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Abstract. We have combined competitive and Hebbian learning in a neural network designed to learn and recall
complex spatiotemporal sequences. In such sequences, a particular item may occur more than once or the sequence
may share states with another sequence. Processing of repeated/shared states is a hard problem that occurs very often
in the domain of robotics. The proposed model consists of two groups of synaptic weights: competitive interlayer and
Hebbian intralayer connections, which are responsible for encoding respectively the spatial and temporal features of
the input sequence. Three additional mechanisms allow the network to deal with shared states: context units, neurons
disabled from leaming, and redundancy used to encode sequence states. The network operates by determining the
current and the next state of the learned sequences. The model is simulated over various sets of robot trajectories

in order to evaluate its storage and retrieval abilities; its sequence sampling effects; its robustness to noise and its
tolerance to fault.
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1. Imtroduction

Robot learning presents a number of challenging prob-
lems, namely (1) they tightly integrate perception,
decision making and execution; (2) robotic domains
are usually complex, yet the expense of using actual
robotic hardware often prohibits the collection of large
amounts of training data; and (3) most robotic systems
are real-time systems, implying that decisions must be
made within critical or practical time constraints. Since
other important real-world application domains share
those characteristics, robotics is a highly attractive area
for research on machine learning, especially within the
field of artificial neural networks (ANNS).

The research in ANNs and its application in dis-
tinct domains makes it possible to investigate solu-
tions to complex problems in robotics following dif-
ferent learning paradigms (1, 2]. A common problem
in robotics is rrajecrory rracking, in which a robotis re-
quired to follow accurately a continuous path [3]. Such
a task is mainly programmed by means of the so-called

walk-through method in which an operator guides the
robot through a sequence of desired arm positions.
These positions are then stored i the controller mem-
ory for later recall. Such a method is time consuming
and uneconomical, since during the walk-through pro-
cess the robot is not engaged in productive activity [4]
and the process is realized under complete supervision
of the robot operator.

Tracking can easily be handled within the framework
of artificial neural networks in which trajectories can be
seen as a succession of arm configurations, i.e., a tem-
poral sequence of arm positions, hence, neural models
can model this type of processing. In particular, the
unsupervised learning paradigm has appealing charac-
teristics for its use in Robotics and temporal sequence
processing. In unsupervised neural networks, behavior

emerges by means of a self-organization process, thus

reducing substantially the robot programming burden
that accounts for as much as a third of the total cost of an
industrial robot system [3]. Also, unsupervised mod-
els are often fast, encouraging their use. in-incremental
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and on-line learning. Moreover, the structure of neural
networks allows massive parallel processing {4] which
enables the network to respond quickly in generating
real-time control actions.

An important issue, usually not addressed in simu-
lations and tests reported by the neural network liter-
ature, is the learning of multiple robot trajectories [4].
In some industrial operations, a robot is often required
to perform more than one task. Hence, the robot con-
troller must be able to track more than one trajectory.
One of the goals of the present work is to develop an
unsupervised learning neural network model to learn
and retrieve multiple trajectories.

We have grouped the various neural models for
unsupervised-temporal-sequence based robot control
into three classes according to their approach to trajec-
tory processing: (1) learning of percepton-action tra-
jectories, (ii) learning of robot trajectories, and (iii)
formation of robot trajectories.

The first approach involves direct association be-
tween sensory data and desired actions [6]. This ap-
proach is used when a mobile robot is required to ex-
plore the world to build a model of it. As the robot
navigates, it experiences a long sequence of perception-
action pairs. As the storage of such a sequence is often
not feasible, the researchers introduced mechanisms of
sequence chunking and linking (7, 8]: a long sequence
is broken into subsequences (chunks) which are stored
by the robot and properly concatenated (linked) when
their combination leads to reach a particular goal.

Two examples of this approach are the models pro-
posed by Denham and McCabe [8] and Heikkonen and
Koikkalainen [3]. Both systems were applied to au-
tonomous robot navigation tasks in which the agent
had to build a model of the world by exploration.
Denham and McCabe employed a reward system to
determine whether the learning of a sequence was
based on the achievement of a goal or the detection
of novelty. This system was implemented by using
the unsupervised model proposed by Wang and Arbib
[7]. Heikkonen and Koikkalainen introduced several
control algorithms based on Kohonen Self-Organizing
Map [9]. The knowledge was acquired from existing
sequences as well as from the robot exploratory naviga-
tion. The authors simulated a robot that quickly learned
1o select suitable actuons for a range of sensory situa-
tons, adapted nicely to changes in the environment,
and cellided less and less frequently as time went by.
However, this approach is not stable agamst deviations
of the wajectory. If the robotic system finds itself in

an untrained position, off any learned trajectory, no
appropriate control action may be produced [6].

In the second approach, a neural network must learn
to associate consecutive states of a trajectory and store
these transitions for total or partial reproduction of the
memorized trajectory. Usually, for the purpose of re-
call, the network receives as input the current state of
the robot and responds with the next state, to execute
a pre-defined task. This approach has been applied to
point-to-poimt trajectary controt and trajectory tracking
101

Althofer and Bugmann [11] described a neural im-
plementation of a resistive grid used to plan the path of a
robot arm. This model has limitations such as jerkiness
of the movements and an inaccurate final end-effector
postition due to the resclution constraints of grid-based
methods. In the context of mobile robotics, Bugmann
et al. [6] proposed a neural network which uses nor-
malized RBF neurons to encode the sequence of states
forming the trajectory of an autonomous wheelchair.
The network operates by producing the next spatial
position and orientation for the wheelchair. As the tra-
jectory may pass several times over a particular point,
phase information is added to the position information
to avoid the aliasing problem [12]. This problem oc-
curs when identical sensory inputs may require differ-
ent actions from an autonomous system, depending on
the context. The use of normalized RBF neurons cre-
ates an attraction fleld over the whole state space and
enables the wheelchair to recover fram perturbations.

The third approach entails the creation of a robot
trajectory given only its initial and final (target) po-
sitions. The robot receives sensory information from
the workspace and autonomously constructs some kind
of inverse mapping. Typical examples of this ap-
proach are the works of Grossberg and Kuperstein [13],
Kuperstein and Rubinstein [14], Martinez et al. {15],
and Ritter et al. [16]. The three first works describe a
self-organizing model for visuomotor coordination of
arobot arm. This model learns to control a 5-degree-of-
freedom (DOF) robot arm to reach cylindrical objects.
The authors use a set of one-dimensional topographic
maps that represent the location of the target object and
whose adaptive weights determine the output to the arm
actuators. Each one-dimensional map has a fixed topo-
graphic ordering and only the output weights can be
adapted during the learning process. As a consequence,
the range of the expected input values must be known
in advance and adaptive changes in the resolution of the
neural population required for control are not possible.
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Furthermore, as the maps are one-dimensional and
their outputs are a linear summation for each actuator,
they can approximate only a restricted class of control
laws. The work of Bullock and Grossberg [17] extends.
Kuperstein's model by including muscle dynamics, ini-
tial conditions, muscle contracton rates, and feedback
signals from muscle sensors.

Martinez etal. [15] and Ritter et al. [16] presented an
% approach to diminish the drawbacks of thé Kuperstein
model, by using 3D variant of the Kohonen SOM. In
this approach the ordering and resolution of the map
evolve during leamning (by updating a layer of input
weights), thus determining the distribution of the neu-
ral units over the task space, and overcoming the prob-
lem of fixed resoluuon of Kuperstein’s model. The
adaptation of the output weights was achieved by an
error-correction procedure based on the Widrow-Hoff
learning rule for adaptive linear elements. The 3D map
eliminates restrictions arising from the additive cou-
pling of several 1D maps and allows many neighbor-
Ing units to cooperate during learning, increasing the
efficiency and robustness of the algorithm. The authors
reported simulation results in which after 30,000 train-
ing steps there are no significant positioning errors.
This model was implemented in a 560 PUMA robot
(18], producing small positioning errors. Moreover, the
system was able to adapt to sudden changes of its ge-
ometrical parameters.

Despite the appealing features of the unsupervised
learning-based control system, its use has been limited
to a few model proposals, in part because a major part
of the work on this topic is devoted to other paradigms
such as supervised and reinforcement learning. In this
paper we emphasize the feasibility of applying unsu-
pervised learning to complex robotics problems.

We are particularly concemned with the problem of
fast and accurate leamning of single and muitiple se-
quential patterns that represent robot trajectories. An
unsupervised neural network algorithm is the chosen
learning strategy mainly because it is based on self-
organization. This principle has proved to be a rather
generic technique to be employed in a wide range of ap-
plication domains, such as robotics and process control,
where complex issues involving multivariate sensory
information are present [5]. Furthermore, in robotics,
self-organization allows autonomous construction of
effective world representations either from raw sensory
measurements or from preprocessed sensory data.

The contribution of this work to the field of unsu-
pervised neural networks is threefold: (i) development
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of a time-delayed Hebbian learning rule to encode the
temporal order of patterns in a sequence, (ii) use of
temporal context to recall multiple stored sequences
without ambiguity, and (iii) application of the proposed
model to reduce the cost of robot “training” in tracking
tasks. The leamning algorithm to be proposed is evalu-
ated through simulations of 2- and 3-dimensional robot
trajectories.

This paper is organized as follows. In Section 2,
we present some concepts related to the storage and
retrieval of temporal sequences by means of neural
network models. In Section 3, we develop our model
discussing in details all its components. In Section 4,
we evaluate the performance of the model through
computer simulations and discuss the main results.
Section 5 is devoted to compare the proposed model
with others available in the literature on temporal se-
quences. We conclude the paper in Section 6, present-
ing possible directions for further developments.

2. Short-Term Memory in Temporal Sequence
Based Control

Twe ingredients are essential for autonomous repro-
duction of sequential patterns [19]. First, for the pur-
pose of leaming, a mechanism to extract and store
ransitions from one pattern to s successor in the
sequence. This mechanism is known as short-rerm
memory (STM). Second, for the purpose of recall, ac-
tivation dynamics must be defined to mimic the previ-
ously learned sequence by propagation of the correct
sequence of stored states.

In the context of temporal sequence processing, STM
is the generic name of a number of retention mecha-
nisms. STM aids temporal order leamning and recall
within a sequence by maintaining vestiges of such pat-
terns for a certain period of time. Hence, an STM model
can establish temporal associations between consecu-
tive patterns and reproduce their order of occurrence at
the network output.

There is a number of STM models within the frame-
work of artificial neural networks [20-22}. The sim-
plest one, called tapped delay lines, involves a buffer
containing the most recent symbols from a sequence.
Such a buffer consists of time delays serially con-
nected. These lines convert a temporal sequence into
a spatial pattern by concatenating the sequence com-
ponents through a fixed-size window which slides in
time. The concatenated vector is then presented to the
network. Tapped delay lines are common in neural
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network madels and form the basis of traditional statis-
tical autoregressive models [20]. For further details on
the role of time delays in temporal sequence learning,
the readers are referred to Herz [23].

The number of time delays defines the memory
depth, i.e., the pedod of time a pattern remains avail-
able in the STM. For instance, four time delays indicate
that a particular pattern and its four predecessors are
available in the memory. The model to be proposed in
the next section uses time delays at the input and the
output. When connected to the Input, time delays are
used to account for past elements of the sequence in or-
dertoresolve potential ambiguities during recall. When
linked to the output units, time delays are used to learn
the temporal order of the items of the input sequence.

3. The Neural Model Description

In this section, we introduce an artificial neural net-
work model according to the framework proposed by
Rumelhart and McClelland [24]. In the subsections, we

~ describe the input the network topology, the network
rules and procedures.

3.1, Abour the Input Parrerns

The input patterns are in the form of sequences. Each
sequence consists of a finite number of items, also
called sequence states or components, which can be
scalars, x(r) € R, or vectors, x(z) € ®?, p > 1. These
items, presented to the network sequentally, one after
the other, represent the spatial portion of the input state,
and the order in which they occur represent the tempo-
ral order. The network should be able to encode both
the spatial and temporal aspects of the input sequence.

We classify sequences as open and closed. Open se-
quences are those in which the initial item is different
from the final one. For closed sequences, the initial item
is equal to the final one. For instance, the sequence of
letters A-B-C-D-E is open whereas the sequence of
letters X-Y-Z-W-X is closed.

A single open or closed sequence can have inter-
mediate repeared items. For example, the sequences
A-B-C-D-C-E and X-Y-Z-W-Z-X are examples of
open and closed sequences with repeated items (C in
the firstsequence and Z in the second one), respectively.
In addition, two or more sequences can have items
in common. For instance, the sequences A-B-C-D-E
and X-Y-C-W-Z share the item C. We call this item

a shared state. Generically, we cail both repeated and
shared states recurrent items. Recurrent items cause
ambiguities during recall, and, because of this, we use
the term complex sequences for those with recurrent
states. Some kinrd of contextual information should be
supplied in order to resolve such ambiguities.

If more than one sequence is to be presented, in oe-
der to distinguish between the end of one sequence and
the beginning of another, two alternatives are possible.
The first one is to define a time delay between con-
secutive sequences. The second is to use a sequence
identifier. Whenever this identifier changes, this means
that the sequence has also changed. We have chosen the
second alternative because it can be used as a form of
context information that enables the network to handle
ambiguities that occur when repeated items are present
in the sequences. This type of context and another are
described below.

For the robot trajectories, each state is composed of
the spatial position (x, y, z) of the robot end-effector
In its workspace, six joint angles and six joint applied
torques.

3.2. The Architecture

The basic architecture of the proposed model is illus-
trated in Fig.1. This is a two-layer network composed of
a broadcasting input layer and an output layer respon-
sible for the processing. The model has feedforward
and feedback weights playing distinct roles in its dy-
namies. From this point enwards, the term trajectory is
synonymous with sequence.

The input pattern entsils two sets of neuroms:
the sensory and the conrexr units. The sensory set,
s(z) € ®7, receives the input trajectory state at time
step r and propagates this vector towards the output

Intralayer
weights M

) Cx)

Time-varying
Context

Sensory Fixed
Cantext

Figure 1. The architecture of the proposed model.
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= units. No input data prgé’processing stage is required. is stored in the weight vector of the neuron with the

The context units are used to resolve ambiguities that
may occur during recall of complex trajectories. The
~/ contextunits are of two types: fixed and time—varying.
Fixed context, x; € %9, is time-invariant and is set to
a particular state of the temporal sequence, the imi-
tal or the final one being the usual options. It is kept
unchanged until the end of the current sequence has
been reached. Thus, it acts as a kind of a global se-
quence identifier. Time-varying context units change
their state of activity every time a new input pattern is
considered, and it is formed by the concatenation of
past sequence items, s(t —[) € R?, [=1, ..., r, where
T is called memory deprh [20]. Thus, x.(t) = {s(t —
1), ..., s(t = 1)}, so that x;(r) e R*?. The sensory in-
put, the fixed and the time-varying context are com-
bined to form the input pattern, v(z), to be presented.
to the network at time 7, i.e.,, v(t) =[s(z) x; x.(z)]7.
Note that dimv(r)=N; =p + ¢ + T - p, where N; is
the number of input units.

The cument model extends previous work on con-
text and temporal sequence leaming for robot control
(25, 26]. The previous architectures could deal only
with open temporal sequences with shared items, be-
cause they made use only of fixed-type context. This
type of contextis unable to deal with closed trajectories
with repeated states, such as figure-eight sequences.
The solution is to include time-varying context units
which take into account the past history of the sequence,
allowing the network to encode both closed and open
trajectories with recurrent items.

The synaptic weights consist of feedforward (or
interlayer) weights and feedback (or intralayer)
weights. The feedforward weights connect the input
units to the output neurons. These connections store
the itemns of a particular sequence through a compet-
iuve leaming rule. That is, for a particular sequence
item, a single output neuron (the winner) or a small
group of output neurons are chosen to store this se-
quence item. The feedback set of weights indicates the
temporal order of the patterns in a sequence by using a
*, Hebbian learning rules to form temporal associations
from the previous to the current winner of the com-
petition. Feedback weights are unidirectional and ini-
tialized with zeros for the training phase, indicating no
temporal association at all. Also, there is no feedback
self-connection, i.e., a connection from the output of a
neuron to its input.

The output neurons represent the current and the
next states in a particular sequence. The current state

highest value fora;(r), j =1, ..., N,, where N, is the
number of output neurons. The next state is stored in
the weight vector of the neuron with the highest value
for y;(r), j=1,..., N, (Eq. (4) in Section 3.3). This
weight vector is then used as a control signal, to posi-
tion the robot arm at the desired configuration.

3.3.  Activation and Output Rules

The two groups of synaptic weights presented in the last
section are updated during a single pass of an entire tra-
Jectory in which each sequence item is presented only
once. This means that a sequence with N, components
requires exactly N, training steps. Thus, following the
presentation of a sequence item, this input pattern is
compared with each feedforward weight vector, using
a measure of dissimilarity based on Euclidean distance,
and the group of weight vectors closest to the input vec-
tor is selected to be updated. Mathematically, we have:

vy = argmjin{fj(f)- v(ey —w;O} ¥
vy = argm}n{fj(f)' v(@) —w;@} Vi€l

: : ¢y
vy = argmjin{ﬁ(t)' lv(e) — w;@I}
Vig{v, ..., un-1)
where {vy, ..., vy} are the indices of the output neu-

rons ranked according to the proximity between their
welght vectors and the current input; thus, v is the in-
dex representing the neuron whose weight vector is the
closest option to the current input vector. When the pa-
rameter K, called degree of redundancy, exceeds one,
we have a population of neurons encoding a single vec-
tor of an input sequence; in other words, a redundancy
mechanism. On one hand, such a scheme, similarly
to neighboring neurons in the Kohonen SOM, allows
the network to be robust, i.e., to be tolerant to noise
and neuron failure. On the other hand, the redundancy
mechanism increases memory requirements. For the
purpose of learning, we usually set X > 1. For recall,
we always set K = 1.

The function f;(t), called the exclusion facror, is
defined as:

04 iij{UI,-“,VK}
f,-(.t+1)={ F0 otherwise @
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where @ > 1and f;(0)=1, j=1,..., N,. This func-
tion is used to “exclude” the X winning neurons from
subsequent competitions, to ensure that each point of
the trajectory is encoded by different neurons. The ex-
clusion mechanism is akin to that proposed by James
and Mikkulainen [27]. However, their model aimed at
detectng asingle sequence instead of recalling sequen-
tial patterns. Furthermore, they did not propose a math-
ematcal formalism for their exclusion mechanism.

The combination of redundancy and exclusion
mechanisms yields a unique group of neurons to rep-
resent a specific state of the trajectory. Such groups are
linked in the correct temporal order through a lateral
coupling structure. The neuron activations are deter-
mined by the following equation:

Agax -Vt fori=1,...,K

% (1) = {O fori> K )
where 0 <y <1 is an activation decay term, and
Amax > 1 is the maximum activation value obtained
for i = 1. According to Egs. (1) and (3), the closer the
weight vector to the current input vector, the higher
the activation of the associated neuron. Once a neuron
Is active, its activation is diffused through a non-zero

lateral connection in order to trigger its successor in

. the current sequence. The largest output value y; (1),

determines the weight vector to be sent to the robot
controller:

Ny
yj(t)=g<2mj,(t)a,(t)> forj=1,....N, (4
r=1

where g(-) is a function defined so that g(u) > 0 and
dg(u)/dr >0, and m;,(¢) is the intralayer connection
weight between the output neurons r and j.

3.4. The Learning Rules

After the selection of the winning neurons and the de-
termination of their activations and outputs, the weight
vectors w(r) are updated according to the following
competitive Jearning rule [28]:

Wit + D=w;(0) +6@a;Ovi) —w;@)]  (5)
where §(r)~ 1 is the learning rate. This competitive

learning procedure copies the input vector ¥(z) to the
weight vectors of the X winning neurons obtained

through Eq. (1). Note that units with activations a (1)
equal to zero do not learn at time step 7.

Without the exclusion mechanism, the competitive
rule in Eq. (5) would try to group the sequence items
in clusters, reducing the number of states of the imput
sequence. Since our goal is to reproduce exactly the
same sequence at the network output, this clustering
effect should be avoided.

It is worth remembering that the input vector v(z)
1s comprised of three parts: a sensory part correspond-
ing to the sequence item currently being observed, the
fixed context and the time yarying context. We have the
following two situations: (1) A single open or closed
sequence contains a repeated item: the first time this
item occurs, a particular neuron will store the corre-
sponding input vector in its synaptic weights. When
the item occurs for the second time, the sensory part
and the fixed context are equal to that of the first ac-
currence of the repeated item, since the sequence is the
same, but the tme-varying context is different since it
consists of the T immediate predecessors of the current
sequence item. (2} Multiple open sequences share an
item: using arguments similar to case (1), every time
the shared item reoccurs, the sensory part remains the
same but the fixed and time-varying context are differ-
ent. This way, the network is able to recall the stored
sequences without ambiguity, since the repeated and
shared states are stored in the feedforward weights to-
gether with their corresponding contexts.

‘The intralayer weights are updated according to the
following rule:

Amj,(8)=Aay()ar (@ — 1) (©)

where 0 <X <1 is the intralayer learning rate. Ac-
cording to Eq. (6) lateral connections will be estab-
lished from the winners of the previous competition,
r={w( —1,wi—1),...,ve( — 1)}, to the win-
ners of the current competition, f = {v1(2), va(?), ...,
vg (1)}. Figure 2 sketches how Eq. (6) learns the tempo-
ral order for the simplest case, in which X = 1. Initially
(t =0), thenetwork has no lateral connections. Atz = 1,
the neuromn on the left is the winner for the pattern ¥(1).
Atr =2, the neuron on the right is the winner for pattern
v(2). Still at t =2, a lateral connection is created from
the neuron on the left to the neuron on the right through
Eq. (6), learning the transition v(1) — v(2). This pro-
cess continues until all transitions between successive
sequence items is learned.

Some brief comments are necessary at this
point. First, the neuron activations of the previous
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Figure 2. A sketch of how consecutive winners are temporally linked through Iateral connections. X ¢ is the fixed context and x (¢) denotes the

tme-varying context.

competition, a,(t — 1), are made available through time
delays (STM model). Second, Eq. (6) is an asymmet-
ric Hebbian learning rule [29] which aims at creating
temporal associations between consecutive patterns in
the input trajectory. Indeed, this equation encodes the
remporal order of the input sequence.

3.5. Temporal Order Learning
and One-Step-Ahead Recall

The simple form of Eq. (6) allows the construction of a
hypothetical example based on the concept of remporat
associatrive memory [30] to elucidate temporal order
learning and one-step-ahead recall. Thus, Eg. (6) can
be written in matrix form as follows:

M(r + 1) =M() + ra()a’ (r — 1) @)

where M(r + 1) is the feedback memory matrix corre-
sponding to the learning of one state transition given
by the activation pair (a(t), a(r — 1)). For a sequence
with NV, iterns, the resulting matrix is:

Ne
M(N)=MO)+ 1Y a(®)a’(t=1) (8

=1

Note that this matrix is constructed in an incremental
manner, i.€., it cannot be set in advance as in other as-
sociative memory models, since the activation patterns
a(r) are not known beforehand.

As already mentoned, the activation pattemns a(t)
indicate the neuron whose weight vector best matches
with the current input item, and the output patterns
y(z) indicate the neuron whose weight vector stores
the next sequence item. The recall of the next item
depends on the feedback memory matrix and on the
current activation pattern (see Eq. (4)). The following
hypothetical example illustrates this property.

Consider a trajectory with only three states (N, = 3)
and a network with three neurons (N, =3). Setung
K =1, we assume that neuron j =1 encoded the first

state of the trajectory at r =1, neuron 3 encoded the
second state at r =2, and neuron 2 encoded the third
state at r=23. Hence, the comesponding activation
patterns were a(1)=[1 0 017, a@)=(0 0 1}7 and
a(3)=[0 1 0)T. Thus, in accordance with Eq. (8), the
learned feedback memory matrix is:

M(N,) |
= M(0) + A{a(3)a” (2) + a(2)a’ (1) + a(l)a’(0)}
0 0 O 0
=10 O 0| +A< 11O 0 1)
0 Q0 0O 0
0 1
+101(1 0 O)+t0j(@© O O
1/ 0
0 0
=10 0 X %)
A 0 0O

To illustrate how the feedback memory matrix
constructed by Eg. (9) retrieves the next sequence
item, consider the following function: g(u) = u, for
u >0 and g(u) =0, otherwise. Note that, in Eq. (4),
> mjsa, >0, then we have the following linear rela-
tionship for recall purpose: y(z) =Ma(r). Thus, if the
first sequence item is presented again, the resulting ac-
tivation pattern is a(1)=[1 0 0]%.

Sequence recall is initiated by giving a pattern in
the sequence as a cue stimulus; then, the part of the
sequence that follows the cue pattern Is successively
recalled. The output pattern is obtained as follows:

0 0 0 1 0
A0 0/ \0 A

which indicates that neuron j=3 stored the next tra-
jectory state in its weight vector. This weight vec-
tor supplies the robot controller with the next spatial
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position, the associated joint angles, and the joint
applied torques. Once a robot has reached its next po-
siton, new sensor readings are fed back to the neu-
ral petwork input to produce the following activation
pattern a(2)=[0 0 1]7. The cormresponding next se-
quence item is then:

0 0 0\ /0 0
yQ)=M-a2)= 10 0 r|lo]l=1]r
A0 0/ \u1 0

which indicates that neuron j =2 stored the last tra-
jectory state in its weight vector. When the robot arm
reaches its final position, the new sensor readings to-
gether with context information produce the activation

pattern a(3) ={0 1 0]7. The next sequence item cor-
responding is then:

0 0 0\ /0 0
y®=M-a@®=10 0 af{l1]=1{0
A 0 0/ \0 0

which indicates that the trajectory has indeed reached
its end, because there is no “next item”.

4. Simulations

This section aims at evaluating the proposed neural net-
work in terms of storage and recall of different types
of wajectories, as well as how the network parame-
ters affect the overall performance of the system. First,
we consider closed 2D trajectories (circular and figure-
eight types), and then, multiple 3D robot trajectory pro-
cessing is assessed.

The open and closed trajectories were generated by
the ROBOTICS toolbox of Matlab [31], for a PUMA
560 robot with 6 DOF. These wrajectories were pre-
viously used to evaluate recurrent [10] and associa-
tive memory neural models [32] in temporal-sequence-
based control of robotic arms. As pointed out by Wang
and Yuwono [33], learning of multiple sequences can
be carried out with simultaneous or sequential mput
presentations, and the latter was chosen in our case. By
convention, the robot movements are executed within
a cube of dimension 1m x 1m x 1m. The origin of a
coordinate frame for the robot end-effector is located
at the center of the cube.

Closed trajectories, included in this study, are com-
monly used as benchmarks for sequence processing
(34-36]. For the circular trajectories, we have se-

guences with 20, 35, 70 and 100 states. For the figure-
eight trajectories the sequences are 20, 40, 80.and 100
states long. The open trajectories were used to test the
ability of the network to work with multiple trajectories
with shared states. Each open trajectory has 11 states,
including the initial and the final omnes.

In both open and closed trajectories, each state is
constituted by the spatial position (x, y, z) of the robot
end-effector in its workspace, six joint angles and six
joint applied torques. Thus, p=3 4+ 6+ 6=15. The
fixed context is set to the target position of the end-
effector (final state of the trajectory), and thus g =3.
The time-varying context consists of past end-effector
positions, and ithas depth t = 1. Then, the total number
of mputunitsis V;=p+¢+71-p=15+3+15=33.

The network performance is evaluated in tracking
tasks by means of the root mean square error (RMSE)
given by the following equation:

RMSE(N.)

1=
= |7 =)+ G + @ - %)’
c

=1

where N, is the number of patterns in a trajectory,
(x4, ¥4, z4) and (x,, yr, z,) are the desired and recalled
coordinates of the robot end-effector. These coordi-
nates are obtained from the first three components of
the mput and winner weight vectors at time step .

4.1. Learning of Closed Trajectories

In the following paragraphs we evaluate the influence of
network parameters on the network performance dur-
ing the learning of closed circular and figure-eight tra-
jectories. The following tests inciude: choice of learn-
ing rate §, influence of redundancy on fault-tolerance,
and influence of sampling rate and redundancy on
noise-tolerance.

4.1.1. Choice of Learning Rate §. In this simula-
tion, intended to show how the learning rate influences
the storage accuracy of the proposed model, we tramed
the network on the circular and figure-eight trajectories
with four different values of the feedferward learning
rate §: 0.45, 0.75, 0.90 and 0.99. The other parame-
ters were set to the following values: K =1, ¢ =10,
2 =028, Amax =1, y =0.99, and N, = 100. The feed-
forward weights were randomly initialized between O
and 1, the feedback units were initialized to zero, and
the sarme initial weights were used for all values of 6.
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Figure 3. Accuracy in leaming closed trajectories for § =0.45, 0.75, 0.90 and 0.99. Inner trajectories have lower values for the learning rate

§. ArTows indicate the direction of movement.

The resulting trajectories are plotted in Fig. 3(a) for a
circular trajectory with 35 discrete patterns. Figure 3(b)
gives the general behavior for a figure-eight trajectory
with 80 points.

The errors for the circular trajectories were:
2.173124 for §=045, 0965519 for §=0.75,
0.377616 for § = 0.90, and 0.038847 for § =0.99. The
errors for the figure-eight trajectory were: 12.030423
for § =0.45, 5.409065 for § =0.75, 2.171650 for
5 =0.90, and 0.218585 for § =(0.99. These figures in-
dicate that the RMSE decreases as & increases. Hence,
to achieve accuracy, ¢ must be near or equal to 1. This
is an important requirement since the robot controller
must be supplied with precise signals from the network.

0.5

025 m

4 X

\; 00 1
0.25
05 - - - :
-0.5 -025 0.0 0.25 0.5
x(0)
(a)

4.1.2. Influence of Redundancy on Fauli-Tolerance.
In this simulation, we show how a trajectory is stored
by the first K winning neurons, and why such a re-
dundancy mechanism is useful in cases of neuron fail-
ure. We chose K =3, which means that each point
of the sequence is encoded by 3 different neurons.
The other parameters were set to the following val-
ues:d=1,0=10%51=08, Anux =1,y =099, 1 =1,
N, =3525. The results for a circular trajectory with
70 points are shown in Fig. 4. Figure 4(a) illus-
trates the input (circles) and the stored/retrieved tra-
jectory fcrosses) encoded by the first winner neuron,
while Fig. 4(b) presents the result for the third winner
unit.

05

.25

¥
S

0.25

05 = : :
05 025 0.0 025 0.5

x(t)
®

Figure 4. Effects of redundancy on the learning of circular trajectories by the: (a) lst winner (higher activation) and (b) 3rd' winner (lower

actdvation).
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activation).

The resulting RMSE values for the retrieved tra-
jectories were 0.00 (1st winner), 0.143867 (2nd win-
ner), and 0.287732 (3rd winner). The RMSE val-
ues for the second and third winners can be viewed
as worst cases. For example, if all the first win-
ners have collapsed, the second winners would be
used instead, yielding RMSE =0.143867. In the ex-

wwtreme and unkike case of total collapse of the first
-+wens and second winners, the third .would be used by the

network, yielding RMSE =0.287732. Isolated neu-
ron failures would result in intermediate values for
RMSE.

An example of a figure-eight trajectory with 80
points is plotted in Fig. 5. This sequence has a crossing
position at coordinates (0.0, 0.0), which explains the
need for temporal context information. To recall the
trajectory in the correct way, the time-varying context
units are set to the coordinate of the pattern which im-
mediately precedes the current sensory input. The re-
sulting RMSE values were: 0.00 (1st winger), 0.223320
(2nd winner), and 0.445203 (3rd winner). We can con-
clude that, for the purpose of tracking, the robot con-
troller must use the trajectory in Figs. 4(a) and 5(a). In
the case of neuron failure, the stored trajectories will
continue to be retrieved at the expense of ‘a slightly
higher RMSE value.

It is worth noting that the network can store and re-
trieve a trajectory with RIMISE = 0 even in the presence
of neuron failures, by simply adoptingd =y =A=1.
However, this would make the network much like a
fault-tolerant conventional storage-and-recall device
(look-up table) without the ability to respond well to

0.5
025 ;’aﬂs&”}
g oot d A
X
025 xv
05 -
05 025 00 025 0.5
x(?)
(&)

Effects of redundancy on the leamning of figure-eight trajectories by the: (a) 1st winner (higher activation) and (b) 3rd winner (fower

noisy sequences, thich is a highly desirable network
property.

4.1.3. Influence of Sampling Rate and Redundancy
on Noise-Tolerance. The simulations considered in
the previous sections handled noise-free trajectories.
However, tolerance to noise is a desirable property for
any controller of a real robotic system. This network
property was evaluated by adding different amounts
of zero mean Gaussian white noise to the trajectory
patterns and calculating the RMSE value. The noise
had variance levels ranging from 0.001 to 0.1.

A related issue is the effect of the sampling rate
(number of points in a sequence) on the network per-
formance [36]. Hence, in this test, we aimed to evaluate
how the network responds to a noisy trajectory while
varying the degree of redundancy and the number of
items of the input trajectory.

We simulated the network for three values of de-
gree of redundancy: K =3, 4 and 5. Figures 6 and 7
show the results for circular and figure-eight trajecto-
ries, respectively. It can be seen in Fig. 6 that lower
values for RMSE (solid lines) are obtained by choos-
ing K =35. The worst results were obtained for K =3
(dashed-dotted lines) and 4 (dotted lines). However, as
the value of K increases, the improvement in RMSE is
less patent.

In addition, these resuilts clearly indicate that the
RMSE rises as the number of points in a sequence is in-
creased. This can be explained by noting that as the dis-
tance between consecutive points decreases at higher
sampling rates, the chance of the network choosing
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Figure 6. Noise-tolerance of the network trained on circular trajectories for different sampling rates: (a) 20 poiats, (b) 35 points, (¢) 70 points

and (d) 100 points.

an incorrect winner due to noise increases. This result
contrasts with previous simulations encountered in the
literature {35] in which increasing sampling rates re-
sults in higher resilience to noise.

So far, the results obtained suggest that the network
gains in robustness by using aredundancy degree K > 1
(we suggest K =2 or K =3). Also, it is useful to have
y < 1, which affords some noise tolerance. Another
important property of the proposed model, the ability
to store and recall with multiple trajectories, is studied
in the next section.

4.2, Learning of Mulriple Robot Trajecrories.

In order to test the ability of the algorithm to encode
multiple trajectories, the following assumptions were

made: (1) the initial and final points of a given trajectory
are known and (2) any trajectory must contain at least
one crossing point with all the others. In the current
work, we focus on trajectories with one common point
which can be situated at any intermediate position. The
network parameters were set to ¢ = 1000, Apax =1,
y =095, 8§=1.0, A =038, t=1, N,="0, and three
trajectories were trained sequentially.

Trajectories with at least one point in common suffer
the perceprual aliasing problem. In the present work,
this problem is stated as: “which trajectory should the
arm follow subsequent to a point belonging to more
than one?” This problem is solved by the proposed
model through the use of context (Section 3.2). Figure 8
shows the network resulis following the training stage
on three trajectories. Trajectories in Fig. 8(a) and (b}
have a crossing point at (0.20, 0.30, 0.0) and those in
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Figure 7. Noise-tolerance of the network trained on figure-eight trajectories for different sampling rates: (a) 20 points, (b) 40 points, (c)

80 points and (d) 100 points.

Figure 8. Three leamned trajectories with one point in common. A desired trajectory is represented by open circles and a retrieved trajectory is
represented by asterisks.

Fig. 8(t) and (c) have a crossing point at (0.22, 0.30,
0.0). It is worth noting that the stored and the desired
trajectories in all cases are very similar. For example,
the RMSE value obtained for the trajectory in Fig. 8(a)

is 0.0024. This illustrates the ability of Eq. (5) to encode
an input pattern accurately in only one iteration. The
Jetters I and F indicate the initial and final points of the
trajectory, respectively. :
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()

Figure 9. The retrieved trajectories in Fig. 8 in a simulated robot workspace.

Figure 10. The joint angles (a) and (b), and torques.(c) and (d) associated with the points of the trajectory shown in Fig. 8(a). Angles in radians

and torques in N.m.

Figure 9 shows the recalled trajectories in Fig. 8 in
a simulated robot workspace, based on the Simderella
simulator [37]. This simulated environment follows the

correct relative dimensions of a typical PUMA 560

robot.
Figures 10-12 show the joint angies and torgues
associated with each point in the stored trajectories.

Similarly, the algorithm was able to encode them with
a small error, since the desired and stored values are
practically the same. Note that the algorithm can learn
the input independently of its magnitude and sign, and it
responds equally well to trajectories with smooth cur-
vature (circular and figure-eight sequences) and with
abrupt changes of direction (see Fig. 8).
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(©)

(d)

Figure 11. The joint angles (a) and (b), and torques (¢) and (d) associated with the points of the trajectory shown in Fig. 8(b).

Figure 13 illustrates fault-tolerance for this type of
trajectory. In this test, we simulated neuron faults in the
same way as for circular and figure-eight trajectories,
i.e., by excluding the first winning neuromns, v;(r), for
each item of the three trajectories. Even so, the network
is able to reproduce the trajectories cormrectly at the ex-
pense of a slightly larger RMSE error, since the second
winners, v2(7), are now responsible for the retrieval of
the stored sequence. This result justifies the use of more
than one neuron during the learning of the feedforward
weights.

Despite the simplicity of the model, the simulations
suggest that multiple trajectories can be learned very
fast and accurately, independently of their complexity.
Trajectories with more than one crossing point are anal-
ogously leamed with small tracking error. In the next
section we summarize the gains and limitations of the
proposed model and discuss those aspects in which it
differs from previous ones in the literature for temporal
sequence learning and robot trajectory tracking.

5. Discussion

The proposed self-organizing neural network raises a
series of important issues regarding the temporal se-
quence learning problem. In the following paragraphs,
we present and discuss some of them in order to high-
light the advances achieved by this model on existing
neural network models, unsupervised or not, used to
temporal sequence processing.

5.1. The Chaining Hypothesis

The basic idea of the chaining hypothesis is to view
a temporal sequence as a set of associations between
consecutive components, and learn these associations
for later recall. This temporal association paradigm Is
widely used in many neural models. The vast major-
ity of these models are based on either multilayer per-
ceptrons (MLP) with some temporal version of back-
propagation training [38] or the Hopfield model of
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Figure 13. The same tajectories as in Fig. 8. However, in this case, 2 faultis stmulated in all the v{(r) winning nenrons for each item of the
three rajectories. )

associative memory [21, 33]. Also, BAM-type [32, 39]
and ART-type {40, 417 model use the chaining hypoth-
esis to recall temporal sequences. The model proposed
in this paper also follows this paradigm; however, in
contrast to those models based on MLP and BAM, it
learns temporal associations in a self-organized manner
and the learning process is considerably faster. Com-
paring the current model to other self-organizing ones

such as those proposed by Grossberg [42] and Healy
et al. [40], one can see that: (i) these models have dif-
ficulties in handling closed sequences with repeated
points; (ii) they do not address the problem of fault
tolerance and noise robustness. Furthermore, Healy et
al. [40] coupled two ART 1 modules [43] trained on
the same items of a sequence and associated the items
learned from one ART 1 with those learned by the other/\

N




olied Intelligence

Dhirendra Samal (GJE)

K11481-08 March 22, 2002 12:15

114 Araijo and Barreto

whereas our model uses a single layer of feedforward
weights where the items are linked in the cormrect tem-
poral order by lateral connections.

5.2, The Temporal Conrext

Contextplaysacrucial role in learning, especially when
a subject or an artificial system has to handle ambigu-
ous situations. The conventional approach to inchud-
ing temporal context into neural networks is to ex-
tend previous unsupervised models for static patterns
by incorporating some type of STM. For this purpose,
the most commonly used are tapped-delay lines and
leaky-integrator neurons (see [22] for a review). We
have adopted the “tapped-delay lines” approach for
the time-varying context, but leaky-integrator neurons
can be used alternatively. A drawback of the proposed
model is that the depth t of the time-varying context is
non-adaptive, 1.e., it has to be determined before learn-
ing takes place. The unsupervised model by Wang and
Yuwono [33] learn the length of the temporal context
necessary to recall sequences without ambiguity. It is
lmportant 10 note that temporal context as part of the
network input also plays a fundamental role in classi-
fication of temporal patterns {44].

5.3. Time-Delayed Hebbian Learning

It is well known that tme in Hebbian learning rules
plays an essential role in psychology [45, 46], object
recognition [47], route learning and navigation [48]
and blind source separation [49]. To our knowledge,
the proposed model together with that in Barreto and
Aratjo {25, 26] are the first to apply a time-delayed
Hebbian learning rule to robotics. Similarly to bur ap-
proach, Kopecz [50] used the concept of spatial items
linked via a tme-delayed Hebbian rule, to learn and
recall temporal sequences. However, his model does
not handle sequences with recurrent items.

5.4. Application to Roborics

Our model works much like a look-up table, since an in-
put sequence item 15 assoclated with an output neuron,
where extra information is available in its feedforward
and feedback weights. Such information consists of
conuol vanables, such as the next spatial position of
the end-effector, and the corresponding joint angles.and
torques, which are learned adaptively. Furthermore, the

proposed model offers some degree of tolerance to
noise and faults, an issue not easily addressed in con-
ventional approaches to robot control via the look-up
table method. Finally, this model handles ambiguous
situations as easily as non-ambiguous ones, implying
that it can be scaled-up to deal with more complex tra-
jectories without additional difficulty.

As pointed out at the beginmning of the paper, the
walk-through method used in robot trajectory track-
ing tasks can become time-consuming and uneconom-
ical. This occurs in part because the robot is out of
production during the trajectory-learning process, and
in part because, as the trajectories become more and
more complex, the robot human operator may face dif-
ficulties in resolving ambiguities. The latter motivated
strongly the development of the self-organizing neural
network mode] presented in this paper, since it is highly
desirable to have the trajectory-learning process auto-
mated with minimal human supervision.

‘When compared to other neural networks for trajec-
tory tracking, the proposed model performs better than
those of Hy6tyniemi [51], Althofer and Bugmann [11]
and Bugmann et al. [6], because the temporal associ-
ations in those models are hard-wired. In the last two
networks mentioned, two layers of connections store
exactly the same components, and the temporal links
are established by the network designer since the tra-
jectory is known beforehand. For sequences with re-
peated or shared states, the first two models are unable
to reproduce the stared trajectories correctly. The third
can recall a single trajectory with repeated states bur
is unable to deal with multiple trajectories with shared
states. Finally, as pointed out by Chen et al. [4], the is-
sue of leaming of multiple robot trajectories 1s usually
neglected when considering neural networks models
for tracking. This happens partly because of the in-
herent difficulties in dealing with recumrent states. Qur
model is the first unsupervised one proposed to handle
tracking of multiple open and closed trajectories with
repeated and shared states.

6. Conclusion and Further Work

An unsupervised model for learning and recall of tem-
poral sequences is developed in this paper and applied
to robot trajectory tracking. The simple neural net-
work model accurately stores and retrieves complex
sequences. An important advance introduced in this
article is the processing of multiple sequences by our
model. ’
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In addition, the proposed temporal-sequence-based
control system has other properties that are of greatim-
portance to the design of intelligent robotic systems:
(1) noise tolerance, (ii) ability to learn multiple trajec-
tories incrementally, (iii) ability to handle trajectories
sampled at different rates, (iv) fault tolerance, (v) ahil-
ity to learn open and closed trajectories with repeated
and shared items, and (vi) ability to recall a learned
trajectory from any intermediate point.

A foreseen limitation of our model is related to the
storage of long sequences. Since the redundancy and
exclusion mechanisms demand relatuvely high num-
ber of output neurons, a situation may occur in which
output neurons have all been used and none can be at-
located to encode a new sequence. To deal with this,
we suggest the use of some unsupervised constructive
algorithms [52] to include neurons when necessary.
We believe that the model can be further improved

and much work could be developed in the following
directions:

1. Further comparison with approaches more recently
proposed in the neural network literature, such as
the models of Wang and Yuwono [33] and Srinivasa
and Ahuja [53], so that the viability of unsuper-
vised neural networks for spatiotemporal process-
ing and its application in robot control can be firmly
demonstrated.

A self-organizing mechanism to determine the

depth of the time-varying context based solely onthe

input patterns. See, for example, Wang and Arbib

[7]) and Wang [21].

3. Implementation in a real robot: despite the many
properties of the proposed neural system that can
be inferred from computer simulations, the ultimate
goal of a neural controller must be its testing in real
robotic system. This is one of our next steps.
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