Boletim Técnico da Escola Politécnica da USP Departamento de Engenharia Eletrônica

ISSN 1413-2206 BT/PEE/9615

A 2.488 Gb/s GaAs 1:4/1:16 Demultiplexer IC with Skip Circuit for Sonet STS-12/48 Systems

Taufik Abrão Fatima S. Correra

São Paulo - 1996

O presente trabalho é um resumo da dissertação de mestrado apresentada por Taufik Abrão, sob orientação da Profa. Dra. Fatima S. Correra: "Circuitos Integrados Digitais de Alta Velocidade em Ga As: Demultipleseador de 16 Canais em 2,5 Gb/S", defendida em 22/05/96, na Escola Politécnica.

A íntegra da dissertação encontra-se à disposição com o autor e na biblioteca de Engenharia de Eletricidade da Escola Politécnica/USP.

Abrão, Taufik

A 2.488 Gb/s GaAs 1:4/1:16 demultiplexer IC with skip circuit for sonet STS-12/48 systems / T. Abrão, F.S. Correra. -- São Paulo : EPUSP, 1996.

p. -- (Boletim Técnico da Escola Politécnica da USP, Departamento de Engenharia Eletrônica, BT/PEE/9615)

1. Circuitos integrados I. Correra, Fatima S II. Universidade de São Paulo. Escola Politécnica. Departamento de Engenharia Eletrônica III. Título IV. Série

ISSN 1413-2206

CDD 621.3815

A 2.488 Gb/s GaAs 1:4/1:16 DEMULTIPLEXER IC WITH SKIP CIRCUIT FOR SONET STS-12/48 SYSTEMS

Taufik Abrão and Fatima S. Correra

Laboratório de Microeletrônica

Escola Politécnica - Universidade de São Paulo

Av. Prof. Luciano Gualberto, tr. 3, no. 158

CEP 05508-900 São Paulo, SP - Brazil

e-mail: tabrao@lme.usp.br fscorrer@lme.usp.br

Abstract

A 1:4/1:16 demultiplexer IC with an integrated skip circuit has been successfully designed and fabricated employing SCFL standard cells based on 1 µm MESFET foundry technology. The circuit was designed to operate up to 2.5 Gb/s with low power dissipation. The demultiplexer employs a tree type architecture based on 1:2 demux blocks using Tristage flip-flops. A new skip circuit without re-timing was proposed and integrated to the demultiplexer for frame alignment purposes. The proposed skip circuit demonstrated its effectiveness and the IC operated either as a 1:4 or a 1:16 demultiplexer up to 2.5 Gb/s with power dissipation of 1.4 W. This IC is applicable for signal processing on SONET STS-12/48 optical communication systems

1. INTRODUCTION

The increase in the communication needs over all the word in the last years stimulated the development of optical communication systems with high data capacity employing ICs operating at Gb/s rates. By the other hand, the emergence of GaAs foundries gave customers the access to well established GaAs process for the prototyping of their ICs. This scenery motivated the CPqD-Telebrás, Brazilian Telecommunication Agency R&D Center, to support a research and development program on optical receivers operating up to 2.5 Gb/s. The demultiplexer circuit presented here was developed at University of São Paulo as a part of this program and received financial and technical support from the CPqD-Telebrás (contract

Telebrás-USP JDPqD 516/93). It represents the first result of Brazilian engineering on the design of Gb/s integrated circuits.

In this paper we present the design considerations and experimental results of a demultiplexer IC with an integrated skip circuit. The demultiplexer works either as a 622 Mb/s 4-bit demux or as a 2.488 Gb/s 16-bit demux, and is intended for use in both SONET STS-12 and STS-48 systems. The circuit was constructed using a 1µm MESFET foundry technology commercially available. The design emphasis was on circuit architecture for high speed operation and low power dissipation.

2. CIRCUIT ARCHITECTURE

The circuit was designed using elements from the QLSITM standard cell library from TriQuint Semiconductor, Inc. This library is based on 1 μm FET SCFL logic gates and is specified to operate up to 2.0 Gb/s. To overcome this bit rate limitation the following procedures were adopted:

- a) a tree type demultiplexer topology was used that minimizes the number of elements operating at clock rate and eases the integration to the skip circuit;
- b) a bypass to the first clock divider circuit was provides, so that the IC could be driven by clock/2 instead of the clock signal at high bit rates;
- c) a new skip circuit without retiming at clock rate was proposed.

As shown in figure 1, the demultiplexer employs a four level tree type circuit topology¹ using 1:2 demux blocks composed by Tristage flip-flops² and D flip-flops. For 1:16 demux operation mode all data outputs D1 to D16 are enabled and the clock/16 signal is present at the output clock port. When the 1:4 demux operation mode is selected, the outputs from the second demultiplexation level are driven to the data outputs D4, D8, D12 and D16 through the selectors S1 to S4. The remaining data outputs are disabled and the clock/4 signal is selected as the output clock through selector S5. A delay was introduced at the input data signal path in order to guarantee it to be sampled at the proper phase by the first 1:2 demux block. This delay was optimized envisaging the circuit operation at 2.5 Gb/s and combines the delay of logical gates and the physical delay due to the layout parasitic capacitance from metal interconnections.

Figure 2 presents the topology of the proposed skip circuit. This circuit was obtained modifying the skip circuit presented at reference [3] and was especially developed for improved performance when the demultiplexer operates at high speed. Retiming steps at clock rate were avoid and all the logic gates on the skip

circuit operate at clock/2 rate, except the clock divider circuit that is driven by the clock signal. This way, the clock divider circuit is the element that limits the high speed operation of the skip circuit. This limitation can become critical when the intrinsic delay time of the standard cells increase due to variation on the circuit fabrication process. To overcome this limitation, a bypass to the clock divider circuit was provided that allows the skip circuit to be driven by clock/2 instead of clock signal at high bit rates, increasing the circuit fabrication yield.

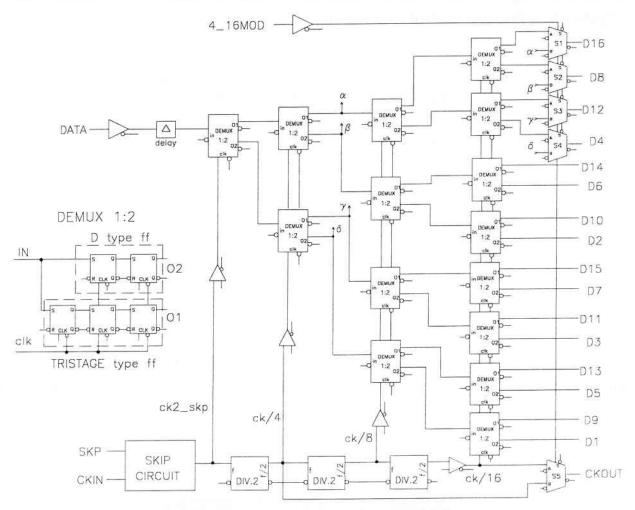


Figure 1. Topology of 1:4/1:16 demultiplexer.

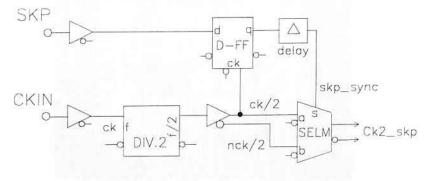


Figure 2. Skip circuit topology.

A detailed time diagram of the proposed skip circuit is shown in figure 3. The skip circuit is sensitive to transitions of the asynchronous control signal (SKP) applied to its input. The skip control signal is synchronized to clock/2 using a D flip-flop and actuates the selector SELM, connecting either clock/2 or its complement to the selector output. The relative phase between clock/2 and the skip control signal at the selector inputs was carefully adjusted during the circuit design. As a result, half cycle of the signal at the selector output (Ck/2_skp) is skipped with minimum spike effects when the skip control is actuated.

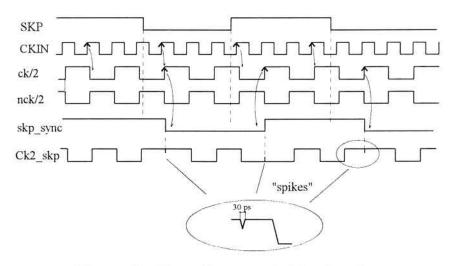


Figure 3. Time diagram of skip circuit.

ECL-compatible I/Os were integrated to all inputs and outputs of the circuit. The circuit was layouted at CPqD-Telebras using manual place and route procedures for minimizing the layout parasitic. The circuit was construted by TriQuint Semiconductor, Inc. and the chip area is (2.5 mm)². Figure 4 presents a microphotograph of the chip.

Figure 4. Microphotograph of the demultiplexer IC with skip circuit.

3. SIMULATION RESULTS

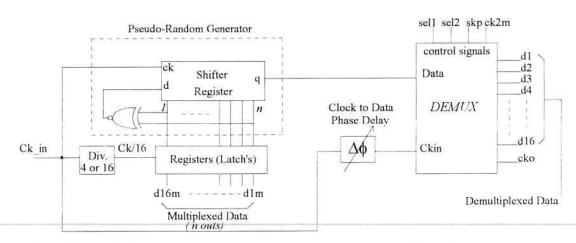
The simulation of high-speed digital circuits is usually done at two different steps. In the first step the circuit is simulated before we have information concerning the circuit layout. However, the wiring capacitance that come from the metallic interconnects can not be neglected at high-speed and has to be estimated from an appropriate formula. This preliminary simulation allow the designer to check the functionality of the circuit architecture and to optimize the overall circuit performance. The influence of the variations of fabrication process and environment temperature on the circuit performance can be evaluated on this simulation stage, to prove the possibility of constructing this circuit with an acceptable fabrication yield.

Once the desired results are obtained from the first simulation stage, circuit layout can start. After a preliminary circuit layout is done, a back-annotation is performed to extract the wiring capacitance and the pos-layout simulation can be performed. On this second simulation step allows the designer to check the circuit performance and to do any needed change on the circuit layout to improve the circuit operation at high-speed.

In both preliminary and pos-layout simulations it is necessary to developed test vectors to represent signals applied to the circuit inputs. The test vector should be as complete as possible in order to simulate all the possibilities of input signal combinations. When we are simulating digital circuits with low and medium complexity, as in the case of demultiplexers, it is possible to generate a long test vector that allows an exhaustive simulation of the circuit. Long test vectors are then generated to test the circuit functionality.

A complete simulation of all the functions of the demultiplexer was done using a long test vector to simulate all the combinations of the following items:

- circuit operation as 1:4 demux and a 1:16 demux;
- the actuation of the skip circuit on both 1:4 demux and a 1:16 demux operation modes;
- relative phase between input data and input clock signals deviating up to $\pm 20\%$ from the nominal value;
- circuit operation when the standard cell parameters range from 0.7 to 1.5 times their nominal values due to temperature and process variation.


In order to create a long test vector for simulation of the demultiplexer, an ideal pseudo-random generator was implemented in the same file as the circuit to be

simulated. The pseudo-random generator topology and its connection to the demultiplexer circuit is shown in figure 5.

The pseudo-random generator employs an n (4 or 16) bit shifter register using D type flip-flops operating at the same input clock rate as the demultiplexer circuit. As shown in figure 5, some or all outputs of the shifter register drive a XNOR gate, and the resulting signal is feedback to the data input of the shift register, generating a pseudo-random sequence on the its outputs 1 to n. The outputs 1 to n of the shifter register are retimed by the signal clock/n through a bench of latch's, generating the vector of signals [d1m, d2md16m]. This same signals are present at the q output of the shifter register but multiplexed on time, consisting the input data driving the demultiplexer under simulation. The proper operation of the demultiplexer can be checked by means of a simple comparison between the demultiplexer output vector [d1, d2, d3....d16)] and the signal vector [d1m, d2m, ...d16m].

The phase shifters $\Delta\Phi$ inserted between the pseudo-random generator and the demultiplexer allows to adjust the relative phase between data and clock inputs of the circuit under simulation.

The simulation file containing the pseudo-random generator and the demultiplexer was used to perform a pos-layout simulation of the demultiplexer and skip circuits considering a relative phase of $180^{\circ} \pm 20\%$ between the input data and clock signals. The standard cell parameters were varied from 70% to 150% their nominal values to simulate the circuit behavior under process and temperature variation. The simulation results demonstrated the required circuit performance over all the simulated range. However, at 2.5 Gb/s an external delay should be added to the input data path when the standard cell parameters deviate more than -8%/+23% from nominal values.

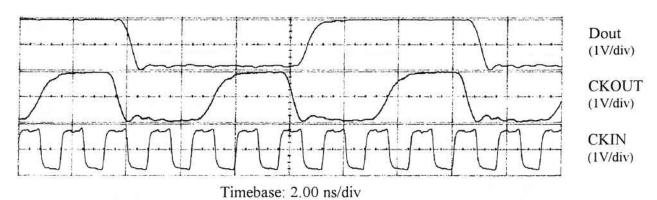


Figure 5. Demulttiplexer simulation arrangement with ideal pseudo-random generator.

4. EXPERIMENTAL RESULTS

The demultiplexer IC was mounted in a multilayer ceramic package and measured in a test fixture with controlled impedance 50 Ohm signal lines. The input signal lines were terminated to -2.0 V through 50 Ohm resistors placed close to the package. The IC was biased with -5.2 V supply voltage, presenting 1.4 W of power dissipation and signal output levels compatible to ECL standards.

The functionality of the demultiplexer was demonstrated by measuring the circuit performance with low speed signals (10 Mb/s clock) and high speed signals (622 Mb/s and 2.488 Gb/s clock) at room temperature. The circuit was driven by input data and clock signals with 180° of relative phase and ECL logic levels. Figure 6 shows typical input clock, output clock and output data wave forms of the IC operating as a 1:4 demultiplexer at 622 Mb/s clock, when a 1/8 signal pattern is applied to the input data port. The measured rise and fall times for the output data signal shown in the figure were 630 ps and 430 ps, respectively. The relative phase between the output clock and the output data signals was 185°.

Figure 6. Input clock, output clock and output data wave forms for 1:4 demux at 622 Mb/s clock rate.

The performance of the IC operating as a 1:16 demultiplexer at 2.488 Gb/s clock rate is presented in figures 7 and 8. Figure 7 shows the input and output clock signals wave forms, demonstrating the right operation of the clock divider circuit up to 2.488 Gb/s.

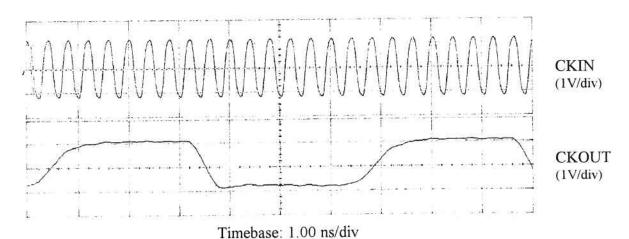


Figure 7. Input and output clock wave forms for the 1:16 demultiplexer at 2.488 Gb/s clock rate.

Figure 8 shows the good alignment between the output data and output clock signals when a pseudo random signal is applied to the demultiplexer data input.

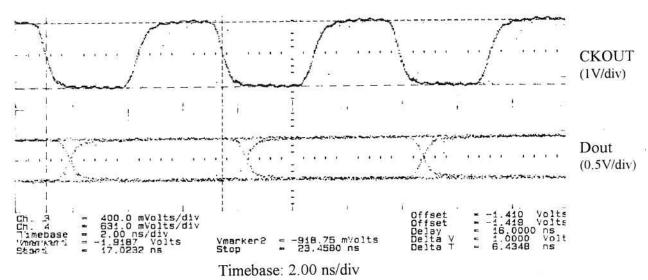


Figure 8. Output clock and output data wave forms for the 1:16 demultiplexer at 2.488 Gb/s clock rate.

The effectiveness of the skip circuit proposed in this paper was experimentally verified for the IC operating at 1:4 and 1:16 demultiplexer modes up to 2.488 Gb/s.

The demultiplexer circuit was also tested bypassing the first clock divider and driven the circuit with clock/2 instead of clock signal, and demonstrated the required performance. This operation mode may be used in the case the variation of the circuit technology made the first clock divider to fail at 2.488 Gb/s.

Table I presents the main characteristics of demultiplexer ICs reported on the literature, employing GaAs MESFETs with gate length ranging from 0.5 to 1 μm .

The experimental results obtained for the demultiplexer IC presented in this paper are in good agreement with published data. The ratio between the operation rate and the power consumption of the demultiplexer could be increased employing a full-custom design approach in order to use both DCFL and SCFL logic gates on the implementation of the circuit. Considering a 1 µm GaAs MESFET technology, the use of SCFL logic gates operating at clock and clock/2 and DCFL logic gates operating at clock/4, clock/8 and clock/16 would result on the decrease of the power consumption without degrading the high-speed performance of the circuit.

Table I - Characteristics of demultiplexer circuits employing GaAs MESFETs

Ref.	Circuit function	Lg (μm)	Logic family	Clock rate (Gb/s)	Power consumption (W)
4	demux 1:8/1:16	na	BFL	2.0	2.0
5	demux 1:16	0.6	SCFL/DCFL	2.5	1.22
this paper	demux 1:4/1:16 & skip circuit	1.0	SCFL	2.5	1.4
6	demux 1:16	0.7	DCFL	3.2	1.3
7	demux 1:4	0.7	SCFL	4.0	3.7
8	demux 1:16	0.5	LSCFL	4.6	1.6
9	demux 1:8	0.5	DCFL	8.0	1.9
10	demux 1:8 & skip circuit	0.5	SCFL	10.4	3.8
11	demux 1:8	0.5	SCFL	20.0	7.5

5. CONCLUSIONS

An experience on the design of high-speed digital GaAs ICs was reported, emphasizing the issues on circuit architecture, layout, fabrication and characterization at Gb/s rates.

A 2.488 Gb/s demultiplexer with low power dissipation was designed to operate either as a 4-bit demux or a 16-bit demux. A skip circuit employing a new topology was integrated to the demultiplexer.

The circuit was constructed using 1 μm MESFET SCFL standard cells from a commercially available foundry service. The demultiplexer operated up to 2.488 Gb/s with 1.4 W of power dissipation. The experimental results demonstrated the effectiveness of the proposed skip circuit.

ACKNOWLEDGMENTS

The authors would like to thank Katia H. G. Ferreira, Marcio A. Silva, Serafim S. Ferreira and Zara B. M. Perdigueiro from CPqD-Telebras who did the circuit layout and Claudia P. Schimidt from CPqD-Telebras for her contribution on the characterization of the IC at high speed.

REFERENCES

- R. B. Nubling et al. "High-Speed 8:1 Multiplexer and 1:8 Demultiplexer Implemented with AlGaAs/GaAs HBT's," IEEE Journal of Solid State Circuits, vol. 26, no. 10, Oct. 91, pp. 1354-1361.
- M. Ida, N. Kato and T. Takada "A 4-Gbits/s GaAs 16:1 Multiplexer/ 1:16 Demultiplexer LSI Chip," IEEE Journal of Solid State Circuits, vol. 24, No. 4, Aug. 89, pp. 928-932.
- 3. M. Bagheri *et al.* "11.6-GHz 1:4 Regenerating Demultiplexer with Bit-Rotation Control and 6.1-Ghz Auto-Latching Phase-Aligner IC's Using AlGaAs/GaAs HBT Technology," *IEEE Journal of Solid State Circuits*, vol. 27, no. 12, Dec. 92, pp. 1787-1793.
- 4. B.Cheney, et al, "Design and Test of 2-Gb/s GaAs 16/8-bits Mux/Demux Pair", IEEE J. of Solid-State Circuits, vol.24,no.2, Apr. 89, pp. 463 466.
- Product Selection Guide: ASICs, Telecomunications and Data Communications VITESSE Semiconductor Corporation, Aug. 1995.
- N. Higashisaka, M.Shimada, A.Ohta, K. Hosogi, Y.Tobita Y. Mitsui, "GaAs DCFL 2.5 Gbps 16-bit Multiplexer/Demultiplexer LSI's", *IEEE J. of Solid-State Circuits*, vol.29, no.7, Jul. 94, pp 808-14.
- 7. P. S. Lassen, High-Speed GaAs Digital Integrated Circuits for Optical Communication Systems, *PhD thesis*, Electromagnetics Institute, Technical University of Denmark, May 93.
- 8. M. Ida, N. Kato and T. Takada "A 4-Gbits/s GaAs 16:1 Multiplexer/ 1:16 Demultiplexer LSI Chip," *IEEE Journal of Solid State Circuits*, vol. 24, No. 4, Aug. 89, pp. 928-932.
- K. Tanaka et al, "8-Gb/s 8:1 Multiplexer and Demultiplexer IC's Using GaAs DCFL Circuits", IEEE J. of Solid-State Circits, vol.27, no.10, Oct. 92, pp 1359 - 1363.

 \mathcal{X}^{\dagger}

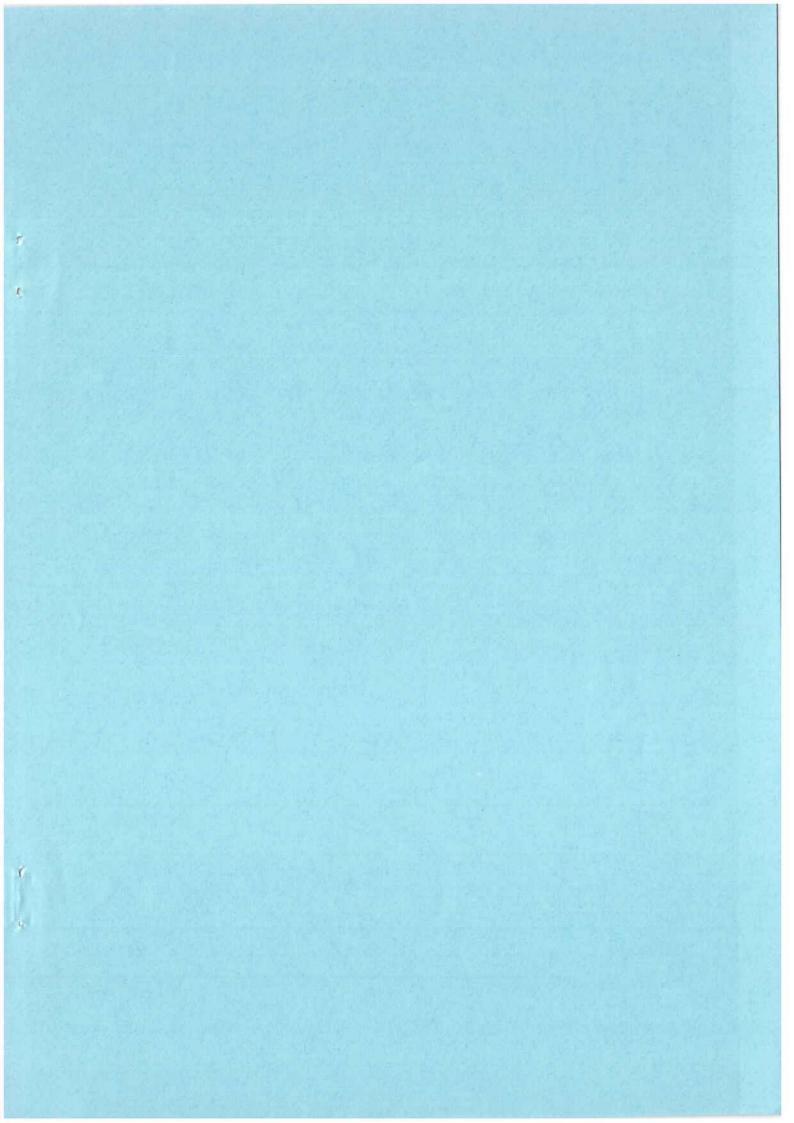
- 10. K. Ishida, et al, "A 10-GHz 8-b Multiplexer / Demultiplexer Chip Set for SONET STS-192 System", *IEEE J. of Solid-State Circuits*, vol.26, no.12, Dec. 91, pp. 1936 1943.
- T. Seshita, et al, "A 20 GHz 8 bit Multiplexer IC Implemented with 0.5um WNx/W-Gate GaAs MESFET's", IEEE J. of Solid-State Circuits, vol.29, no.12, Dec. 94, pp 1583-87.

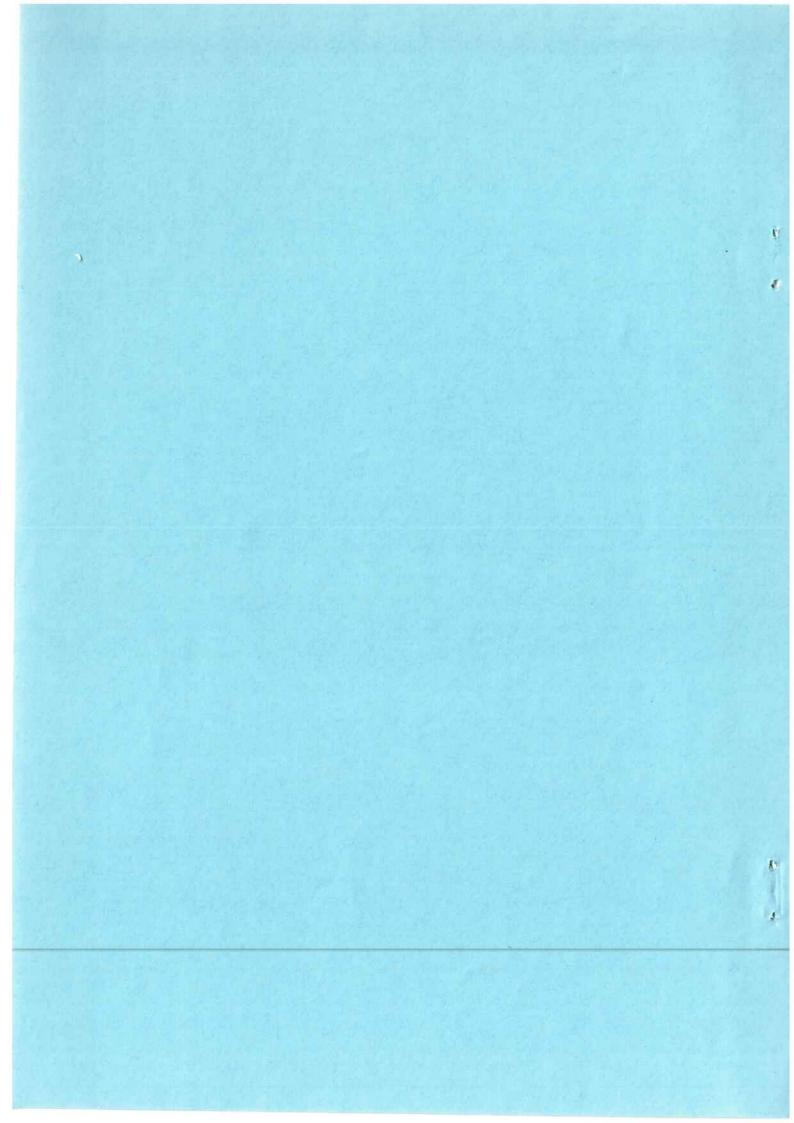
F. CABRAL JR.

```
BT/PEE/93-01 - Oscilador a HEMT - 10 GHz - FÁTIMA S. CORRERA, EDMAR CAMARGO
BT/PEE/93-02 - Representação Senoidal da Voz através dos Polos do Filtro Preditor - MARCELO B. JOAQUIM, NORMONDS
ALENS
BT/PEE/93-03 - Blindagens por Grades Condutoras: Cálculo do Campo Próximo - LUIZ CEZAR TRINTINALIA, ANTONIO
ROBERTO PANICALI
BT/PEE/93-04 - Sistema de Otimização e Controle de Produção em Minas de Pequeno e Médio Porte - TSEN CHUNG KANG,
VITOR MARQUES PINTO LEITE
BT/PEE/94-01 - Determinação das Frases de Aplicação Forense para o projeto NESPER e Tese de Mestrado IME/94, com
Base em Estudos Fonéticos - MARCONI DOS REIS BEZERRA, EUVALDO F. CABRAL JUNIOR
BT/PEE/94-02 - Implementação e Teste de uma Rede Neural Artificial do Tlpo KSON (Kohonen Self-Organizing Network) com
Entradas Bidimensionais - MARCELO YASSUNORI MATUDA, EUVALDO F. CABRAL JR.
BT/PEE/94-03 - Transformada de Walsh e Haar Aplicadas no Processamento de Voz - ALEXANDRE AUGUSTO OTTATI
NOGUEIRA, THIAGO ANTONIO GRANDI DE TOLOSA, EUVALDO F. CABRAL JÚNIOR
BT/PEE/94-04 - Aplicação de Redes Neurais ao Problema de Reconhecimento de Padrões por um Sonar Ativo - ALEXANDRE
RIBEIRO MORRONE, CRISTINA COELHO DE ABREU, EDUARDO KOITI KIUKAWA, EUVALDO F. CABRAL JR.
BT/PEE/94-05 - Tudo que se Precisa Saber sobre a Prática da FFT - Transformada Rápida de Fourier (Inclui Software) -
ROGÉRIO CASAGRANDE, EUVALDO F. CABRAL JR.
BT/PEE/94-06 - A Survey on Speech Enhancement Techniques of Interest to Speaker Recognition - CELSO S. KURASHIMA,
EUVALDO F. CABRAL JR.
BT/PEE/94-07 - Identificação de Pulsos Decádicos em Linhas Telefônicas - ANTONIO P. TIMOSZCZUK, MÁRCIO A. MATHIAS,
EUVALDO F. CABRAL JR.
BT/PEE/94-08 - Implementação e Teste de Filtros do Tipo Adaptativo e "Notch" para a Remoção de Interferência de 60 Hz em
Sinais de Eletrocardiograma - FLÁVIO ANTÔNIO MENEGOLA, JOSÉ AUGUSTO DE MATTOS, JOSÉ GOMES G. FILHO,
SIDNEY SILVA VIANA, EUVALDO F. CABRAL JR.
BT/PEE/94-09 - Compressão de Sinais de Voz utilizando Transformadas de Karhunen-Loève, Fourier e Hadamard - IVAN LUIS
VIEIRA, LUIZ FERNANDO STEIN WETZEL, EUVALDO F. CABRAL JR.
BT/PEE/94-10 - "Ray Tracing" Paralelo - EDUARDO TOLEDO SANTOS, JOÃO ANTONIO ZUFFO
BT/PEE/94-11 - Implementação de uma Ferramenta Posicionador para "Gate-Arrays" Tipo Mar de Portas - JORGE W.
PERLAZA PRADO, WILHELMUS A. M. VAN NOIJE
BT/PEE/94-12 - Tudo que se Precisa Saber Sobre a Teoria da FFT - Transformada Rápida de Fourier - FÁBIO LUÍS ROMÃO, REINALDO SILVEIRA, ROGÉRIO CASAGRANDE, EUVALDO CABRAL JR.
BT/PEE/94-13 - Análise do Ruído Sonoro em uma Sala de Aquisição de Amostras de Som com Microcomputador - FÁBIO
LUÍS ROMÃO, REINALDO SILVEIRA, EUVALDO CABRAL JR.
BT/PEE/94-14 - Cor: Aspectos Relevantes para Visualização de Dados - SÍLVIA DELGADO OLABARRIAGA
BT/PEE/94-15 - Projeto de Filtros Digitais IIR com Fase Aproximadamente Linear Utilizando Redução de Ordem - IVAN F. J.
RODRIGUES, MAX GERKEN
BT/PEE/94-16 - GERAFILTRO: Sistema para Projeto Automático de Filtros Digitais "IIR" (da especificação em alto nível ao
leiaute do "ASIC") - RICARDO PIRES, JOSÉ VIEIRA DO VALE NETO
BT/PEE/94-17 - Redes Neurais Artificiais Aplicadas à Identificação de Pulsos Decádicos em Linhas Telefônicas - ANTONIO P.
TIMOSZCZUK, EUVALDO F. CABRAL JR.
BT/PEE/95-01 - Estudo Comparativo de Métodos de Cálculo da Frequência Fundamental - MARCOS COSTA HUNOLD,
EUVALDO F. CABRAL JR.
BT/PEE/95-02 - Combinando Técnicas de Redes Neurais Artificiais e Informações de Excitação no Reconhecimento Automático
do Locutor - ANDRÉ BORDIN MAGNI, EUVALDO F. CABRAL JR.
BT/PEE/95-03 - Utilização de Redes Neurais Artificiais para Detecção e Identificação de Falhas em Circuitos - MÁRCIO YUKIO
TERUYA, ROBERTO AMILTON BERNARDES SÓRIA, EUVALDO CABRAL JR.
BT/PEE/95-04 - Uso de Redes Neurais Artificiais no Reconhecimento de Locutores no Domínio Temporal - BENEDITO JOSÉ
BARRETO FONSECA JÚNIOR, EUVALDO CABRAL JÚNIOR
BT/PEE/95-05 - Projeto de Filtros Passivos e Ativos em Técnicas de Circuitos Integrados de Microondas - DAVID VIVEIROS
JUNIOR, DENISE CONSONNI
BT/PEE/95-06 - Uma Análise de Clustering para as Frases de Projeto NESPER - RONALDO OLIVEIRA MESSINA, EUVALDO
F. CABRAL JR.
BT/PEE/9507 - Controle com Estrutura Variável e Modos Deslizantes - Um Estudo para Aplicação em Controle Carga-frequência da Geração - JOSE PAULO F. GARCIA, JOCELYN FREITAS BENNATON
BT/PEE/9508 - Recuperação das Margens de Ganho e de Fase para Sistemas de Fase Não Mínima por Realimentação da
Saída - MARCO H. TERRA, VITOR M. P. LEITE
BT/PEE/9509 - Sistema de Inspeção Óptica de Dispositivos Bi-Dimensionais - CASIMIRO DE ALMEIDA BARRETO, PEDRO
LUÍS PRÓSPERO SANCHEZ
T/PEE/9510 - Sistema de Partículas Uma Poderosa Técnica de Animação em Computação Gráfica - RENATO CURTO
RODRIGUES, JOÃO ANTÔNIO ZUFFO
BT/PEE/9511- Efeito de Ruídos em Sinais de Voz Visualizados em Trajetórias Neurais de Kohonen - CELSO S. KURASHIMA,
EUVALDO F. CABRAL JR.
BT/PEE/9601 - "Um Reconhecedor de Sinais Sonoros Utilizando LVQ" - ALEXANDRE TORNICE, EUVALDO CABRAL JR.
BT/PEE/9602 - "Coleção Artificial Neural Networks: Uma Visão Geral dos Sistemas Neurais Artificais de Stephen Grossberg" -
CHIU HSIUNG HUANG
BT/PEE/9603 - "Reactively-Sputtered TiN Formation Using a RF Magnetron System"- SÉRGIO PAULO AMARAL OSÓRIO,
LUIZ SÉRGIO ZASNICOFF
BT/PEE/9604 - Aspectos em Tradução de Linguagens Naturais Através de Redes Neurais Artificiais - CARLOS EDUARDO
DANTAS DE MENEZES, EUVALDÓ F. CABRAL JR.
BT/PEE/9605 - Implementação de Blocos Passa-Tudo Utilizando Realimentação de Erro - SÉRGIO JOSÉ CARNEIRO LEÃO,
MAX GERKEN
BT/PEE/9606 - Coleção SATTI 97044 Redes Neurais Artificiais: A Rede Neural de Sakoe - ANDRÉ BORDIN MAGNI, EUVALDO
```

BT/PEE/9607 - Coleção SATIN 9704# Redes Neurais Artificiais: A Rede Neural de Steinbuch - ROBERTO AMILTON BERNARDES SÓRIA, EUVALDO F. CABRAL JR.

BT/PEE/9608 - Desenvolvimento de uma Estrutura de Duplo Nível de Metal para a Confecção de Interconexões em Circuitos Integrados - JOSÉ AUGUSTO DE ALENCAR PEREIRA, LUIZ CARLOS MOLINA TORRES


BT/PEE/9609 - Determinação de Parâmetros de Processo para Fotomáscara "Balzers" Utilizando Gerador de Padrões - JORGE SEKI, MEGUMI SAITO


BT/PEE/9610 - Um Ambiente para Desenvolvimento de Sistemas Distribuídos - PEDRO F. ROSA, JOÃO A. ZUFFO BT/PEE/9611 - Interpretações Teóricas do Funcionamento Cerebelar: Uma Revisão - MARCUS FRAGA VIEIRA, ANDRÉ FÁBIO KOHN

BT/PEE/9612 - Marcapasso Cardíaco Temporário Microcontrolado de Demanda e Baixo Consumo - FLAVIO ANTONIO MENEGOLA, JOSÉ CARLOS TEIXEIRA DE BARROS MORAES

BT/PEE/9613 - Um Sistema de Planejamento de Ação Baseado em Casos para uma Célula Flexível de Manufatura - RICARDO LUÍS DE FREITAS, MÁRCIO RILLO

BT/PEE/9614 - Aplicações do Boundary-Scan para o Teste de Módulos Multichip - ROBERTO C. COSSI JR., JOSÉ ROBERTO DE A. AMAZONAS

