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Abstract. We have combined competitive and Hebbian leanúng in a neural network designed to leam and recall
complex spaüotemporal sequences. Li such sequences, a particular item may occarmore than once or the sequence

may share siates with anofher sequence. Processing of repeated/shared states is a hard problem; that occurs very often

in lhe domain ofrobotics. The proposed model consists oftwo groups ofsynaptic weights: compeüüveínteriayer and

Hebbian inü-alayer connections, which are responsible for encoding respectively the spaüal and temporal features of

the input sequence. Three addiüonal mechanisms allow the nelworkto deal wi± shared states: contextunits, n&urons

disabled from leaming, and redundancy used to encode sequence states. The network operates by detemúning the

cun-ent and Üie next state of the leamed sequences. The model is simulated over various sets of robot trajectories

in arder to evaluate its storage and retrieval abiliües; its sequence sampling effects; its robustness to noise and its

tolerance to fault.

Keywords: robotics, trajectory tracking, neural networks, unsupervised: Leaming,. temporal' context

l. Introduction

Robot leanúng presenis a number of challenging prob-

lems, namely (l) they úghdy integraTe perception,
decision making and execuúon; (2) roboüc domains
are usually complex, yet the expense of usmg actual

robodc hardware ofteapEohibits the collecüon oflarge

amounts of training data; and (3) most ro.boúc systems

are real-üme systems, implying that decisions mustbe

made within criücal or pracúcal ume conso-aints. Since

other important real-worid application domains share
those characteristics, robotics is a highly attracüve área

for research on machine leaming, especially wiüún the

field of artificial neural networks (ANNs).
The research in ANNs and its applicaúon in dis-

únct domains makes it possible to invesúgate solu-

tions to complex problems in roboücs following dif-

ferent leaming paradigms [l, 2]. A common problem

in robotics is trajeciory tracking, in which a robot is re-

quired to follow accurately a conúnuous path [3]. Such

a task is mainly programmed by means ofthe so-called

walk-through method ïn whích an operator guides the

robot through a sequence of desired ann posiüons.

These posiúons are then stored in the controller mem-

ory for later recall. Such a method is time consuming

and uneconomical, since during the walk-through pro-

cess the robot is not engaged in producúve. acüvity [4]
and the process is realized under complete supervision

of Üie robot operator.

Tracking can easily be handled wiüún the framework
of artificial neural networks in which trajectories can be

seen as a succession of arm configurations, i.e., a tem-

poral sequence of arm posíüons, lience, neurat models

can model this type of processing. Ia pardcuiar, the
unsupervised leanúng paradigm hás appealing charac-

terisücs for its use in Roboücs and temporal sequence

processiag. In. unsuper/ised nearal networks, behavior

emerges by means of a self-organization process, thus

reducing substantially the robot programming burden
that accouats for as much as a Üurd ofthe total cost of an

industnal robot system [5]. Also, unsupervised mod-

els are often fast, encouraging theÍF.use.üi-iaerementEd"
1'^-S.
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and on-Une leaming. Moreover, the structure of neural

neiworks allows massive parallel processing [4] which
enables the network to respond quickly in generating
real-üme control acüons.

An important issue, usuaiïy not addressed in simu-

laüons and tests reponed by the nsural nework üter-

ature, is the leaming of multiple robot trajectories [4].
In some indusü-ial operaúons, a robot is often required

to perform more tüan one task. Hence, the robot con-

troller must be able to track more- thaa one tFajectory.

One of the goals of the present work is to develop an

unsuper/ised leanúng neural necwork model to leam

and retrieve muiüple trajecrories.

We have grouped the various neural models for
unsuper/ised-temporal-sequence based robot control

into three classes according to their approach to trajec-

lory processing: (i) leaming of perception-acüon ü-a-

jectories, (ii) leanúng of robot trajectories, and (iü)
formadon of robot trajectories.

The first approach involves direct associaúon be-

tween sensory data and desired acüons [6]. Ttiis ap-

proach is used when a mobüe robot is required to &x-

piore the worid to build a model of it. As the robot
navigates, it experiences a long sequence ofpercepdon-

acdon pairs. As üie storage ofsuch asequence is often

not feasible, the researchers mtroduced mechanisms of

sequence chunking and.linkmg [7, 8]: along sequeiice
is broken into subsequences (chunks) which are stored

by the robot and properly concatenated (linked) when
their combinaüon leads to reach. a particular goal.

Two examples of üiis approach are the models pro-

posed by Denham and McCabe [8] and Heikkonen and

Koikkalainen [5]. Both systems were applied to au-
loaomous robot navigadon tasks in which the agent

had to build a model of the worid by exploration.
Denham and McCabe employed a reward system to

determine wheüier the leaming of a sequence was

based on the achievement of a goal or the detection

of novelty. This system was implemented by using

the unsupervised model proposed by Wang and Arbib
[7]. Heikkonen and Koikkalainen introduced several

contrai algorithms based ou Kohonen Self-Organizmg

Map [9]. The knowledge was acquired from exisüng
sequences as well as from üie robot exploratory naviga-

tion. The auüiors simulated a robot that quickly leamed

io seleci suitable acúons for a range of ssnsory situa-

dons, adapted nicely to changes in the environment,

and collided less and less frequently as time went by.

However, this approach is not stable agaínstdeviaüons

of the trajectory. íf the robotic system finds itself in

an unírained posiüon, off any leamed tcajectory, no

appropriate control actíon may be produced [6].
In the second approach, a neural networkmust leam

to associate consecuüve states ofatrajectory andstore

these transitions for total or partial reproducúon of the
memodzed. trajectory. Usually, for the purpose of re-

call, the network receives as input the cun-ent state of

the robot and responds wiüi Ae next state, to execute

a pre-defined task. This approach hás been applied to
poüit-to-pomttrajectQry controLand traj.eetory trackíng

[10].
Althôfer and Bugmaim [11] described a neural im-

plementation &f a resisüve grid used to plan Ae path of a
robot arm. This model hás Umitaúons suchasjerkiness
of the movements and an inaccurate final end-effector

position due to. th& resolution coastraints of grid-based

methods. In üie contexr of mobile roboücs, Bugmann

et al. [6] proposed a neural network wbicb uses nor-

malized RBF neurons to encode the sequence of states

forming the trajectory of an autonomous wheelchair.

The network operates by producing the next spaúal
posiüon and oriântatíon for the wheelcüair. As Üie tra-

jectory may pass- several umes over a- particular point,

phase mformaüon is added to the position informatioii
to avoid the aliasmg problem [12]. This problem oc-
curs when identical sensory inputs may reqmre differ-

ent actions from an autonomous system, depeading on

the context. The use of nonnalized RBF neurons cre-

ates an attracüon field over the whole state space and

enables. the wheelchair to. recaver fcom perturbations.

The third approach entails the creaúon of a robot

trajectory given only its iniúal and final (target) po-
sitions. The robot reeeives sensory informaüon from

Üie workspace andautonomously constructs som&kind

of inverse mapping. Typical examples of Üus ap-
proach are Üie works of Grossberg and Kuperstem [131,
Kupersiein and Rubinsteín [I4], Martmez et al. [15],
and Ritter et al. [161. The t^cëe^rst works. describe a -i.' ^-

self-organizing model for visuomotor coordmaüon of

a robot arm. This model leams to control a 5-degree-of-

freedom (DOF) robot arm to reach cylindrical objects.

The aathors use a sei of one-dimensional topographic
maps that represent Ae locaúon of the target object aad
whose adapúve weights detemúne the output to Üie arm

acuators. Each one-dünensi&nal map hás a fixed topo-

graphic ordering and only the output weights can be
adapted during the leaming process. As a consequence,

the range ofthe expected input values must be faiown

in advance and adaptive changes in the resolution ofth&

neural populaüon required for control are notpossible.
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Funhermore, as the maps are one-dimensional and

their ouipuis are a linear summaúon for each actuator,

they can approximate only a restricted class of control

laws. The work ofBuIlock and Grossberg [17] exieads.

Kuperstein's model by including muscle dynamics, ini-

úal condiúons, muscle contraction rates, and feedback
signals from muscle sensors.

Marúnez et al. [15] andRitter et al. [16] presenteei an
\ approach to diminish the drawbacks of thé Kuperstein

model, by using 3D variaat of lhe Kohonen SOM. In

Üús approach the ordering and resoluüoa of the map

evolve durmg leaming (by updaúng a layer of input
weighrs), thus detemúning the distribution of the neu-
ral units over the task space, and overcomüig the prob-

lem of fixed resoluúon of Kupersteín's model. The

adaptaúon of the output weights was achieved by an

error-con-ecúon procedure based on the Widrow-Hoff

leaming rule for adapúve linear elements. The 3D map

eliminates resmctions adsing from Üie addiüve cou-

pling of several 1D maps and allows many neighbor-

ing units to cooperate during leanúng, mcreasing üie

ef&ciency and robustness ofthe algoríthm. The authors

reponed simulaüon results in which after 30,CX)0 train-

ing steps Aere are no significant positioiúng errors.
This model was implemented in a 560 FUMA robot
[18], producmg small posiüoningerrors. Moreo^ver, the

system was able to adapt to sudden changes of íts ge-

ometrical parameters.

Despite the appealing features of the unsupeFvised
leaming-based control system, its use hás been limited

to a few model proposals, in part because a major part

of the work on this topic is devoted to other paradigms
such as supervised and reinforcement leamíng. In Ais

paper we emphasize the feasibility of appiying unsu-
pervised learaiiLg to complex roboücs problems.

We are parúcularly concemed with the problem of

fast and accurate leaming of single and mulúple se-

quenual pattems that represem robot trajectories. AJI

unsupervised neural network algoriAm is the chosen

leaming strategy mainly because it is based. an self-

organizadon. This principie hás proved to be a ratfaer
generic technique to be employed in a wide range ofap-
plicaúon domains, such as robotics anáprocess con.trol,

where complex issues involving mukivahate sensory

informaüon are present [5]. Furtheraiore, in roboúcs,

self-organizaúon allows autonomous construcüon of

effecüve worid representaüoiis either from raw sensory

measurements or from preprocessed sensory data.

The contribudon of this work to the field of unsu-
pervised neural networks is threefold: (i) development

of a time-delayed Hebbian íeamíng rule to encode the

tempoial arder of pattems in a sequence, (u) use of

temporal context to recall mulüple stored sequences

witkQul ambiguity, and (iü) applicaüon ofthe proposed
model to reduce the cost ofrobot "traüüng" m ü-acking

tasks. The leaming algorithm to be proposed is evalu-
ated throagh simtdaíions of2- and 3-dimensional robot
trajectones.

This paper is organized as follows. In Secúon 2,

we present some concepts related to the storage and

retrieval of temporal sequeaees by means of neural

network models. In Secúon 3, we develop our model

discussiag m details ali its components. In Secüon 4,

we evaluate the performance of the model through

computer simulaúons and discuss the main results.

Section. 5 is devoted lo compare the proposed model

with others available in the literature on temporal se-

quences. We-cond.ude tha paper in Secüon 6, present-

ing possible directions for further developments.

2. Short-Tenn Memory in Temporal Sequenee

Based Controt

Two ingredienís are essenüal for au-tonomous repro-

ducüon ofsequenüal pattems [19]. First, for&epur-
pose of leaming, a mechaiúsm to extract and store

transitions from one paitem to íts successor in the

sequence. This mechanism is known as short-term

memory (STM). Second, for the purpose of recall, ac-

tivation dynamics. must be de&nsd to mímíc the previ-

ously leamed sequence by propagaúon of the correct

sequenee of stored states.

In the context of temporal sequence processing, STM
is the generic name of a number of retenüon mecha-

nisms. STM aids temporal arder feammg and recall
within a sequence by maintaining vesüges ofsuch pat-

tems for a cariam, period of time. Hence, an STM. model

can establish temporal associaüons between consecu-

tive pattems and reproduce their order of occurrence at

the network output.

There is a number of STM models within the frame-
work of aFtíëeiaI neurai networks. [20-22]. The sim-

plest one, called tapped delay Unes, involves a buffer

contaimng the most recent symbols from a sequence.

Such a buffer consists of time delays serially con-
nected. These liaes convert a temporal sequence into

a spatial pattem by concatenaúng the sequence com-

ponents. through a fixed-size. windQw which slides in

ume. The concatenated vector is then- presenteei to the

network. Tapped delay lines are commoa in neural
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network models and fonn the basis of tradiüonal staüs-

tical autoregressive models [20]. For further details on

the role of ume delays in temporal sequence leanúng,

the readers are refen-ed to Herz [23].

The number of time delays defines the memory
depth. Lê-, the pedod of time a panem remains avail-

able in the STM. For instance, fourtime delays indicate
±at a particular pattem and its four predecessors are

available in the memory. The model to be proposed in
the next secüon uses time delays at the input md the
output. When connected to the input, ume ddays are

used to account for past elements of Üie sequence in or-

der to resolve potenúal ambiguities during recall. When
linked to the output units, ume delays are used to leam

lhe temporal arder of the items of the input sequence.

3. The Neura! Model Descriptíon

In this secnon, we inu-oduce an amficial neural net-

work model according to the framework proposed by

Rumelhart and McClelIand [24]. In the subsecúons, we
desenhe the mput.üie network topolo.gy, the necwork

rules and procedures.

3. l. AbouT lhe Inpui Panems

The inpui pattems are in the form of sequences. Eacb

sequence consists of a fiiüte numb&r of items, also

called sequence states or components, which can be

scalars, ;c(r) e 9ï, or vectors, x(r) e 9ÍP, p. > I.. These

items, presenteei to the network sequentially, one after

lhe other, represem tíie spaaal portion oftheinput state,

and the arder in which they occur represent Ae tempo-

ral arder. The network should be able IQ encode both

the spacial and temporal aspects of the input sequence.

We classify sequences as open and closed. Open se-

quences are those in which the üútial item is differeni
from the final one. For closed sequences, the mitial item

is equal to the final one. For instance, the sequence of

leiters A-B-C-D-E is open whereas &e sequence of

letters X-Y-Z-W-X is closed.

A single open or closed sequence can have inter-

mediate repeaied items. For example, the sequences

A-B-C-D-C-E and X-Y-Z-W-Z-X are examples of

open and closed sequences with repeated items (C in

úie firsi sequence and Z in the second one), respecdvely.

In addiuon, two or more sequences can have ítems

in commoa. For instance, the sequences A-B-C-D-E

and X-Y-C-W-Z share the item C. We cali ttús item

a shared state. Generically, we caü both repeated. and

shared states recurrent items. Recurrent ítems cause

ambiguiües during recall, and, becanse of this, we use

the term complex sequences for those with recurrent

states. Some kmd of contextual infomiation should be
suppüed in ordsrto resolve sucfa ambiguides.

Tï more than on& sequence is to be pressnted, m OF-

der to distinguishbetween the end ofone sequence and

the begüuüng of another, two altematives are possible.

The ürst one is to define a ume delay between con-

secuüve sequences. The second is to use a sequence

idenúfier. Whensver this idenüfier changes, thís means
that the sequence hás also changed. We have cfaosen the

second altemaúve because it can be used. as a form of

contexl mformatíon tfaat enables the network to handle
ambiguiües Üiat occur when repeated items are present

in the sequences. This type of context and another are

described below.
For the robot trajectories, each state is composed of

the spatial position (x> y, z) of the robot end-effector

in its workspace, sbcjomt angles and sixjoíntapplied
forques.

3.2. The Architecture

The basic archítectare crfthe proposed model is illus-

tratedíaFíg. l. This is a two-iayernetwork composed of

a broadcasüng ínput rayer and an output layer respon-
sible for Üie processmg-. The model hás feedforward
and feedbacfc weigfats playing distmct r&Ies m its dy-
namics From this point OHwaFds., the term tra|ectory is

synonymous with sequence.

The input paüem entaüs two sets of neurons:

the sensory and the contexí units. The sensory set,

s(f) e9íp, receives tfae input trajectory state at time
step ï and propagates this vector towards the output

Intralaycr

wcights M

Inicriïtycr

wrighis W

Sensory

Inputs
Fixed

Context
Tüne-varying

Context

Figure l. The architecture of the proposed model.
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3 uniu. No inpui data pre/processing stage is required.

The coniext units are used to resolve ambiguiües that

may occur during recall of complex trajectories. The

-/ context units are oftwo lyyes-.fixed ana time—varying.

Fixed context, -s. f e 3t'?, is üme-invariant and.is setto

a particular state of the temporal sequence, the i ni -

úal or Üie final one being the usual opüons. It is kept
unchanged unül the end of the current sequence hás

been reached. Thus, it acts as a kind of a global se-

qu.en.ce iden.tífier. Time-varying context units change

their state of acúvity every time a new input pattem is

considered, and ít is formed by the concatenaúon of

past sequence hems, s(r —l) 6 3ïp, 1=1,..., r, where

T is called memory depíh [20J. Thus, ií^ï)=[s(t —
l),..., s(r — r)}, só that Xr(r) e ?tr'p. The.sensory m.-

put, the fixed and the üme-varying context are com-

bined to form the. input partem,. v(r), to be presenteei

to Üie network at ume r, i.e-, v(r) = [s(í) Xf Xi-(r)]r.

Note that dim v(r) = N; =p + q + r -p, where N: is

the number of üiput units.

The current model extends previoas work on eon-

text and temporal sequence leaming for robot control

[25, 26]. The previous architectures could deal only
wilh open temporal sequences with shared items, be-

cause üiey made use only of fixed-type contexi. This

type of context is unable to deal with closed trajectories
with repeaied states, such as figure-eight sequences.

The soluúon is to include úme-varyíng context units

which take into account the past history ofthe sequence,

allowuig the network to encode both closed and- open:

ü-ajectories with recun-ent items.

The synaptic weights consist of feedforward (or
interlayer) weights and feedback (or intratayer)
weights. The feedforward weights connect the input
uniis to the output neurons. These conneetions store

the items of a parúcular sequence through a compet-

itive leanúng rule. That is, for a parúcular sequence

item, a smgle output neuron (Üie winaer) or a small

group of output neurons are choseiL to store this se-

quence item. The feedback set of weights indicates Ae
temporal arder ofthe pattems in a sequence by using a

'-.; Hebbian leaming rales to form temporal associations

from the previous to the cun-ent winner of the com-

petition. Feedback weights are unidirecüonal and ini-

tialized with zeros for the traming phase, üidicating no

temporal association at ali. Also, úiere is no feedback

self-connection. Lê., a connecüon from the output of a

neuron to its input.

The output neurons represem the current and the
next siates in a panicular sequence. The cun-ent state

is stored. in. the weight vector of the neuron with the

highest value fora,(r), 7" = l,..., Ng, where Ng is the

number of output neurons. The next state is stored in

the weight vector of the iieiiroR with the highest value

for y;(r), j. = l,..., No (Eq. (4) in Sectíon 3.3). This
weigfat vector is then used as a eontrol signal» to posi-

üon the robot ami at the desired confíguraüon.

3.3. Acïivatíon and Output Rules

The two groups ofsynapüc weights presentedin the last
section are updated during a single pass of an entire tra-

jectory in which ea.ch sequence item is presenteia oa!y
once. This means that a sequence with Ne components

requires exacüy Ne traüúng. steps. Thus, following the

presentation of a sequenee item, this. input pattem is

compareci with each feedforward weight vector» usíng

a measure of dissimilarity based on Euclidean distance,
and the group of weight vectors closest to the input vec-

tor is selected- to be updated. Mathemaücally, we have:

vi = arg min(/,.Cr) - Hv(r) - w,(r)||} ¥7

vz = argmm^Ct).. Hv(í). - w,(r)||;} Vj ^ {vi}

(l)
vy = argnun{/,-(r) - ||v(r) - Wj(r)||}

J

Vj^{vi, ...,v//-i}

where (v;,..., v/y} are the Índices oftbe output neu-

rons ranked according to Ae proximity between their
weight vectors and the current input; thus, v\ is th.e in-

dex represenüng the neuron whose weíght vector is the
closest option to the cun-ent input vector. Whea the pa-

rameter K, called degree ofredundancy, exceeds one,

we have a popuiation of neurons encodíng a siagle vec-

tor of an input sequence; in other words,. a redundancy

meehanísm- On on& hand, such a scheme, similarly

to neighboring neurons in the Kohonen SOM, allows
the network to be robust, i.e., to be tolerant to- noise

and neuron failure. On the other band, Üie.redundancy

mechanism mcreases memory requirements. For the

purpose of learrúng, we usually set K > l. For recall,

we always set K = l.

The funcúon f j (r), catled the exclusion fadar, is

defined as:

fj(.t+í)=
if;6{vi, •--,VK]

/y (r) otherwise
(2)
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where a » l and /y(0) = l, j =1,..., No. This func-

üon is used to "exclude" the K winning neurons from

subsequent compeüüons, to ensure that each point of

the trajectory is encoded by different neurons. The ex-

clusion mechanism is akin to that proposed by James
and Mikkulainen [27]. However, their mod&l aimed at
detecúng a single sequence instead ofrecalling sequen-
üal pattems. Furthermore, they did not propose a math-

emaúcal formalism for their exclusion mechaiúsm.

The combinaúon of redundancy and exclusíon

mechanisms yields a unique group of neurons to rep-

resent a specific stare ofthe trajectory. Such groups are
linked in the correct temporal order through a lateral

coupling structure. The neuron acüvaüons are deter-

mined by the following equadon:

a u,(r) =
Amax-y'"1 for i =1, K
o for i > K

(3)

where O < y < l is an acüvaüon decay temi, and

Amax >. l is the maximum activation value o^btained

for i = l. According to Eqs. (l) and (3), the closer the
weight vector to üie cun-ent input vector, the higher

the activation of the assocíated neuroiL Once a neuron

is acúve, its acüvanon is diffused. Üu:ough a non-zero

lateral connection in arder to trígger its successor in

lhe cun-ent sequence. The largest output value^y(r)/

determines the weight vector to be sent to the robot

controller:

y j W =§[^ mj
,r=\

m,,(r)^(£)) for; = L,...., N, (4)

where g(-) is a funcüon defined só that g{u) >: O and

dg{u)/dt > 0, and m^r(r) is ±e intralayer cormection
weight between the output neurons r and }.

3.4. The Leaming Rules

After the selecúon of the winning neurons and the de-

lerminaüon of their acdvaüons and outputs^ the weight

vectors Wy(r) are updated according to the following
compeudve leaming rule [28]:

w,(r + l) = w,(r) + 5(r)a,(r)[v(r) - w,(r)] (5)

where 5(r)!^ l is the leaming rate. This competitive

leaming procedure copies the input vector v(r) to the
weight vectors of the K winning neurons obtained

through Eq. (l). Note that uníts with acdvaüons a^-(r)
equat to zero do not leam at time step t.

Without the exclusion mschamsm, the competiúve

rale in Eq. (5) would try to groap ttie sequence items
in clusters» reducmg üie number of states of the mput

sequence. Since OUT goal is to reproduce exactly the

same sequence at the network output, Üüs clustering

effect should be avoideíL

It is worth remembering that the input vector v(r)
is comprised ofthree parts: a seasory part correspond-

ing to the sequence item currenüy being observed, the
fixed context and the time.yarying context. We have the
following two situaüons: (I) A single open or dosed
sequence contains a repeated item: the first ume thís

item occurs, a particular neuron wilï store th& corre-

sponding input vector in íts synapúc weights. When
the item occurs. for th& seeond time, the sensory pari

and the fixed context are equal to that of the first oc-

currence ofthe repeated item, since Ae sequence is the

same, but tiie time-varymg context is díffereitt since it

consists of the T ümnediate predecessors of the current

sequence item. (2) Multiple open sequences share an

item: using argumenís smülar to case (l), every time

the shared item reoccurs, the seasory part remams the

same but the fixed and tíme-varying context are cüffer-

ent. This way, &e network is abt& to recalt the sEored

sequences without ambiguity, since the repeated and.

shared states are stored in the feedforward weights to-

gether with their coiresponding contexts.

The iniralayer weights are updated according io the

followmg rule:

A77i^(r)=À^(Oar(r-l) (6)

where O < À ^ l is the intralayer leaming rate. Ac-

cording to Eq. (6) lateral connecrioas will be estab-
lished from the winners of the previous compeütion,
r = [i»i(r - I), V2(r - I),..., v^f - l)}, to the win-

ners ofthe cuirent coDipetition, j = [vi(r), vz(t},
u^-(r)}. Figure 2 sketcheshowEq. (6)Ieamsthetempo-
ral arder for the simplest case, in wfaich K = l. Initially
(r = 0), the network hás no lateral coimecüons. At f = l,

tbe neuroir on the Irft is. the wisner for the pattera v(l).

At r = 2, the neuron on the right is the winner for pattem
Y(2). Stül at t =2, a lateral connection is created fi-om

the neuron on the left to the n&uron on Ae dght Üu-ough.

Eq. (6), leammg the transition v(l) —^ v(2). This pro-
cess conünues unül ali transiüons between successíve

sequence items is leamed.

Some brief comments are necessary at this
point. First, the neuron acüvaüons of the previous
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r=2

Figurei. Asketchofhowconsecudwwúmersar&temporaUy lü^d through lateral coimeciions-Xy-is tfaefixedcontextandxi (f) denotes tbe

nme-varying contexL

compeüüon, flr(r -1), are made availabk Üu-ough ume

delays (STM model). Second, Eq. (6) is an asymmet-

ric Hebbian leamíng mie [29] which aüns at creatmg
temporal associaúons between eonsecuúve pattems in

the input trajectory. Indeed, this equati.on encodes the

temporal arder of the input sequence.

3.5. Temporal Order Leaming

and One-Step-Ahead Recall

The simple form ofEq. (6) allows the constmcüon of a
hypotheúcal example based on the concept oftemporal

associatíve memory [30] to elucidate temporat order

leaming and one-step-ahead recalL Thus,. Eq. (6) can

be written in matrix fomi as follows:

M(r + l) =M(r) + Ãa(í)az'(r -1) (7)

where M(r + l) is Úisfeedback memory maïrix corre-

sponding to úie leaming of one state traDsiüon given

by the acúvation pau- (a(r), a(r — l)). For a sequence

wiúi Ne items, the resulüng matrix is:

Arc

M(AÜ = M(0) + À ^ a(r)ar(T - l) (8)
T=l

Note rhar this matrix is constructed in an mcremental

manner, i.e., it cannot be set in advance as in other as-

sociadve memory models, since the acúvaüon patteras

a(r) are not kaown beforehand.

As akeady menúoned, the acüvaúon pattems a(í)

indicate the neuron whose weight vector best matches

with the cim-ent input item, and the output pattems
y(r) indicate the aeuron whose weight vector stores

the nexi sequence item. The recall of Üie next item

depends on lhe feedback memory matrix and on the

curreni acúvadon pattem (see Eq. (4)). The following
hypotheúcal example illustrates this property.

Consider a trajectory with only three states (Ne = 3)
and a network with three neurons (A?o=3). Setting

K = l, we assume that neuron 7=1 encoded the first

state of the trajectory at r = l, neuron 3 encoded the
second state at r = 2, and neuron 2 encoded the thírd

stat& at ï ==3. Henee, Üie correspondmg activaüon

pattems were a(l)=[l Q Of, a(2)=[0 O if axid
a(3)=[0 l 0]r.Thus,inaccordancewithEq.(8),the
leamed feedback memory matrix is:

M(N,)

= M(0) + À{a(3)ar(2) + a(2)ar(l) + a(l)ar(0)}

(° ° °\ A(°\
'O & 0|+À{|I KO O l)

^0 Q Q) {\OJ

í°~\ . . Í1}
+| O l (l O 0) 4- | O | (O O 0)

\0/J.

(9)

To illustrate how the feedback memoiy matrix

constructed by Eq. (9) retrieves the next seqaence
item» consider the following function: gW = u, for

M ^0 and g(u)=0, otherwise. Note that, in Eq. (4),

^ mjrOr > 0, then we have the following linear rela-

úonship for recall purpose: y(r)=Ma(r). Thus, if the
firstseqaence-item is presented again, tíieresultíng ac-

úvaüonpattemisa(l)=[l O 0]T.
Sequence recall is iniüated by giving a pattem in

the sequence as a cue síimulus; tfaen, the part of the

sequence that follows the cue pattem is successively

recalled. The output pattem is obtaiaed as follows:

^0 O O'

y(l)=M-a(l)= | O O À

^ o o

which indieates that neuron j =3 stored. the next tra-

jectory state in its weight vector. This weight vec-
tor supplies the robot controller wiA the next spaüal
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posiúon, die associated joint angles, and the joint

applied torques. Once a robot hás reached its next po-

siaon, new sensor readings are fed- back to the aeu-

ral network input to produce the following activaúon
pattem a(2)=[0 O 1]T. The corresponding. next se-

quence item is then:

/o o o'

y(2)=M-a(2)= | O O À

,À O O

which indicates ftiat neuron j = 2 stored. the last tra-

jectory state in its weight vector. When the robot ami

reaches its final position, ttie new sensor readings to-

gether with context informaúon produce the acúvation

pattern a(3) = [O l 0]r. The next sequence item cor-

respondiag is then:

y(3)=M.a(3)=

which indicates that the trajectory hás indeed reached

its end,because there is no "next item".

4. Simulations

This section aims at evaluating Ae proposed neuralnet-

work in tenns of storage and recall of different types

of trajectories, as well as how the network parame-

ters affect Ae overall perfonnance ofthe system. First,

we consider closed 2D trajectories (circular and figure-

eight types), and then, mulüple 3D robot trajectory pro-
cessing is assessed.

The open and closed trajectories were generated by
the ROBOTICS toolbox of Matlab [31], for a PUMA
560 robot wiüi 6 DOR These trajectories were pre-
viously used to evaluate recurrent [10] and associa-

úve memory neural models [32] in temporal-sequence-

based conirol ofrobotic anns. As pointed outby Wang
and Yuwono [33], leaming ofmulüple sequences can

be camed out with simultaneous or sequendal input

presentaüons, and üie latter was chosenm our case. By

convenúon, the robot movements are executed within

a cube of dimension lm x lm x lm. The origm of a

coordinate frame for Üie robot end-effector is located

at the center of the cube.

Closed trajectories, included in this study, are com-

monly used as benchmarks for sequence processing

[34-36]. For the circular trajectories, we have se-

quences with 20, 35,70 ana LOO states. For the figure-

eight trajectodes the sequesces-are 20, 40, 80 aad 100

states long. The open trajectories were used to test the

abilíty ofthe network to woricwith multiple trajectories
with shared states. Each open trajectory hás. 11 states,

including the initiaL and. the final ones.
In both open and closed trajectories, each state is

constituted by the spatial posiüon (x, y, z) ofthe robot
end-effector in its workspace, six joint angles aad six
joint applied torques. Thus, p = 3 + 6- + 6 = 15. The
fixed context is set to the target posiúon of the end-
effector (final state of the trajectory), and thus q = 3.

The ame-varying context consists of past end-effector

positions, and it hás dep& T = l. Then, the total number

of input uiúts isM=P+ç+T-^=15+3+15=33.
The network performance is evaluated in trackmg

tasks by means of the root mean square error (RMSE)
givenby the fQUowiag equaüon:

RMSEW

^

N.

v^-E^-^+(yí-^+(4-4)
'c 1=1

where Ne is the number of patteras in a trajectory,

(.Xd, yd, íd) and (x^, y r, ir} are lhe desired andrecalled

coordinates of fhe robot end-effector. These coordi-

aates are obtained from tfae first three components of

Üie mput and winner wei-ght vectors at time step t.

4. l. Leaming of Closed Trajectaries

In the following paragraphs we evaluate the influence of
network parameters on the network perfonnanee dur-

mg the leaming of closed circular and figure-eight tra-

jectories.. The. followmg. tests include: choice of leam-

íng rate 5, mfiuence of redundancy on faull-tolerance,

and mfhience of sampling rate and redundancy on

noise-tolerance.

4.1.1. Choice of Leaming Rate S. In Üús simula-

üon, intended to show how the learmng rate influences

th& storage- accaracy of the proposed model, we tramed

the network on the circular and figure-eight trajectories

with four different values of the feedforward learmng
rate 5: 0.45, 0.75, 0.90 and 0.99. The other parame-

ters were set to the following values: K= l, a = IO6,

À == 0.8, A^, = I,Y = 0.99, and Aro = 100. The feed-

fonvard weights were randomly initialized between O

and l, the feedback units were iniüalized to zero, and
the same imdal weights were used for ali values of S.
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Figure 3. Accuracy in leaming closed trajectories for 5 = Q.45, 0.75, 0.90 and 0.99. Inner trajectories bave lower values for the leanúng rate

5. AJTOWS indicace the direcnon ofmovement.

The resuldng ü-ajectories are plotted m Fig. 3(a) for a
circular trajectory with 35 discrete pattems. Figure 3(b)
gives the general behavior for a figure-eight trajectory

with 80 points.

The errors for Ae circular trajectories were:

2.173124 for S= 0.45, 0.965519 for 5=0.75,

0.377616 for <S-0.90, and 0.038847 for á = 0.99. The

errors for úie figure-eight trajectory were: 12.030423
for 5=0.45, 5.409065 for <S= 0.75, 2.171650 for

5 = 0.90, and 0.218585 for 5 = 0.99. These figures in-

dicate rhat the RMSE decreases as iS increases. Hence,

to achieve accuracy, S must be near or eqaal to l. This

is an important requirement since the robot controller

must be supplied with precise signals from the network.

4.1.2. Influence of Redundancy att FauIt-Toleremce^

In this simulaüon, we show how a trajectory is stored
by Üie &rst K wüming neurons, and why such. a re-

dundancy mechanism is useful in cases ofneuron fail-

ure. We chose K =3, which means that each point

of the sequence is encoded by 3 dífferent Deurons.

The other parameters were set to the foiïowing val-

ues: 5 = l,o: = IO6, X = O.S, A^. = l, y =0.99, T = l,

No = 525. The results for a circular trajectory with

70 points are shown in Fig. 4. Figure 4(a) illus-
trates the input (circles) and the stored/retrieved tra-
jectory (crosses> encoded hy the first wumer neuron,^

while Fig-. 4(b> presents the. result for the dürd winner

UIUt.

0.25

-0.15

0.25

(LO

-0.25

-0.5

Figure 4. Effects of reduadancy on the leanúng of circular crajectories by the: (a) ISE winner (higher activada&). and (b) 3rd wmner (lower

acnvaaon).
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The resulüng KMSE values for Ae retrieved tra-
jectones were 0.00 (Ist wmner), 0.143867 (2nd win-
ner), and 0.287732 (3rd winner). The RMSE val-

ues for lhe second and third wmners can be viewed

as worsi cases. For example, if ali the first win-

ners have collapsed, the second winners would be

used insiead, yielding RMSE= 0.143 867. In the ex-

^-—^ü-eme and uníi-ke case of total collapse of the first

'.^-". and second wiiuieES, the third^would be used by the

network, yielding RMSE = 0.287732. Isolated neu-

ron failures would result in intermedíate values for

RMSE.

An example of a figure-eight trajecto^ wiA 80
points is plotted in Fig. 5. This sequence hás a.crossing

posiúon at coordinates (0.0, 0.0), which explains the
need for temporal context informaúon. To recall the

trajectory in the corcect way, &e üme-varying context

units are set to the coordinate of the pattem which im-

mediately precedes the current sensory input. The re-

sulúngRMSEvalueswere:Q.OO(lstwinner),0.223320

(2nd wirmer), and 0.445203 (3rd wümer). We can con-
clude üiat, for the purpose of trackmg, the robot con-

ü-oller must use Üie trajectory in Fígs. 4(a) and 5(a). In

the case of neuron faüure, the stored trajectories will

continue to be remeved at the expense of a slighüy

higher RMSE value.
It is wonh noting that the network can store and re-

ü-ieve a irajeciory wiih RMSE == O even in the presence

of neuron failures, by simply adopúng 5 = y = A = l.

However, this would make the network much like a

fault-tolerant convenúonal storage-and-recall device

(look-up lable) without the ability to respond. well to

noisy sequences^which is a highly desirable networí. ^

property.

4.1.3. Ivftuence of Sampling Rate and Redundancy

on Noise-Tolerance. The simulaüons considered in

the previous secüons handled noíse-free trajectories.

However, tolerance to noise is a desirable property for

any conirolter of a real robotíc system. This network

property was evaluated by adding different amounts

of zero mean G.aussian whiie noise to the n-ajectory

paaeras and calca-latmg th& RMSE value. The noise

had variance leveis rangiag from 0.001 to 0.1.
A related issue is thç effeet of the sampling rate

(number of points in a sequence) on the netw&rk per-

formance [36]. Hence, in tbis test, we aimedto evaluat&

how the network responds to a noisy trajectory while

varymg the degree of redundancy ana the nnmher of

items of the input trajectory.
We símulated the network for three valaes of de-

gree of redundancy: K =3, 4 and 5. Figures 6 and 7
show the results for circular and figuie-eight trajecto-

ries, respecüvely. It can be seen in Fig. 6 that lower

values for RMSE (solid lines) are obtained by choos-
ing K = 5. The worst results were. obtained for K.= 3

(dashed-dotted Unes) and 4 (dotted Unes). However, as
the value of K mcreases, the improvemem m RMSE is

less patent.

In addition, these resulta clearly iadicate that the
RMSE rises as the number of points in a sequence is in-

creased. This can be explained by nodng that as the dis-

tance between consecutive points decreases at higher
sampling. rates, the chance of fhe network choosing
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Figure S. Noise-tolerance of the network trained on circular trajectories for differeai sampling rates: (a) 20 poinu, (b) 35 points, (c) 70 points

and (d) 100 pomts.

an incorrect winner due to noise increases. This result

conu-asts with previous simulaüons encounrered in Üie

literature [35] in which increasing sampliag rates re-

sults in higher resilience to noise.

Só far, A.e results obtained suggest that the network

gainsinrobustnessbyusingaredundancydegreeX' > l

(we suggest K =2 or K = 3). Also, it is usefal to have
y < l, which affords some noise tolerance. Another

important propeny of the proposed model, the ability
to store and recall wiA mulúple trajectories, is studied

in the nexi secuon.

4.2. Leaming ofMulríple Robot Trajectoríes.

In order to test the abüity of the algorithm to encode
multiple trajectodes, the following assumpüons were

made: (t) the miüal and final points of a given trajectory
are- known and (2) any trajectory must contam, at least

one crossüig point with ali Üie others. In the current

work, we focus on trajectories wíth one commoa point

which can be situated at any intermediate posíüon. The

network parameters were set to a = 1000, Amax = I,

y =0.95, S =1.0, ^ =0.8, T = l, A^ =70, and Are&

trajectories were trained sequenüally.

Trajectories with at least one point in common suífer
the percepïual. aliasíng problem. In the present work,

this problem is stated as: "which trajectory should the

arm follow subsequent to a point belongíng to more
Úian one?" This problem is sotved by Üie proposed

modeí through the use ofcontext (Section 3.2). Figure 8
shows the network re&ulrs following the trammg stage

on three trajectories. Trajectories in Fig. 8(a) and (b)
have a crossing poínt at (0.20, 0.30, 0.0) ánd those m
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Fig. 8(b) and (c) have a crossing point at (0.22, 0.30,
0.0). It is wonh noúng üiat ±e stored and lhe desired

n-ajectones in ali cases are very similar. For example,

the RMSE value obiamed for the trajectory in Fig. 8(a>

is 0.0024. This illustrates the ability ofEq. (5) to encode
an input pattem aecurately in only one íteraüon. The

letters I and F indicate ±e iniúal and final points ofthe

trajectory, respecüvely.
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Figure 9. The recrieved trajectories in Rg. 8 in a súnulaied robor workspace.
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Figure 9 shows the recalled trajectories in Fig. 8 in
a simulated robot workspace, based on the SündereUa

simulator [37]. This simulated envu-onmentfollows the

correct relative dimensions of a typical FUMA 560
robot.

Figures 10-12 show the joint angles and torques

associated with each point in the stored trajectories.

Similarly, the algorithm was able to encode them with

a STFtaIí error, since the desired and stored values. are

pracücally the sam&. Note that Üie algorithm can leam

the input independenüy ofits.magmrade md sign, and it
responds equally well to trajectodes with smooth cur-

vature (circular and figare-eight sequences) and wi&

abrupt changes of direcüon (see Fig. 8).
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Figure 13 üluso-ates fault-tolerance for this type of

trajectory. In this test, we simulated neuron faults in the

same way as for circular and figure-eight trajectories,

i.e., by excluding the first winning neurons, 1/1 (r), for

each item ofthe three trajectories. Even só, the networic

is able to reproduce the trajectones correcüy at the ex-

pense of a slighüy larger RMSE error, since the second

wúmers, vz(r), are now responsibl& for the retrieval of

the stored sequence. This resultjusüfies the use of more

than one neuron during üie leaming of Üie feedfor«vard

weights.

Despite the simplicity of the model, the sim.ulaüons

suegest that mulúple trajectories can be leamed very
fast and accurately, independenüy of their complexity.

Trajeciories wiüi more Lhan one crossing point are anal-

ogously leamed with small tracking enror. In the next

secüon we summarize the gains and limitations of the

proposed model and discuss those aspects in which it

differs from previous ones in the literature for temporal
sequence leaming and robot trajectory tracldng.

5. Díscussion

The proposed self-organizing neural network raises a
series of important issues regarding the temporal se-

quence learaiag problsm. In the following paragraphs,
we present and; diseuss soiae of them. m- arder to high-

light the advances achieved by this model on exisüng
neural network models, un&upervised or not, used to

temporal sequence processing.

5.7.. The Chamíng Hypoíhesis

The basic idea of the chaming hypothesis is to víew
a temporal seqaence- as a set of assoeiations betw^en

consecuüve components, aad leam these associations

for later recaïï. This temporal associaüon paradigm is

widely used in many neural models. The vast major-

ity &f these modsls are based on either mulülayer per-

ceptrons (MLP) with som& temporal version of back-

propagation traiaüig [38] or Ae Hopfield model of
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associaúve memory [21,33]. Also, BAM-type [32,39]
and ART-type [40, 41] model use the chaining hypoth-
esis to recall temporal sequences. The model proposed.

in this paper also follows this paradigm; however, m

cona-ast to those models based on MLP and. BAM, it

leams temporal associaüons in a self-organized manner

and the leaming process is considerably faster. Com-

paring the current model to other self-organizing ones

such as those proposed by Grossberg [42] md Heaíy

et al.. [4.Q]^one can see that: (i) these models have dif-

ficulües in handUng closed sequences with repeated
points; (ii) they do not address the probíem of fault
tolerance and noise robustoess. Furthermore, Healy et

al. [40] coupled. two ART l modules [43] tramed on
the sarae ítems of a sequence and associated the items

leamedfrom one ART l wi& those leamed by the other^
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whereas our model uses a single layer of feedforward

weights where the items are linked in the correct tem-

poral arder by lateral connecúons.

5.2. The Temporal Context

Context plays a crucial role in leammg, especiaUy when
a subject or an artificial system hás to handle ambigu-
ous situanons. The convenúonal approach to inclad-

ing temporal context inco neural networks is to ex-

tend previous unsuper/ised models for staúc pattems

by mcorporating some type of STM. For this purpose,

the most commonly used are tapped-deiay Unes. and

leaky-integrator neurons (sés [221 for a review). We

have adopted the "tapped-delay Unes" approach for

the üme-varymg context, but leáky-integrator neurons

can be used altemaúvely. A drawback of the proposed
model is thatthe depth T ofüie time-varying context is

non-adaptive, i.e., u hás to be datemúned before leam-

ing takes place. The unsuperi/ised. madel by Wang and

Yuwono [33] leam lhe length of the temporal context

necessary to recall sequences without ambiguity. It is

unponani io note that temporal context as part of the

neiwork input also plays a fundamental role in classi-

ficaüon of temporal pattems [44].

5.3. Time-Delayed Hebbian Leaming

Il is well known that ume in Hebbian leaming mies

plays an essenúal role in psychology [45, 46J, object
recognition [47], route leaming and navígaüon [4&]
and blind source separaüon [49]. To onr knowledge,.

Lhe proposed model together with that in Barreto and

Araújo [25, 26] are the first to apply a üme-delayed
Hebbiaa leaming mie to roboúcs. Similarly to òur ap-
proach, Kopecz [50] used the concept of spatial items
linked via a úme-delayed Hebbian mie, to leam and

recall temporal sequences. However, his model does

not handle sequences with recurrent items.

proposed model offers some degree of tolerance to

noise and faults, aa issue not easily addressed in con-

ventional approaches to robot control via the look-up

table method. Finally, üús model handles ambiguous

situaüoDS as easily as non-ambiguous ones, implymg

Üiat it can be scated-up to deal- wíth more compiex tra-

jectories without addiúonai dif&culty.

As poísted OQÍ at the begiaiuag of the paper, th&
walk-through method used in robot trajectory track-
ing tasks can become tíme-c&nsummg and uneconom-

ical. This occurs in part because the robot is out of

production daring the trajectory-learaíng process, and

in part because, as the trajectories become more and

more comptex, the roborhumaii operator may face dif-

ficulües m resolvmg ambíguítíes. The- latter mQtivated
strongly Ae deve-lopment of thfrself-orgamzing neural

network model presented-in this paper, since it is híghly
desirable to have the trajectory-Ieanüng process auto-

mated. wifh muüraal human supervision-.

When compared to other Beural networks. for ürajec-

tory trackíng, the pfoposed model performs better th an

those ofHyõtyniemi E51I, Althofer and-Bugmann. [11]
ana Bugmana et al. [6], because the temporal assoei-

ations in- those models are hard-wired. In the last two

networks menúoned, two layers of connecüons store

exacüy the same components, aad the temporal ünks

are estabüshed by the netwoi-k designer since the tra-

jectory is known beforehancL For sequences wíth re-

peated oc shared states, the first two models are unable

to reproduce the stored trajectories correctly. The thú-d

can recall a síngle trajectory wíth repeated- states bui.

is unable to deal wiA mulüple. trajectories with shared:
states. Fmally, as pointed out by Chen et al. [4], the is-

sue of leaming of multiple robot trajectories is usually
neglected when considering neural networks models

for tracking. This happens partly because of the in-
hsrent dífficuíties in dealing with recurcent states. Our
model is the first unsuper/ised one proposed to handle

tracking of multíple open and closed ürajectories with
repeated and shared states.

5.4. Applica-tion to Robotics

Our model works much Uke a look-up table, since an in-

pm sequence iiem is associared with an output n&uron,

where extra informaüon is available in its feedforward
and feedback weights. Such mformation consists of

comrol variables, such as the next spaüal posidon of

the end-effector, and the correspond ingj.oint anglesand-

forques, which are leamed adapüvely. Furthennore, the

6. Conclusioit and Further Work

An unsuper/ised model for leamíng and recall of tem-

p oral seqaences is developed in tíiis paper and appüed
to robot trajectory tracking. The simple neural net-

work modeL accurately stores and reüieves complex

sequences. An. important advance introduced in this

arücie is the processíng of multiple sequences by our

model.
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In addition, the proposed temporal-sequence-based

conu-ol sysiem hás other properúes thatar&ofgreatim-

ponance to the design of intelligent robotic systems:

(i) noise tolerance, (ü) ability to leam mulüple tcajec-

tones mcrementally, (üi) ability to handle trajectories
sampled at different rates, (iv) fauk tolerance,. (v). abiL-

ity to leam open and closed trajectories with repeated

and shared items, and (vi) abiliiy to recall a leamed

trajectory from any intemiediate point.
A foreseen limitaúon of our model is related to the

stora-ge of long sequences. Since the redundancy and

exclusion mechanisms demand relaúvely high nuro-

ber of output neurons, a situaúon may occur in whích

output neurons have allbeen used.and.nons can be al-

located to encode a n&w aequence. To deal with this,

we suggest the use o£ some unsupervised constmctive

algorithms [52] to include neurons when necessary.

We believe üiat the model can be further improved

and much work could be developed in the following
direcüoas:

l. Further comparison wLth approaches more recenüy

proposed in the neural neíworií.. literature, such as

the models ofWang and Yuwono [33] and Srinivasa
and Ahuja [53], só that the viabiUty of imsuper-
vised neural networks for spaúotemporal process-

ing and its application in robot control can be finnly
demonstrated.

2. A self-organiziag mechaiúsm to determrae the

depth ofthe time-varying contextbasedsolely onthe
input pattems. See, for example^ Wang and Arbib

[7] and Wang [21].
3. Implementaüon in a real robot despite the many

properúes of the proposed neural system. that can

be inferred firam computer simulaúons, the uldmate

goal of a neural controller must.ba its. testing in real

roboüc system. This is one of our next steps.
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