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1 Introduction

The recent discovery of the Higgs boson [1, 2] completes the necessary spectrum of the

standard model (SM). Barring small deviations in the Higgs couplings, the SM can describe

all the data available to date. The agreement with experiment of such a renormalizable

theory, including the renormalizable Higgs potential, suggests that the SM is valid up to

energies well above the weak scale. On the other hand, for the Higgs mass mh to be well

below the SM cutoff ΛSM, whatever this might be, a large tuning of the order of one part

in m2
h/Λ

2
SM is necessary, resulting in the hierarchy problem. This tuning is always present

unless there is a symmetry broken just above the weak scale that reduces the quadratic

sensitivity of the ultraviolet boundary conditions. The two options that are still compatible

with data are supersymmetric extensions of the SM [3], and the possibility that the Higgs is

a pNGB [4]. In the latter case, which we consider here, it is assumed that the Higgs is part

of a NGB from the spontaneous breaking of a large global symmetry. Explicit breaking,

typically induced by the SM interactions, result in a Higgs potential. To this class belong

Little Higgs models [5–7], as well as the so-called composite Higgs models [8–10], which

can be thought of as related by holography to five-dimensional theories in anti-de Sitter

backgrounds (AdS5) [11]. In general, composite Higgs models (CHM) with a pNGB Higgs

are associated with a strong sector and result in strongly coupled resonances. This puts

important constraints on the models, both through electroweak precision [12–14] as well as

flavor bounds [13, 15].

On the other hand, it is possible to build pNGB Higgs models in four-dimensional

(4D) field theories that have very similar features. These theories, which we call quiver

theories from now on, can be obtained from the coarse deconstruction [16, 17] of the AdS5

models [18, 19]. They have qualitative similarities but some crucial quantitative differences

with their five-dimensional (5D) counterparts. In particular, the resulting 4D theories are

weakly coupled, and as a consequence will present less problems with indirect bounds, as
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it was shown in ref. [20]. In general, it is possible to obtain any coarsely deconstructed,

weakly coupled version of any CHM.

The complete 4D theory from AdS5 deconstruction including fermions was first pre-

sented in ref. [21]. The idea of using these quiver theories to study models of electroweak

symmetry breaking and fermion masses was further advanced in ref. [20], where the flavor

bounds of full solutions to the quark masses and mixing matrix where obtained. Ref. [22]

started exploring the phenomenology of these theories at the LHC by considering the

minimal spectrum of gauge boson excitations. Although the bounds obtained in [22] de-

pend somewhat on the number of sites in the quiver theory, they are typically around

2.5 TeV for the gluon excitation (assuming SU(3)c “propagates” in the quiver), and about

(1.7 − 2.0) TeV for the photon and Z excitations. The latter bound is inescapable since

the electroweak gauge boson excitations must be present in any realization of the model,

whereas it is possible to consider quiver theories of electroweak symmetry breaking (EWSB)

without having gluon excitations.

In this paper, we will consider the fermion excitations in quiver theories where the

Higgs is a pNGB. The details of the pNGB Higgs sector are studied elsewhere [23]. Here

it will suffice to consider the minimum number of elements of the pNGB scenario in quiver

theories that will allow us to compute or estimate the fermion excitation couplings to

the Higgs sector, which will be important for both their production and decays. In this

spirit, we will not define the gauge groups propagating in the quiver (unless for illustration

purposes). This implies that we will only consider the fermion excitations correspond-

ing to SM zero modes, and will ignore other excitations that will depend on the fermion

representations on the quiver theory.

In order to compute the fermion excitation spectrum we will take flavor solutions from

ref. [20]. These solutions, consistent with quark flavor physics, determine the localization

of zero-mode fermions in the quiver diagram. As we will see below, the fermion excitation

spectrum has a rather distinct dependence on the localization parameters, very different

from the one in the continuum theories. The aim of the paper is to obtain all the relevant

information, i.e. spectrum and couplings, that will allow us to study the phenomenology of

these fermion excitations. Here we concentrate on the quark excitations, for which the zero-

mode solutions were obtained in [20]. The lepton excitations will be studied separately [24].

Other works have considered similar 4D constructions. For instance in refs. [25] and [26]

two-site models were considered to capture the essence of composite models. In ref. [27] a

three-site Higgsless model is studied. The three-site model with a pNGB Higgs of ref. [28] is

closest to our set up, although with a particular choice of group. Our aim is to generalize

the study of quiver theories for various values of the number of sites N and find their

generic features independently of the details of the model.

The rest of the paper is organized as follows: in section 2 we present the general

features of quiver theories of EWSB with a pNGB Higgs. This will set up the model

in which the excited fermions will be studied. In section 3 we focus on the spectrum of

fermion resonances, as well as on the wave-functions of the zero-mode and the excited

states. These will be used to compute the couplings of the excited fermions to various

states, in particular excited gauge bosons and the Higgs sector in section 4, since these

couplings will determine the phenomenology of these resonances. These couplings are then
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used to begin the study of the phenomenology of these excited fermions in section 5. We

finally conclude in section 6.

2 Quiver theories of EWSB with a pNGB Higgs

The general construction of the 4D theory starts with a product gauge group G0 × G1 ×
· · ·Gj ×Gj+1 · · ·GN . In addition, we have a set of scalar link fields Φj , with j = 1 to N ,

transforming as bi-fundamentals under Gj−1 ×Gj . The action for the theory is

S =

∫
d4x

−
N∑
j=0

1

2
Tr
[
F (j)
µν F

µν(j)
]

+

N∑
j=1

Tr
[
(DµΦj)

†DµΦj

]
− V (Φj) + . . .

 (2.1)

where the traces are over the groups’ generators, and the dots at the end correspond to

terms involving fermions and will be discussed in the next section. We assume that the

potentials for the link fields give them a vacuum expectation value (VEV) which breaks

Gj−1 ×Gj down to the diagonal group, resulting in non-linear sigma models for the Φ’s

Φj =
vj√

2
ei
√
2πa

j t
a/vj , (2.2)

where the ta’s are the broken generators, the πaj the Nambu-Goldstone Bosons (NGB); and

vj are the VEVs of the link fields. We consider here the situation where the VEVs are

ordered in such a way that v1 · · · > vj · · · > vN . This choice is motivated by the goal of

creating a large hierarchy of scales between the high energy VEVs and the infra-red (IR)

ones close to the gauge group N . As we see below, this also makes contact with the AdS5

setup in the continuum limit.

The idea behind the model with the action in (2.1) is similar to the one in ref. [4].

We imagine that the link fields arise as a consequence of fermion condensation at the

approprate scale. For instance the link field Φj is a consequence of the condensation of

fermions transforming in the fundamental of Gj−1 and anti-fundamental of Gj at the scale

∼ vj . So the effective theory in (2.1) is the result of these strong gauge groups having

all these various infrared scales. The possible mixings between neighboring link fields,

e.g. Φ2
j−1 Φ2

j , are induced at one loop order by gauge boson loops, and will not affect the

stability of the VEVs in the quiver which is assumed to be determined by the underlying

strong dynamics. The potentials in (2.1) reflect interactions of the heavier states (e.g. σj ’s)

and are not relevant for the physics of the gauge excitations and the pNGBs.

We parametrize the ordering by defining the VEVs as

vj ≡ vqj , (2.3)

where 0 < q < 1 is a dimensionless constant, and v is a UV mass scale that can be regarded

as the UV cutoff. In this particular example we assume that the all the gauge groups are

identical. This will not always be the case, as we will se below. The gauge couplings satisfy

g0(v) = g1(v1) = · · · = gj(vj) = gj+1(vj+1) = · · · ≡ g . (2.4)

The model can be illustrated by the quiver diagram of figure 1.
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Figure 1. Quiver diagram for the theory described by (2.1).

This purely 4D theory can be obtained from deconstructing an extra-dimensional the-

ory in an AdS5 background [18, 19, 29, 30]. Discretizing a 5D gauge theory in an AdS5

background by a discrete interval 1/gv in N intervals results in the action (2.1), with the

appropriate identification of the 5D gauge coupling, plus the matching

q ↔ e−k/gv . (2.5)

However, in order for the 4D theory defined by (2.1) to remain a good description of the

continuum 5D theory, the AdS5 curvature should satisfy k < v, or q close to 1. When

this is satisfied, getting closer to the continuum limit by increasing the number of sites N

guarantees an increasing similarity with the 5D theory [30]. For instance, generating the

hierarchy between the Planck and the weak scales while satisfying k < v requires typically

that N > 35, which results in a low energy theory very close to the continuum one. Under

these conditions, 4D theories with k < v are just discrete descriptions of the AdS5 theory.

On the other hand, if we consider (2.1) as just a 4D theory, we are free to make use

of values of q far from what would constitute the continuum 5D limit, i.e. q � 1. In these

theories it will be possible to obtain a large hierarchy of scales with smaller values of N ,

as low as just a few. For instance, if v ∼< MP and vN ' O(1) TeV, then we can write

q = 10−16/N . (2.6)

For instance, for N = 4 we have q = 10−4, very far from the continuum limit. The theories

resulting in these region of the parameters of the action in (2.1) will have a very different

behavior than a mere discretization of AdS5. Their spectrum and its properties, such as

couplings to SM matter, differ significantly and therefore they merit a detailed study.

In ref. [22] we studied the generic features of the vector resonant sector of quiver

theories. In order to be as model-independent as possible we studied a minimal extension of

the gauge sector of the SM that would be consistent with having a pNGB Higgs, resulting

in a minimum spectrum of vector resonances, for which we obtained bounds and made

predictions for the LHC. In this paper, we study the fermionic resonances in these models.

Just as in the case of the vector resonances, the spectrum of fermion resonances and

the details of their couplings will be model dependent, i.e. it will somewhat depend on

the choice of gauge symmetries propagating in the quiver diagrams. Once again, we will

simplify as much as possible in order to obtain a minimal spectrum of resonances with

couplings that have the correct features as imposed by the following requirements: i) the

Higgs is a pNGB; ii) the hierarchy of fermion masses is obtained by fermion “localization”

in the quiver diagram, as shown in ref. [20].

The first requirement implies that the Higgs is extracted from the link fields in the

quiver, and therefore propagates through it in a very specific way [23]. In fact, the Higgs
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must be extracted from the πaj ’s in the link fields in Equation (2.2). In order to achieve this,

the part of the groups G0 and GN in figure 1 that is gauged must be smaller than in the rest

of the quiver. Specifically, only the subgroups H0 and HN are gauged at these sites. The

fact that the quiver gauge group is smaller, although the number of link fields remained

the same, results in some NGBs remaining in the physical spectrum. These are the NGBs

that cannot be removed by H0 or HN gauge transformations, and therefore they transform

in the cosets G0/H0 and GN/HN . A similar procedure is followed in extra-dimensional

theories in order to extract the Higgs from the extra component of the gauge fields in

5D [8, 9]. To make clearer how to extract the pNGB Higgs from the link fields in quiver

theories, we start by re-writing the action in (2.1) with the addition of the gauge fixing term

LGF = − 1

2ξ

N∑
j=0

[
∂µAajµ + ξg

(
vjπ

a
j − vj+1π

a
j+1

)]2
, (2.7)

where we have considered the same gauge parameter ξ for all sites for simplicity. This

choice cancels all the cross terms mixing the NGBs with the gauge bosons in (2.1) that are

made apparent by expanding the Φj in (2.2) in terms of the NGBs πaj . Doing so results in

S =

∫
d4x

−
N∑
j=0

(
1

2
Tr
[
F (j)
µν F

µν(j)
]
− 1

2ξ
(∂µAajµ )2

)
+

1

2

N∑
j=1

(∂µπ
a
j )(∂µπaj )

N∑
j=1

gv2j
2

(
Aa(j−1)µ −Aajµ

)2
− 1

2
g2ξ

N∑
j=0

(
vjπ

a
j − vj+1π

a
j+1

)2
+ . . . ,

 (2.8)

where the dots denote interaction terms not quadratic in the fields. The last term in (2.8)

is the NGB mass matrix, which is clearly gauge dependent. In fact, making use of (2.3),

it can be shown that it does not have a zero mode, and that the NGB masses are always

proportional to
√
ξ. Thus, in the unitary gauge ξ → ∞ and all NGBs decouple leaving

only the longitudinal components of the massive gauge boson tower as degrees of freedom.

On the other hand, if we want to extract the Higgs from the NGBs, we need to reduce

the gauge groups at sites j = 0 and j = N . The NGB mass matrix in (2.8) now reads

πaT M2
π π

a ≡ g2ξ
N−1∑
j=1

(
vjπ

a
j − vj+1π

a
j+1

)2
, (2.9)

where we defined πa ≡ (πa1 , π
a
2 . . . π

a
N )T . This mass matrix differs from the last term in (2.8)

only by the limits of the sum, which result from the absence of the mixing terms between

πa1 and πaN , which do not have gauge bosons to mix with due to the reduced gauge groups

at sites j = 0 and j = N . The matrix M2
π in (2.9) has null determinant, signaling the

presence of a zero mode, the physical NGB. In order to extract the Higgs doublet from this

NGB we must carefully choose H0 and HN . For instance, if the quiver groups are SU(3)j
for 0 < j < N and we choose H0 = SU(2)× U(1) = HN , the zero-mass NGB will contain
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the Higgs doublet and its complex conjugate as in

πaj t
a =


0 0 h1

0 0 h2

h∗1 h
∗
2 0

 (2.10)

where the Higgs doublet is H = (h1 h2)
T . In general, we want to identify the combination

of NGBs πaj that cannot be removed by gauge transformations. In other words, what is

the linear combination of the πaj ’s that makes up the physical NGB ? In order to do this,

we look for the eigenstate for the zero mode equation:

M2
π (b1π

a
j t
a, b2π

a
j t
a, . . . , bNπ

a
N t

a)T = 0 , (2.11)

where the bj ’s represent the “wave-function” of the physical NGB in the quiver. From (2.11)

we see that they satisfy

bj = q bj+1 , (2.12)

which, since q < 1, means that the NGB wave-function is always localized towards the

sites with larger values of j in the quiver, or IR-localized. The physical NGB then can be

expressed as

H =

N∑
j=1

bjπ
a
j t
a , (2.13)

with the bj ’s satisfying the normalization condition
∑N

j=1 |bj |2 = 1, which together

with (2.12) result in

bj =
qN−j√∑N
j=1 q

2(N−j)
. (2.14)

In practice, for the coarse deconstruction models studied here, since q � 1 the physical

NGB will be highly localized very close to the site N. Thus, just as in AdS5 composite

Higgs models where the Higgs is localized near the IR brane, here the Higgs is localized

towards the IR site N . This feature is generic in that it does not depend on the details

of the model, i.e. is independent of the choice of gauge groups propagating in the quiver

diagram. It will be then possible to extract a lot of information regarding the couplings

of the Higgs to gauge bosons and zero-mode and excited fermions without specifying the

model. In the next section we introduce fermions in the quiver and obtain some of the

properties of the fermion excitations. As mentioned earlier, we focus in the minimal set of

fermions that have to be present regardless of the gauge groups in the quiver.

3 The Fermion resonances in quiver models

We consider vector-like fermions ψj transforming in the fundamental representation of the

groups Gj . The action of (2.1) is then enlarged by the fermion action given by

Sf =

∫
d4x

N∑
j=0

{
ψ̄jLi 6Djψ

j
L + ψ̄jRi 6Djψ

j
R − (µjψ̄

j
Lψ

j
R + λjψ̄

j−1
R Φjψ

j
L + h.c.) ,

}
(3.1)
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Figure 2. Quiver diagram for the theory described by (3.1), for a spectrum with a left-handed

zero mode.

which is represented by the quiver diagram of figure 2. The vector-like masses µj preserve

the gauge symmetries. The Yukawa term is invariant since the links transform as Φj →
gj−1Φjg

†
j . The Yukawa couplings are allowed to be site-dependent, which is the most

general situation in the 4D theory. If one wanted to match to the continuum limit of the

AdS5 theory we should take them to be universal, as shown in ref. [21]. In the unitary gauge

we make the replacement Φj → vj/
√

2, which leads to a non-diagonal mass matrix for the

fermions. We diagonalize to the mass eigenstate basis through the unitary transformations

ψjL,R =

N∑
n=0

hj,nL,R χ
(n)
L,R , (3.2)

where the χ
(n)
L,R are the mass eigenstates. Imposing the equations of motion, results in the

elements of the rotation matrices satisfying the equations [21](
µ2j +

λ2jv
2
j

2
−m2

n

)
hj,nL −

λjvj√
2
µj−1 h

j−1,n
L − λj+1vj+1√

2
µjh

j+1,n
L = 0 (3.3)(

µ2j +
λ2j+1v

2
j+1

2
−m2

n

)
hj,nR −

λjvj√
2
µj h

j−1,n
R − λj+1vj+1√

2
µj+1 h

j+1,n
R = 0 (3.4)

where mn is the mass of the mass eigenstate χ
(n)
L,R. In order to obtain chiral zero modes,

appropriate boundary conditions must be chosen. To obtain a left-handed zero mode, we

must choose hN,nR = 0 for all n, i.e. the right-handed component of the fermion at the last

site must be removed. This is illustrated in figure 2. On the other hand, in order to have

a right-handed zero mode, we must choose that h0,nL = 0, i.e the left-handed fermion must

be removed from the first site [21].

The solutions of these equations can be obtained [30] and in the continuum limit would

match to the solutions for the wave-functions of the Kaluza-Klein fermions in the AdS5 [21].

But here we stay far from the continuum.

The fermion zero-modes satisfy the simple equations of motion

µjh
j,0
L +

λj+1√
2
vj+1h

j+1,0
L = 0 , (3.5)

– 7 –
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for the left-handed zero mode, and

µj h
j,0
R +

λj√
2
vjh

j−1,0
R = 0 , (3.6)

for the right-handed zero mode.

We can define the localization parameter cL for the left-handed zero mode by [21]

√
2

µj
v λj+1

≡ −qj+1/2+cL , (3.7)

and then consistently identify the localization parameter cR for a right-handed zero mode by

√
2
µj
v λj

= −qj+1/2+cR , (3.8)

Then, we can see that

hj+1,0
L

hj,0L
= qcL−1/2 ,

hj,0R
hj−1,0R

= q−(cR+1/2) . (3.9)

Thus, we have traded the ratio of vector masses to Yukawa couplings for a parameter (cL
or cR) that will determine the fraction each fermion in the quiver diagram the zero-mode

fermion contains. This particular choice is motivated in order to match the zero-mode

localization in the continuum [31]. As we will see below, this means that the choice

of these parameters determines the zero-mode localization. For instance, for cL > 1/2,

the zero-mode will be UV localized (towards the “0” site), whereas this happens for the

right-handed zero-mode for cR < −1/2. We can now write

hj,0L,R = zjL,R h
0,0
L,R , (3.10)

where we have defined

zL ≡ qcL−1/2 , zR ≡ q−(cR+1/2) . (3.11)

On the other hand, the normalization conditions require that

N∑
j=0

|hj,0L,R|
2 = 1 , (3.12)

which we use to obtain

h0,0L,R =

√√√√ 1− z2L,R
1− z2(N+1)

L,R

, (3.13)

The zero-mode wave functions are determined by the choice of the localization parameters

cL,R. These are chosen in order such that the zero-mode spectrum matches the SM

spectrum. In ref. [20], solutions to the quark spectrum and the CKM matrix were found

for these parameters, using the approximation of a Higgs localized in the Nth site of

the quiver. As mentioned in the previous section, the pNGB Higgs wave function for

small number of sites is very well approximated by N-localization. For the purpose of

– 8 –



J
H
E
P
1
1
(
2
0
1
4
)
0
4
5

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

j

h L
j,0

0 2 4 6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

j

h L
j,0

Figure 3. The wave-function of left-handed zero modes as a function of the site number j. Left

panel : N = 4, for cL = 0.55 (solid), cL = 0.1 (dashed). Right panel : N = 15, for cL = 0.55 (solid),

cL = 0.1 (dashed).
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Figure 4. Left panel : the mass of the first excited fermion state in a tower with a left-handed zero

mode, as a function of the localization parameter cL, for N = 4 (solid) and N = 15 (dashed). Right

panel : the mass of the first excited fermion state in a tower with a right-handed zero mode, as a

function of the localization parameter cR, for N = 4 (solid) and N = 15 (dashed).In both cases,

the mass of the gauge excitation is set to 1 TeV.

the determination of the localization parameters for each fermion tower, we will use the

solutions found in ref. [20]. We have checked that the use of this approximation in this case

makes no significant numerical difference. For illustration, we plot the resulting zero-mode

wave functions for some typical cases in figure 3, as a function of the position in the quiver

diagram, j. In the left panel we see the wave function of a zero-mode left-handed quark

with cL = 0.55 (solid line), which corresponds to ultra-violet (UV) localization, while the

dashed line for cL = 0.1, corresponds to infra-red (IR) localization. For the right-handed

zero modes, we can obtain analogous figures. For instance, for cR = −0.55 and cR = −0.1

we would obtain the same two lines of figure 3.

For the excited fermions, we make use of the of the equations of motion in (3.3)

and (3.4). Their spectrum can be obtained diagonalizing the mass matrix. As an illus-

tration, we plot the mass of the first fermion excitation in figure 4 as a function of the

localization parameters cL and cR, for which the last VEV was chosen to be vN = 1 TeV.

In the left panel, we see that the excited fermion corresponding to a left-handed zero

mode localized towards the UV sites (corresponding to cL > 0.5 ) will have masses similar
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to the gauge bosons, i.e. or order vN . However, for IR-localized left-handed zero modes

(cL < 0.5), the fermion excitation will become exponentially heavier. This is particularly

so for low values of N , the number of sites in the quiver. On the other hand, the excited

fermions corresponding to right-handed zero modes have the opposite behavior: there will

be exponentially heavy when the zero mode is UV-localized, whereas they will be as light

as the excited gauge bosons when the zero mode is localized towards the IR sites. This

can be seen in the right panel of figure 4. The reason for this differing behavior is rooted

in the boundary conditions imposed to obtain a left- or right-handed zero modes.

The situation is very different from the continuum, where the excited fermions are

lightest for cL = 0.5 or cR = −0.5, and would become linearly heavier (as opposed to

exponentially here) on both sides of these values. The behavior of the excited fermion

masses with the localization parameters cL and cR will have important consequences phe-

nomenologically. In general, we can say that the fermion excitations of left-handed zero

modes localized in the IR (typically corresponding to heavier zero modes) will be con-

siderably heavier than the gauge boson excitations, whereas the ones corresponding to

UV-localization will be as light as them. The opposite will be the case for fermion excita-

tions of right-handed zero modes: fermion excitations typically corresponding to the first

two families will be heavier, whereas the excitation of the right-handed top quark should

be as light as the gauge excitations. We will explore these important issues when we study

the production and the decays of the quark excitations in section 5.

We must note that this is not the only possible spectrum of fermion excitations, despite

being the most common one. Depending on the details of the fermion representations in

the quiver, it is possible to obtain important deviations from this behavior. For instance, it

would be possible to obtain fermion resonances that are lighter than the gauge excitations.

A similar situation is present in the continuum in the CHM [32]. More generally, it has

been shown to be a generic occurrence even in discrete models [33]. The potential presence

of light fermion excitations, particularly if associated to the top zero mode, is of great

importance when addressing the tuning necessary to obtain a light Higgs. Thus, in order

to have a natural Higgs sector we imagine that the full theory must have at least some of the

fermion excitation to be rather light, particularly the top partners. The phenomenology

associated with these light fermion excitations, has been studied in some detail in the

continuum [34, 35], as well as in simplified versions of composite models [36]. Conversely,

we can think of the model with the spectrum studied here as giving a fine-tuned Higgs

sector, where the fine tuning is typically of the order of v2/v2N . Then, if the scale of

the new resonances is O(1) TeV, this results in a fine-tuning of a few percent. As vN is

increased the tuning worsens, but the model still solves the big hierarchy problem. So

regardless of the issue of tuning, here we are interested in the phenomenology of the heavy

fermion resonances in the spectrum.

Finally, it will be useful to have the wave functions of the excited states in the quiver,

particularly to understand their couplings. Using the values for the localization parameters

cL mentioned above, the wave-functions for the relevant fermion resonances are shown in

figure 5, for two values of the number of sites: N = 4 in the left panel, N = 15 for the one

on the right. For the right-handed zero-mode tower, using values of cR with the opposite

sign of the ones used in figure 5 results in the same plots.
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Figure 5. The wave-function of the first excitation of left-handed zero modes as a function of the

site number j. Left panel : N = 4, for cL = 0.55 (solid), cL = 0.1 (dashed). Right panel : N = 15,

for cL = 0.55 (solid), cL = 0.1 (dashed).

We can see that the excited fermions are generally IR localized, just as is the case

in the continuum limit. However, the details of the wave function close to the IR can

be important to determine the couplings to other states. For instance, depending on the

value of the localization parameter, the wave function at the last site can be either large or

rather suppressed. This will affect the couplings of the excited fermions to both the Higgs

and the excited gauge bosons, which are important to determine the excited fermion decay

channels. We will discuss this in detail in the next section.

4 Couplings of the excited fermions

We are interested in calculating the couplings of excited fermions in quiver theories which

are relevant for their phenomenology. The production of these states will be dominated by

the channels going through SM gauge bosons, as long as the excited fermion has SM quan-

tum numbers. In particular, if we are interested in the largest production cross section, we

will consider the excited quarks, which will be produced dominantly via QCD interactions,

at least for moderate masses. On the other hand, when considering their decays, we will

need to obtain the couplings of excited fermions to the zero modes and either excited gauge

bosons or the Higgs doublet. This is due to the fact that decays require a non-diagonal

coupling in the eigenstate quantum number n, and zero-mode gauge bosons do not allow

it. The fact that both the excited gauge bosons and the Higgs have profiles that are IR

localized allow for the occurrence of these couplings. The Higgs doublet couplings would

result in a two-body decay of the excited fermions into the Higgs boson, as well as the

longitudinal components of the W and the Z. The decay channel induced by the non-

diagonal couplings of the excited gauge bosons result in decays to them and a zero mode

fermion too, but are phase-space suppressed by the proximity of the excited fermion and

gauge boson masses. Although it then appears that the electroweak decays would domi-

nate, under some circumstances the phase-space suppressed modes can be comparable or

even dominate. This will depend on the details of the spectrum of excited fermions, which

is highly flavor dependent as we saw in the previous section.
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N u(1) d(1) t(1) b(1)

4 L 0.028 0.028 0.85 0.85

R 5× 10−4 1× 10−7 0.075 0.04

15 L 0.033 0.033 0.83 0.83

R 7× 10−4 2× 10−7 1.50 0.046

Table 1. The couplings of the excited fermions to their zero mode and an excited gauge boson, in

units of the zero-mode gauge couplings.

The couplings of excited fermions to a zero-mode fermion and an excited gauge boson

can be computed by starting from the quiver gauge coupling

N∑
j=0

gj ψ̄
j
L,Rγ

µψjL,RG
j
µ . (4.1)

We can substitute for the rotation into mass eigen-states in Equation (4.1), and select the

desired couplings. We obtain

g101L,R ψ̄
(1)
L,Rγ

µψ
(0)
L,RG

(1)
µ + h.c. , (4.2)

where we defined

g101L,R ≡
N∑
j=0

gj h
∗j,1
L,R h

j,0
L,R f

j,1 , (4.3)

with f j,1 the wave function of the first excited state of the gauge boson as defined by the

orthonormal rotation to the mass eigen-states

Gjµ =

N∑
n=0

f j,nG(n)
µ . (4.4)

Just as for the fermions, the f j,n’s are obtained by diagonalizing the gauge boson mass

matrix [18, 19] that results in Equation (2.1) when the link fields are written in terms of their

VEVs as in Equation (2.2). Using the results for f j,1, as well as for the wave-functions of

the zero mode and excited fermions, we can compute the couplings g101L,R relevant for various

cases. The results are summarized in table 1. For instance, the first column corresponds

to the couplings between the first-generation up excited quark u(1) to the zero mode, i.e

the up quark, and a neutral excited gauge boson G(1) in units of the zero-mode gauge

coupling, for left and right handed chiralities, and for N = 4 or N = 15. The largest

couplings are found in the third generation, particularly the right-handed top sector. We

will focus on the couplings to the excited gluon since they are the largest. However, if we

were to consider a minimal theory without QCD propagating in the quiver diagram this

would be an electroweak excited gauge boson.

The other important couplings of the excited fermions are those to the Higgs sector.

These could dominate the excited fermion decays, particularly of the third generation,
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through channels like f (1) → f (0) φα, where the φα stands for the appropriate member of

the Higgs doublet, i.e. either the Higgs boson, or the longitudinal components of the weak

gauge bosons. To compute these couplings we take into account the general form of the

fermion couplings to the link fields containing the Higgs doublet and given in Equation (3.1).

The exact form of the couplings would generally depend on the details of the quiver theory:

the gauge groups propagating and the chosen fermion representations. However, we would

like to extract the generic behavior of these couplings by considering only the fermions with

SM quantum numbers. This will be enough to obtain the couplings of the excited fermions

to the Higgs doublet and the zero-mode fermions that will be present in all models, although

it would ignore the potential contributions of exotic states which may arise in some specific

realizations. We take this approach in order to be as model-independent as possible.

In general, there will be two types of Yukawa terms consistent with the quiver sym-

metries. The first type are those among the members of the same fermion tower: the sets

of fermions ψjL and ψjR with a common zero mode These are the ones depicted in Equa-

tion (3.1) proportional to λ and that can be obtained from the deconstruction of the 5D

fermion kinetic term interacting with A5. The second type, involves couplings between two

different towers, such as

χ̄j−1R Φj ξ
j
L , (4.5)

where ξjL,R corresponds to a tower with a zero mode different from that of χjL,R. This kind

of coupling is gauge invariant and therefore allowed in the quiver theory, whereas it has

no analog in the continuum limit. Finally, it is also possible to add terms at the j = 0

and j = N sites that are only invariant under the respective SU(2) × U(1) symmetries

there. The couplings within each tower result in the mass matrices we diagonalized in the

previous section and result in zero-mode masses and wave functions. With the additional

contributions mentioned above, the breaking of the quiver symmetry down to SU(2)×U(1)

leads to couplings of the Higgs doublet extracted from the pNGB surviving in the spectrum.

The details of the resulting mixing spectrum are then heavily dependent on the specific

model. However, it will always result in couplings that take the form

L ⊃ −
N∑
j=1

yj χ̄
j−1
R bj H ξjL + h.c. , (4.6)

where the Yukawa couplings yj are assumed to be O(1), and the χjL,R and ξJL,R are fermions

propagating on the quiver with the appropriate quantum numbers and different zero modes.

Here H is the Higgs doublet

H =

 φ+

h+φ0√
2

 . (4.7)

and the bj ’s are defined in (2.12), so that bjH in (4.6) is the fraction of the pNGB Higgs

at the site j.

We are interested in the couplings of the first fermion excitations to the Higgs doublet

and a fermion zero mode. These arise due to the fact that both the excited fermion and
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N t
(1)
R t

(0)
L t

(1)
L t

(0)
R u

(1)
R u

(0)
L u

(1)
L u

(0)
R t

(1)
L b

(0)
R u

(1)
L d

(0)
R b

(1)
R t

(0)
L

4 0.365 0.028 4× 10−9 0.002 0.04 3× 10−6 2.6× 10−4

15 0.18 0.35 3× 10−5 3× 10−4 0.014 1.3× 10−7 0.001

Table 2. The couplings of the excited fermions to their zero mode and the Higgs doublet. From

columns 3 to 5, we show the couplings to the neutral Higgs sector, i.e. h and ZL. The last two

columns correspond to the charged couplings to WL.

the Higgs doublet have IR-localized wave functions different from the zero-mode fermion’s.

Making use of the rotation (3.2), we can express the Higgs doublet couplings in (4.6) as

L ⊃ −

 N∑
j=0

yj h
∗j,0
L hj,1R

vN
vj

 Q̄(0)
L H q

(1)
R + h.c.+ · · · , (4.8)

where we have extracted the couplings of interest, namely the one between the first quark

excitation and a zero mode, which in this particular example gives the couplings of the first

excitation of a right-handed zero-mode quark. In (4.8) the wave-functions hj,0L,R and hj,1L,R are

the one we obtained in section 3. In table 2 we show representative values of the couplings

of excited fermions to the Higgs doublet and a zero mode for various quarks, for two cases

N = 4 andN = 15. For instance, in the first column we have the coupling of the first excited

right-handed top t
(1)
R to the top quark and the neutral components of the Higgs doublet H.

The couplings vary a lot, mostly due to the changing zero-mode wave functions. These

couplings allow us to compute the excited fermion decay into a zero mode and either the

Higgs boson or the longitudinal components of the weak gauge bosons, ZL and W±L . The

last two columns are precisely the charged couplings for the third and first family excited

fermions.

In the next section, we use the couplings computed here to study both the production

and decay of the excited fermions.

5 Phenomenology

Here we consider the production and decay of the first excited quarks. The simplest mech-

anism is pair production via QCD. The alternative, is single production via electroweak

boson exchange or gluon-weak boson fusion and can in principle be competitive for heavier

masses. In figure 6, the solid line shows the pair production of the first quark excitation

q(1) via QCD. We ignored the negligibly small contributions mediated by the gauge excited

states of the gluon. In this approximation, the curve is equally valid for all generations.

The single production channel, through W,Z exchange or W,Z gluon fusion, requires elec-

troweak couplings with a zero mode and the Higgs doublet. The relevant couplings are

given in table 2. We can see that they are only significant when considering the fermion

excitations of the third-generation quarks. Even the production of b
(1)
R is quite suppressed.

On the other hand, single b
(1)
L production through longitudinal Z exchange can be signifi-

cant. For illustrative purposes, here we consider the production of t
(1)
L,R, which is mediated

by longitudinal W exchange . With these couplings the single production of the top-quark
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Figure 6. Cross sections for t(1) production, as a function of Mt(1) at
√
s = 14 TeV. The solid line

is QCD pair production, whereas the dashed line corresponds to single production for N = 4, and

the dotted line to single production for N = 15.

q(1) q

G(1)

q(1)
q’

H

Figure 7. Decay modes for first excited quarks. The left diagram illustrates the decay into the

heavy gluon and a zero mode through the couplings of table 1, whereas the right diagram shows

the decay into electroweak states and a zero mode through the couplings of table 2.

excitation t(1), summing over the left and right-handed states, is given for N = 4 and

N = 15 by the the dashed and dotted lines of figure 6, respectively. In all cases we use the

parton distribution functions from ref. [38]. We can see that pair production dominates over

single production even for the cases with the largest couplings in table 2, the top excited

state. It is only for very large t(1) masses, 2.7 TeV for N = 4 and 3.5 TeV for N = 15, that

the single production dominates due to the phase space suppression. But the production

cross sections for these large masses are quite small. Then, for excited quark masses that

will be accessible at the LHC in the next run, pair production dominates. The situation

is very different than in other models with vector-like quarks, where the electroweak single

production dominance appears at considerably smaller masses [37].

The production cross sections for pair production of all the excited quark states are

the same for the same mass as long as the excited gluon contribution is neglected. However

there are differences both in their spectrum and the couplings responsible for their decays.

There are two main mechanisms for the decay of the excited quarks, illustrated in

figure 7. The electroweak-mediated two-body decays into the Higgs or the longitudinal

components of the gauge bosons arise through the couplings shown in table 2. There is
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also the decay into a gauge excitation, dominantly the heavy gluon, and the corresponding

zero-mode quark, where the relevant couplings are the ones in table 1. The latter mode

is suppressed by phase space given that the mass difference between the quark and gauge

excitations can be very small for certain values of the localization parameters, as illustrated

in figure 4. However, the excited gauge boson mode can be competitive in many cases given

that sometimes it only takes a small mass difference for it to have a branching fraction

comparable to the electroweak modes. From figure 4 we see that only of cL > 0.55 and

cR > −0.55, the mass degeneracy between the fermion and the gauge boson excitations is

close enough to suppress this mode.

Based on the above discussion, we see that the decay of t
(1)
R , the excited, vector-like

fermion belonging to the tower with the right-handed top as its zero mode, is dominated

by the electroweak modes since all typical solutions for the masses and mixings require this

zero mode to be IR-localized, i.e. c3R > −0.5. Thus, ignoring the highly suppressed excited

gauge boson mode, the branching ratios for t
(1)
R decay should be

Br(t
(1)
R → th) ' Br(t

(1)
R → tZL) ' 1

2
Br(t

(1)
R → bWL) . (5.1)

For the left-handed third-generation excitations t
(1)
L and b

(1)
L , the situation is more

model-dependent. For instance, for N = 4 the electroweak coupling leading to the decays

into weak bosons or the Higgs is somewhat suppressed (see table 2), while the decay to a

zero mode and an excited gluon is not (table 1). The ratio of the two partial widths is

ΓG
ΓH

=
8

3

(
g101G

g10H

)2
(M2

1 −M2
G)2

M4
1

, (5.2)

where MG is the mass of the first gluon excitation, and g101G and g10H are the coupling of

t(1) to its zero mode and an excited gluon and to the Higgs doublet and a zero mode,

respectively. We can now estimate then that in order for these channels to be comparable

in this case the mass difference ∆M = M1 −MG needs to satisfy

∆M

M1
> 0.02 . (5.3)

The solutions for the localization parameters we have used so far are such that c3L = 0.55,

which by inspecting figure 4 appears to give values of ∆M just a bit smaller than the

bound on (5.3). But it is clear that for values only slightly smaller of c3L we would already

satisfy this condition. Since obtaining mass and CKM solutions with these values of c3L is

perfectly feasible, we conclude that both decay modes are likely and must be considered.

The situation is similar for the left-handed quark excitations of the first and second

families. For instance, for the first family, we see from tables 1 and 2 that the u
(1)
L couplings

to the Higgs doublet and a zero mode are quite suppressed compared to the non-diagonal

excited gluon couplings. Even when considering the fact that c1L > 0.55 is always satisfied

for most solutions (i.e. first-generation zero mode quarks must be UV-localized), very small

values of ∆M are required in order for the excited gluon mode to be important. E.g. for

N = 4 we need ∆M/M1 > 0.02, whereas for N = 15 just having ∆M/M1 > 0.005 is
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enough. For the second-generation quark excitations this is even more common, given the

slightly smaller values of c2L which allow for larger masses for them (see figure 4).

Finally, we consider the decays of the excitations of the first and second generation

right-handed quarks. Let us focus on u
(1)
R , but similar conclusions will apply to d

(1)
R as

well as to the analogous second generation excitations. From table 2 we can see that

the couplings to H and a zero mode that govern the electroweak decay mode are highly

suppressed, both for low (N = 4) and moderate (N = 15) number of sites, relative to the

couplings to the gluon excitation (table 1). Thus mass differences only need to be very

small (∆M/M1 > 2×10−4 for N = 4, ∆M/M1 > 0.01 for N = 15), which is almost always

satisfied in most cases. Thus, it is very likely that these excited quarks decay exclusively

through the heavy gluon decay mode. A very similar situation occurs with b
(1)
R .

To summarize, the decays of t
(1)
R are likely to be dominated by the electroweak channels:

t
(1)
R → (h, ZL) t and t

(1)
R → b WL. On the other hand, the decays of all other right-handed

excitations (b
(1)
R , u

(1)
R , etc.) are most likely dominated by the heavy gluon mode, as in

u
(1)
R → u G. Finally, the left-handed excitations (t

(1)
L , u

(1)
L , etc.) have couplings leaving in

the boundary between the dominance of the two channels, and in general is possible that

both decay channels are present.

Bounds on the masses of the excited quarks, mainly those corresponding to third

generation zero modes, are obtained at the LHC by ATLAS and CMS through the various

electroweak decay modes [39–42]. From the latest analyses of the
√
s = 8 TeV data

the bounds imply that the masses must be typically below 600 GeV to almost 800 GeV,

depending on the assumptions regarding branching fractions. For instance for t
(1)
R , given

the electroweak branching ratio dominance discussed above, we can deduce a bound of

about M1 > 696 GeV from refs. [40–42]. In any case, the current bounds are all below

1 TeV. On the other hand, for the heavy gluon decay modes, q(1) → qG(1), the final states

are: tt̄+hard jet, bb̄+ hard jet or simply hard jets. As a final comment, we should have

in mind that is possible to build quiver theories of EWSB and fermion masses without

the gluon excitations. Thus, the decay mode into heavy gauge bosons, competing with

the transitions into the Higgs sector, are those to the excitations of the W , the Z and the

photon. More detailed studies of all these final states, as well as of the electroweak decay

modes for heavier masses, are left for future work [43].

6 Conclusions and outlook

Quiver theories with a pNGB Higgs are a natural extension of the SM. Although they are

closely related to holographic/AdS5 models, they correspond to their coarse deconstruction

and have significant quantitative differences with them. In this paper we studied the

fermion excitations in these models by obtaining their spectrum, couplings to excited gauge

bosons and the Higgs sector, and the resulting phenomenology in their production and

decays. We have focused on the quark excitations, and in additions we choose the minimum

quark content in the quiver that has to be present to reproduce the SM quark sector. Thus,

the quark excitations studied in this paper are just the ones with a SM counterpart. The

advantage is that their properties are largely model independent, and in particular do
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not depend on the fermion representation in the quiver. The obvious drawback of this

general approach is that the spectrum of quark excitations is incomplete. In particular,

with this spectrum of excitations alone the Higgs sector will require some tuning in order

to result in a Higgs mass as light as the one observed. One could imagine that, just as

it is the case in continuum models, extending the fermion representation might result in

lighter fermions which would ameliorate this problem. Conversely, we could accept this

fine-tuning, already of the order of a few percent or larger, given that the model solves the

big hierarchy problem. Either way, the phenomenolgy of the heavy spectrum of fermion

resonances needs to be studied.

An important difference with the continuum AdS5 models and the holographic re-

alizations inspired by them can already be seen in the spectrum of fermion excitations,

obtained in section 3. This can be appreciated in both panels of figure 4, which show the

dependence of the fermion excitation mass M1 with the localization parameters for left and

right handed zero modes. For instance, for the excitation with a left-handed zero mode

we see that M1 saturates towards the mass of the gauge excitation (1 TeV in the example

of figure 4) for values of the localization parameter cL corresponding to UV localization,

whereas for smaller values corresponding to IR localization M1 growths exponentially with

respect to the gauge excitation mass. On the other hand, for the excitation with a right-

handed zero mode the behavior is the opposite: M1 saturates towards the gauge excitation

mass for values of cR consistent with IR localization of the zero mode. This is in stark

contrast with the continuum, which exhibits in both cases a behavior symmetrical with

respect to cL = 0.5 and cR = −0.5, with M1 growing linearly from these points. We have

shown in section 4 and particularly in section 5 that this has important consequences in

the phenomenology of the production and decay of these fermion excitations. Namely the

special pattern of decays of the various quark excitations is in great part determined by

this feature. We see one more time, just as it was the case for the gauge excitations studied

in [22], that there are important phenomenological differences between quiver theories and

their continuum cousins. In this case, they point to a fundamental aspect of the theory

determining the spectrum of fermion resonances.

The examples studied here are obtained for a specific solution of the localization pa-

rameters cL,R compatible with the SM quark masses and CKM mixing [20]. Although

other solutions might be possible, we believe that the general features found here should

persist. A more detailed study of the phenomenology of the quark excitations at the LHC,

including backgrounds and search strategies, is left for future work [43]. Similarly, the

study of the lepton excitations will be done separately since it requires the input of the

lepton sector of the SM, which involves not only the spectrum of neutrinos with the need

of a see-saw mechanism, but also their particular mixing [24].
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