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a b s t r a c t 

The brain has the phenomenal ability to reorganise itself by forming new connections 

among neurons and by pruning others. The so-called neural or brain plasticity facilitates 

the modification of brain structure and function over different time scales. Plasticity might 

occur due to external stimuli received from the environment, during recovery from brain 

injury, or due to modifications within the body and brain itself. In this paper, we study the 

combined effect of short-term (STP) and spike-timing-dependent plasticity (STDP) on the 

synaptic strength of excitatory coupled Hodgkin-Huxley neurons and show that plasticity 

can facilitate the formation of modular neural networks with complex topologies that re- 

semble those of networks with preferential attachment properties. In particular, we use 

an STDP rule that alters the synaptic coupling intensity based on time intervals between 

spikes of postsynaptic and presynaptic neurons. Previous work has shown that STDP may 

induce the emergence of directed connections from high to low frequency spiking neurons. 

On the other hand, STP is attributed to the release of neurotransmitters in the synaptic 

cleft of neurons that alter its synaptic efficiency. Our results suggest that the combined 

effect of STP and STDP with long recovery times facilitates the formation of connections 

among neurons with similar spike frequencies only, a kind of preferential attachment. We 

then pursue this further and show that, when starting with all-to-all neural configurations, 

depending on the STP recovery time and distribution of neural frequencies, modular neural 

networks can emerge as a direct result of the combined effect of STP and STDP. 

© 2020 Elsevier B.V. All rights reserved. 
1. Introduction 

Mathematical models have been employed in neuroscience since early in the 20th century [1] to explain experimental 

findings and elucidate the inner workings of the brain. In 1907, Lapicque [2] proposed the integrate-and-fire model that can 
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reproduce the electrical activity of the membrane potential of neurons. It is one of the most popular models for studying

the dynamic behaviour of neural systems. Later in 1952, Hodgkin and Huxley [3] explained the ionic mechanisms in the 

cell membrane of neurons and proposed the so-called Hodgkin-Huxley (HH) neural model that has, since then, been used 

extensively to study neural networks [4] . 

In particular, neural network models have been used extensively in computational neuroscience, such as in studies of 

neural dynamics [5] , dynamic range [6–9] , neural synchronisation [10–14] , flow of information [15–17] , and brain plasticity

[18,19] to name a few. 

Neural plasticity is the ability of the brain to modify its function and structure over different time scales [21,22] . The

term was initially used by James [23] in 1890 to propose that phenomena of habit in living organisms are due to plasticity.

Cajal [24] reported in the early 1900s his research about regenerative and degeneration changes in brain structure. In 1924, 

Lashley [25] demonstrated experimental evidence of a malleable brain. Konorski [26] and Hebb [27] proposed in 1948 and 

1949, respectively, that neural activities influence the connection among neurons. In 1960, Bennet et al. [28] carried out 

experiments with rats and observed chemical and anatomical plasticity in the brain. Since then, there have been many 

theoretical [29] and empirical [30] studies aiming to explain and understand brain plasticity and its effects in brain structure 

and function. 

In synaptic plasticity, the synapses among neurons are potentiated or depressed in time according to the activity of other 

neurons [31,32] . Recent works [33,34] have shown that short-term (STP) and spike-timing-dependent plasticity (STDP) are 

different forms of neural processes leading to synaptic modifications. In particular, STDP depends on the relative timing of 

presynaptic and postsynaptic neural spikes [35,36] . This type of plasticity can lead to various dynamical phenomena and 

coupling structures, such as stable localised structures [37] , stimulation-induced synchronisation or desynchronisation [38] , 

noise-enhanced synchronisation [39,40] and nontrivial topology [20] . The STDP mechanism plays a role in temporal coding 

of information by spikes [37,41] . On the other hand, STP is attributed to the release of neurotransmitters in the synaptic

cleft of neurons that alter its synaptic efficiency and acts on shorter time scales, ranging from milliseconds to hundreds 

to thousands of milliseconds [42–45] . As in the case with STDP, STP influence significantly the dynamical behaviour in a

network. For instance, it may stabilise the parametric working memory [46] , contribute to the emergence of spontaneous 

travelling waves [47] , or induce phase changes in neural postsynaptic spiking [33] . 

Here, we extend the work in Borges et al. [20] which was focused on STDP only and study the combined effect of STP

and STDP in neural networks of excitatory coupled HH neurons. The plasticity terms that model STDP in the equations 

in Section 2 are based on the experimental results by Bi and Poo [4 8,4 9] that were performed on excitatory synapses

and on theoretical results by Abbott et al. [43] and Popovych et al. [39] (STDP). The results in Bi and Poo [4 8,4 9] show

that STDP is a function of the relative timing of postsynaptic and presynaptic spikes and is theoretically backed by the

Hebbian synaptic learning rule [27] . Instead, STP depends on the neural recovery dynamics [50,51] . McDonnell and Graham

[33] used mathematical analysis and numerical simulations to show that STP induces phase changes in neural postsynaptic 

spiking. In our work, we start by studying the simplest case of a pair of HH neurons for a range of spike frequencies,

aiming to understand how connectivity between them changes by the combined effect of STP and STDP. Next, we build an

initially, all-to-all (globally) connected network of HH neurons and consider the simultaneous effect of STP and STDP for 

a range of coupling strengths. We show that STP plays an important role in changes of connectivity in neural networks

with STDP. Indeed, we find that for high STP recovery time, only neurons with similar spike frequencies tend to connect, a

form of preferential attachment. More importantly, our results show that, when starting with all-to-all networks, depending 

on the STP recovery time and distribution of neural frequencies, modular neural networks can emerge as a direct result of

the combined effect of STP and STDP, a structure depicted by neurophysiological and experimental studies [52,53] . For the

considered setup, STP plays a balancing role: while STDP tends to synchronise all neurons in a cluster, STP destroys the

strong synchronisation and leads to a modular structure. 

The paper is organised as follows: In Section 2 , we introduce the general mathematical model of HH neural networks

with STP and STDP and, in Section 3 , we present our analysis and results based on numerical simulations, that show the

effects of both types plasticity, initially on a pair of neurons and then, on a network of 100 HH neurons. Finally, we present

the conclusions of our work in the last section. 

2. A Hodgkin-Huxley neural network with STP and STDP 

In our work, we build use a neural network model of N HH neurons coupled with excitatory chemical synapses, equipped 

with STP and STDP rules based on experimental results in Bi and Poo [4 8,4 9] and on theoretical models proposed by

Popovych et al. [39] (STDP) and McDonnell and Graham [33,43,50] (STP). 

Specifically, the HH neural network model considered here is given by 

C ˙ V i = I i − g K n 

4 
i (V i − E K ) g Na m 

3 
i h i (V i − E Na ) 

−g L (V i − E L ) + (V r − V i ) 
N ∑ 

j=1 

ε i j f j D j , (1) 

˙ n i = αn i (V i )(1 − n i ) − βn i (V i ) n i , (2) 
2 
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Fig. 1. Natural frequency ν as a function of the current I for a single HH neuron. 

 

 

 

 

 

˙ m i = αm i 
(V i )(1 − m i ) − βm i 

(V i ) m i , (3) 

˙ h i = αh i 
(V i )(1 − h i ) − βh i 

(V i ) h i , (4) 

˙ f i = − f i 
τs 

, (5) 

˙ D i = 

1 − D i 

τD 

, (6) 

where C (in μF/cm 

2 ) is the membrane capacitance and V i (in mV) the membrane potential of neuron i at time t, with

i = 1 , . . . , N. I i (in μA/cm 

2 ) is the constant current density of neuron i and ε i j represents the matrix of coupling weights

between neurons i and j. Parameters n i and m i are the activation of potassium and sodium functions, respectively, and h i 
the inactivation of sodium function. Parameters g and E are associated with the conductance and reversal potential of each 

ion, respectively, and V r is the excitatory reversal potential. 

The various rate functions in Eqs. (1) –(6) are given by 

αn (V ) = 

0 . 01 V + 0 . 55 

1 − exp ( −0 . 1 V − 5 . 5 ) 
, (7) 

βn (V ) = 0 . 125 exp 

(−V − 65 

80 

)
, (8) 

αm 

(V ) = 

0 . 1 V + 4 

1 − exp ( −0 . 1 V − 4 ) 
, (9) 

βm 

(V ) = 4 exp 

(−V − 65 

18 

)
, (10) 

αh (V ) = 0 . 07 exp 

(−V − 65 

20 

)
, (11) 

βh (V ) = 

1 

1 + exp ( −0 . 1 V − 3 . 5 ) 
, (12) 

We consider C = 1 μF/cm 

2 , g K = 36 mS/cm 

2 , g Na = 120 mS/cm 

2 , g L = 0 . 3 mS/cm 

2 , E K = −77 mV, E Na = 50 mV, E L =
−54 . 4 mV and V r = 20 mV. 

Fig. 1 shows the spike (or natural) frequency ν (Hz) of a single HH neuron as a function of current I. The spikes were

numerically computed when the voltage V crosses the threshold of 0mV, increasing from negative to positive values. In the 

simulations of 100 coupled HH neurons in Section 4 , we consider I randomly distributed in the interval [10,30] μA/cm 

2 ,
i 

3 
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Fig. 2. The effect of STP on a pair of unidirectionally connected HH neurons, where neuron 1 is connected to neuron 2 but not vice versa: Temporal 

evolution of (a) V 1 , (b) V 2 , (c) D 1 and (d) I 2 , input = (V r − ν2 ) ε 21 f 1 D 1 with ε 12 = 0 , ε 21 = 0 . 1 , I 2 = 0 and τD = 50 ms. Note that, for ν1 = 70 Hz and ν1 = 100 Hz, 

we used I 1 = 10 . 97 μA/cm 

2 and I 1 = 31 . 8 μA/cm 

2 , respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

leading to spike frequencies νi in the interval [70,100] Hz. This choice of interval also allows for the monotonic increase of

the natural frequencies νi without reaching currents I bigger than 60 μA/cm 

2 that correspond to a non-spike regime. 

In Eq. (5) , f i is the strength of the effective synaptic output current from neuron i to neuron j and τs (in ms) the synaptic

time constant, fixed at τs = 2 . 728 ms. When neuron i spikes, f i is updated ( f i → 1 ) before it starts to decay exponentially. 

Eq. (6) models STP [33,50] with τD (in ms) being the recovery time constant, related to biological mechanisms such as the

depletion of release-ready neurotransmitter vesicles at the presynaptic terminal [44,51] . We assume that every time neuron 

i spikes, the update rule D i → D i − d is applied. Biologically, D i could represent the vesicles that can be used to transmit a

signal from the presynaptic to the postsynaptic neuron. Therefore, the update rule means that the amount D i of available

vesicles is decreased by d = 0 . 1 at every spike of neuron i, and then it recovers according to Eq. (6) . We verify that different

values of d lead qualitatively to the same behaviour. In that framework, D i lies in [0,1] as if it happens D i to be negative, it

means that the neuron used all stored vesicles and when this happens, D i is reset to 0. On the other hand, when D i is equal

to 1, it means that all neurotransmitter vesicles are restored. 

Fig. 2 shows the effect of STP on a pair of neurons coupled with a unidirectional connection from neuron 1 to neuron

2. This is implemented by fixing ε 12 = 0 (i.e. the connectivity strength from neuron 2 to neuron 1 is 0) and ε 21 = 0 . 1 for

the connectivity strength from neuron 1 to 2. In this study, we have set the STP recovery time τD at 50 ms and I 2 at 0, so

that neuron 2 spikes only when it receives a strong enough input I 2 , input = (V r − V 2 ) ε 21 f 1 D 1 from neuron 1. When the spiking

frequency ν1 in Fig. 2 (a) changes from 70 Hz to 100 Hz, ν2 in Fig. 2 (b) exhibits a delayed alteration in its dynamic behaviour

as its amplitude plummets at about 300 ms. We investigate further this phenomenon through the temporal evolution of D 1 

in Fig. 2 (c) and the input current I 2 , input received by neuron 2 in Fig. 2 (d). Comparing the 70 Hz-regime with the 100 Hz-

regime in Fig. 2 (c) and (d), one can see that D 1 decreases with the increase of the spike-frequency of neuron 1 to 100 Hz,

and consequently I 2 , input becomes less intense as it is not strong enough to cause spikes in the activity of neuron 2. When

neuron 1 returns to 70 Hz spike frequency, there is more time for D 1 to recover, thereby to increase the intensity of I 2 , input ,

which triggers again spikes in the activity of neuron 2. Generalising this, one might say that STP increases the variability of

postsynaptic responses to presynaptic frequency changes. 

Moving now to the other form of plasticity introduced to the model, STDP gives rise to changes in the synaptic strength

by means of the update function [39,48] 

ε i j → ε i j + 10 

−3 �ε i j , (13) 

where 

�ε i j = 

{ 

ε + = A 1 e 
(−�t i j /τ1 ) , if �t i j > 0 

ε − = −A 2 e 
( �t i j /τ2 ) , if �t i j < 0 . 

0 , if �t i j = 0 

Here, �t i j = t i − t j is the time difference between the spike time t i of the postsynaptic neuron i and the time t j of the

presynaptic neuron j, where t i > t j , leading to �t i j > 0 . Fig. 3 shows the plot of the plasticity function �ε i j calculated from

Eq. (14) for A 1 = 1 , A 2 = 0 . 5 , τ1 = 1 . 8 ms, τ2 = 6 ms, and �t i j varying from −20 ms to 20 ms. This update rule is applied

every time the postsynaptic neuron i spikes. 
4 
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Fig. 3. Plot of �ε i j that models STDP as a function of the difference between the spike times of the postsynaptic neuron i and presynaptic neuron j. Note 

the discontinuity at �t i j = 0 ms. 

Fig. 4. The average input current Ī 2 , input neuron 2 receives from neuron 1 as a function of the recovery time τD for the following cases: (a) only STP 

and (b) STP and STDP. Neuron 2 has a fixed spike frequency ν2 = 70 Hz ( I 2 = 10 . 97 μA/cm 

2 ). The blue curve represents the case where ν1 = 100 Hz 

( I 1 = 31 . 8 μA/cm 

2 ) and the orange curve, the case where ν1 = 72 Hz ( I 1 = 11 . 88 μA/cm 

2 ). We use ε 21 = 0 . 3 and ε 12 = 0 , to implement the case where ε 21 

changes when STDP is considered. Note that the simulations run for 200 × 10 3 ms and that Ī 2 , input was calculated over the last 10 × 10 3 ms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

To understand better the effects of the recovery time τD , we consider in the next the case of two, unidirectionally con-

nected neurons where neuron 1 (presynaptic) is connected to neuron 2 (postsynaptic), but not vice versa. We evaluate how 

the average input current Ī 2 , input change with the increase of the recovery time τD by comparing cases where the neurons 

have similar and dissimilar spike frequencies. 

Specifically, we consider the cases where the system is equipped with only STP (see Fig. 4 (a)) and, STP and STDP (see

Fig. 4 (b)). In both cases, we consider ε 21 = 0 . 3 and ε 12 = 0 , but for the case of STD and STDP ( Fig. 4 (b)), STDP acts only

on ε 21 (unidirectional connection) ensuring that the spike frequency of presynaptic neuron 1 remains unchanged. The spike 

frequency of neuron 2 was fixed at ν2 = 70 Hz ( I 2 = 10 . 97 μA/cm 

2 ) and, for the blue curves in Fig. 4 , neuron 1 has ν1 =
100 Hz ( I 1 = 31 . 8 μA/cm 

2 ) and for the orange curves, ν1 = 72 Hz ( I 1 = 11 . 88 μA/cm 

2 ). For the calculation of Ī 2 , input , we

consider the last 10 × 10 3 ms of the simulations. 

Observing Fig. 4 (a) (STP), one can see that for recovery times τD < 75 ms, the average current Ī 2 , input for ν1 = 100 Hz

(blue curve) is bigger than Ī 2 , input for ν1 = 72 Hz (orange curve) (see also the inset in Fig. 4 (a)). Interestingly, this change

in the region 75 ms < τD < 125 ms where Ī 2 , input for ν1 = 72 Hz (orange curve) is bigger than Ī 2 , input for ν1 = 100 Hz (blue

curve). For τD > 125 ms, both Ī 2 , input curves assume similar values and settle asymptotically to zero with further increasing 

in τD . In Fig. 4 (b) (STP and STDP), we see that the action of STP and STDP causes Ī 2 , input for ν1 = 100 Hz to drop to 0 at

τD ≈ 100 ms, whereas Ī 2 , input for ν1 = 72 Hz (orange curve) stays positive until τD ≈ 480 ms. 

These results show that STP make the influence of slower (or close frequency) neurons to become greater than that of

faster (or very different frequency) neurons as τD increases. In conjunction with STDP, this effect occurs due to the decrease

of Ī 2 , input that makes the firing times uncorrelated (less synchronised), which then causes the coupling to disappear, i.e. 

ε 21 → 0 . This decoupling process tends to occur for smaller τD values as the difference between ν1 and ν2 is amplified. We

address this further later when we discuss the results in Fig. 5 . 

3. Two HH neurons case 

Neural networks with STDP and random synaptic input were studied by Popovych et al. [39] . The authors reported that

the mean synaptic coupling depends on noise intensity. Recently, the authors in [20] showed that STDP induces non-trivial 
5 



E.L. Lameu, F.S. Borges, K.C. Iarosz et al. Commun Nonlinear Sci Numer Simulat 96 (2021) 105689 

Fig. 5. Parameter spaces ν1 × ν2 for a pair of initially uncoupled neurons for recovery times (a) τD = 0 ms, (b) τD = 100 ms, (c) τD = 200 ms and (d) 

τD = 10 0 0 ms, and for a pair of initially coupled neurons for (e) τD = 0 ms, (f) τD = 100 ms, (g) τD = 200 ms and (h) τD = 10 0 0 ms. Note that ν1 and ν2 

vary in [70,100] Hz and that the colour bar shows the direction of synaptic connectivity, where white accounts for the uncoupled case (denoted “No”), grey 

for the case where neuron 1 is connected to neuron 2 (i.e. 1 → 2 ), blue for the case where neuron 2 is connected to neuron 1 (i.e. 1 ← 2 ) and black for 

the bidirectional connection (i.e. 1 ↔ 2 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

topology in neural networks. Here, we extend this work and build a neural network of N = 100 HH neurons to study the

combined effect of STP and STDP on the structure of the network and in particular, on its connectivity. 

We start by analysing neural connectivity under the effect of STP and STDP. To this end, we consider a pair of HH neurons

with STP and STDP, with the coupling strengths ε 12 and ε 21 varying in [0,0.3], and the connectivity threshold set at 0.01. This

threshold is chosen because the coupling weights that should vanish in time actually oscillate around 0 assuming very small 

values as STDP is always present and thus, affecting them. As a consequence, the time averages of the coupling weights are

not 0 but very close to 0. Moreover, for coupling weights smaller than this threshold, we notice that neurons influence each

other only slightly. 

Initially, the pair of neurons is uncoupled (i.e. ε 12 = ε 21 = 0 ) or bidirectionally coupled with ε 12 = ε 21 = 0 . 3 . Fig. 5 shows

the direction of connectivity, after a transient time, for different natural frequencies ν1 and ν2 in [70 , 100] Hz. The direc-

tion is coloured according to the connection from the output of one neuron to the input to the other neuron (directions of

arrows in the colour bar): white accounts for the uncoupled case denoted in the colour bar as “No” ( ̄ε i j < 0 . 01 ), grey for

the case where neuron 1 is connected to neuron 2 (i.e. 1 → 2 ), blue for the case where neuron 2 is connected to neuron 1

(i.e. 1 ← 2 ), and black for the bidirectional connection (i.e. 1 ↔ 2 ). For initially uncoupled neurons, the connections remain

only for neurons with very similar frequencies, from those with faster spike frequencies to those with slower, as depicted 

in Fig. 5 (a) ( τD = 0 ms), Fig. 5 (b) ( τD = 100 ms), Fig. 5 (c) ( τD = 200 ms) and Fig. 5 (d) ( τD = 10 0 0 ms). We note the ab-

sence of bidirectional connections and that the increase of the recovery time τD gives rise to a narrower region of directed

connections. With regard to neurons starting with bidirectional connections, we observe that for τD = 0 ms, neurons still 

remain unidirectionally connected (for all natural frequencies) from the high to the low frequency neurons (see Fig. 5 (e)).

Increasing τD to 100 ms (see Fig. 5 (f)), 200 ms ( Fig. 5 (g)) and 1000 ms ( Fig. 5 (h)), we observe a decrease in the area that

represents connectivity, implying that the region of high spike frequencies is more affected by the influence of STP. There- 

fore, STDP makes the connections increase from faster spiking to slower spiking neurons and STP decreases the influence of 

high frequency neurons, allowing connections only for those neurons with similar spike frequencies. 

The reason for the initially, bidirectionally coupled system to have larger areas of connectivity is related to the difference 

in frequency �νc 
i j 

of neurons when coupled (or the synchronisation level). We note that this difference is not equal to the

difference between their natural frequencies νi − ν j , i.e. �νc 
i j 

� = νi − ν j . In Fig. 6 , we present the calculation of the average

�νc 
i j 

(colour bar) for the first t = 40 0 0 ms for the system with STP only. We consider N = 2 , ε 12 = ε 21 = 0 . 3 and vary ν1 

and ν2 in [70,100] Hz. Fig. 6 (a) shows the result for τD = 0 ms where, despite the natural frequencies of the neurons, �νc 
i j 

is approximately equal to 0 (black region). When comparing these results with the results in Fig. 5 (e), once can see that

this corresponds to a connected region. For increasingly bigger recovery times τD (see Fig. 6 (b) for τD = 100 ms, Fig. 6 (c) for

τD = 200 ms and Fig. 6 (d) for τD = 10 0 0 ms), one can observe a decrease in the size of the black area, similar to the size of

the area seen in Fig. 5 (f), (g) and (h). Thus, one can infer that what defines a connected configuration in the case of STDP

is the difference in spike frequency among neurons or how synchronised they become. The non-homogeneous distribution 

of connected areas in relation to the main diagonal in Fig. 5 occurs due to the non-linear variation of neural frequencies

in relation to the received external current. In Fig. 1 , we see that for low currents (i.e. I ∈ [10 , 25]) , a small increase in

I can cause a bigger variation in the frequencies when compared to the interval where I > 30 . Therefore, low frequency
6 
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Fig. 6. Parameter space ν1 × ν2 for increasing values of τD : (a) for τD = 0 ms, (b) for τD = 100 ms, (c) for τD = 200 ms and (d) for τD = 10 0 0 ms. Note that 

ν1 and ν2 vary in [70,100] Hz and the colour bar represents �νc 
i j 

values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

neurons are more sensitive to changes in their external currents, which facilitates their synchronisation with neurons with 

similar frequencies. The more synchronised they become, the more connected they remain. Coming back to the effect of 

STP, we find that it decreases the influence of faster neurons on slower ones, and consequently leads to the increase of their

frequency differences and to the suppress of their synchronisation. That then leads to the depression of the connectivity via 

STDP. 

4. Effects of STP on HH neural networks with STDP 

We performed a similar study for a HH neural network and analysed how the connections evolve with the combined 

application of STP and STDP. In particular, we start with an all-to-all (globally connected) network of N = 100 excitatory 

HH neurons. The coupling weights vary in [0,0.04] and I i is randomly distributed so that the natural frequencies are in the

range [70,100] Hz. At each time step, we check which neuron spikes and update its couplings according to the plasticity

rule. We choose three initial coupling weight averages ε̄ initial . The coupling matrices for the connectivity strengths ε i j are 

shown in Fig. 7 , where ε̄ initial = 0 in Fig. 7 (a), ε̄ initial = 0 . 01 in Fig. 7 (b) and ε̄ initial = 0 . 04 in Fig. 7 (c). For all initial conditions

studied, we kept the standard deviation of ε̄ initial fixed at 0.002. In the coupling matrix (ε i j ) , the presynaptic neurons j

and postsynaptic neurons i are sorted and plotted in ascending frequency-order (i.e. from the smallest to the largest spike 

frequency). The final coupling matrices ε i j for τD = 0 ms are shown in Fig. 7 (d), (e) and (f) for ε̄ initial = 0 , ε̄ initial = 0 . 01

and ε̄ initial = 0 . 04 , respectively. In all cases, the final coupling matrices have, predominantly, connections from faster to

slower spiking neurons. This behaviour was also reported in Borges et al. [20] for a neural network with STDP. Fig. 7 (g),

(h) and (i) present our results for ε̄ initial = 0 , ε̄ initial = 0 . 01 , and ε̄ initial = 0 . 04 , respectively, where τD = 100 ms. Due to the

effect of STP on the dynamics of the neurons in the network, we observe the formation of different modules of directly

connected neurons. Again, the effect of STP leads to a decrease on the influence of the fastest neurons to the slowest ones,

allowing for the formation of connections among those neurons with similar spike frequencies. The size of these modules 

increases according to the intensity of the initial coupling and their different sizes can be explained by the analysis made

based on the results in Figs. 5 and 6 , where the coupling shortened the frequency differences, leading to the formation of

connections especially among neurons with close frequencies. This also explains why the bigger-size modules are composed 

of the smallest-frequency spiking neurons. Increasing τD to 10 0 0 ms, leads to the disappearance of big modules and to the

decrease of the number of coupled neurons, as shown in Fig. 7 (j), (k) and (l). Therefore, by varying the STP recovery time

τD , one can control the formation of modules in neural networks with STP and STDP. 

We also analyse the neural in-out degree distributions of our network. Fig. 8 shows the neural in-degree (blue) and out-

degree (red) distributions for ε̄ initial = 0 . 01 with (a) τD = 0 ms, (b) τD = 100 ms, and (c) τD = 10 0 0 ms with their respective

network degree probability distributions shown in panels (d), (e) and (f). We calculate the in-out degree considering the 

connections among neurons and not their synaptic weight. In Fig. 8 (a), we observe a decrease and an increase in the in-

degree and out-degree distributions, respectively, which is in accordance with the one cluster formation shown in Fig. 7 (e).

This configuration also exhibits a uniform in-out degree probability distribution as displayed in Fig. 8 (d). In Fig. 8 (b), we see
7 
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Fig. 7. The combined effect of STP and STDP on connectivity in networks of N = 100 excitatory coupled HH neurons and emergence of modular neural 

networks. The initial couplings used are: In (a) ε̄ initial = 0 , in (b) ε̄ initial = 0 . 01 and in (c) ε̄ initial = 0 . 04 . We consider τD = 0 ms for (d) ε̄ initial = 0 , (e) ε̄ initial = 

0 . 01 and (f) ε̄ initial = 0 . 04 . τD = 100 ms for (g) ε̄ initial = 0 , (h) ε̄ initial = 0 . 01 and (i) ε̄ initial = 0 . 04 and τD = 10 0 0 ms for (j) ε̄ initial = 0 , (k) ε̄ initial = 0 . 01 and (l) 

ε̄ initial = 0 . 04 . Note that the synaptic weights ε i j (with i, j = 1 , . . . , 100 ) of the coupling matrices are encoded in grey scale in the colour bar. 

Fig. 8. Neuron in-out degree distributions for ε̄ initial = 0 . 01 for (a) τD = 0 ms, (b) τD = 100 ms, and (c) τD = 10 0 0 ms with their respective network degree 

probability distributions shown in (d), (e), and (f). We calculate the in-out degree considering the connection between neurons and not the synaptic weigth. 

 

 

 

 

the same neural degrees patterns restricted to the neurons within the small clusters. Fig. 8 (e) shows that the network in-out

degree probability distribution is similar to a Gaussian distribution, however, it does not reflect the distribution inside the 

clusters, as shown in the inset of Fig. 8 (e). In particular, the inset displays the uniform distribution amont neurons within

the first cluster. Fig. 8 (c) and (f) show the degree and probability, respectively, the results for the in-degree is similar to the

out-degree. The decrease in both degrees is expected as the network becomes sparse for higher τD . 

To study further the observed modules, we consider connections with ε i j > 0 . 002 (i.e. with connectivity strength bigger

than 5% of the maximal coupling strength). Thus, weaker connections are not considered in the resulting network analysis. 
8 
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Fig. 9. Time evolution of modularity Q for (a) τD = 0 ms, (b) τD = 100 ms and (c) τD = 10 0 0 ms. Q was calculated over the time evolution of the coupling 

matrix and the coloured curves represent the network average initial coupling: the black curve is for ε̄ initial = 0 , the red for ε̄ initial = 0 . 01 and the green 

for ε̄ initial = 0 . 04 . The coloured symbols represent the average Q for random networks computed by rewiring the connections in the corresponding original 

networks. For example, the black symbols represent the average Q calculated over 20 random networks generated by rewiring randomly the connections 

in the original networks (black curve). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This procedure also avoids measurement errors that might be caused by connections whose weights fluctuate closely to 

zero over time. 

To evaluate how modular structures evolve over time, we compute the modularity Q by using the Louvain method [55] .

Q is measured across network partitions in densely connected communities. In particular, the modularity assumes values in 

the range [ −1 , 1] comparing the density of connections within communities with the density among communities. The best

network partition in modules is one that maximises modularity. Q is defined as [56] 

Q = 

1 

W 

N ∑ 

i 

N ∑ 

j 

(
ε i, j −

ω i ω j 

W 

)
δ(c i , c j ) , (14) 

where ω i = 

∑ N 
j ε i j is the sum of the connection weights received by node i and W = 

∑ N 
i 

∑ N 
j ε i j the sum of all weights in

the coupling matrix. The term c i represents the community that neuron i has been allocated to and δ(c i , c j ) is given by 

δ(c i , c j ) = 

{
1 , if c i = c j , 
0 , otherwise . 

(15) 

The Louvain [55] method is defined in two steps: At first, each node in the network is considered as a community in itself,

and thus initially, there will be as many communities as nodes in the network. At this stage, each node i is reassigned to

the community of each of its neighbours j, then i will be permanently fixed in the community that promotes the largest

gain in modularity Q (positive gain). This process is applied repeatedly to all network nodes until there are no more gains

in Q . The second step amounts to taking the defined communities at the end of the first step and consider them as the

nodes of a new network. The weight of the connections between these new nodes is given by the sum of the weights of the

connections between the nodes present in the communities (defined in the first step). Once the new network is computed, 

the first step can be applied again to its nodes. This process occurs repeatedly until no further changes to Q occur and a

maximum value is thus obtained. 

Fig. 9 shows the time evolution of modularity Q for the three recovery times, τD = 0 ms, τD = 100 ms and τD = 10 0 0 ms.

The colours represent the initial connectivity strengths in the coupling matrix: the black curve is for ε̄ initial = 0 , the red curve

for ε̄ initial = 0 . 01 and the green curve for ε̄ initial = 0 . 04 . The coloured symbols represent the average Q values calculated over

20 random networks obtained by rewiring all connections of the original networks. We did this to compare our results with

those obtained for random networks with the same connections and number of nodes (which we call random variants). 

Unless stated otherwise, the symbols in Fig. 9 represent the measurements taken on the random variants. 

In Fig. 9 (a), we observe that for τD = 0 ms (instantaneous recovery), Q is very low for all ε̄ initial connectivity strengths, 

remaining constant after a small transient. These results confirm those in Fig. 7 (d), (e) and (f). In Fig. 9 (b) for τD = 100 ms,

Q assumes its largest value for ε̄ initial = 0 , confirming what we observed in Fig. 7 (g), (h) and (i) by comparing the number

of modules. It is also apparent that Q stabilises for simulation times t greater than 80 0 0 0 ms as there are no changes in the

modular structures occurring in the networks anymore. Interestingly, Fig. 9 (c) shows that for τD = 10 0 0 ms, Q converges to

the same value (i.e. Q ≈ 0 . 6 ) for all ε̄ initial coupling strengths, again in accordance with the results in Fig. 7 (j), (k), (l), which

show networks with similar configurations regardless of the initial coupling. Finally, in all cases considered, we find that the 

modularity of the networks is bigger than their random variants. 

Next, we compute other quantities that characterise the structure of the networks considered previously, such as the 

mean path-length, clustering coefficient and assortativity. In particular, a path is defined as the route that passes through 

network connections, connecting nodes i and j. The path with the shortest number of connections is called the shortest path
9 
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Fig. 10. The 8 distinct triangular motifs in directed networks. The motifs are considered with respect to node i depicted in red and are split into the cycle, 

middleman, and in out motifs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

l i j [57] . The networks we consider here are directed, so l i j is not necessarily equal to l ji . In general, the shortest average path

length is given by 

L̄ = 

1 

N(N − 1) 

N ∑ 

i 

N ∑ 

j � = i 
l i j , (16) 

where N is the number of nodes in the network. In our approach, we calculated L̄ via a breadth-first search approach

[57] and do not consider the weights of the connections. If there is no possible directed path l i j between nodes i and j, 

then it is not considered in the calculations in Eq. (16) . 

The second quantity considered is the clustering coefficient CC i , which measures the degree to which the neighbours of 

a node i are connected to each other and varies in [0,1]. It is computed by considering the number of triangular motifs made

by node i and its neighbours compared to all possible triangular motifs of that node [57] . For directed networks, given 3

connected nodes i, j and h, there are 8 distinct triangular motifs, shown in Fig. 10 . These motifs are further organised into

4 groups when considering node i as the reference node: Fig. 10 (a) shows a “cycle” motif, Fig. 10 (b) a “middleman” motif,

Fig. 10 (c) an “in” motif and Fig. 10 (d) an “out” motif. For each motif, we calculate CC 

( cyc , mid , in , out ) 
i 

relative to node i, as

shown in [58] . 

For directed and weighted networks, there are 4 types of clustering coefficients 

CC 

cyc 
i 

= 

1 
2 

∑ N 
j 

∑ N 
h 

[
ε 1 / 3 

i j 
ε 1 / 3 

jh 
ε 1 / 3 

hi 
+ ε 1 / 3 

ih 
ε 1 / 3 

h j 
ε 1 / 3 

ji 

]
d in 

i 
d out 

i 
− d ↔ 

i 

, 

CC 

mid 

i = 

1 
2 

∑ N 
j 

∑ N 
h 

[
ε 1 / 3 

ih 
ε 1 / 3 

jh 
ε 1 / 3 

ji 
+ ε 1 / 3 

i j 
ε 1 / 3 

hi 
ε 1 / 3 

h j 

]
d in 

i 
d out 

i 
− d ↔ 

i 

, 

CC 

in 

i = 

1 
2 

∑ N 
j 

∑ N 
h 

[
ε 1 / 3 

i j 
ε 1 / 3 

ih 
ε 1 / 3 

jh 
+ ε 1 / 3 

i j 
ε 1 / 3 

ih 
ε 1 / 3 

h j 

]
d in 

i 
(d in 

i 
− 1) 

, (17) 

CC 

out 
i = 

1 
2 

∑ N 
j 

∑ N 
h 

[
ε 1 / 3 

hi 
ε 1 / 3 

ji 
ε 1 / 3 

jh 
+ ε 1 / 3 

hi 
ε 1 / 3 

ji 
ε 1 / 3 

h j 

]
d out 

i 
(d out 

i 
− 1) 

, 

where d in 

i 
= 

∑ N 
j a i j is the in-degree of node i and d out 

i 
= 

∑ N 
j a ji its out-degree. The term d ↔ 

i 
= 

∑ N 
j a i j a ji represents the

number of bilateral connections between node i and its neighbours. For the calculation of d in 

i 
, d out 

i 
and d ↔ 

i 
, the coupling

weights are not considered, only the number of connections, that is a i j = 1 if ε i j > 0 . 002 , otherwise a i j = 0 . 

Consequently, the clustering coefficient of the network, CC 

∗
, is calculated by averaging CC 

∗
i over all N nodes in the net- 

work 

CC 

∗ = 

1 

N 

N ∑ 

i 

CC 

∗
i , (18) 

where ∗ stands for either of the cyc, mid, in or out motifs. 

The last quantity considered in our study is assortativity, which is the correlation coefficient (i.e. the Pearson correlation 

[59] ) between the degrees of nodes on two opposite ends of a connection in a network, for all connections in the network.

This correlation varies in [ −1 , 1] and, is positive in assortative networks and negative in disassortative networks. Since our

networks are directed and weighted, we use the four directed assortativity measures defined in [60] . 
10 
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Fig. 11. Representative illustration of an edge e and, the source j and target k nodes considered in Eq. (19) . 

Fig. 12. Structural properties of the final coupling matrix configuration (coloured curves) and their respective random variants (averaged over 20 random 

networks, coloured symbols) as a function of the recovery time τD . Panels (a) and (b) show the modularity Q and average shortest path length L̄ for three 

different average initial couplings: ε̄ initial = 0 in black, ε̄ initial = 0 . 01 in red and ε̄ initial = 0 . 04 in green. In (c), (d) and (e), we show all clustering coefficients 

for ε̄ initial = 0 , ε̄ initial = 0 . 01 , and ε̄ initial = 0 . 04 , respectively. Panels (f), (g) and (h) show the assortativity r for ε̄ initial = 0 , ε̄ initial = 0 . 01 , and ε̄ initial = 0 . 04 , 

respectively. 

 

 

 

 

 

 

 

In particular, let a and b be indices representing the type of degree (i.e. in- and out-degree) and j a e and k b e the a - and

b-degree from source node j to target node k of an edge e . Fig. 11 shows an illustrative representation of edge e and their

respective source nodes j and target nodes k . Foster et al. [60] defined the assortativity measure r(a, b) as 

r(a, b) = 

N 

−1 
e 

∑ N e 
e 

[
( j a e − j̄ a )(k b e − k̄ b ) 

]
σ a σ b 

, (19) 

where N e is the number of edges in the network, j̄ a = N 

−1 
e 

∑ N e 
e j a e the average in- and out-degrees of the source node and

σ a = 

√ 

N 

−1 
e 

∑ N −1 
e 

e ( j a e − j̄ a ) 2 its deviation, calculated for all edges. The equations for k̄ b and σ b are similarly defined. In our 

approach, instead of in- and out-degrees, we use the in- and out-strength from the source and target nodes, given by the

sum of their in- and out-coupling weights. A positive assortativity coefficient indicates that nodes tend to connect to other 

nodes with the same or similar strength. 

Fig. 12 shows the results of the computations of the quantities discussed previously as a function of τD in [0,10 0 0] ms.

In all computations, we consider the final coupling matrix obtained after t = 20 0 0 0 0 ms of simulated data. Fig. 12 (a) shows

the modularity Q for 3 initial couplings: ε̄ = 0 in black, ε̄ = 0 . 01 in red and, ε̄ = 0 . 04 in green and their random
initial initial initial 

11 
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variants given by different symbols with their respective colours. We note that for τD � 30 ms and for all 3 ε̄ initial values,

Q is low. For 30 ms < τD � 120 ms, Q depends on ε̄ initial . In particular, the lower the initial average coupling ε̄ initial , the

more modular the final configuration of the network. For τD � 120 ms, there is no dependence on ε̄ initial and the resulting

networks exhibit similar modularity values. In all cases of ε̄ initial , Q is higher than that calculated for their random variants,

which shows that the resulting networks do not have characteristics of random networks. 

Fig. 12 (b) shows the results for the average path length L̄ for the same three ε̄ initial values. For τD < 30 ms, the average

path L̄ = 1 , in accordance with Fig. 7 (d), (e) and (f), where we observe a network where all nodes are connected to all

other nodes with unidirectional connections. For 30 ms < τD < 120 ms, the average path length L̄ is bigger for weaker initial

couplings. This is because weak initial couplings result in the formation of a larger number of modular structures (as seen

in Fig. 12 (a)), which results in a greater path for one node to access other nodes in different modules, possibly crossing

through other modules. For τD > 120 ms, we see that L̄ ≈ 2 . 5 for all 3 ε̄ initial values. In contrast, the average path lengths L̄

for the random variants are smaller than those for the original networks. 

Fig. 12 (c), (d) and (e) present the 4 types of clustering coefficients for ε̄ initial = 0 , ε̄ initial = 0 . 01 and ε̄ initial = 0 . 04 . The

black curve represents CC 

cyc 
, the red CC 

mid 

, the green CC 

in and the blue CC 

out . In all cases, the results are similar. It is

worth it to note that for τD < 120 ms, CC 

mid has the highest value and CC 

cyc the lowest. These results build on what we

have already observed: the action of STDP promotes connections from faster to slower spiking neurons and do not permit 

cyclic connections (see Fig. 10 (a)). As τD increases, CC 

mid converges to CC 

in 

, CC 

out ≈ 0 . 15 and CC 

cyc increases to about 

0.09. For the random variants of the networks (coloured symbols), we see that for τD < 120 ms, all clustering coefficients

are similar and larger than those for the original networks. This is because for such τD values, the networks from which they

were generated ( Fig. 7 (d), (e), (f)) are densely connected and the high number of connections allows for the formation of

triangular motifs without any of the 4 types occurring preferentially. For τD > 120 , all random networks have their clustering

coefficients fluctuate near zero. In this case, the generating networks are more sparse (as in Fig. 7 (g), (h), (i)), which makes

their random variants have low probability in forming triangular motifs. We note that these clustering coefficients are not 

high enough to claim with certainty that the networks have a small-world topology. 

The right column of plots in Fig. 12 shows the 4 assortativity measures, r, computed for the considered networks with

ε̄ initial = 0 , ε̄ initial = 0 . 01 , and ε̄ initial = 0 . 04 . The black curves represent the out-strength/in-strength correlation r( out , in )

between the source and target nodes, the red curve the in-strength/out-strength correlation r( in , out ) , the green curve the

out-strength/out-strength correlation r( out , out ) and the blue curve, the in-strength/in-strength correlation r( in , in ) . 

In Fig. 12 (f), (g), (h) and for the three ε̄ initial values, we find that for τD < 100 ms, the networks are disassortative as

r ( out , in ) and r ( in , out ) are negative and, at the same time, neither assortative nor disassortative as r( out , out ) and r( in , in )

are approximately equal to 0. The predominance of the connections from the fastest to the slowest neurons is responsible 

for the disassortative properties of the network. Neurons that receive many strong connections (the slowest ones) generally 

do not send connections to neurons that also send many strong connections (the fastest ones). The values of r( out , out )

and r( in , in ) are low due to the fact there are no neurons that send (receive) many strong connections connected with

other neurons that send (receive) many strong connections. As τD increases, all correlations grow, being mostly positive 

with r( out , in ) being the largest. This shows a greater correlation in the network of high out-strength nodes to connect

with nodes with high in-strength and corroborates the results in Fig. 7 , where connections occur preferably from the faster

neurons (which have a high out-strength) to the slower ones (with high in-strength). For the random variants of these 

networks, all correlations are close to zero for the entire τD range, a result completely different to those for the original

networks. We thus conclude that the original networks are far from being purely random networks, exhibiting a type of 

preferential attachment in their connectivities. 

In the analysis of the structural properties of the networks, the topology may vary greatly depending on τD . In all cases

studied, the networks were different from random or small-world networks, since the average path lengths are bigger than 

in random networks and their clustering coefficients are small than in random networks. This corroborates further the 

results obtained previously here that there is a complex process taking place in which modules are formed via preferential

attachment. 

5. Conclusions 

In this paper, we studied the effects of plasticity (STP and STDP) on networks of excitatory coupled Hodgkin-Huxley 

neurons. Neural plasticity is responsible for alterations in the organisation and structure of the brain, and both play an 

important role in synaptic weights. Besides, STDP has a longer time scale than STP, so it affects differently the structure and

function in brain networks. 

We started analysing the effect of STP in a pair of neurons that are initially, either uncoupled or bidirectionally coupled.

For initially uncoupled neurons, the action of STP and STDP promotes directed connections among neurons with small spike 

frequency differences, from the faster to the slower spiking neurons. The increase of the recovery-time shortened the interval 

of frequency differences where connections are formed. When neurons are initially coupled, their frequency difference is 

smaller and increases the size of the area of directed connections. We found that STP induces uncoupling, depending on the

recovery time: the bigger the recovery time, the smaller the interval of frequency difference that allows for the formation 

of connections. 
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Next, we build a neural network with an all-to-all topology. Considering only STDP, the coupling matrix exhibits directed 

connections from neurons with high to neurons with low spike frequencies. We have shown that due to STP, neural net-

works equipped with STDP facilitate the formation of synapses among neurons with similar spike frequencies only and that 

modular neural networks can emerge as a direct result of the combined effect of STP and STDP, a phenomenal structure

also depicted by neurophysiological and experimental studies. However, by increasing the STP recovery time, the number of 

connections decreased and as a consequence, the modules disappeared. That is actually a way to control the modular or- 

ganisation in neural networks. The structure of these modular networks is complex, unlike those in random or small-world 

networks, resembling more to networks with preferential attachment properties. 

In future, we plan to study neural networks with greater diversity in chemical synapses, addressing other STP and STDP 

rules related to synapses between excitatory-inhibitory and inhibitory-inhibitory neurons [54] . Finally, another interesting 

aspect of our work would be the introduction of time delay in the synaptic transmission to study how it affects the evolution

of the couplings and the modular properties of neural networks. 
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