Boletim Técnico da Escola Politécnica da USP Departamento de Engenharia de Sistemas Eletrônicos

ISSN 1517-3542

BT/PSI/0008

Hidrogenated Carbon Films Used as Mask in Wafer Processing With Integrated Circuits: Post-Processing

Juan M. Jaramillo O. Ronaldo D. Mansano Edgar Charry R.

FICHA CATALOGRÁFICA

Jaramillo Ocampo, Juan Manuel

Hidrogenated carbon films used as mask in wafer processing with integrated circuits: post-processing / J.M. Jaramillo Ocampo, R.D. Mansano, E. Charry Rodriguez. — São Paulo: EPUSP, 2000.

- p. -- (Boletim Técnico da Escola Politécnica da USP, Departamento de Engenharia de Sistemas Eletrônicos, BT/PSI/0008)
- 1. Filmes de carbono 2. Sensores de pressão 3. Circuitos integrados I. Mansano, Ronaldo D. II. Charry Rodriguez, Edgar III. Universidade de São Paulo. Escola Politécnica. Departamento de Engenharia de Sistemas Eletrônicos IV. Título V. Série

ISSN 1517-3542

CDD 621.38152 621.381536 621.3815

HIDROGENATED CARBON FILMS USED AS MASK IN WAFER PROCESSING WITH INTEGRATED CIRCUITS: POST-PROCESSING

Juan M. Jaramillo O, Ronaldo D. Mansano, Edgar Charry R*

LSI-PEE-EPUSP, Av. Prof. Luciano Gualberto, trav. 3, 158, 05508-900 São Paulo, SP. Corresponding author's e-mail: aura@lsi.usp.br

Abstract. Este artigo mostra diferentes estúdios acerca do uso de filmes de carbono hidrogenado amorfo (DLC), depositados a frio por reactive magnetron sputtering, using Ar-CH4 como máscara para a corrosão de corpo do silício em meios alcalinos, como KOH. Filmes de carbono com espessuras entre 0.05 e 1 μm foram depositados sobre wafers de silício tipo p (100), tipo n (100), tipo n⁺ (111) e tipo p⁺ (100), após a deposição, micro - estruturas foram definidas sobre o filme de carbono usando técnicas de litografia convencional e corrosão por plasma de oxigênio com uma pressão de 50 mTorr e uma potência de RF de 100 Watt (13,56 MHz). Este trabalho mostra a possibilidade de fabricar micro - estruturas de corpo(como micro - membranas), usando a tecnologia de pós - processamento em lâminas processadas por foundries não dedicadas, as quais costumam ter uma só face polida.

1. Introdução

A tecnologia de pós-processamento permite a fabricação de estruturas micro-mecânicas em tecnologia standard CMOS sem afetar os circuitos formados no próprio chip, como acelerômetros, sensores ópticos, sensores de pressão, etc; após a wafer ser processada numa foundry qualquer

[1]. As etapas de pós - processamento, quando empregada em processos não dedicados é bastante exigente, já que a lâmina recebida da "foundry" apresenta, em geral, caraterísticas não desejadas como por exemplo, a rugosidade da face não polida da mesma, que traz como conseqüência duas problemas básicos: i) os filme depositado não apresentem uma boa coesão ao substrato, e deste

modo terminam por desprender-se do mesmo, quando submetidos à corrosão anisotrópica e ii) a não uniformidade das superfícies

Os requerimentos usuais na abordagem de pós-processamento são:

corroídas.

- Resistência à corrosão: a máxima espessura permitida da camada e o mínimo tempo de vida requerido do filme, no médio corrosivo, deve estar acima do tempo requerido na construção da micro-estrutura.
- Baixo esforço mecânica residual: devido as mudanças de rigidez nos micro-dispositivos.
- Bom recobrimento: pobres recobrimentos das interconexões e das janelas de contatos são lugares onde a degradação do micro-sensor pode começar. Esta etapa é ainda mais crítica quando o filme é depositado nas costas da lâmina, as quais em geral apresentam uma rugosidade entre 5 e 20 μm. Neste caso os corrosivos podem penetrar a camada e resultar num não desejado levantamento ("lift-off") da mesma.
- Densidade de "pinhole": estos não são permitidos na área exposta dos micro-sensores.

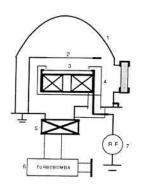
- ◆ Deposição a frio: dado que existe já uma eletrônica não é possível depositar estes filmes a temperaturas elevadas (>400°C) já que danificariam entre outras as linhas de metal.
- Retirada fácil do filme: passos adicionais do pós-processamento, como o encapsulamento dos microdispositivos, exigem a retirada do filme, de aqueles lugares em que o mesmo permaneceu.

Em geral os filmes mais usado para a construção de micro-estruturas de corpo são o nitreto (Si₃N₄) e o óxido de silício (SiO₂). Estes filmes funcionam muito bem em lâminas polidas (dupla face polida), porem, não é este o casso com a lâmina recebida da "foundry", por este motivo diferentes estúdios foram feitos acerca do uso do filme de carbono hidrogenado amorfo (a-C:H). Estes filmes podem ser depositados por diferentes técnicas, tais como Chemical Vapour Deposition (CVD), mass selected ion beam systems, laser ablation and sputtering [2].

Na abordagem de pós-processing é uma exigência que o processo de deposição do filme seja a temperaturas menores que 400 °C, devido as vias e contatos dos circuitos, por este motivo se faz

bastante atrativo para este fim a técnica de deposição por RF magnetron reactive sputtering.

A motivação para o estudo deste filme como camada protetora resulta do fato de ser um material inerte químicamente, além de outras caraterísticas que o filme apresenta como [3]PIERSON]:


- * Não cristalinidade;
- * Baixíssima rugosidade;
- Transparência ao infravermelho;
- * alta dureza;
- Homocompatibilidade.

Neste trabalho se depositarão diferentes espessuras do filme DLC, as quais foram submetidas a corrosão anisotrópica, em diferentes intervalos de tempo que foram de 30 minutos a 5 horas, com o qual se estabeleceu a espessura mais adequada para suportar longos períodos de corrosão (mais de 8 horas de corrosão).

2. Experimento

O filme foi depositado num sistema "RF magnetron reactive sputtering", como apresentado na figura 1. O alvo de grafite têm 99.9999% de pureza e um diâmetro de 6". Um sistema de bombeio composto dum vane rotatório e uma bomba termolecular foi usada parase obter uma pressão de

40x10⁻⁶ Torr. A pressão do processo foi mantida constante. O fluxo total de Ar + CH₄ foi mantido constante a 13 sccm. A potência de RF aplicada foi de 13.56 MHz e mantida constante. A temperatura do substrato não foi controlada, porém é estimada por médio de uma termocupla tipo K, a no máximo ser de 90°C.

Esquemático do RF magnetron reactive sputtering

Figura 1 Sistema de deposição do filme DLC: (1) câmara metálica de aço-inox, (2) porta amostras, (3) alvo de grafite de 6"de diâmetro e 99,9999% de pureza, (4) eletrodo, (5) válvula, (6) bomba turbomolecular e (7) gerador de RF (13,56MHz).

Se utilizarão lâminas de 3" de diâmetro com 330 μ m de espessura, tipo n e p (100), com resistividades na faixa de 10-20 Ω cm. Fixada a espessura do filme, as experiências foram repetidas para lâminas tipo n⁺ (111) com uma concentração aproximada de 0.02 Ω cm e tipo p⁺ (100), com uma

concentração aproximada de 0.005 Ωcm.

Todas as lâminas utilizadas passaram por uma limpeza piranha antes de sua utilização. Após a limpeza o filme DLC foi depositado utilizando-se os seguintes parâmetros:

* Pressão : 5 mTorr;

* Potência: 150 Watt;

* Tempo: de 5 a 60 min;

*Altura da lâmina em relação ao

alvo de grafite: 40 mm

As técnicas para análises iniciais das caraterísticas do filme foram elipsometria e perfilometria FTIR, Medida do radio de curvatura e AFM.

3. Resultados e discussões

A taxa de deposição do filme DLC em função do tempo de deposição, para um processo com 100% de metano, mostrase ser constante no tempo, ver figura 2.

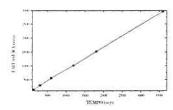


Figura 2 Espessura do filme DLC segundo tempo de deposição.

O índice de refração do filme, após as medidas obtidas por elipsometria e perfilometria foi na média de 1.7. A partir deste dado foi possível determinar

os raios de curvatura, por meio dos quais se determino o estado de tensão mecânica da lâmina. A figura 3 apresenta o gráfico correspondente a estas medidas.

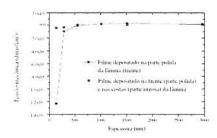


Figura 3 Tensão mecânica do filme DLC.

O estado de tensão mecânica do filme muda a medida que aumenta a taxa de deposição passando de compressivo (- 1.2×10^9 Pa) a tensivo (1.5 \times 10^8 Pa), e a partir de 500 nm a pendente é muito pequena, significando uma variação pequena a medida que a espessura do mesmo aumenta. Esta é uma caraterística não usual dos outros filmes a microeletrônica. trata Igualmente é não usual, quando depositado em frente e costas da lâmina, que a tensão mecânica tenda a ser compensada. A curva é quase lineal, diminuindo em uma ordem magnitude a tensão mecânica no inicio da deposição, passa de -1,2 x109 Pa a 1.03×10^8 Pa. Este fato do filme apresentar uma compensação no estado de tensão mecânica, ao ser depositado,

colabora para que o mesmo apresente uma boa conformidade na superfície rugosa da lâmina, evitando-se de este modo o "lift-off". De outro lado faz com que seja altamente interessante para outro tipo de aplicações em micro-mecânica.

Por meio do AFM se analisou a variação da rugosidade em função da espessura, figura 4.

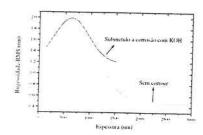


Figura 4 Rugosidade do filme DLC sem/com ataque anisotrópico.

A rugosidade do filme não corroído aumenta com a espessura até 1,7 nm RMS, porém após de passar os ± 600 nm passa a decrescer, chegando a 0,4 nm RMS. A rugosidade do filme aumenta significativamente após passar pelo processo de corrosão anisotrópica, sendo máximo ao redor dos 600 nm, cujo valor corresponde a ± 2 nm RMS, porém tende a manter o mesmo tipo de comportamento que o filme sem corroer. Este fator é grave, como já foi mencionado anteriormente, quando se quer construir micro-membranas ou

outro tipo de estruturas de corpo, onde a qualidade da superfície é uma exigência necessária.

Após a deposição todos os filmes foram atacados numa solução de KOH a 30% Wt @80°C. Encontrou-se que para uma espessura de 1 μm, o que corresponde a uma hora de processo de deposição do DLC, o filme apresentava uma boa conformidade à superfície rugosa da lâmina. Para esta mesma espessura o filme suporto mais de 12 hs de corrosão em KOH. Diferentes testes de repetibilidade foram realizados obtendo sempre o mesmo resultado.

A figura 5 apresenta uma micromembrana feita em silíco tipo p⁺ (100) após 7 hs de corrosão anisotrópica. Primeiro o filme foi depositado nas costas da lâmina (parte rugosa da mesma), logo passou por um processo de litografia, onde se gravou um quadrado nas costas da lâmina e finalmente foi submetido ao ataque anisotrópico.

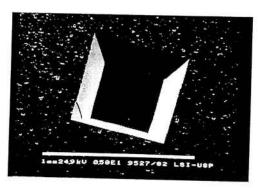


Figura 5 Construção de uma micromembrana mediante ataque anisotrópico nas costas da lâmina.

A fotografia apresenta a micro-estrutura obtida nas costas da lâmina assim como o filme depositado.

Outros estúdios estão sendo realizados, como a deposição do DLC sobre outras camadas, com a finalidade de estudar seu comportamento. Pode-se adiantar que se obteve um excelente resultado ao depositar primeiro um nitreto (Si₃N₄) por PECVD a 300 °C e logo foi depositado o DLC. Observou-se que aumento a uniformidade do DLC.

4. Conclusões

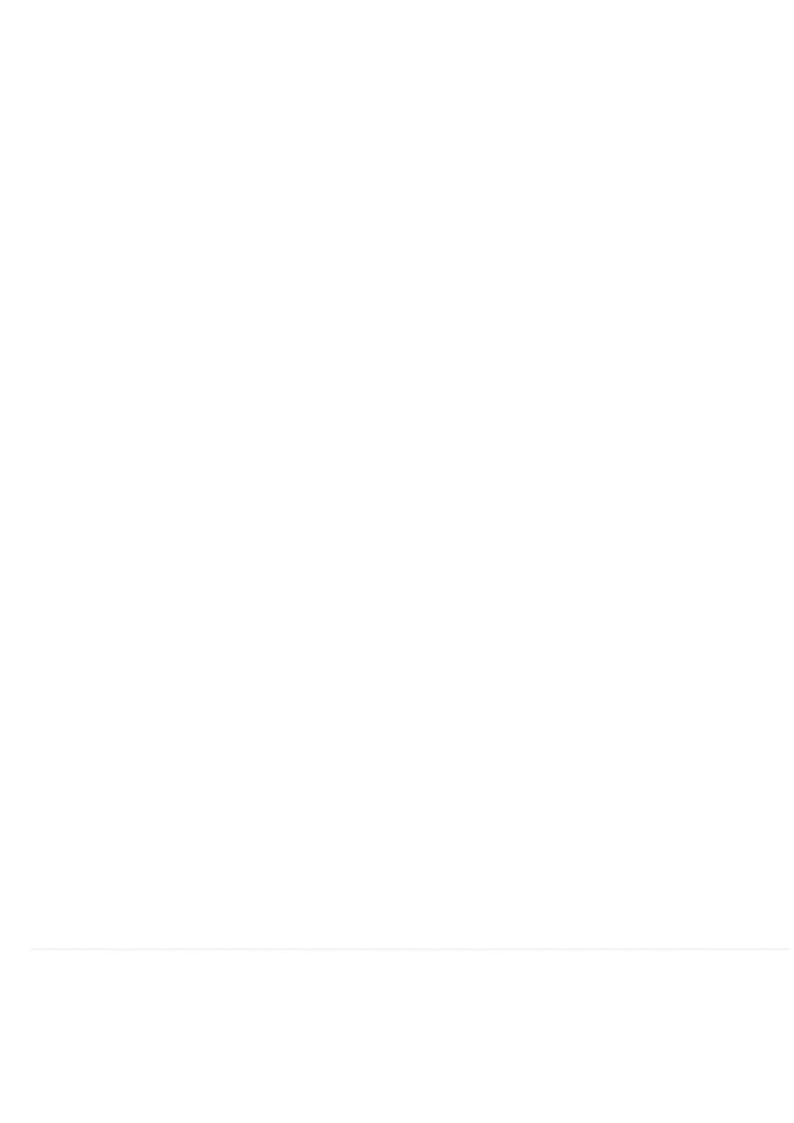
Filmes de DLC foram obtidos mediante um sistema "RF magnetron reactive sputtering", usando um alvo de grafite com plasma de Ar-CH₄ a frio. e com as seguintes caraterísticas:

- 1. Baixo tensão mecânica;
- 2. Baixa rugosidade;
- 3. Alta taxa de deposição;
- 4. Deposição a baixa temperatura;
- 5. Boa aderência.

Acknowledgements

The autors would like to thank to LSI/EPUSP for the use of equipment and FAPESP for financial support.

References


- [1] French P J and Sarro P M 1998 Surface versus bulk micromachining: the contest for suitable applications J. Micromech. Microeng. 8 45-53.
- [2] Grill A 1999 Diamond –like cabon: state of the art Diamond and Related Materials 8 428-434.
- [3] Pierson H O 1993 Handbook of Carbon, Graphite, Diamond and Fullerenes NP Neww Jersey U.S.A 397.

BOLETINS TÉCNICOS - TEXTOS PUBLICADOS

- BT/PSI/0001 Observabilidade Topológica de Osawa em Redes não Lineares ARMANDO HANDAYA, FLÁVIO A. M. CIPPARRONE
- BT/PSI/0002 Desenvolvimento de uma Microbalança de Quartzo para Detectar Gases ROBERTO CHURA CHAMBI, FRANCISCO JAVIER RAMIREZ FERNANDEZ
- BT/PSI/0003 Sistema para Desenvolvimento de Sensores Inteligentes ANTONIO CARLOS GASPARETTI, FRANCISCO JAVIER RAMIREZ FERNANDEZ
- BT/PSI/0004 A 1.6GHz Dual Modulus Prescaler Using the Extended True Single-Phase Clock CMOS Circuit Technique (E-TSPC) JOÃO NAVARRO SOARES JÚNIOR, WILHELMUS ADRIANUS M. VAN NOIJE
- BT/PSI/0005 Modelamento em Linguagem VHDL de uma Unidade de Policiamento para Redes Locais ATM ÉDSON TAKESHI NAKAMURA, MARIUS STRUM
- BT/PSI/0006 Otimização das Operações Coletivas para um Aglomerado de 8 Computadores usando uma Rede Ethernet 10 Mbps baseada em Hub MARTHA TORRES, SERGIO TAKEO KOFUJI
- BT/PSI/0007 Short Temporal Coherence Optical Source With External Fiber Optics Cavity CARMEM LÚCIA BARBOSA, JOSÉ KEBLER DA CUNHA PINTO

