
HAL Id: hal-05335545
https://hal.science/hal-05335545v1

Submitted on 28 Oct 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

ArKanjo: a tool for detecting function-level Code
Duplication in the Linux Kernel

Luan Arcanjo, David Tadokoro, Paulo Meirelles

To cite this version:
Luan Arcanjo, David Tadokoro, Paulo Meirelles. ArKanjo: a tool for detecting function-level Code
Duplication in the Linux Kernel. DebConf25, IRISA, Jul 2025, Brest, France. pp.3. �hal-05335545�

https://hal.science/hal-05335545v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


ArKanjo: a tool for detecting function-level Code
Duplication in the Linux Kernel

Luan Arcanjo
Universidade de São Paulo, Brazil

luanicaro@usp.br

David Tadokoro
Universidade de São Paulo, Brazil

davidbtadokoro@usp.br

Paulo Meirelles
Universidade de São Paulo, Brazil

paulormm@ime.usp.br

Abstract—The Linux kernel massive scale (+28 M LoC, +20
K contributors) presents unique maintenance challenges. Sur-
prisingly, code duplication remains a persistent issue in the
kernel codebase, which can hinder its evolution and patching.
Academic approaches often focus on pairwise comparison of
code artifacts, which are not directly applied to comprehensive
codebase analyses. Other existing free software1 tools explored
in practice frequently suffer from limited functionality, such as
primitive textual matching, prove too narrow in scope, or fail
to deliver effective results on complex, large-scale codebases.
Existing solutions generally fail to address the Linux kernel-
specific needs: (1) scalability to handle its size, (2) actionable
results for developers, and (3) integration with kernel develop-
ment workflows. This paper presents ArKanjo, a novel command-
line tool for Linux kernel maintenance designed to detect and
analyze function-level duplications. Released under the GNU
Lesser General Public License (LGPL), ArKanjo employs a two-
stage architecture consisting of a Preprocessor and a Query
Responder that separates computationally intensive analysis from
efficient querying for duplications within large codebases. Pivotal
advantages of ArKanjo over existing solutions include: (1) pre-
processing that enables rapid queries without redundant analysis;
and (2) prioritization of duplicates that impact maintainability,
such as copied buggy logic. We evaluate ArKanjo against real-
world duplication cases in recent kernel versions, demonstrating
its effectiveness in identifying problematic clones that generic
tools often overlook. By identifying well-defined, manageable
duplication instances, ArKanjo effectively lowers the barrier for
new contributors, a capability evidenced by its role in guiding
students to make their first code improvements to the kernel.
ArKanjo offers immediate value to kernel maintainers and serves
as a replicable model for clone detection in other large-scale free
software projects.

I. INTRODUCTION

The Linux kernel is a foundational free software project
critical to a significant portion of the world digital infras-
tructure. Maintaining the kernel is an enormous undertaking
involving over 28 million lines of code and contributions
from over twenty thousand developers. Within this context,
code duplication persists as a significant challenge, a known
harmful practice that negatively affects code readability and
increases the likelihood of introducing bugs [1], [2]. This issue
is particularly acute in kernel device drivers, which comprise
over 66% of the source code [3]. For instance, maintainers
of the AMD Display driver have specifically highlighted code
duplication as a significant impediment to their work.

1In this paper, we use the term Free Software interchangeably with Open
Source Software.

Detecting code duplication, or code clones, has been a
research subject for decades [4]. The literature provides a
standard taxonomy, classifying clones into four types based
on their degree of similarity, from identical copies (Type-1)
to semantically equivalent but textually different fragments
(Type-4) [5]. Various detection methodologies have been de-
veloped, including textual, token-based, tree-based, and graph-
based approaches [5]. These have culminated in state-of-the-
art techniques, such as the graph-based work by Liu et al. [6].

However, the primary focus of such academic work remains
on determining whether a given pair of code artifacts is a
duplicate rather than providing a scalable method to scan an
entire codebase for actionable results. Conversely, existing free
software tools explored in practice, often lack this sophisti-
cation, relying instead on primitive textual matching that is
insufficient for the complexity and scale of the kernel.

To fill this gap, this research proposes a new approach
embodied in ArKanjo, a tool designed specifically to identify
and facilitate the mitigation of function-level code duplica-
tions within the Linux kernel. We employ multiple analytical
methods and ethnographic studies to test it.

II. ARKANJO TOOL

ArKanjo, our proposed tool, is a Command Line Interface
(CLI) application designed to help developers identify code
clone duplication at the function level. Released under the
LGPLv3 (GNU Lesser General Public License, version 3),
ArKanjo is available at github.com/arkanjo-tool/arkanjo.

A. Architecture

The tool operates in two main parts, as illustrated in
Figure 1: the Preprocessor and the Query Responder. The
Preprocessor performs heavy computations to find code du-
plications across a codebase and produces artifacts to store
duplication-related information in a structured form. The
Query Responder consumes the artifacts produced by the
Preprocessor to execute the tool functionalities as requested.
This design allows the tool to perform the heavy and time-
consuming steps only once per codebase, enabling fast perfor-
mance for multiple queries on the same codebase.

The Preprocessor contains two main components: the Func-
tion Breaker and the Code Duplication Finder. The workflow
of the Preprocessor is as follows: the Function Parser receives
the input codebase, extracts the functions along with metadata,

https://github.com/arkanjo-tool/arkanjo


Fig. 1. Architecture diagram with the tool components

and creates a temporary codebase where each extracted func-
tion becomes a new code file. The Code Duplication Finder
then iterates over every pair of files in the temporary codebase,
checks whether they are code clones, and, if so, stores the
result in the Code Duplication Database. This database is
a text file that records each code duplication as a triple
<function1, function2, similarity>, where function1 and
function2 are the duplicated functions, and similarity is the
score returned by the duplication detection method used in the
Code Duplication Finder.

The Query Responder uses the temporary codebase and
the Code Duplication Database to extract information about
duplicated functions based on the user’s request. If the user
executes the Query Responder without previously executing
the Preprocessor, the Query Responder automatically calls the
Preprocessor to generate the required artifacts.

The Function Parser receives the input codebase and trans-
forms it into the temporary codebase. It iterates through every
source code file written in a supported programming language
and uses a language-specific extractor to isolate each function.
For each extracted function, two new source code files and a
metadata file are created in the temporary codebase, repre-
sented by the pair <file name, function name>, the source
code of the function, and the function metadata (in practice,
this is a duplication of the original codebase, structured as
a parsed representation). One of the new files contains the
function body, and the other contains the function signature.
The metadata file includes additional relevant information,
such as the function name, the line where the signature starts,
and the line where the function body ends. Currently, the
supported programming languages are C and Java, although
Java support is limited.

The Code Duplication Finder iterates through every pair of
source code files in the temporary codebase, each representing
a function from the input codebase. For each pair, a code
duplication detection method computes a similarity score. If
the similarity is greater than or equal to the minimum threshold
(provided by the user during preprocessing), the pair is stored
in the Code Duplication Database along with the similarity

score.
We implemented two duplication detection methods in the

tool, which users can choose between. The first method is
based on text similarity, and the second is a more straightfor-
ward approach based on the number of identical lines. The
experiments and tests in this research were conducted using
the text similarity method.

1) Code Duplication Methods Used: For the text similarity
method, we treat the source code files as plain text and
apply the TF-IDF vector embedding method implemented by
the Gensim library [7], then compute cosine similarity as
the similarity metric. We chose this method for its reported
performance, programming language independence, and the
fact that it does not require compilable code, an important
aspect given that the temporary codebase does not contain
complete code artifacts.

We implemented a more straightforward approach for the
difference method, considering the number of exactly equal
lines between two functions. For two functions, function1 and
function2, we compute the similarity as the ratio of duplicated
lines to the total number of lines across both functions. This
method is considerably simpler and more explainable than the
text similarity method. The metric is defined by the proportion
of common lines between the two functions. We use the diff
command built into the Linux environment to compute the
number of equal lines.

B. Functionalities

We propose three main functionalities for the user in the
tool: Duplication Explorer, Function Information, and Dupli-
cation Report. Each functionality accepts specific parameters
to perform its operations.

Fig. 2. Example of the Duplication Explorer functionality.

The Duplication Explorer is the primary functionality of
our tool, designed to present the user with pairs of duplicated
functions identified by the tool. We implement optional filters
to support more complex queries. Figure 2 demonstrates an
example of this functionality in use.

The Function Information functionality provides detailed
information about a specific function. It receives a target func-
tion from the user and returns information such as the relative



Fig. 3. Example of the Function Information functionality.

path, function name, and line numbers where the function
is defined. Additionally, it provides similar information for
every function that duplicates the given function. Figure 3
demonstrates an example of this functionality in use.

Fig. 4. Example of the Duplication Report functionality.

The Duplication Report functionality provides an overview
of duplicated code within the input codebase. It calculates the
number of duplicated lines per folder in the codebase and
presents the information to the user in a readable format, as
demonstrated in Figure 4.

III. METHODS

We applied two independent evaluation approaches to val-
idate the capabilities of the ArKanjo tool in finding code
duplications using the text similarity detection method. The
first method assesses the tool using a literature-based approach,
comparing it against the BigCloneBench dataset [8]. The
second method consists of an empirical analysis of a subset
of functions within the AMD Display driver that our tool
identified as duplicates.

To validate the tool against the BigCloneBench dataset [8],
we followed the methodology presented by Liu et al. [6]. We
sampled 20,000 pairs from each clone type and added 20,000

non-duplicate pairs as negative samples. We applied the same
sampling strategy to our tool to ensure a fair comparison.

Unlike state-of-the-art methods, our tool does not distin-
guish between clone types. Additionally, it identifies duplica-
tions at the function level, whereas most existing tools operate
at the file level. Therefore, we adapted the metric calculation
method for evaluation purposes. Specifically, we considered
every pair of functions with a similarity metric equal to or
greater than a threshold X as duplicates and marked the
corresponding file pairs. A correctly identified duplication pair
is counted as accurate for its clone type, while an incorrectly
inferred pair is considered incorrect across all clone types. To
understand the impact of varying the similarity threshold, we
evaluated our tool using different threshold values: 30%, 40%,
50%, 60%, 70%, 80%, 90%, and 100%. We then analyzed and
discussed the results.

For the empirical analysis, we randomly sampled function
pairs identified by the tool as duplicates. For each similarity
threshold X (30%, 40%, 50%, 60%, 70%, 80%, 90%, and
100%), we randomly selected ten function pairs with a simi-
larity close to X , allowing for a 1% deviation.

We conducted a multi-part ethnographic study to assess
whether the duplications found by the ArKanjo tool were
actionable. In the second semester of 2024 and the first
semester of 2025, respectively, the main author, conducting a
first validation, and 12 student groups (19 undergraduate and 7
graduate students) from the Free Software Development course
at the University of São Paulo acted as new contributors to the
Linux kernel in a broader experiment, used the tool to identify
duplications within the Industrial I/O (IIO) subsystem and the
AMD Display driver subsystem refactored the code to address
the issues, and submitted their proposed fixes as patches to
the community maintainers. The students documented their
refactoring approaches and experiences interacting with the
kernel community throughout this process.

IV. RESULTS

In this section, we assess the ArKanjo tool effectiveness
in detecting code duplications through benchmark comparison
and empirical analysis. We also describe findings from an
ethnographic study involving real contributions to the Linux
kernel, highlighting the tool practical utility and limitations in
developer workflows.

A. Tool Evaluation

Table I shows the results obtained by our tool on the
BigCloneBench dataset, and Table II presents the results from
the empirical analysis. The outcomes from both the Big-
CloneBench evaluation and our empirical method indicate that
our tool performs well in detecting Type-1 and Type-2 code
clone duplications, which are sufficient to reveal propagated
issues like copied buggy logic. However, it struggles with more
complex clone types. A similarity threshold between 80% and
100% yields favorable results in both methods.

Nevertheless, a discrepancy emerges when detecting non-
duplicate pairs between the two methods. In the Big-



TABLE I
RECALL OF THE ARKANJO TOOL IN THE BIGCLONEBENCH DATASET.

Similarity
Threshould T1 T2 ST3 MT3 WT3/

T4 False

100% 100% 5% 6% 0% 0% 100%

90% 100% 85% 26% 0% 0% 100%

80% 100% 87% 37% 1% 0% 100%

70% 100% 88% 44% 2% 0% 100%

60% 100% 89% 49% 4% 0% 100%

50% 100% 90% 64% 6% 0% 100%

40% 100% 90% 68% 9% 0% 100%

30% 100% 98% 74% 13% 0% 100%

TABLE II
RESULTS OF THE ARKANJO TOOL ANALYZING THE AMD DISPLAY

DRIVER.

Similarity
range T1 T2 T3 T4 False Success

Ratio
99% - 100% 9 0 0 1 0 100%
89% - 91% 0 8 0 1 1 90%
79% - 81% 0 3 2 3 2 80%
69% - 71% 0 3 1 1 5 50%
59% - 61% 0 0 0 2 8 20%
49% - 51% 0 0 0 0 10 0%
39% - 41% 0 0 0 0 10 0%
29% - 31% 0 0 0 0 10 0%

CloneBench evaluation, we found no false positives (i.e., neg-
ative samples inferred as duplications), whereas the empirical
analysis revealed a higher percentage of false positives. We
propose two potential explanations for this discrepancy.

The first explanation concerns the limitations and known
issues with BigCloneBench, as highlighted by Krinke and
Ragkhitwetsagul [9]. The second explanation relates to the
nature of the AMD Display driver, where code artifacts
often share semantic meaning. In contrast, BigCloneBench
comprises self-contained code artifacts with minimal or no
shared semantics. Since our tool relies on a text-based code
clone detection approach, it may naturally perform worse on
the AMD Display driver than on the BigCloneBench dataset.

While we did not conduct a formal performance benchmark,
we measured the Preprocessor’s execution time on a machine
equipped with a Ryzen 5700X processor and 32GB of RAM.
Across 5 runs on the AMD Display driver, the worst-case
execution time for the Preprocessor was 8 minutes and 56
seconds. On the IIO subsystem, the worst-case time over 5
runs was 9 minutes and 41 seconds. In contrast, the Query Re-
sponder processed requests in under 2 seconds in both cases,
demonstrating the efficiency of the two-stage architecture.

B. Ethnographic Study

Using the ArKanjo tool, the main author and 23 students
(divided into 11 groups) identified and refactored duplicated
code in the AMD Display driver and the Industrial I/O (IIO)
subsystems, submitting their work as patches to the community
maintainers. This effort resulted in 12 patch submissions:
One was from the main author to the AMD Display driver,

and 11 were from the student groups, with 10 targeting the
IIO subsystem and one aimed at the AMD Display driver.
After a lengthy review process, the main author’s patch was
successfully accepted and merged into the kernel.

The students’ efforts demonstrated that newcomers could
use the tool to contribute effectively. Of the 11 students’
patches, 6 were accepted, 4 were rejected, and 1 required
follow-up fixes based on maintainer feedback. To remove
the duplicated code, 7 student groups used the Parameterize
Method, and 2 used the Extract Method [10], both of which
are straightforward refactoring strategies. These results sup-
port that ArKanjo identifies actionable duplications and that
newcomers can successfully contribute patches to the kernel.

While this research includes successfully merged patches by
the main author and student groups, a significant portion of the
students’ contributions encountered notable challenges. These
difficulties often stemmed from maintainer feedback indicating
that, although the proposed changes reduced duplication, they
were rejected or required substantial revision due to concerns
about code readability, increased abstraction, or the specific
context of the code. Additional challenges included technical
complexities, such as C macros in configuration files and
extended patch review timelines. These findings highlight
that while ArKanjo effectively identifies code duplications,
a successful contribution also requires navigating trade-offs
between deduplication and other factors, such as contextual
appropriateness and maintainer expectations.

V. CONCLUSION

This paper presented ArKanjo, a novel tool designed to
detect effectively and facilitate the refactoring of function-
level code duplication within the Linux kernel. Evaluations
demonstrated that ArKanjo is highly effective at identifying
Type-1 and Type-2 clones, which are often indicative of
propagated issues such as copied buggy logic. We validated
the practical value of the tool through an ethnographic study
in which the main author and student groups used ArKanjo
to identify actionable duplications. This effort led to 13
patch submissions, including 1 from the main author and
6 from student groups that were successfully merged into
the kernel 2, collectively removing 987 lines of duplicated
code. While some refactoring efforts were declined due to
maintainer priorities, ArKanjo successfully lowered the barrier
for new contributors to make meaningful improvements. The
tool provides immediate value for kernel maintenance and
serves as a model for clone detection in other large-scale
projects.

ACKNOWLEDGMENT

This study was financed, in part, by CAPES (Finance Code
001), the University of São Paulo – USP (Proc. 22.1.9345.1.2)
and the São Paulo Research Foundation – FAPESP with the
São Paulo State Data Analysis System Foundation – SEADE
(Proc. 2023/18026-8), Brazil.

2Reference for the accepted patches: github.com/arkanjo-
tool/arkanjo/blob/main/PATCHES.md.

https://github.com/arkanjo-tool/arkanjo/blob/main/PATCHES.md
https://github.com/arkanjo-tool/arkanjo/blob/main/PATCHES.md


REFERENCES

[1] W. Hordijk, M. L. Ponisio, and R. Wieringa, “Harmfulness of code
duplication-a structured review of the evidence,” 2009.

[2] K. Hotta, Y. Sasaki, Y. Sano, Y. Higo, and S. Kusumoto, “An empirical
study on the impact of duplicate code,” Adv. Soft. Eng., vol. 2012, 1
2012. [Online]. Available: https://doi.org/10.1155/2012/938296

[3] M. Schmitt, “Linux kernel device driver testing.” São Paulo : Instituto
de Matemática e Estatı́stica, Universidade de São Paulo, 2022.

[4] H. T. Jankowitz, “Detecting plagiarism in student pascale programs,”
The computer journal, vol. 31, no. 1, pp. 1–8, 1988.

[5] C.-F. Chen, A. Zain, and K.-Q. Zhou, “Definition, approaches, and
analysis of code duplication detection (2006–2020): a critical review,”
Neural Computing and Applications, vol. 34, pp. 1–31, 08 2022.

[6] J. Liu, J. Zeng, X. Wang, and Z. Liang, “Learning graph-based code
representations for source-level functional similarity detection,” in 2023
IEEE/ACM 45th International Conference on Software Engineering
(ICSE), 2023, pp. 345–357.

[7] R. Řehůřek, P. Sojka et al., “Gensim—statistical semantics in python,”
Retrieved from genism. org, 2011.

[8] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia,
“Towards a big data curated benchmark of inter-project code clones,”
in 2014 IEEE International Conference on Software Maintenance and
Evolution, 2014, pp. 476–480.

[9] J. Krinke and C. Ragkhitwetsagul, “Bigclonebench considered harmful
for machine learning,” in 2022 IEEE 16th International Workshop on
Software Clones (IWSC), 2022, pp. 1–7.

[10] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

https://doi.org/10.1155/2012/938296

	Introduction
	ArKanjo Tool
	Architecture
	Code Duplication Methods Used

	Functionalities

	Methods
	Results
	Tool Evaluation
	Ethnographic Study

	Conclusion
	References

