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Geophysical methods support soil security by providing non-invasive tools to assess soil properties, monitor
degradation, and guide sustainable management strategies. However, studies focusing the spatial prediction of
geophysical data remain limited. In this research, we aimed to model and predict the spatial distribution of soil
geophysical properties using parent material and terrain attributes with machine learning algorithms. In addi-
tion, we tested the nested leave-one-out cross validation (nested-LOOCV) method to deal with datasets with
limited size. We performed a geophysical survey using three types of sensors (radiometric, magnetic and electric
methods). The random forest (RF) and support vector machine (SVM) algorithms presented the best results, with
RF showing higher performance for K** and magnetic susceptibility, and SVM had higher performance for eU,
eTh and apparent electrical conductivity. Parent materials and digital elevation model were the most significant
variables for the modelling. The nested-LOOCV method proved to be adequate for small soil dataset. Machine
learning techniques are potential tools for modelling soil geophysical variables. The combination with compu-
tational techniques shows the great relevance of geophysical measurements for the estimation of soil properties
related to fertility and soil genesis.

1. Introduction and ultimately contribute to maintaining soil’s capacity to deliver

essential ecosystem services (Schuler et al, 2011; Beamish, 2013;

Geophysical methods contribute to soil security by providing non-
invasive and efficient tools for assessing and monitoring soil proper-
ties at various scales. Techniques like electromagnetic induction,
gamma ray spectrometry and magnetic susceptibility can measure and
map soil physical and chemical properties, including moisture content,
salinity, and organic carbon. These methods enable the identification of
soil degradation, compaction, erosion risks, and nutrient distribution,
supporting informed soil management and conservation strategies. By
offering a deeper understanding of soil variability, geophysical ap-
proaches enhance soil health monitoring, promote sustainable land use,
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McFadden and Scott, 2013; Sarmast et al., 2017; Reinhardt and Herr-
mann, 2019).

The gamma-ray spectrometry measures the natural gamma radiation
emissions from radionuclides such as potassium-40 (K40); the daughter
radionuclides of uranium-238 (U%3®) and thorium-232 (Th%3?) in soils,
sediments, and rocks (Minty, 1988). This technique provides informa-
tion on pedogenesis (Reinhardt and Herrmann, 2019), soil texture,
mineralogy, pH and organic carbon (Wong and Harper, 1999; Taylor
etal., 2002; Wilford and Minty, 2006; Barbuena et al., 2013; Priori et al.,
2016).
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The intensity to which soil can be magnetised comprises soil mag-
netic susceptibility (k) (Rochette et al., 1992). This property is related to
soil mineralogy, parent material and the formation of magnetite and
maghemite (ferrimagnetic minerals) (Ayoubi et al., 2018) and, less
commonly, ferrihydrite and hematite (Valaee et al., 2016). Soil k has
been used in geological studies (Shenggao, 2000; Correia et al., 2010),
soil granulometry and organic carbon determination (Camargo et al.,
2014; Jiménez et al., 2017), soil survey (Grimley et al., 2004) and the
study of soil-forming processes (Viana et al., 2006; Sarmast et al., 2017;
Mello et al., 2020).

The ability of soil to conduct an electrical current comprises the
apparent electrical conductivity (ECa). This property can be applied in
pedology, indicating the existence/quantity of solutes in a soil solution
(Richards, 1954). As a geophysical method, the ECa is able to identify
soil’s properties and their spatial variability, which can affect land use
and management (Corwin et al., 2003). ECa is a function of soil salinity,
clay mineralogy, clay content, cation exchange capacity, porosity,
moisture and temperature (Mcneill, 1992; Rhoades et al., 1999; Bai
et al., 2013; Cardoso and Dias, 2017).

Machine learning techniques have been applied in digital soil map-
ping to spatialize the above-mentioned soil geophysical attributes, be-
sides modelling the variability of other attributes through the
application of geophysical data. Among the main machine learning al-
gorithms used, we can cite the random forests (RF) (Viscarra Rossel
et al.,, 2014; Sousa et al., 2020; Siqueira et al., 2024), support vector
machine (SVM) (Heggemann et al., 2017; Li et al., 2017; Zare et al.,
2020), K - nearest neighbors (knn), artificial neural networks (ANN)
(Dragovic and Onjia, 2007) and the Cubist tree model (Wilford and
Thomas, 2012; Azizi et al., 2023). However, spatial predictions of soil
properties based on small datasets of geophysical data (gamma-ray
spectrometry, k and ECa) are still underdeveloped.

Mapping of geophysical properties field sensors is usually conducted
either remotely (via aerial platforms) or proximally (on-the-ground)
(Wilford, 2012; Moonjun et al., 2017). Proximal geophysical surveys
using ground vehicles can collect high-density data, but they require
manual surveying, and accessing sites with complex terrain can be
challenging (Parshin et al., 2018). In this situation, machine learning
algorithms can be a useful tool for making the spatial prediction of
geophysical attributes based on fewer samples, from association with
environmental and topographic covariates that express the relationship
of these attributes with the landscape.

Traditional methods of machine learning require a reasonable
number of samples for calibrating (or training) the models and to obtain
optimal spatial prediction of soil attributes. At the same time, one of the
greater benefits of using digital soil mapping with machine learning is
the possibility of obtaining predictions with known accuracy (McBrat-
ney et al., 2003). For machine learning tasks involving relatively large
datasets, approximately 70-80 percent of the data is used for training,
and 20-30 percent for testing (Moquedace et al., 2024; Siqueira et al.,
2024).

However, in soil science, the number of samples available may be too
small to create reasonable subsets of training and test, due to the diffi-
culties of sampling. These difficulties are even greater for data obtained
from geophysical techniques. In these cases, using small datasets-
adapted evaluation methods has posed a great alternative, as the case
of the nested leave one out cross-validation (nested-LOOCV). The
nested-LOOCV method is recommended for small soil datasets (Mello
et al., 2022a), for which other testing methods, such as holdout vali-
dation and cross-validation, would not be viable due to their low
robustness with reduced number of samples (Ferreira et al., 2021; Paes
et al., 2022).

Our previous study (Mello et al., 2022) used geophysical sensors and
machine learning algorithms to model soil attributes, demonstrating
that the integration of gamma-ray spectrometry and magnetic suscep-
tibility data, combined with terrain and parent material information,
can effectively predict soil properties. In this study, we explore ways to
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interpolate geophysical data using limited number of geophysical
measurements.

This study had the following objectives: i) predict the spatial distri-
bution of soil geophysical attributes (ECa, k, eU, eTh and K (gamma-ray
emission from K4°); ii) test the nested-LOOCV method and five machine
learning algorithms (RF, Cubist, SVM, generalised linear models [LM]
and adaptive multivariate regression) in a small dataset of soil and
geophysical attributes; and iii) select the best algorithm for spatial
prediction of each geophysical attribute, and to relate the attributes to
pedogenesis.

2. Materials and methods
2.1. Study area and soil sampling

The study area is a 184-hectare farm recently cultivated with sug-
arcane, located in Southeast Brazil, between 23°00°31.37" and
22°58’53.97" S latitude and 53°39’47.81" and 53°37°25.65" W longi-
tude (Fig. 1). It was described in Mello et al. (2022).The climate is
subtropical mesothermal (Cwa) according to the Koppen classification
system (Alvares et al., 2013). The mean temperature varies from 18°C in
July (winter) to 22°C in February (summer), while the mean annual
precipitation lies between 1100 and 1700 mm (Nanni and Dematte,
2006, Bazaglia Filho et al., 2013a).

In terms of geomorphology, the area is in the Paulista Peripheric
Depression and is mainly composed of sedimentary rocks. The litho-
logical composition of the area is: siltstone, metamorphosed siltstone,
diabase and fluvial sediments (Bazaglia Filho et al., 2013a) (Fig. 2a).

The study area is composed of Cambisols, Phaeozems, Nitisols,
Acrisols and Lixisols (Fig. 2b), reflecting the heterogeneity of the parent
materials and relief. Pedologists have previously conducted soil surveys
in the area (Nanni and Dematte, 2006; Bazaglia Filho et al., 2013b).

A total of 75 locations distributed throughout the study area was
chosen. At each site, geophysical readings were performed on the soil
surface (0-20 cm). Considering the complexity of the terrain and dense
sugarcane cultivation, the readings with the geophysical sensors were
performed in the most accessible parts, while simultaneously ensuring
the representativeness of the area.

2.2. Geophysical data collection

2.2.1. Magnetic method: soil magnetic susceptibility (k)

Soil magnetic susceptibility (x) values were collected via the
geophysical sensor Terraplus KT10 model (Fig. 1A). This sensor mea-
sures soil magnetic susceptibility values up to 2 cm below the soil sur-
face (precision of 107° SI units in m® kg™?). For « readings, the sensor
was first calibrated following the recommendations of the manufacturer
(Sales and C., 2021). The soil k readings were performed with the sensor
in scanner mode. Due to small variations in sensor readings (noise ef-
fect), three readings were performed around each collection point, and
the mean values of these readings were used for analysis.

2.2.2. Radiometric method: soil radionuclides via gamma-ray spectrometry
Potassium, uranium, and thorium and radionuclides values (K%, eU
and eTh) were obtained using the near-gamma-ray spectrometer (GM
-Radiation Solution RS 230 (Radiation Solution INC, Ontario, Canada)
(Fig. 1B). The sensor measures radionuclides with an average depth
about 30 cm below the soil surface. For radionuclides readings, the
sensor was automatically stabilized. Then, the readings were taken with
the sensor in direct contact with the soil surface for 2 minutes, in the
“essay” mode (which provides better accuracy) (Solutions, 2009). Po-
tassium (K40) values were reported in % while uranium (eU) and
thorium (eTh) values were given in mg kg~ due to the higher and lower
proportion of these elements in the environment, respectively.
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Fig. 1. Study area, collected points and geophysical sensors. A - Susceptibilimeter (KT-10 Terraplus); B - Gamma-ray spectrometer (Radiation Solution - RS 230); C -

Geonics Ground Conductivity Meter (EM 38).

2.2.3. Electric method: soil apparent electrical conductivity

The readings of the soil apparent electrical conductivity (ECa) were
undertaken via the geophysical sensor Geonics EM38 (Geonics Ltd.,
Mississauga, Ontario, Canada) (McNeill, 1986) (Fig. 1C). The sensor was
previously calibrated following the recommendations of the manufac-
turer’s instruction manual (Heil and Schmidhalter, 2019). The EM38
sensor was positioned vertically in contact with the soil for measure-
ment. This reading is an integrated soil ECa values down to a depth of
1.5 m in mSm~!. The ECa readings were taken during the dry period
(winter) and during the same period of the day to ensure that humidity
was a constant variable and metal objects were removed from the sen-
sor’s proximity to avoid interference.

2.3. Digital elevation model and covariates

A digital elevation model (DEM) was generated using a topographic
map with 5-meter contour intervals at a 1:10,000 scale, sourced from the
Campinas Geographic Institute. The contour lines were interpolated into
a DEM using the Topo to Raster function in ESRI ArcGIS 10.4, and the
final DEM was exported at a spatial resolution of 30 m. Based on the
DEM, 32 additional terrain attributes were calculated (Table 1) using the
R software version 4.1.0 (RC Team, 2021), through the “Rsaga”
(Brenning, 2008) and “raster” (Hijmans and Van Etten, 2016) packages.

We also utilized the lithology map layer, created by an expert
pedologist at a 1:10,000 scale (Nanni and Dematte, 2000), as a covariate
representing the parent material. as a covariate representative of the
parent material. Considering the necessity of integrating a categorical
variable into the modelling process, the lithology variable was trans-
formed into four new dummy covariates, each for a class of the original
layer (siltstone, metamorphosed siltstone, diabase and fluvial
sediments).

2.4. Model processing

The detailed description of the methodological framework is pre-
sented in Fig. 3 and comprises four main steps (1) selection of envi-
ronmental covariates; (2) training process with different algorithms; (3)
evaluation of model’s performance in the testing process and (4) spatial
prediction and uncertainty analysis using the best fitted model.

2.4.1. Selection of covariates

Several potential covariates can be used to predict the spatial dis-
tribution of soil and geophysical attributes. However, using many
covariates, requires computational effort and generates complex final
models that are difficult to explain. To overcome this problem, we
applied three steps: (1) removal of variables with low variance (near
zero), (2) removal of covariates that were highly correlated and (3) se-
lection of important covariates for prediction.

Step 1 removed covariates that have variance near zero applying the
nearZeroVar function, using the caret package (Kuhn et al., 2020). Then,
the remaining covariates were subjected to the phase 2.

Step 2 comprised removing covariates with high correlation. This
phase was performed because highly correlated covariates provide
redundant information and contribute little to the modelling process. In
this phase, Pearson’s correlation coefficients were calculated for all
covariates, separating those with a > 95 % linear correlation value. This
processes was calculated using the “find correlation” with caret package
(Kuhn et al., 2020). Then, training and testing samples partition was
done, using the nested-LOOCV method, which will be described later.
Only training samples were used in the next step.

Step 3 involved removing covariates that did not contribute signifi-
cantly to the modeling process using recursive feature elimination (RFE)
from the caret package (Kuhn et al., 2020). RFE is a backward selection
method that iteratively reduces the number of predictors (Kohavi and
John, 1997). It ranks covariates by their importance, groups them into
subsets, and evaluates these subsets using simpler models based on their
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performance. The subset with the best performance is then selected for
final model training, representing the most influential covariates for
predicting the target phenomenon. In this study, the remaining cova-
riates after correlation removal were grouped into sixteen subsets with
varying numbers of covariates (ranging from 5 to 25), including the full
set, and each subset was tested iteratively.

RFE considers the base algorithm (e.g., RF, SVM, Im, etc.) (Kuhn and
Johnson, 2013), which means that each algorithm had a specific RFE
model. For the RF algorithm, rfFuncs from the caret package was used.
For other algorithms, the caretFuncs support function were used (Kuhn,
2012).

2.4.2. Nested leave one out cross-validation (“nested-LOOCV”)
The covariates selected by the RFE were associated with soil
geophysical data and were used in the training and test processes

(Fig. 3). Considering the small number of samples (n = 75), we applied
the nested-LOOCV method, which is indicated for modelling databases
with a limited number of samples (small number < 100 samples).

The methods used for separating the training and test data as well as
the Nested-LOOCV will be detailed next:

v Firstly, our total dataset contains 75 samples. For the modelling
process, we divided the dataset into two subsets: subset1 (training)
and subset2 (test).

v subset 1 contains 74 samples, (all 75 samples minus one (75—1)).

v subset 2 contains only 1 sample, corresponding to the sample that was
removed from subset 1.

v subset 1 and 2 were further separated using the nested-LOOCV
method (Honeyborne et al., 2016; Mello et al., 2022a; Paes et al.,
2022; Rytky et al., 2020).
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Table 1
Terrain attributes generated from the digital elevation model.

Terrain attributes Abbreviations  Brief description

Convergence index CI Convergence/divergence index in
relation to runoff

Cross sectional CsC Measures the curvature

curvature perpendicular to the down slope
direction

Flow line curvature FLC Represents the projection of a
gradient line to a horizontal plane

General curvature GC The combination of both plan and
profile curvatures

Hill HI Analytical hill shading

Hill index HIINDEX Analytical index hill shading

Longitudinal curvature LC Measures the curvature in the down
slope direction

Mass balance index MBI Balance index between erosion and
deposition

Maximal curvature MAXC Maximum curvature in local
normal section

Mid-slope position MSP Represents the distance from the
top to the valley, ranging from O to
1

Minimal curvature MINC Minimum curvature for local
normal section

Multiresolution index of =~ MRRTF Indicates flat positions in high

ridge top flatness altitude areas

Multiresolution index of =~ MRVBF Indicates flat surfaces at bottom of

valley bottom flatness valley

Normalized height NH Vertical distance between base and
ridge of normalized slope

Plan curvature PLANC Described as the curvature of the
hypothetical contour line passing
through a specific cell

Profile curvature PROC Describes surface curvature in the
direction of the steepest incline

Slope S Represents local angular slope

Slope height SH Vertical distance between base and
ridge of slope

Standardized height STANH Vertical distance between base and
standardized slope index

Surface specific points SSP Indicates differences between
specific surface shift points

Tangential curvature TANC Measured in the normal plane in a
direction perpendicular to the
gradient

Terrain ruggedness TRI Quantitative index of topography

index heterogeneity

Terrain surface TSC Ratio of the number of cells that

convexity have positive curvature to the
number of all valid cells within a
specified search radius

Terrain surface texture TST Splits surface texture into 8, 12, or
16 classes

Total curvature TC General measure of surface
curvature

Topographic position TPIL Difference between a point

index elevation with surrounding
elevation

Valley depth VD Calculation of vertical distance at
drainage base level

Valley VA Calculation fuzzy valley using the
Top Hat approach

Valley Index VAI Calculation fuzzy valley index
using the Top Hat approach

Topographic wetness TWI Describes the tendency of each cell

index to accumulate water as a function

of relief

v The nested-LOOCV is made up of an inner and outer loop (Fig. 4).

The inner loop is performed with the samples from subset 1. In this
process the samples are re-divided into training (subset A) and training
validation (subset B) samples. Subset A is resampled with the removal of
a sample (74—1), consisting of 73 samples. Subset B is composed of the
sample that was removed, consisting of 1 sample. Subset A is used for a
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“internal training” and subset B for a “internal testing”. The inner loop is
run 74 times (corresponding to the number of samples in subset 1), and at
each round the removed sample (subset B) is changed subsequently. The
entire process consists of the LOOCV method (Kuhn and Johnson, 2013).
At the end of this process, the performance of the training is calculated
considering the prediction over the subset B at each round.

The outer loop is performed with the samples from subset 2 (test, with
1 sample), which do not participate in the training process. As the outer
loop is run 75 times (one for each sample of the total dataset), the sample
of subset 2 is swapped 75 times. In this process, the sample that had been
removed returns to subset 1 and another sample is relocated to subset 2,
which makes the subsets being alternated every round. At the end of 75
rounds of the outer loop, it results in 75 pairs of predicted and observed
values, which are used to calculate the test parameters of model per-
formance. This full round of loops is the principle of Nested-LOOCV.

2.4.3. Machine learning algorithms, training and covariates importance

In this study, we tested five algorithms: random forests (RF), Cubist
model (C), support vector machines (SVM) with Radial Basis Function
Kernel, adaptive multivariate regression (Earth) and generalized linear
models (LM). We selected these models to explore different families and
linear as well as non-linear algorithms that have been used widely in
digital soil mapping (DSM) studies (Hengl et al., 2017; Gomes et al.,
2019; Khaledian and Miller, 2020). Algorithms from different ‘families’
have specific characteristics for processing and optimization. For
example, the RF and C are decision tree algorithms; the Earth and LM are
linear models; and the SVM is a kernel-based model.

The training was performed using the group of covariates selected by
RFE for each algorithm and using the LOOCV method of the inner loop.
For training, the hyperparameters of each algorithm were optimized
using 5 possible values in the argument tuneLength of the train function.
The optimized hyperparameters used for each algorithm tested are
demonstrated in Table 2. The process of hyperparameters optimization
is described in chapter 6 of the caret package manual (available at https:
//topepo.github.io/caret/train-models-by-tag.html.).

Additionally, the importance of covariates for training the models
was obtained with the varImp function of the caret package, with results
averaged over the 75 loops. With this function, values of importance are
normalized for a scale of 0-100, where the most important predictor is at
100 and the least important at 0 (Kuhn, 2012).

2.4.4. Model’s performance

After the training, the model’s performance metrics were obtained
with the mean of n rounds (n = 75 in this study; hence, the parameters
were calculated based on the mean of 75 rounds). To evaluate the
model’s performance, we applied the fitted model to the test data and
the accuracy was expressed by the following statistical indexes: R-
squared ®?» (Eq. (1)), root mean squared error (RMSE) (Eq. (2)) and
mean absolute error (MAE) (Eq. (3)). These indices are very used in the
digital soil mapping and are considered very robust to evaluate
comparatively the performance of different machine learning models
(Gomes et al., 2019; Siqueira et al., 2023, Moquedace et al., 2024). The
RZ indicates the proportion of the variance in the target variable that the
model explains. In turn, the MAE and RMSE are error metrics related to
the models’ residuals. They describe the absolute accuracy of the
models, which means how close the predicted values are to the actual
values. The best model for the spatial prediction and maps creation was
the one that presented greater R? and smaller values of RMSE and MAE.

[3 (Qpred - Qpred) x (Qobs — Qobs)]*
[ 3 (Qpred — Qpred)’ | x | 5 (Qobs — Qobs)* |

R® = @

— 1 2
RMSE = \/ﬁ X Z(Qobs — Qpred) 2
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Cubist(CUB), Random Forests (RF), Support Vector Machines (SVM), Earth and Linear Models (LM) was selected to model and map the geophysical and soil at-

tributes maps.

1
MAE 0 X Z|Qpred - Qobs| 3)
Qpred = predicted samples
Qobs = observed samples
n = the number of samples
As an additional validation, we also calculated the RMSE and MAE
for the null model (NULL_RMSE and NULL_MAE) (Egs. (4 and 5)). The

null model is considered as the simplest model with predicted values

represented by the mean value of the observations. In this way, the
NULL_RMSE and NULL_MAE can be used as a baseline to compare the
trained models. Any model that presents a lower RMSE and MAE relative
to the ‘null versions’ should not be discarded, since the performance is
superior to the simple mean. The null models were estimated using the
nullMode function in the caret package (Kuhn et al., 2020).
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Fig. 4. : Methodological flowchart for Nested Leave One Out Cross-Validation (nested-LOOCV) method. ccc: Lin’s Concordance Correlation Coefficient.

Table 2
The optimized hyperparameters used for each algorithm
tested.
Algorithms hyperparameters
RF mtry
Cubist committees; neighbors
SVM sigma; C(cost)
LM intercept
Earth nprune; degree

RF: random forests (RF); SVM: Support Vector Machines
with Radial Basis Function Kernel; Earth: Adaptive Multi-
variate Regression; LM: Generalized Linear Models.

1
N
i=1

NULL_RMSE = L%Z (Qerain, —  Qobs)* | @

1 -
NULL MAE =~ x " |Qerain; - Qobs| ®)
n

Qtrain = the mean of the training samples
Qobsi = the validation sample
N = the number of samples (loop).

2.4.5. Spatial prediction and uncertainty

The predicted maps were generated from the 75 loops of RFE/
training using the best model for each soil geophysical attribute. The
final maps were generated from the mean of the 75 predicted maps. We
also map of the coefficient of variation of prediction (CV% = standard
deviation / mean). Values with a lower CV show a more consistent re-
sults or less uncertain.

3. Results
3.1. Covariate’s importance

The models selected unique sets of covariates for each geophysical
attribute (Fig. 5). Considering the best model for each attribute, the RFE
selected the largest number of covariates for the eTh model, which were
trained with 29 variables. On the other hand, magnetic susceptibility
had the lowest number of covariates, a total of 12.

The most important covariates for the prediction of K*°

were the

metamorphosed siltstone (MST) and siltstone (ST). Among the terrain
attributes, the most important were the minimal curvature (MINC) and
normalized height (NH). For the eU, the most important variable was the
parent material diabase (D), and terrain attributes, mainly the digital
elevation model (DEM) and standardized height (STANH). For the eTh,
the most important covariates were the maximal curvature (MAXC) and
multiresolution index of ridge top flatness (MRRTF). Although the most
significant of the parent material variable, the dummy variables of the
lithology classes presented very low importance, which separated the
eTh from the other gamma ray attributes (Fig. 5).

The magnetic susceptibility (k) presented the diabase and DEM as the
most relevant covariates with importance of more than 50 % to the k
model. At last, the most important covariates for the ECa were the SH
and parent material, with 100 % of importance, followed by the topo-
graphic position index (TPI), general curvature (GC) and standardized
height (STANH). The diabase was the more relevant lithological class,
with importance of more than 50 % (Fig. 6).

3.2. Model’s performance and uncertainty

With few exceptions, the models that presented the greatest perfor-
mances for all geophysical attributes were the RF and SVM. For all
machine learning algorithms, the x and K*° models presented the best
performance (Table 3), which evidences the greatest correlation of these
geophysical attributes with the parent material and terrain covariates
used. The RF presented the best performance for the K*° attribute, with
R? of 0.36 presenting the largest difference for the second position (SVM
withR? = 0.22), besides the lowest RMSE (0.26) and MAE (0.18). RF and
SVM shared the greatest R? values for k (0.49). However, considering the
RMSE and MAE, RF presented the greatest performance. The SVM
models presented the greatest performance for eU, eTh and ECa,
although the R? values were considerably lower than the previous
geophysical attributes. The SVM presented R? of 0.11, 0.10 and 0.09 for
eU, eTh and ECa, respectively (Table 3).

The best performances of RF and SVM are associated with the better
generalization capability of these models, besides the greatest capacity
to handle the non-linear relationships between the geophysical attri-
butes and the covariates. In turn, the worst models were the LM and
Earth models. The Earth presented the lowest R* values for the gamma
spectrometric variables, whereas the LM presented the lowest values for
the ECa and x (Table 3). This is associated with the fact that these models
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Fig. 5. Importance of predictor variables (parent material and terrain attributes) for geophysical attributes. Equivalent uranium (eU), equivalent thorium (eTh),
potassium (K*9), magnetic susceptibility (k) and apparent electrical conductivity (ECa). Only the variables with importance higher 50 % are represented.
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Fig. 6. Spatialized geophysical attribute data. Equivalent uranium (eU), equivalent thorium (eTh), potassium (K*9), magnetic susceptibility (x) and apparent

electrical conductivity (ECa).

are not able to work with the non-linearity of soil data, which limits
considerably their performance.

The RMSE and MAE values of the best models for each geophysical
attribute presented values always lower than the NULL_RMSE and
NULL_MAE (Table 3), whereas for many of the other models this did not
happen. In this way, the RF algorithm was selected for the spatial pre-
diction and distribution of K*° and «, while the SVM algorithm was

selected for eU, eTh and ECa. Additionally, the x was the only attribute
where even the low-performance models (LM and Earth) presented
RMSE and MAE values higher than those of the null models, which
corroborate this geophysical attribute was the most appropriate for
estimation by machine learning.
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Table 3
Outer loop table. Models® performance for the geophysical attributes, based on R?, RMSE, MAE and NULL_RMSE.

Geophysical attributes R?

Random Forest Cubist SVM LM Earth
K* 0.362 0.216 0.229 0.204 0.002
eU 0.107 0.045 0.109 0.062 0.001
eTh 0.017 0.001 0.095 0.017 0.003
ECa 0.024 0.000 0.080 0.002 0.046
K 0.490 0.490 0.444 0.340 0.447
Geophysical attributes RMSE

Random Forest Cubist SVM LM Earth NULL_RMSE
K* 0.261 0.295 0.294 0.313 1.430 0.331
eU 0.720 0.854 0.716 0.818 2.788 0.762
eTh 2.678 2.575 2.330 2.810 4.900 2.478
ECa 33.640 36.740 31.880 36.600 53.150 33.053
K 25.070 23.876 24.520 28.257 24.160 32.832
Geophysical attributes MAE

Random Forest Cubist SVM LM Earth NULL_MAE
K* 0.182 0.196 0.186 0.225 0.485 0.239
eU 0.566 0.605 0.566 0.650 1.020 0.593
eTh 1.911 1.924 1.620 2.095 2.770 1.805
Eca 22.630 26.700 21.890 25.720 32.670 23.875
K 16.600 15.694 15.970 19.623 16.890 26.131

K* in %, eU and eTh in mg kg~ '; AEC in dSm ~!; k in m® kg~!. Abbreviations: K*’: (potassium by gamma-ray spectrometer); eU: (equivalent uranium by gamma-ray
spectrometer); eTh: (equivalent thorium by gamma-ray spectrometer); ECa: Apparent electrical conductivity by Geonics EM38 (geophysical sensor); k: magnetic
susceptibility by KT10-Terraplus (geophysical sensor). SVM: Support Vector Machines with Radial Basis Function Kernel; LM: Generalized Linear Models; Earth:
Adaptive Multivariate Regression.
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3.3. Spatial prediction and uncertainty

The final map of K*® presented minimum and maximum values of
0.1 % and 1.1 %, respectively. The K*® presented a spatial variability
clearly marked by the parent material, with lower contents over silt-
stones and greater contents over metamorphosed siltstones. For the eU,
the values ranged from 1.6 to 3.2 and presented a spatial pattern marked
by the influence of lithology and topography. The lowest contents of eU
were spatially associated with metamorphosed siltstones and areas of
lower altitude, the last ones mainly in the western part of the study area.
At the same time, the greatest contents were located over the highest
parts with dominance of diabase (Fig. 6).

The eTh values ranged from 3.0 to 10.50 mg kg™!, and showed a
more complex spatial pattern, associated with the great number of
covariates used for prediction. The ECa values varied 0 to little values
above 30 %. Overall, the ECa was below 5 % at most of the study area,
with the exception of higher values in regions of lower altitude, mainly
over the plains with fluvial sediments. At last, the k predicted contents
with RF varied from 0 to 80 kg m® kg ~! and were strongly related to the
parent material spatial distribution, with the greatest and lowest values
found over the diabase and siltstone rocks, respectively (Fig. 6).

Regarding the uncertainty, most maps presented values of coefficient
of variation predominantly below 5 %, which indicates a low uncer-
tainty. The eU and eTh predictions presented the best results, with un-
certainty not exceeding more than 2 % in the entire study area. In turn,
the greatest uncertainties were observed for the x and ACE, which
reached maximum values of coefficient of variation of 20 % (Fig. 7).

4. Discussion
4.1. Model performance evaluation

The methodological framework using the nested-LOOCV optimised
the prediction of soil geophysical variables using a small number of
samples, besides providing reliable performance results. Regarding the
gamma-ray spectrometric variables, the RF algorithm best predicted K*°
while the SVM algorithm best predicted eU and eTh. Our results are
similar to those found by Viscarra Rossel et al., (2014), who also used the
RF algorithm to predict K*® in soils from Tasmania, reporting an R? of
0.43. On the other hand, Cracknell and Reading (2014) stated that the
RF algorithm was the best model for multiclass inference using widely
available, high-dimensional multisource remotely sensed geophysical
variables.

The high importance of the parent material predictor aligns with
findings from Dickson and Scott, (1997), Wilford et al. (1997), and
Wilford and Minty, (2006), who demonstrated a strong relationship
between K*° and soil parent materials. Mello et al. (2023a), (2023b) also
observed that greater soil weathering, influenced by relief and water
movement, results in lower K*® values due to increased K leaching.
However, our spatial prediction indicated that parent material had a
greater influence than weathering and topography in explaining the
distribution of K*’. The lowest K*° values were found in areas with
siltstones, rocks naturally poor in K due to the pre-weathering. In turn,
the highest K*° values were found for metamorphosed siltstones, indi-
cating that the thermal metamorphism that affected parts of the siltstone
promoted enrichment in K, probably from hydrothermalism (Soares
et al., 2004; Rosales et al., 2019).

The low R? of the RF model for eU and eTh disagrees with results
obtained by Anic and Dragovic (2005) who found an R?> 0.90 using a
different approach (neural network algorithm), and Sousa et al. (2020),
who used an RF algorithm that efficiently predicted eU and eTh (R? >
0.90). However, it is important to highlight that these authors used data
from an airborne gamma sensor to estimate radionuclide values, which
correlations are high, justifying the high R? values found by the authors.

There are several possible explanations for the low performance of
eU and eTh. The studied area is very heterogeneous regarding the parent
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material (four lithological classes) and soil types (six soil classes in
184 ha) (Mello et al., 2020, 2021). In-situ evaluation brings several
uncontrolled factors such as rocks or fragments, soil mixture with plant
residue, fertilizers and different moisture conditions that could impact
the prediction and reduce the R2. Other possible explanations for the low
R? are related to the various effects of field sampling data and larger
variations in mineralogy, soil type, pedogenesis and their interactions
(Mello et al., 2021).

The lithological covariate was also very important to the eU and eTh
predictions. The eU contents were clearly lower in the diabase area
where Mello et al. (2023a), (2023b) identified the greatest weathering
and leaching rates. Uranium is considered high mobility under oxidizing
conditions (Modena et al., 2016). Its increased remotion with leaching
from the higher parts of the study area, where the greater weathered and
drained soils are located, corroborates the great importance of DEM as a
predictor. The importance altitude is also revealed with the greater
contents of uranium in the lower parts of the study area, indicating that
the accumulation of uranium leached from the higher parts. Among the
parent materials, the diabase was the most important class, and the
natural lowest contents of uranium of this lithology can be pointed out
as another factor to explain the lowest eU contents, since mafic rocks
(with the lowest contents of silica) tend to present lower contents of
uranium (Modena et al., 2016).

Although lithology was also relevant for this attribute, the eTh
contents did not present significant spatial differentiations related to the
lithology. By studying the relationship between gamma ray spectro-
metric attributes and rock weathering in Southern Brazil, Modena et al.
(2016) also did not find significant differences between distinct lithol-
ogies. Different from uranium, thorium is a relatively immobile element
that tends to accumulate in soil according to weathering progress. The
spots of lower thorium contents observed in this study had a strong
spatial correlation with the zones of less weathered and developed soils
as found by Mello et al. (2023a), (2023b). The authors associated the
lower weathering in this part of the study area with the great slope,
which limits the pedogenesis through erosive processes. This idea is
corroborated by the importance of curvature covariates in our study.
The erosion in steep slopes is also responsible for the remotion of the
immobilized thorium, which is removed with the clastic sediments.

In relation to x, the RF and SVM models presented satisfactory per-
formance, with R? of 0.5, indicating 50 % of the total data variance
explained by the models, which produces more reliable predictions. The
greatest performance of the k models is related to the strong relationship
between soil k and the parent material, clay and total iron content (Mello
et al., 2020; Siqueira et al., 2010), variables that are directly or indi-
rectly related to the covariates used in this work. According to Blundell
et al. (2009) a range of 36 % - 46 % of the variances in the magnetic
parameters can be explained by the parent material and drainage
network.

The nature of mafic parent rock drives the content of magnetic
minerals (Ayoubi et al., 2019; Karimi et al., 2017; Teixeira et al., 2018)
and the formation of secondary ferrimagnetic minerals (Jordanova,
2016; Mullins, 1977) responsible for the soil x (Dearing, 1999). This
explains the greatest k contents found over diabase in the study area,
dominated by highly weathered Nitisols with clayey B horizons rich in
iron oxides (Mello et al., 2023a, 2023b). In turn, the great importance of
variables such as DEM and STANH highlights the greater contribution of
the topography to the formation of more weathered soils in the higher
parts of the study area. According to Mello et al. (2022b) ferralitization
dominated in this area. The desilication and concentration of iron oxides
in chemically strongly leached soils, tend to contribute to the greater
values of soil .

Finally, the prediction model of the ECa was the worst among all
geophysical attributes. The lowest R? for the ECa could be related to the
small number of collected samples that do not represent the different soil
salinity spatial patterns, as reported by Johnston et al. (1997) and Lesch
et al. (1992). Soil ECa is usually strongly related to the soil texture,
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mainly the clay content (Brus et al., 1992; Weller et al., 2007), which is
also related to the parent material. Although parent material was an
important covariate for the ECa prediction, the spatial variability of the
final ECa maps does not follow the lithology trend, but the relief. The
largest ECa were found on areas of lower altitude, mainly associated
with the fluvial sediments of the edges of the study area. This reveals the
important function of the topography in redistributing salinity from the
higher to lower zones in tropical lands, independent of the parent ma-
terial. The incorporation of salinity-related soil attributes, such as clay
contents, is a strategy to improve the ECa prediction (Brus et al., 1992;
Harvey and Morgan, 2009).

5. Conclusions

Machine learning algorithms produced reliable results for spatially
predicting soil geophysical attributes, outperforming null models based
on mean values. The null model serves as an effective benchmark for
evaluating machine learning outcomes, demonstrating the potential of
these models even when R? values are low. The use of the nested-LOOCV
method proved suitable for soil and geophysical datasets with limited
samples, providing a robust approach for model performance evaluation
and optimizing algorithm training and testing. Moreover, maps gener-
ated with nested-LOOCV showed greater spatial consistency, supported
by improved results interpretation.

The RF and SVM algorithms presented the best results. Parent ma-
terial and DEM were the covariates that most contributed to the pre-
diction and controlled the estimated spatial variability of the
geophysical variables (K*°, eU, eTh, ECa and «).

Machine learning techniques are valuable tools for modeling soil
geophysical variables, especially in scenarios with limited observations.
The integration of proximal sensing with computational methods high-
lights the importance of geophysical measurements for estimating other
labor-intensive soil attributes (e.g., chemistry, texture, mineralogy),
providing critical insights into soil genesis and fertility. This demon-
strates the strong potential of geophysical techniques in advancing soil
science.
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