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A B S T R A C T

Geophysical methods support soil security by providing non-invasive tools to assess soil properties, monitor 
degradation, and guide sustainable management strategies. However, studies focusing the spatial prediction of 
geophysical data remain limited. In this research, we aimed to model and predict the spatial distribution of soil 
geophysical properties using parent material and terrain attributes with machine learning algorithms. In addi
tion, we tested the nested leave-one-out cross validation (nested-LOOCV) method to deal with datasets with 
limited size. We performed a geophysical survey using three types of sensors (radiometric, magnetic and electric 
methods). The random forest (RF) and support vector machine (SVM) algorithms presented the best results, with 
RF showing higher performance for K40 and magnetic susceptibility, and SVM had higher performance for eU, 
eTh and apparent electrical conductivity. Parent materials and digital elevation model were the most significant 
variables for the modelling. The nested-LOOCV method proved to be adequate for small soil dataset. Machine 
learning techniques are potential tools for modelling soil geophysical variables. The combination with compu
tational techniques shows the great relevance of geophysical measurements for the estimation of soil properties 
related to fertility and soil genesis.

1. Introduction

Geophysical methods contribute to soil security by providing non- 
invasive and efficient tools for assessing and monitoring soil proper
ties at various scales. Techniques like electromagnetic induction, 
gamma ray spectrometry and magnetic susceptibility can measure and 
map soil physical and chemical properties, including moisture content, 
salinity, and organic carbon. These methods enable the identification of 
soil degradation, compaction, erosion risks, and nutrient distribution, 
supporting informed soil management and conservation strategies. By 
offering a deeper understanding of soil variability, geophysical ap
proaches enhance soil health monitoring, promote sustainable land use, 

and ultimately contribute to maintaining soil’s capacity to deliver 
essential ecosystem services (Schuler et al., 2011; Beamish, 2013; 
McFadden and Scott, 2013; Sarmast et al., 2017; Reinhardt and Herr
mann, 2019).

The gamma-ray spectrometry measures the natural gamma radiation 
emissions from radionuclides such as potassium-40 (K40); the daughter 
radionuclides of uranium-238 (U238) and thorium-232 (Th232) in soils, 
sediments, and rocks (Minty, 1988). This technique provides informa
tion on pedogenesis (Reinhardt and Herrmann, 2019), soil texture, 
mineralogy, pH and organic carbon (Wong and Harper, 1999; Taylor 
et al., 2002; Wilford and Minty, 2006; Barbuena et al., 2013; Priori et al., 
2016).
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The intensity to which soil can be magnetised comprises soil mag
netic susceptibility (κ) (Rochette et al., 1992). This property is related to 
soil mineralogy, parent material and the formation of magnetite and 
maghemite (ferrimagnetic minerals) (Ayoubi et al., 2018) and, less 
commonly, ferrihydrite and hematite (Valaee et al., 2016). Soil κ has 
been used in geological studies (Shenggao, 2000; Correia et al., 2010), 
soil granulometry and organic carbon determination (Camargo et al., 
2014; Jiménez et al., 2017), soil survey (Grimley et al., 2004) and the 
study of soil-forming processes (Viana et al., 2006; Sarmast et al., 2017; 
Mello et al., 2020).

The ability of soil to conduct an electrical current comprises the 
apparent electrical conductivity (ECa). This property can be applied in 
pedology, indicating the existence/quantity of solutes in a soil solution 
(Richards, 1954). As a geophysical method, the ECa is able to identify 
soil’s properties and their spatial variability, which can affect land use 
and management (Corwin et al., 2003). ECa is a function of soil salinity, 
clay mineralogy, clay content, cation exchange capacity, porosity, 
moisture and temperature (Mcneill, 1992; Rhoades et al., 1999; Bai 
et al., 2013; Cardoso and Dias, 2017).

Machine learning techniques have been applied in digital soil map
ping to spatialize the above-mentioned soil geophysical attributes, be
sides modelling the variability of other attributes through the 
application of geophysical data. Among the main machine learning al
gorithms used, we can cite the random forests (RF) (Viscarra Rossel 
et al., 2014; Sousa et al., 2020; Siqueira et al., 2024), support vector 
machine (SVM) (Heggemann et al., 2017; Li et al., 2017; Zare et al., 
2020), K - nearest neighbors (knn), artificial neural networks (ANN) 
(Dragovic and Onjia, 2007) and the Cubist tree model (Wilford and 
Thomas, 2012; Azizi et al., 2023). However, spatial predictions of soil 
properties based on small datasets of geophysical data (gamma-ray 
spectrometry, κ and ECa) are still underdeveloped.

Mapping of geophysical properties field sensors is usually conducted 
either remotely (via aerial platforms) or proximally (on-the-ground) 
(Wilford, 2012; Moonjun et al., 2017). Proximal geophysical surveys 
using ground vehicles can collect high-density data, but they require 
manual surveying, and accessing sites with complex terrain can be 
challenging (Parshin et al., 2018). In this situation, machine learning 
algorithms can be a useful tool for making the spatial prediction of 
geophysical attributes based on fewer samples, from association with 
environmental and topographic covariates that express the relationship 
of these attributes with the landscape.

Traditional methods of machine learning require a reasonable 
number of samples for calibrating (or training) the models and to obtain 
optimal spatial prediction of soil attributes. At the same time, one of the 
greater benefits of using digital soil mapping with machine learning is 
the possibility of obtaining predictions with known accuracy (McBrat
ney et al., 2003). For machine learning tasks involving relatively large 
datasets, approximately 70–80 percent of the data is used for training, 
and 20–30 percent for testing (Moquedace et al., 2024; Siqueira et al., 
2024).

However, in soil science, the number of samples available may be too 
small to create reasonable subsets of training and test, due to the diffi
culties of sampling. These difficulties are even greater for data obtained 
from geophysical techniques. In these cases, using small datasets- 
adapted evaluation methods has posed a great alternative, as the case 
of the nested leave one out cross-validation (nested-LOOCV). The 
nested-LOOCV method is recommended for small soil datasets (Mello 
et al., 2022a), for which other testing methods, such as holdout vali
dation and cross-validation, would not be viable due to their low 
robustness with reduced number of samples (Ferreira et al., 2021; Paes 
et al., 2022).

Our previous study (Mello et al., 2022) used geophysical sensors and 
machine learning algorithms to model soil attributes, demonstrating 
that the integration of gamma-ray spectrometry and magnetic suscep
tibility data, combined with terrain and parent material information, 
can effectively predict soil properties. In this study, we explore ways to 

interpolate geophysical data using limited number of geophysical 
measurements.

This study had the following objectives: i) predict the spatial distri
bution of soil geophysical attributes (ECa, κ, eU, eTh and K (gamma-ray 
emission from K40); ii) test the nested-LOOCV method and five machine 
learning algorithms (RF, Cubist, SVM, generalised linear models [LM] 
and adaptive multivariate regression) in a small dataset of soil and 
geophysical attributes; and iii) select the best algorithm for spatial 
prediction of each geophysical attribute, and to relate the attributes to 
pedogenesis.

2. Materials and methods

2.1. Study area and soil sampling

The study area is a 184-hectare farm recently cultivated with sug
arcane, located in Southeast Brazil, between 23◦00’31.37" and 
22◦58’53.97" S latitude and 53◦39’47.81" and 53◦37’25.65" W longi
tude (Fig. 1). It was described in Mello et al. (2022).The climate is 
subtropical mesothermal (Cwa) according to the Köppen classification 
system (Alvares et al., 2013). The mean temperature varies from 18◦C in 
July (winter) to 22◦C in February (summer), while the mean annual 
precipitation lies between 1100 and 1700 mm (Nanni and Demattê, 
2006, Bazaglia Filho et al., 2013a).

In terms of geomorphology, the area is in the Paulista Peripheric 
Depression and is mainly composed of sedimentary rocks. The litho
logical composition of the area is: siltstone, metamorphosed siltstone, 
diabase and fluvial sediments (Bazaglia Filho et al., 2013a) (Fig. 2a).

The study area is composed of Cambisols, Phaeozems, Nitisols, 
Acrisols and Lixisols (Fig. 2b), reflecting the heterogeneity of the parent 
materials and relief. Pedologists have previously conducted soil surveys 
in the area (Nanni and Demattê, 2006; Bazaglia Filho et al., 2013b).

A total of 75 locations distributed throughout the study area was 
chosen. At each site, geophysical readings were performed on the soil 
surface (0–20 cm). Considering the complexity of the terrain and dense 
sugarcane cultivation, the readings with the geophysical sensors were 
performed in the most accessible parts, while simultaneously ensuring 
the representativeness of the area.

2.2. Geophysical data collection

2.2.1. Magnetic method: soil magnetic susceptibility (κ)
Soil magnetic susceptibility (κ) values were collected via the 

geophysical sensor Terraplus KT10 model (Fig. 1A). This sensor mea
sures soil magnetic susceptibility values up to 2 cm below the soil sur
face (precision of 10− 6 SI units in m3 kg− 1). For κ readings, the sensor 
was first calibrated following the recommendations of the manufacturer 
(Sales and C., 2021). The soil κ readings were performed with the sensor 
in scanner mode. Due to small variations in sensor readings (noise ef
fect), three readings were performed around each collection point, and 
the mean values of these readings were used for analysis.

2.2.2. Radiometric method: soil radionuclides via gamma-ray spectrometry
Potassium, uranium, and thorium and radionuclides values (K40, eU 

and eTh) were obtained using the near-gamma-ray spectrometer (GM 
-Radiation Solution RS 230 (Radiation Solution INC, Ontario, Canada) 
(Fig. 1B). The sensor measures radionuclides with an average depth 
about 30 cm below the soil surface. For radionuclides readings, the 
sensor was automatically stabilized. Then, the readings were taken with 
the sensor in direct contact with the soil surface for 2 minutes, in the 
“essay” mode (which provides better accuracy) (Solutions, 2009). Po
tassium (K40) values were reported in % while uranium (eU) and 
thorium (eTh) values were given in mg kg− 1 due to the higher and lower 
proportion of these elements in the environment, respectively.

D.C. Mello et al.                                                                                                                                                                                                                                 Soil Advances 3 (2025) 100024 

2 



2.2.3. Electric method: soil apparent electrical conductivity
The readings of the soil apparent electrical conductivity (ECa) were 

undertaken via the geophysical sensor Geonics EM38 (Geonics Ltd., 
Mississauga, Ontario, Canada) (McNeill, 1986) (Fig. 1C). The sensor was 
previously calibrated following the recommendations of the manufac
turer’s instruction manual (Heil and Schmidhalter, 2019). The EM38 
sensor was positioned vertically in contact with the soil for measure
ment. This reading is an integrated soil ECa values down to a depth of 
1.5 m in mSm− 1. The ECa readings were taken during the dry period 
(winter) and during the same period of the day to ensure that humidity 
was a constant variable and metal objects were removed from the sen
sor’s proximity to avoid interference.

2.3. Digital elevation model and covariates

A digital elevation model (DEM) was generated using a topographic 
map with 5-meter contour intervals at a 1:10,000 scale, sourced from the 
Campinas Geographic Institute. The contour lines were interpolated into 
a DEM using the Topo to Raster function in ESRI ArcGIS 10.4, and the 
final DEM was exported at a spatial resolution of 30 m. Based on the 
DEM, 32 additional terrain attributes were calculated (Table 1) using the 
R software version 4.1.0 (RC Team, 2021), through the “Rsaga” 
(Brenning, 2008) and “raster” (Hijmans and Van Etten, 2016) packages.

We also utilized the lithology map layer, created by an expert 
pedologist at a 1:10,000 scale (Nanni and Dematte, 2000), as a covariate 
representing the parent material. as a covariate representative of the 
parent material. Considering the necessity of integrating a categorical 
variable into the modelling process, the lithology variable was trans
formed into four new dummy covariates, each for a class of the original 
layer (siltstone, metamorphosed siltstone, diabase and fluvial 
sediments).

2.4. Model processing

The detailed description of the methodological framework is pre
sented in Fig. 3 and comprises four main steps (1) selection of envi
ronmental covariates; (2) training process with different algorithms; (3) 
evaluation of model’s performance in the testing process and (4) spatial 
prediction and uncertainty analysis using the best fitted model.

2.4.1. Selection of covariates
Several potential covariates can be used to predict the spatial dis

tribution of soil and geophysical attributes. However, using many 
covariates, requires computational effort and generates complex final 
models that are difficult to explain. To overcome this problem, we 
applied three steps: (1) removal of variables with low variance (near 
zero), (2) removal of covariates that were highly correlated and (3) se
lection of important covariates for prediction.

Step 1 removed covariates that have variance near zero applying the 
nearZeroVar function, using the caret package (Kuhn et al., 2020). Then, 
the remaining covariates were subjected to the phase 2.

Step 2 comprised removing covariates with high correlation. This 
phase was performed because highly correlated covariates provide 
redundant information and contribute little to the modelling process. In 
this phase, Pearson’s correlation coefficients were calculated for all 
covariates, separating those with a > 95 % linear correlation value. This 
processes was calculated using the “find correlation” with caret package 
(Kuhn et al., 2020). Then, training and testing samples partition was 
done, using the nested-LOOCV method, which will be described later. 
Only training samples were used in the next step.

Step 3 involved removing covariates that did not contribute signifi
cantly to the modeling process using recursive feature elimination (RFE) 
from the caret package (Kuhn et al., 2020). RFE is a backward selection 
method that iteratively reduces the number of predictors (Kohavi and 
John, 1997). It ranks covariates by their importance, groups them into 
subsets, and evaluates these subsets using simpler models based on their 

Fig. 1. Study area, collected points and geophysical sensors. A - Susceptibilimeter (KT-10 Terraplus); B - Gamma-ray spectrometer (Radiation Solution - RS 230); C - 
Geonics Ground Conductivity Meter (EM 38).
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performance. The subset with the best performance is then selected for 
final model training, representing the most influential covariates for 
predicting the target phenomenon. In this study, the remaining cova
riates after correlation removal were grouped into sixteen subsets with 
varying numbers of covariates (ranging from 5 to 25), including the full 
set, and each subset was tested iteratively.

RFE considers the base algorithm (e.g., RF, SVM, lm, etc.) (Kuhn and 
Johnson, 2013), which means that each algorithm had a specific RFE 
model. For the RF algorithm, rfFuncs from the caret package was used. 
For other algorithms, the caretFuncs support function were used (Kuhn, 
2012).

2.4.2. Nested leave one out cross-validation (“nested-LOOCV”)
The covariates selected by the RFE were associated with soil 

geophysical data and were used in the training and test processes 

(Fig. 3). Considering the small number of samples (n = 75), we applied 
the nested-LOOCV method, which is indicated for modelling databases 
with a limited number of samples (small number ≤ 100 samples).

The methods used for separating the training and test data as well as 
the Nested-LOOCV will be detailed next: 

✓ Firstly, our total dataset contains 75 samples. For the modelling 
process, we divided the dataset into two subsets: subset1 (training) 
and subset2 (test).

✓ subset 1 contains 74 samples, (all 75 samples minus one (75− 1)).
✓ subset 2 contains only 1 sample, corresponding to the sample that was 

removed from subset 1.
✓ subset 1 and 2 were further separated using the nested-LOOCV 

method (Honeyborne et al., 2016; Mello et al., 2022a; Paes et al., 
2022; Rytky et al., 2020).

Fig. 2. a) Geological compartments of landscape. b) Soil classes: CX: Haplic Cambisols, CY: Fluvic Cambisols, MT: Luvic Phaozem, NV: Rhodic Nitisol: PA: Xanthic 
Acrisol, PVA: Rhodic Lixisol. The geological and Soil classes maps were adapted from Bazaglia Filho et. al. (2012). c) Digital Elevation Model: d) Slope.
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✓ The nested-LOOCV is made up of an inner and outer loop (Fig. 4).

The inner loop is performed with the samples from subset 1. In this 
process the samples are re-divided into training (subset A) and training 
validation (subset B) samples. Subset A is resampled with the removal of 
a sample (74− 1), consisting of 73 samples. Subset B is composed of the 
sample that was removed, consisting of 1 sample. Subset A is used for a 

“internal training” and subset B for a “internal testing”. The inner loop is 
run 74 times (corresponding to the number of samples in subset 1), and at 
each round the removed sample (subset B) is changed subsequently. The 
entire process consists of the LOOCV method (Kuhn and Johnson, 2013). 
At the end of this process, the performance of the training is calculated 
considering the prediction over the subset B at each round.

The outer loop is performed with the samples from subset 2 (test, with 
1 sample), which do not participate in the training process. As the outer 
loop is run 75 times (one for each sample of the total dataset), the sample 
of subset 2 is swapped 75 times. In this process, the sample that had been 
removed returns to subset 1 and another sample is relocated to subset 2, 
which makes the subsets being alternated every round. At the end of 75 
rounds of the outer loop, it results in 75 pairs of predicted and observed 
values, which are used to calculate the test parameters of model per
formance. This full round of loops is the principle of Nested-LOOCV.

2.4.3. Machine learning algorithms, training and covariates importance
In this study, we tested five algorithms: random forests (RF), Cubist 

model (C), support vector machines (SVM) with Radial Basis Function 
Kernel, adaptive multivariate regression (Earth) and generalized linear 
models (LM). We selected these models to explore different families and 
linear as well as non-linear algorithms that have been used widely in 
digital soil mapping (DSM) studies (Hengl et al., 2017; Gomes et al., 
2019; Khaledian and Miller, 2020). Algorithms from different ‘families’ 
have specific characteristics for processing and optimization. For 
example, the RF and C are decision tree algorithms; the Earth and LM are 
linear models; and the SVM is a kernel-based model.

The training was performed using the group of covariates selected by 
RFE for each algorithm and using the LOOCV method of the inner loop. 
For training, the hyperparameters of each algorithm were optimized 
using 5 possible values in the argument tuneLength of the train function. 
The optimized hyperparameters used for each algorithm tested are 
demonstrated in Table 2. The process of hyperparameters optimization 
is described in chapter 6 of the caret package manual (available at https: 
//topepo.github.io/caret/train-models-by-tag.html.).

Additionally, the importance of covariates for training the models 
was obtained with the varImp function of the caret package, with results 
averaged over the 75 loops. With this function, values of importance are 
normalized for a scale of 0–100, where the most important predictor is at 
100 and the least important at 0 (Kuhn, 2012).

2.4.4. Model’s performance
After the training, the model’s performance metrics were obtained 

with the mean of n rounds (n = 75 in this study; hence, the parameters 
were calculated based on the mean of 75 rounds). To evaluate the 
model’s performance, we applied the fitted model to the test data and 
the accuracy was expressed by the following statistical indexes: R- 
squared (R2) (Eq. (1)), root mean squared error (RMSE) (Eq. (2)) and 
mean absolute error (MAE) (Eq. (3)). These indices are very used in the 
digital soil mapping and are considered very robust to evaluate 
comparatively the performance of different machine learning models 
(Gomes et al., 2019; Siqueira et al., 2023, Moquedace et al., 2024). The 
R2 indicates the proportion of the variance in the target variable that the 
model explains. In turn, the MAE and RMSE are error metrics related to 
the models’ residuals. They describe the absolute accuracy of the 
models, which means how close the predicted values are to the actual 
values. The best model for the spatial prediction and maps creation was 
the one that presented greater R2 and smaller values of RMSE and MAE. 

R2 =
[
∑

(Qpred – Qpred) × (Qobs – Qobs) ]2
[∑

(Qpred − Qpred)2
]
×
[∑

(Qobs − Qobs)2
] (1) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
×
∑

(Qobs – Qpred)2

√

(2) 

Table 1 
Terrain attributes generated from the digital elevation model.

Terrain attributes Abbreviations Brief description

Convergence index CI Convergence/divergence index in 
relation to runoff

Cross sectional 
curvature

CSC Measures the curvature 
perpendicular to the down slope 
direction

Flow line curvature FLC Represents the projection of a 
gradient line to a horizontal plane

General curvature GC The combination of both plan and 
profile curvatures

Hill HI Analytical hill shading
Hill index HIINDEX Analytical index hill shading
Longitudinal curvature LC Measures the curvature in the down 

slope direction
Mass balance index MBI Balance index between erosion and 

deposition
Maximal curvature MAXC Maximum curvature in local 

normal section
Mid-slope position MSP Represents the distance from the 

top to the valley, ranging from 0 to 
1

Minimal curvature MINC Minimum curvature for local 
normal section

Multiresolution index of 
ridge top flatness

MRRTF Indicates flat positions in high 
altitude areas

Multiresolution index of 
valley bottom flatness

MRVBF Indicates flat surfaces at bottom of 
valley

Normalized height NH Vertical distance between base and 
ridge of normalized slope

Plan curvature PLANC Described as the curvature of the 
hypothetical contour line passing 
through a specific cell

Profile curvature PROC Describes surface curvature in the 
direction of the steepest incline

Slope S Represents local angular slope
Slope height SH Vertical distance between base and 

ridge of slope
Standardized height STANH Vertical distance between base and 

standardized slope index
Surface specific points SSP Indicates differences between 

specific surface shift points
Tangential curvature TANC Measured in the normal plane in a 

direction perpendicular to the 
gradient

Terrain ruggedness 
index

TRI Quantitative index of topography 
heterogeneity

Terrain surface 
convexity

TSC Ratio of the number of cells that 
have positive curvature to the 
number of all valid cells within a 
specified search radius

Terrain surface texture TST Splits surface texture into 8, 12, or 
16 classes

Total curvature TC General measure of surface 
curvature

Topographic position 
index

TPI Difference between a point 
elevation with surrounding 
elevation

Valley depth VD Calculation of vertical distance at 
drainage base level

Valley VA Calculation fuzzy valley using the 
Top Hat approach

Valley Index VAI Calculation fuzzy valley index 
using the Top Hat approach

Topographic wetness 
index

TWI Describes the tendency of each cell 
to accumulate water as a function 
of relief
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MAE =
1
n
×
∑

|Qpred – Qobs| (3) 

Qpred = predicted samples
Qobs = observed samples
n = the number of samples
As an additional validation, we also calculated the RMSE and MAE 

for the null model (NULL_RMSE and NULL_MAE) (Eqs. (4 and 5)). The 
null model is considered as the simplest model with predicted values 

represented by the mean value of the observations. In this way, the 
NULL_RMSE and NULL_MAE can be used as a baseline to compare the 
trained models. Any model that presents a lower RMSE and MAE relative 
to the ‘null versions’ should not be discarded, since the performance is 
superior to the simple mean. The null models were estimated using the 
nullMode function in the caret package (Kuhn et al., 2020). 

Fig. 3. Methodological flowchart showing the sequence of methodologies applied for soil and geophysical attributes prediction. The most accurate model between 
Cubist(CUB), Random Forests (RF), Support Vector Machines (SVM), Earth and Linear Models (LM) was selected to model and map the geophysical and soil at
tributes maps.
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NULL_RMSE =

[
1
N
∑N

i=1
(Qtraini − Qobsi)

2
]1

2
(4) 

NULL_MAE =
1
n
×
∑

|Qtraini – Qobsi| (5) 

Qtrain = the mean of the training samples
Qobsi = the validation sample
N = the number of samples (loop).

2.4.5. Spatial prediction and uncertainty
The predicted maps were generated from the 75 loops of RFE/ 

training using the best model for each soil geophysical attribute. The 
final maps were generated from the mean of the 75 predicted maps. We 
also map of the coefficient of variation of prediction (CV% = standard 
deviation / mean). Values with a lower CV show a more consistent re
sults or less uncertain.

3. Results

3.1. Covariate’s importance

The models selected unique sets of covariates for each geophysical 
attribute (Fig. 5). Considering the best model for each attribute, the RFE 
selected the largest number of covariates for the eTh model, which were 
trained with 29 variables. On the other hand, magnetic susceptibility 
had the lowest number of covariates, a total of 12.

The most important covariates for the prediction of K40 were the 

metamorphosed siltstone (MST) and siltstone (ST). Among the terrain 
attributes, the most important were the minimal curvature (MINC) and 
normalized height (NH). For the eU, the most important variable was the 
parent material diabase (D), and terrain attributes, mainly the digital 
elevation model (DEM) and standardized height (STANH). For the eTh, 
the most important covariates were the maximal curvature (MAXC) and 
multiresolution index of ridge top flatness (MRRTF). Although the most 
significant of the parent material variable, the dummy variables of the 
lithology classes presented very low importance, which separated the 
eTh from the other gamma ray attributes (Fig. 5).

The magnetic susceptibility (κ) presented the diabase and DEM as the 
most relevant covariates with importance of more than 50 % to the κ 
model. At last, the most important covariates for the ECa were the SH 
and parent material, with 100 % of importance, followed by the topo
graphic position index (TPI), general curvature (GC) and standardized 
height (STANH). The diabase was the more relevant lithological class, 
with importance of more than 50 % (Fig. 6).

3.2. Model’s performance and uncertainty

With few exceptions, the models that presented the greatest perfor
mances for all geophysical attributes were the RF and SVM. For all 
machine learning algorithms, the κ and K40 models presented the best 
performance (Table 3), which evidences the greatest correlation of these 
geophysical attributes with the parent material and terrain covariates 
used. The RF presented the best performance for the K40 attribute, with 
R2 of 0.36 presenting the largest difference for the second position (SVM 
with R2 = 0.22), besides the lowest RMSE (0.26) and MAE (0.18). RF and 
SVM shared the greatest R2 values for κ (0.49). However, considering the 
RMSE and MAE, RF presented the greatest performance. The SVM 
models presented the greatest performance for eU, eTh and ECa, 
although the R2 values were considerably lower than the previous 
geophysical attributes. The SVM presented R2 of 0.11, 0.10 and 0.09 for 
eU, eTh and ECa, respectively (Table 3).

The best performances of RF and SVM are associated with the better 
generalization capability of these models, besides the greatest capacity 
to handle the non-linear relationships between the geophysical attri
butes and the covariates. In turn, the worst models were the LM and 
Earth models. The Earth presented the lowest R2 values for the gamma 
spectrometric variables, whereas the LM presented the lowest values for 
the ECa and κ (Table 3). This is associated with the fact that these models 

Fig. 4. : Methodological flowchart for Nested Leave One Out Cross-Validation (nested-LOOCV) method. ccc: Lin’s Concordance Correlation Coefficient.

Table 2 
The optimized hyperparameters used for each algorithm 
tested.

Algorithms hyperparameters

RF mtry
Cubist committees; neighbors
SVM sigma; C(cost)
LM intercept
Earth nprune; degree

RF: random forests (RF); SVM: Support Vector Machines 
with Radial Basis Function Kernel; Earth: Adaptive Multi
variate Regression; LM: Generalized Linear Models.
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are not able to work with the non-linearity of soil data, which limits 
considerably their performance.

The RMSE and MAE values of the best models for each geophysical 
attribute presented values always lower than the NULL_RMSE and 
NULL_MAE (Table 3), whereas for many of the other models this did not 
happen. In this way, the RF algorithm was selected for the spatial pre
diction and distribution of K40 and κ, while the SVM algorithm was 

selected for eU, eTh and ECa. Additionally, the κ was the only attribute 
where even the low-performance models (LM and Earth) presented 
RMSE and MAE values higher than those of the null models, which 
corroborate this geophysical attribute was the most appropriate for 
estimation by machine learning.

Fig. 5. Importance of predictor variables (parent material and terrain attributes) for geophysical attributes. Equivalent uranium (eU), equivalent thorium (eTh), 
potassium (K40), magnetic susceptibility (κ) and apparent electrical conductivity (ECa). Only the variables with importance higher 50 % are represented.

Fig. 6. Spatialized geophysical attribute data. Equivalent uranium (eU), equivalent thorium (eTh), potassium (K40), magnetic susceptibility (κ) and apparent 
electrical conductivity (ECa).
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Table 3 
Outer loop table. Models’ performance for the geophysical attributes, based on R2, RMSE, MAE and NULL_RMSE.

Geophysical attributes R2

Random Forest Cubist SVM LM Earth

K40 0.362 0.216 0.229 0.204 0.002 ​
eU 0.107 0.045 0.109 0.062 0.001 ​
eTh 0.017 0.001 0.095 0.017 0.003 ​
ECa 0.024 0.000 0.080 0.002 0.046 ​
κ 0.490 0.490 0.444 0.340 0.447 ​

Geophysical attributes RMSE ​ ​
Random Forest Cubist SVM LM Earth NULL_RMSE

K40 0.261 0.295 0.294 0.313 1.430 0.331
eU 0.720 0.854 0.716 0.818 2.788 0.762
eTh 2.678 2.575 2.330 2.810 4.900 2.478
ECa 33.640 36.740 31.880 36.600 53.150 33.053
κ 25.070 23.876 24.520 28.257 24.160 32.832
Geophysical attributes MAE ​ ​

Random Forest Cubist SVM LM Earth NULL_MAE
K40 0.182 0.196 0.186 0.225 0.485 0.239
eU 0.566 0.605 0.566 0.650 1.020 0.593
eTh 1.911 1.924 1.620 2.095 2.770 1.805
Eca 22.630 26.700 21.890 25.720 32.670 23.875
κ 16.600 15.694 15.970 19.623 16.890 26.131

K40 in %, eU and eTh in mg kg− 1; AEC in dSm − 1; κ in m3 kg− 1. Abbreviations: K40: (potassium by gamma-ray spectrometer); eU: (equivalent uranium by gamma-ray 
spectrometer); eTh: (equivalent thorium by gamma-ray spectrometer); ECa: Apparent electrical conductivity by Geonics EM38 (geophysical sensor); κ: magnetic 
susceptibility by KT10-Terraplus (geophysical sensor). SVM: Support Vector Machines with Radial Basis Function Kernel; LM: Generalized Linear Models; Earth: 
Adaptive Multivariate Regression.

Fig. 7. Coefficient of variation for geophysical attributes. Equivalent uranium (eU), equivalent thorium (eTh), potassium (K40), magnetic susceptibility (κ) and 
apparent electrical conductivity (ECa).
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3.3. Spatial prediction and uncertainty

The final map of K40 presented minimum and maximum values of 
0.1 % and 1.1 %, respectively. The K40 presented a spatial variability 
clearly marked by the parent material, with lower contents over silt
stones and greater contents over metamorphosed siltstones. For the eU, 
the values ranged from 1.6 to 3.2 and presented a spatial pattern marked 
by the influence of lithology and topography. The lowest contents of eU 
were spatially associated with metamorphosed siltstones and areas of 
lower altitude, the last ones mainly in the western part of the study area. 
At the same time, the greatest contents were located over the highest 
parts with dominance of diabase (Fig. 6).

The eTh values ranged from 3.0 to 10.50 mg kg− 1, and showed a 
more complex spatial pattern, associated with the great number of 
covariates used for prediction. The ECa values varied 0 to little values 
above 30 %. Overall, the ECa was below 5 % at most of the study area, 
with the exception of higher values in regions of lower altitude, mainly 
over the plains with fluvial sediments. At last, the κ predicted contents 
with RF varied from 0 to 80 kg m3 kg − 1 and were strongly related to the 
parent material spatial distribution, with the greatest and lowest values 
found over the diabase and siltstone rocks, respectively (Fig. 6).

Regarding the uncertainty, most maps presented values of coefficient 
of variation predominantly below 5 %, which indicates a low uncer
tainty. The eU and eTh predictions presented the best results, with un
certainty not exceeding more than 2 % in the entire study area. In turn, 
the greatest uncertainties were observed for the κ and ACE, which 
reached maximum values of coefficient of variation of 20 % (Fig. 7).

4. Discussion

4.1. Model performance evaluation

The methodological framework using the nested-LOOCV optimised 
the prediction of soil geophysical variables using a small number of 
samples, besides providing reliable performance results. Regarding the 
gamma-ray spectrometric variables, the RF algorithm best predicted K40 

while the SVM algorithm best predicted eU and eTh. Our results are 
similar to those found by Viscarra Rossel et al., (2014), who also used the 
RF algorithm to predict K40 in soils from Tasmania, reporting an R2 of 
0.43. On the other hand, Cracknell and Reading (2014) stated that the 
RF algorithm was the best model for multiclass inference using widely 
available, high-dimensional multisource remotely sensed geophysical 
variables.

The high importance of the parent material predictor aligns with 
findings from Dickson and Scott, (1997), Wilford et al. (1997), and 
Wilford and Minty, (2006), who demonstrated a strong relationship 
between K40 and soil parent materials. Mello et al. (2023a), (2023b) also 
observed that greater soil weathering, influenced by relief and water 
movement, results in lower K40 values due to increased K leaching. 
However, our spatial prediction indicated that parent material had a 
greater influence than weathering and topography in explaining the 
distribution of K40. The lowest K40 values were found in areas with 
siltstones, rocks naturally poor in K due to the pre-weathering. In turn, 
the highest K40 values were found for metamorphosed siltstones, indi
cating that the thermal metamorphism that affected parts of the siltstone 
promoted enrichment in K, probably from hydrothermalism (Soares 
et al., 2004; Rosales et al., 2019).

The low R2 of the RF model for eU and eTh disagrees with results 
obtained by Anic and Dragovic (2005) who found an R2 > 0.90 using a 
different approach (neural network algorithm), and Sousa et al. (2020), 
who used an RF algorithm that efficiently predicted eU and eTh (R2 >

0.90). However, it is important to highlight that these authors used data 
from an airborne gamma sensor to estimate radionuclide values, which 
correlations are high, justifying the high R2 values found by the authors.

There are several possible explanations for the low performance of 
eU and eTh. The studied area is very heterogeneous regarding the parent 

material (four lithological classes) and soil types (six soil classes in 
184 ha) (Mello et al., 2020, 2021). In-situ evaluation brings several 
uncontrolled factors such as rocks or fragments, soil mixture with plant 
residue, fertilizers and different moisture conditions that could impact 
the prediction and reduce the R2. Other possible explanations for the low 
R2 are related to the various effects of field sampling data and larger 
variations in mineralogy, soil type, pedogenesis and their interactions 
(Mello et al., 2021).

The lithological covariate was also very important to the eU and eTh 
predictions. The eU contents were clearly lower in the diabase area 
where Mello et al. (2023a), (2023b) identified the greatest weathering 
and leaching rates. Uranium is considered high mobility under oxidizing 
conditions (Modena et al., 2016). Its increased remotion with leaching 
from the higher parts of the study area, where the greater weathered and 
drained soils are located, corroborates the great importance of DEM as a 
predictor. The importance altitude is also revealed with the greater 
contents of uranium in the lower parts of the study area, indicating that 
the accumulation of uranium leached from the higher parts. Among the 
parent materials, the diabase was the most important class, and the 
natural lowest contents of uranium of this lithology can be pointed out 
as another factor to explain the lowest eU contents, since mafic rocks 
(with the lowest contents of silica) tend to present lower contents of 
uranium (Modena et al., 2016).

Although lithology was also relevant for this attribute, the eTh 
contents did not present significant spatial differentiations related to the 
lithology. By studying the relationship between gamma ray spectro
metric attributes and rock weathering in Southern Brazil, Modena et al. 
(2016) also did not find significant differences between distinct lithol
ogies. Different from uranium, thorium is a relatively immobile element 
that tends to accumulate in soil according to weathering progress. The 
spots of lower thorium contents observed in this study had a strong 
spatial correlation with the zones of less weathered and developed soils 
as found by Mello et al. (2023a), (2023b). The authors associated the 
lower weathering in this part of the study area with the great slope, 
which limits the pedogenesis through erosive processes. This idea is 
corroborated by the importance of curvature covariates in our study. 
The erosion in steep slopes is also responsible for the remotion of the 
immobilized thorium, which is removed with the clastic sediments.

In relation to κ, the RF and SVM models presented satisfactory per
formance, with R2 of 0.5, indicating 50 % of the total data variance 
explained by the models, which produces more reliable predictions. The 
greatest performance of the κ models is related to the strong relationship 
between soil κ and the parent material, clay and total iron content (Mello 
et al., 2020; Siqueira et al., 2010), variables that are directly or indi
rectly related to the covariates used in this work. According to Blundell 
et al. (2009) a range of 36 % - 46 % of the variances in the magnetic 
parameters can be explained by the parent material and drainage 
network.

The nature of mafic parent rock drives the content of magnetic 
minerals (Ayoubi et al., 2019; Karimi et al., 2017; Teixeira et al., 2018) 
and the formation of secondary ferrimagnetic minerals (Jordanova, 
2016; Mullins, 1977) responsible for the soil κ (Dearing, 1999). This 
explains the greatest κ contents found over diabase in the study area, 
dominated by highly weathered Nitisols with clayey B horizons rich in 
iron oxides (Mello et al., 2023a, 2023b). In turn, the great importance of 
variables such as DEM and STANH highlights the greater contribution of 
the topography to the formation of more weathered soils in the higher 
parts of the study area. According to Mello et al. (2022b) ferralitization 
dominated in this area. The desilication and concentration of iron oxides 
in chemically strongly leached soils, tend to contribute to the greater 
values of soil κ.

Finally, the prediction model of the ECa was the worst among all 
geophysical attributes. The lowest R2 for the ECa could be related to the 
small number of collected samples that do not represent the different soil 
salinity spatial patterns, as reported by Johnston et al. (1997) and Lesch 
et al. (1992). Soil ECa is usually strongly related to the soil texture, 
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mainly the clay content (Brus et al., 1992; Weller et al., 2007), which is 
also related to the parent material. Although parent material was an 
important covariate for the ECa prediction, the spatial variability of the 
final ECa maps does not follow the lithology trend, but the relief. The 
largest ECa were found on areas of lower altitude, mainly associated 
with the fluvial sediments of the edges of the study area. This reveals the 
important function of the topography in redistributing salinity from the 
higher to lower zones in tropical lands, independent of the parent ma
terial. The incorporation of salinity-related soil attributes, such as clay 
contents, is a strategy to improve the ECa prediction (Brus et al., 1992; 
Harvey and Morgan, 2009).

5. Conclusions

Machine learning algorithms produced reliable results for spatially 
predicting soil geophysical attributes, outperforming null models based 
on mean values. The null model serves as an effective benchmark for 
evaluating machine learning outcomes, demonstrating the potential of 
these models even when R2 values are low. The use of the nested-LOOCV 
method proved suitable for soil and geophysical datasets with limited 
samples, providing a robust approach for model performance evaluation 
and optimizing algorithm training and testing. Moreover, maps gener
ated with nested-LOOCV showed greater spatial consistency, supported 
by improved results interpretation.

The RF and SVM algorithms presented the best results. Parent ma
terial and DEM were the covariates that most contributed to the pre
diction and controlled the estimated spatial variability of the 
geophysical variables (K40, eU, eTh, ECa and κ).

Machine learning techniques are valuable tools for modeling soil 
geophysical variables, especially in scenarios with limited observations. 
The integration of proximal sensing with computational methods high
lights the importance of geophysical measurements for estimating other 
labor-intensive soil attributes (e.g., chemistry, texture, mineralogy), 
providing critical insights into soil genesis and fertility. This demon
strates the strong potential of geophysical techniques in advancing soil 
science.
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Priori, S., Fantappiè, M., Bianconi, N., Ferrigno, G., Pellegrini, S., Costantini, E.A.C., 
2016. Field-scale mapping of soil carbon stock with limited sampling by coupling 
gamma-ray and vis-NIR spectroscopy. Soil Sci. Soc. Am. J. 80, 954–964. https://doi. 
org/10.2136/sssaj2016.01.0018.

RC Team, 2021. R: A language and environment for statistical computing.(Version 4.1. 
0).

Reinhardt, N., Herrmann, L., 2019. Gamma-ray spectrometry as versatile tool in soil 
science: a critical review. J. Plant Nutr. Soil Sci. 182, 9–27. https://doi.org/10.1002/ 
jpln.201700447.

Rhoades, J.D., Chanduvi, F., Lesch, S.M., 1999. Soil salinity assessment: methods and 
interpretation of electrical conductivity measurements. Food Agric. Org.

Richards, L.A., 1954. Diagnosis and improvement of saline and alkali soils. LWW.
Rochette, P., Jackson, M., Aubourg, C., 1992. Rock magnetism andn the interpretation of 

magnetic susceptibility. Rev. Geophys. 30, 209–226.
Rytky, S.J.O., Tiulpin, A., Frondelius, T., Finnilä, M.A.J., Karhula, S.S., Leino, J., 
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