9 3614.3
abs4 10 1344.9 5818.6 1575.8 5191.3 1968.0 4182.2 2052.9 4076.5 2655.6 3927.8
abs5 10 1035.7 5293.6 1151.4 4902.0 1300.8 4606.4 1430.9 4375.3 1893.9 4119.1
abs1 15 975.8 6656.1 1268.2 5968.5 1577.2 5395.4 1904.5 4850.9 2297.0 4761.3
abs2 15 1222.2 6689.3 1542.8 5749.1 1772.4 5305.3 2153.0 5086.1 2556.5 4916.6
abs3 15 1134.4 7590.0 1505.8 6744.0 1956.9 6110.2 2442.9 5763.8 3019.4 5504.6
abs4 15 1053.5 6022.7 1363.0 5068.4 1670.2 4872.6 1897.3 4593.4 2374.0 4458.0
abs5 15 1346.8 6221.5 1629.7 5218.8 1921.7 4969.1 2307.9 4646.7 2691.2 4476.6

Figure 1. Pareto frontier with 5 non-dominated points for the abs3 instance with 5 customers
and a fleet of 3 vehicles.

Table 10. Results of the 𝜖-GIRP model, for a fleet with 6 vehicles and 𝑇 = 3.

𝜖1 𝜖2 𝜖3 𝜖4 𝜖5
nC 𝐶𝑂2 emission IRP costs 𝐶𝑂2 emission IRP costs 𝐶𝑂2 emission IRP costs 𝐶𝑂2 emission IRP costs 𝐶𝑂2 emission IRP costs

abs1 5 383.3 2681.6 568.9 2557.7 825.4 2391.5 1007.7 2271.3 1338.3 2172.0
abs2 5 460.7 3009.8 668.3 2830.2 950.6 2618.5 1161.6 2408.2 1508.7 2259.8
abs3 5 1040.3 5980.8 1448.1 5554.8 1920.2 4706.2 2271.9 4428.7 2961.9 4210.9
abs4 5 1112.0 4331.4 1403.8 3721.3 1676.2 3362.6 2019.5 3090.9 2176.3 2940.7
abs5 5 576.3 3061.5 752.0 2809.2 940.2 2710.4 1063.5 2611.1 1376.3 2394.7

of fuel. The presented solutions are Pareto-optimal, allowing for a better analysis of the trade-off between the
objectives. In these tables, the efficient solutions are also presented for each 𝜖. For these fleets, we can also
observe the increasing and decreasing behavior of the objective functions. When a manager has more choices of
vehicles, they are assuming that there may be higher costs associated with the distribution of their products.
These analysis possibilities are important for decision-makers as they provide different possible scenarios for the
company. This reinforces the importance of multi-objective optimization.
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Table 11. Results of the 𝜖-GIRP model, for a fleet with 12 vehicles and 𝑇 = 3.

𝜖1 𝜖2 𝜖3 𝜖4 𝜖5
nC 𝐶𝑂2 emission IRP costs 𝐶𝑂2 emission IRP costs 𝐶𝑂2 emission IRP costs 𝐶𝑂2 emission IRP costs 𝐶𝑂2 emission IRP costs

abs1 5 380.1 2996.7 574.5 2830.2 790.2 2534.0 1003.9 2391.3 1546.1 2133.5
abs2 5 464.2 3477.5 677.3 3063.8 890.3 2730.5 1091.2 2513.1 1672.3 2218.6
abs3 5 1177.9 6378.1 1743.4 5194.3 2460.3 4455.7 3044.0 4248.3 3375.8 4190.2
abs4 5 1190.4 4350.9 1614.2 3451.4 2065.5 3177.3 2496.4 3025.0 2578.7 3024.7
abs5 5 593.9 3386.3 818.3 2948.2 1045.1 2682.8 1298.6 2525.5 1608.0 2363.0

Table 12. 𝜖-GIRP management analysis study with a multi-objective approach for 5 clients.

Fleet available 𝜖 𝐶𝑂2 Transportation cost Inventory cost IRP costs Used fleet

𝜖1 334.5 2398 978.2 3376.2 G / E
𝜖2 424.1 1921 988.7 2909.7 G / E
𝜖3 536.6 1815 988.7 2803.7 G / E / D

G / E85 / D 𝜖5 837.3 1748 988.7 2736.7 G / D
𝜖1 801.0 3148 978.7 4126.7 G / G
𝜖2 1097.4 2770 965.5 3735.5 G / G / D
𝜖3 1097.4 2770 965.5 3735.5 G / G
𝜖4 1674.3 2108 973.3 3081.3 G / G

G / G / D 𝜖5 2425.1 2087 976.2 3063.2 G / G / D
G / G / G 𝜖1 975.0 3832 966.6 4798.6 G / G / G

𝜖1 459.0 2473 983.7 3456.7 G / E
𝜖3 465.7 2207 987.2 3194.2 G / E / E
𝜖4 502.7 2180 976.2 3156.2 G / E / E

G / E / E 𝜖5 526.9 2121 965.7 3086.7 G / E
E / E / E 𝜖1 733.6 5468 983.9 6451.9 E / E / E

𝜖1 537.6 2113 988.7 3101.7 G
𝜖4 539.7 2121 972.2 3093.2 G

G / D / D 𝜖5 650.4 2108 972.2 3080.2 G / D
D / D / D 𝜖1 4737.5 3562 979.2 4541.2 D / D / D

5.4. Managerial perceptions

In this section, we conducted a study that provides detailed managerial insights. In this study, we performed
a more specific analysis, within the multi-objective approach, for two groups of instances, in order to obtain
a broader view, with managerial perceptions of the characteristics of the various solutions identified for each
instance. This analysis aims to help decision-makers better understand the trade-offs achieved between the two
objectives, as well as the impact of emissions resulting from the minimization of operational costs. Thus, the
selected type of fuel and vehicle are provided, along with the associated costs over the planning horizon.

For different fleet configurations, supposedly available from the supplier, we present the efficient solutions
that provide which vehicles were selected for use, considering the conflicting objectives. In Tables 12 and 13, we
provide these analyses. In the first column, we have the fleet available from the supplier; in the second column,
labeled as 𝜖, we show the 𝜖 values that managed to limit the 𝐶𝑂2 emissions while minimizing the IRP costs;
the next three columns show the separate cost values, for transportation and inventory, and the total costs; in
the last column, we present the vehicles used, i.e., the fleet that the model suggests for each determined 𝜖.

For example, for a fleet with three vehicles, one running on gasoline (v1), one on E85 (v2), and one on diesel (v3),
and to serve a set of 10 customers, as shown in Table 13, the model determines, for each value of 𝜖, which vehicles
should be used for product delivery. When analyzing the trade-off for 𝜖1, we obtain the lowest gas emissions and the
highest operational cost. It can be observed that smaller vehicles running on gasoline and ethanol are used. At time
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Table 13. 𝜖-GIRP management analysis study with a multi-objective approach for 10 clients.

Fleet available 𝜖𝑖 𝐶𝑂2 Transportation cost Inventory cost IRP costs Used fleet
𝜖1 435.4 2541 1786.4 4327.4 G / E
𝜖2 598.6 2412 1783.9 4195.9 G / E
𝜖3 1326.0 1897 1793.5 3690.5 E / D
𝜖4 1734.7 1856 1777.4 3633.4 G / D

G / E85 / D 𝜖5 2468.5 1856 1772.9 3628.9 D
𝜖1 956.1 3340 1779.2 5119.2 G / G
𝜖3 1494.5 1954 1781.1 3735.1 G / D

G / G / D 𝜖5 2468.5 1856 1772.9 3628.9 D
𝜖1 509.5 3146 1772.6 4918.6 G / E / E

G / E85 / E85 𝜖3 554.1 2498 1782.4 4280.4 G / E
𝜖4 609.8 2496 1783.9 4279.9 G / E
𝜖5 690.4 2412 1789.8 4201.8 G

G / D / D 𝜖3 690.4 2412 1789.8 4201.8 G
𝜖5 1274.3 2355 1778.6 4133.6 G / D

𝑡 = 1, v2 visits customers 3, 9, and 10; at time 𝑡 = 2, v1 visits customers 4 and 6, while v2 visits customers 5, 2,
7, and 8; and at time 𝑡 = 3, v2 is used again to visit customer 1. For 𝜖5, we have the other extreme of the Pareto
frontier, where the highest gas emissions are produced, and the lowest total cost is obtained. In this case, only the
diesel vehicle (v3) is used, which has the largest capacity. From the perspective of discrete-time planning, at time
𝑡 = 1, no deliveries are made, meaning that the stored product quantity is sufficient to meet the demand for that
period; at time 𝑡 = 2, v3 visits customers 5, 3, 6, 2, 7, and 8; and at time 𝑡 = 3, v3 visits customers 10, 9, and 4.
For intermediate values of 𝜖, we obtain intermediate efficient solutions and, consequently, an average total transport
capacity. In such cases, the method usually opts for considering a mix of the fleet, including not only lighter and
smaller vehicles that emit less 𝐶𝑂2, but also heavier and larger vehicles that emit more 𝐶𝑂2.

To visualize a solution from a managerial perspective, Figure 2 illustrates the first case from Table 13, where the
available fleet consists of three heterogeneous vehicles in terms of fuel type and vehicle capacities. For each value
of 𝜖, the time periods, vehicles, fuels used, and the quantity of products delivered to customers are shown. In the
case of eps1 = 𝜖1, we have one of the lexicographic points where the 𝐶𝑂2 emissions are minimized, but operational
costs are higher. Therefore, there are more routes, utilizing smaller trucks that consume fuels with lower emission of
pollutants. In the first period, T1, the ethanol truck visits customers 3, 9, and 10, delivering 58, 32, and 80 products,
respectively. In the T2 period, two routes are performed: one by the gasoline truck, visiting customers 4 and 6 and
delivering 26 and 198 products, and the other route is done by the ethanol truck, visiting customers 2, 5, 7, and 8
and delivering 44, 36, 50, and 42 products. In the last period, T3, customer 1 is supplied with 63 products by the
ethanol truck. The values eps2, eps3, and eps4 represent points that provide intermediate solutions compared to
the extremes. In these three solutions, there is a reduction in the number of routes, and a preference for a larger
capacity vehicle, which consequently emits more 𝐶𝑂2. In the case of the other lexicographic point, eps5 = 𝜖5, we
have the other extreme with the lowest total cost but the highest gas emission, representing the worst case from a
sustainability perspective. It is worth noting that customer 9 receives 96 products in this solution, while in the case
of eps4 = 𝜖4, in the T3 period, only 39 products are delivered to the same customer due to the lower capacity of the
gasoline truck. It is important to remember that the considered supply policy does not necessarily deliver products
to customers until their inventory capacity limits are reached.

Based on the conducted computational experiments, it is observed that when considering the option of having
a homogeneous fleet, minimizing the distance traveled is directly proportional to minimizing the 𝐶𝑂2 emissions,
demonstrating the advantage of using a heterogeneous fleet. Furthermore, when the fleet is heterogeneous in
terms of vehicle capacities and fuels used, there is an overall reduction in the involved trade-offs.
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Figure 2. Illustration of the solution for 𝜖-GIRP with 10 customers and the available fleet of
G/E85/D.

6. Conclusion

The literature on logistical optimization models with a sustainable approach has grown significantly in recent
years, driven by the concern for addressing the challenges in promoting sustainable development. In this regard,
this work presents solutions obtained from a B&C algorithm for solving the developed models. We also considered
an exact multi-objective method, the augmented 𝜖-constrained, to obtain the trade-off between conflicting
objectives in the problem of green IRP with a heterogeneous fleet and different fuels, using our proposed
explicit vehicular equation to estimate 𝐶𝑂2 emissions for each vehicle/fuel.

This study aimed to acquire information, gather data, and formulate a modeling approach to minimize 𝐶𝑂2

emissions. The primary aim was to create a method that is both simple and practical, with broad applicability.
Additionally, the study sought to investigate the economic implications of reducing carbon dioxide through
multi-objective optimization.

Our gas emission formulation, which we consider to be generalizable, allows for the inclusion of various
types of vehicles and different fuels, requiring only information on vehicle efficiency. To validate our proposed
formulation, which numerically estimates 𝐶𝑂2 emissions, we evaluated the equation on a dataset with over
20,000 vehicles, achieving an error rate of less than 1%. Furthermore, we compared our equation with Machine
Learning methods. All estimates proved useful for measuring 𝐶𝑂2 emissions, but the simplicity and quality of
our proposed approach were evident compared to Machine Learning methods. Thus, the present GIRP model
exhibits interesting characteristics to be applicable in practice.

For the analysis of efficient solutions resulting from the trade-off between the operational costs of the IRP and gas
emission, the 𝜖-augmented method was implemented for the proposed GIRP model to provide valuable insights for
decision-makers and evaluate the behavior of criteria associated with green IRP. The multi-criteria study revealed
possibilities of alternative and intermediate solutions for decision-makers. Furthermore, we analyze alternative sce-
narios that provided managerial insights. Through computational experiments, we observed that, when considering
the option of a homogeneous fleet, minimizing distance traveled is directly proportional to minimizing 𝐶𝑂2 emis-
sions,demonstrating theadvantageofusingaheterogeneousfleet.Moreover,whenthefleet isheterogeneous in terms
of vehicle capacities and fuels used, there is an overall reduction in the involved trade-offs.

In conclusion, addressing 𝐶𝑂2 emissions is of utmost importance as it contributes to sustainability and the
green concept of sustainable development by reducing the emissions of a pollutant gas. This work presents
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results from the study of the green IRP model, which aims to minimize carbon dioxide emissions for fleets of
heterogeneous vehicles with different fuel consumption. In future work, we intend to further investigate this
study using heuristic and matheuristic approaches for the problem, as well as explore other methods to handle
the multi-objective nature of the problem. Another interesting future research would be to apply this approach
and evaluate its results in real logistics settings of green inventory routing.
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[65] M. Soysal, M. Çimen, S. Belbağ and E. Toğrul, A review on sustainable inventory routing. Comput. Ind. Eng. 132
(2019) 395–411.

[66] H.M. Stellingwerf, G. Laporte, F.C.A.M. Cruijssen, A. Kanellopoulos and J.M. Bloemhof, Quantifying the environ-
mental and economic benefits of cooperation: a case study in temperature-controlled food logistics. Transp. Res.
Part D Transp. Environ. 65 (2018) 178–193.

[67] J. Tollefson, COVID curbed carbon emissions in 2020 - but not by much. Nature 589 (2021) 343.

[68] S. Treitl, P.C. Nolz, W. Jammernegg, Incorporating environmental aspects in an inventory routing problem. A case
study from the petrochemical industry, Flex. Serv. Manuf. J. 26 (2014) 143–169.

[69] Q. Wang and F. Zhang, The effects of trade openness on decoupling carbon emissions from economic growth–evidence
from 182 countries. J. Clean. Prod. 279 (2021) 123838.

[70] C. Wang, W. Cai, X. Lu and J. Chen, CO2 mitigation scenarios in China’s road transport sector. Energy Convers.
Manag. 48 (2007) 2110–2118.

[71] Y. Wen, R. Wu, Z. Zhou, S. Zhang, S. Yang, T.J. Wallington, W. Shen, Q. Tan, Y. Deng and Y. Wu, A data-driven
method of traffic emissions mapping with land use random forest models. Appl. Energy 305 (2022) 117916.

https://github.com/ariannesilvamundim/RAIRO-OR
https://github.com/ariannesilvamundim/RAIRO-OR


SUSTAINABLE SOLUTIONS ANALYSIS OF A BI-OBJECTIVE GREEN IRP WITH HETEROGENEOUS FLEET 575

[72] R. Wu and Z. Xie, Identifying the impacts of income inequality on CO2 emissions: empirical evidences from OECD
countries and non-OECD countries. J. Clean. Prod. 277 (2020) 123858.

[73] W. Wu, W. Zhou, Y. Lin, Y. Xie and W. Jin, A hybrid metaheuristic algorithm for location inventory routing
problem with time windows and fuel consumption. Expert Syst. Appl. 166 (2021) 114034.

[74] Y. Xiao, Q. Zhao, I. Kaku and Y. Xu, Development of a fuel consumption optimization model for the capacitated
vehicle routing problem. Comput. Oper. Res. 39 (2012) 1419–1431.

[75] L. Xu, C. Wang, Z. Miao and J. Chen, Governmental subsidy policies and supply chain decisions with carbon
emission limit and consumer’s environmental awareness. RAIRO-OR 53 (2019) 1675–1689.

[76] D. Zhang, R. He, S. Li and Z. Wang, A multimodal logistics service network design with time windows and envi-
ronmental concerns. PLOS ONE 12 (2017) e0185001.

Please help to maintain this journal in open access!

This journal is currently published in open access under the Subscribe to Open model
(S2O). We are thankful to our subscribers and supporters for making it possible to
publish this journal in open access in the current year, free of charge for authors and
readers.

Check with your library that it subscribes to the journal, or consider making a personal donation to
the S2O programme by contacting subscribers@edpsciences.org.

More information, including a list of supporters and financial transparency reports,
is available at https://edpsciences.org/en/subscribe-to-open-s2o.

Appendix A.

Based on [13] and adapted from [21], we present equation (A.1), which quantifies the emission of 𝐶𝑂2 in kilograms
for a vehicle of type 𝑘 traveling a distance 𝑑 (km) at a speed 𝑣 (km/h) and consuming:

𝜆

(︂
𝐾𝑘 𝑁𝑘 𝑉 𝑘 𝑑

𝑣
+𝑀𝑘 𝛾𝑘 𝛼𝑑+ 𝛽𝑘 𝛾𝑘 𝑑𝑣2

)︂
𝜎. (A.1)

As for the parameters, 𝜆 = 𝜖/(𝜅𝜓), 𝛾𝑘 = 1/(1000𝑛𝑘
𝑡𝑓 𝜂), 𝛼 = 𝜏+𝑔 sen(𝜃)+𝑔 𝐶𝑟 cos(𝜃), 𝛽𝑘 = 0.5𝐶𝑘

𝑑 𝜌𝐴
𝑘.𝑀𝑘 = 𝑤𝑘+𝑄𝑘,

representing the total weight of the fully loaded vehicle, which is the sum of the curb weight and the payload, respectively.
Tables B.1 and B.2 contain information about the parameters needed for the mentioned formulation defined by 𝐹 𝑘 in
equation (A.1). Table B.1 provides information about common vehicle characteristics such as air density, unit fuel cost,
gravitational constant, with distance 𝑑 and velocity 𝑣 as variables, and Table B.2 contains specific vehicle parameters
like curb weight, engine friction factor, engine speed, engine displacement, frontal surface area, among others.

Appendix B.

In this appendix, we briefly present the seven regression algorithms used in this work to estimate 𝐶𝑂2 emissions. We
also present the error metrics for comparing the algorithms.

Used machine learning algorithms

All algorithms are supervised learning methods, Mahesh [45], which means they can learn from data. In this work, we
separated a training dataset that was used to create the models. This dataset contains seven independent variables (or
features) and the target variable (the 𝐶𝑂2 emissions). The features include: 𝑋𝐸𝑆 , representing the engine size in liters
(Engine Size); 𝑋𝐶 , representing the number of cylinders (Cylinders); 𝑋𝐹𝐶 , representing the average fuel consumption
(Fuel Consumption Comb); and the fuel type is represented by four binary variables (𝑋𝐷 for diesel, 𝑋𝐺 for gasoline,
𝑋𝐺𝑃 for premium gasoline, and 𝑋𝐸 for ethanol). For all cases, 𝑋𝐷 + 𝑋𝐺 + 𝑋𝐺𝑃 + 𝑋𝐸 = 1. Next, we present all the
methods, Kishore Ayyadevara [40], along with some details about parameter calibration.
Decision tree
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Table B.1. Definition of common vehicle parameters.

Notation Description Typical values

𝜖 Fuel-to-air mass ratio 1
𝑔 Gravitational constant (m/s2) 9.81
𝜌 Air density (kg/m3) 1.2041
𝐶𝑟 Coefficient of rolling resistance 0.01
𝜂 Efficiency parameter for diesel engines 0.45
𝜎 𝐶𝑂2 Emitted by unit fuel consumption (kg/L) 2.669
𝜅 Heating value of a typical diesel fuel (kJ/g) 44
𝑣 Speed (m/s) –
𝜓 Conversion factor (g/s to L/s) 737
𝜃 Road angle 0
𝜏 Acceleration (m/s2) 0
𝑑 Travel distance (km) –

Source. Adapted from [21].

Table B.2. Definition of specific vehicle parameters.

Notation Description Light vehicle Medium vehicle Heavy vehicle

𝑤𝑘 Curb weight (kg) 4672 6328 13154
𝑄𝑘 Maximum payload (kg) 2585 5080 17236
𝐾𝑘 Engine friction factor (kJ/rev/L) 0.25 0.2 0.15
𝑁𝑘 Engine speed (rev/s) 39 33 30.2
𝑉 𝑘 Engine displacement (L) 2.77 5 6.66
𝐶𝑘

𝑑 Coefficient of aerodynamics drag 0.6 0.6 0.7
𝐴𝑘 Frontal surface area (m2) 9 9 9.8
𝑛𝑘

𝑡𝑓 Vehicle drive train efficiency 0.4 0.45 0.5

Source. Adapted from [21].

A decision tree is an algorithm that constructs a regression model in the structure of a tree. This is one of the most
commonly used algorithms in Machine Learning, and its basic idea is to divide a complex problem into a set of simple
decisions. We can formally define it as a directed acyclic graph formed by a set of leaf nodes and a set of split nodes. The
split nodes divide the input data into two sets, and this conditional test will always be based on some input feature. On
the other hand, the leaf nodes return the value of the variable of interest as the average of the examples contained within
them. To find the best configuration for our decision tree, we test the maximum depth of the tree for heights ranging
from 1 to 20. To measure the quality of the splits and the responses, we consider the mean squared error, mean squared
error with Friedman’s improvement score, and mean absolute error. The best configuration is a tree with a height of 20,
and the splitting function is the mean squared error function.

Random Forest

The major advantage of using a Random Forest is the fact that it reduces the overfitting of decision trees. Typically,
a decision tree can overfit to the training data and fail to generalize the knowledge to new instances. A Random Forest
is an ensemble, which means it is a collection of decision trees where each tree is trained on a random sample with
replacement from the original dataset. For the construction of each node in a tree, a randomly selected subset of features
is considered. Finally, the decision consists of an average of the results from all the trees. This way, the Random Forest
produces uncorrelated trees, and the average reduces the variability in predictions for unseen data during training. We
tested trees with depths ranging from 1 to 10, with a number of features ranging from 1 to the total number of features.
The number of trees considered in the predictor was: 50, 100, 200, 500, 750, 1000. The best configuration was with a
height of 9, 100 trees, and all features as input.

K-Nearest Neighbors

The K-Nearest Neighbors (KNN) is a distance-based algorithm. It stores all the training data in an n-dimensional
space and simply calculates, for each new instance, which are the K closest data points in the training set and returns
the average of those cases. Despite its simplicity, depending on the problem, it is a very useful algorithm, and its main
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weakness is the need to store and calculate the distance to all the points in the training set. In this work, we used the
Euclidean distance and tested all values of K from 1 to 1000 instances. The best result was achieved with 𝐾 = 4.
Linear regression

A linear regression is an algorithm that adjusts a set of coefficients associated with features to minimize the sum of
squared errors between the expected values (dependent variable) and the values predicted by the linear approximation.
The better the fit, the smaller the residual error in the data. The great advantage of linear regression is its easy
interpretability.
Lasso e Ridge

Lasso (Least Absolute Shrinkage and Selection Operator) and Ridge are widely used regularization techniques in
linear regression to deal with overfitting problems and improve the model’s generalization ability. Both techniques add
a regularization term to the objective function of the model, which controls the model’s complexity by penalizing larger
regression coefficients.

Lasso: In Lasso regression, the regularization term is based on the L1 norm of the regression coefficients. The objective
function of Lasso regression is defined as:

minimize
1

2
RSS + 𝛼‖𝑤‖1,

where:

– RSS is the residual sum of squares;
– 𝛼 is the hyperparameter that controls the strength of regularization;
– 𝑤 are the regression coefficients.

Ridge: In Ridge regression, the regularization term is based on the L2 norm of the regression coefficients. The objective
function of Ridge regression is defined as:

minimize
1

2
RSS + 𝛼‖𝑤‖22,

where:

– RSS is the residual sum of squares;
– 𝛼 is the hyperparameter that controls the strength of regularization;
– 𝑤 are the regression coefficients.

The main difference between them lies in how they penalize the coefficients. Lasso uses the L1 norm, leading some
coefficients to zero and creating a more sparse model. Ridge uses the L2 norm, reducing the magnitude of the coefficients
without completely nullifying them. Lasso also has the property of automatically selecting the most relevant features,
while Ridge does not. However, Lasso is more sensitive to small changes in the data, making feature selection less stable.
Ridge is more stable and has a closed-form analytical solution, while Lasso requires an iterative procedure to find the
solution. In summary, Lasso is useful for automatic feature selection and creating sparser models, while Ridge is suitable
for reducing the magnitude of coefficients while maintaining stability. For the Lasso technique, the following values were
used for the hyperparameter Alpha: we generated a list of 100 equally spaced values between 59 and 5−11. As for the
Ridge technique, the hyperparameter Lambda: we generated 100 equally spaced values in the range from 59 to 5−3.
Epsilon-Support Vector Regression SVR

Epsilon-Support Vector Regression (SVR) is a regression model that uses the Support Vector Machines (SVM) tech-
nique to make predictions in regression problems. One of the distinctive features of SVR is the ability to use kernels,
which are data transformations into a higher-dimensional space. These transformations allow SVR to find an approxi-
mately linear relationship between the features and the value of the target variable in the new space. The goal of SVR
is to find a function ℎ(𝑥) that minimizes the difference between the predictions and the actual values, within a tolerance
margin defined by the epsilon hyperparameter. The objective function of SVR can be expressed as:

min
𝑤,𝑏,𝜉,𝜉*

1

2
‖𝑤‖2 + 𝐶

𝑛∑︁

𝑖=1

(𝜉𝑖 + 𝜉*𝑖 )

subject to:
𝑦𝑖 − 𝑤𝑇 Φ(𝑥𝑖)− 𝑏 ≤ 𝜖+ 𝜉𝑖

𝑤𝑇 Φ(𝑥𝑖) + 𝑏− 𝑦𝑖 ≤ 𝜖+ 𝜉*𝑖

𝜉𝑖, 𝜉
*
𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑛.

where:
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– 𝑤 is the weight vector that defines the regression function;
– 𝑏 is the bias term;
– 𝜉𝑖 and 𝜉*𝑖 are slack variables;
– 𝐶 is a hyperparameter that controls the penalty for margin violations;
– 𝜖 is the width of the tolerance margin.

The values of the hyperparameters C used were 0.01, 0.1, 0.4, 5, 10, 20, 30, 40, and 50. The adopted value for epsilon
was 0.2. We used the Radial basis function kernel.

Used error metrics

The 5 error measures used and presented here are widely used to assess the quality of the proposed methods. They
are: maximum error (ME), mean gamma deviation (MGD), mean absolute percentage error (MAPE), mean squared
error (MSE), and R-squared (r2). Below is a description of each measure.
Maximum error (ME): also known as maximum absolute error, it is the difference between the actual value and the
predicted value that exhibits the highest absolute deviation compared to the other points. In other words, it is the
largest error observed among all predictions made by the model.
Mean gamma deviation (MGD): also known as mean absolute error, it is a measure that evaluates the overall performance
of the model by calculating the average of the absolute deviations between the predicted values and the actual values. It
is a measure of how close or far the predictions are from the actual values, regardless of their direction.

Both ME and MGD are error measures, and the smaller their values, the better the model’s performance. These
metrics are commonly used to assess the accuracy and precision of prediction models, such as regression models, which
are used in this article.
Mean absolute percentage error (MAPE): This is another interesting metric to use, typically used in management reports
because the error is measured as a percentage. This allows for comparisons between model percentage errors across
products. MAPE is calculated as follows:

MAPE =
1

𝑛

𝑛∑︁

𝑖=1

⃒⃒
⃒⃒𝑦𝑖 − 𝑦𝑖

𝑦𝑖

⃒⃒
⃒⃒× 100%

where:

– 𝑛 is the number of observations.
– 𝑦𝑖 is the actual value.
– 𝑦𝑖 is the predicted value.

Mean squared error (MSE): is commonly used to assess the accuracy of models and gives greater weight to larger errors.
This is because, when calculated, each error is squared individually, and then the average of these squared errors is
calculated. MSE is calculated as follows:

MSE =
1

𝑛

𝑛∑︁

𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2

where:

– 𝑛 is the number of observations;
– 𝑦𝑖 is the actual value;
– 𝑦𝑖 is the predicted value.

R-squared (r2): also known as the coefficient of determination, is a measure that indicates the proportion of the variance
in the dependent variable that can be explained by the model. R-squared ranges from 0 to 1, where 0 indicates that
the model does not explain any variability, and 1 indicates that the model explains all the variability in the data. It is
calculated as follows:

r2 = 1−
∑︀𝑛

𝑖=1 (𝑦𝑖 − 𝑦𝑖)
2

∑︀𝑛
𝑖=1 (𝑦𝑖 − 𝑦)2

where:

– 𝑛 is the number of observations;
– 𝑦𝑖 is the actual value;
– 𝑦𝑖 is the predicted value;
– 𝑦 is the mean of the actual values.
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