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Abstract
Additive partial linear models with symmetric autoregressive errors of order p are
proposed in this paper for modeling time series data. Specifically, we apply this model
class to explain the weekly hospitalization for respiratory diseases in Sorocaba, São
Paulo, Brazil, by incorporating climate and pollution as covariates, trend and season-
ality. The main feature of this model class is its capability of considering a set of
explanatory variables with linear and nonlinear structures, which allows, for exam-
ple, to model jointly trend and seasonality of a time series with additive functions
for the nonlinear explanatory variables and a predictor to accommodate discrete and
linear explanatory variables. Additionally, the conditional symmetric errors allow the
possibility of fitting data with high correlation order, as well as error distributions
with heavier or lighter tails than the normal ones. We present the model class and a
novel iterative process is derived by combining a P-GAM type algorithm with a quasi-
Newton procedure for the parameter estimation. The inferential results, diagnostic
procedures, including conditional quantile residual analysis and local influence anal-
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ysis for sensitivity, are discussed. Simulation studies are performed to assess finite
sample properties of parametric and nonparametric estimators. Finally, the data set
analysis and concluding remarks are given.

Keywords Cubic splines · Cyclic splines · Robust estimation · Penalized likelihood ·
Climate · Hospitalization

Mathematics Subject Classification 62G08 · 62J05 · 62J20

1 Introduction

In this paper we propose additive partial linear models with p-order autoregressive
symmetric errors for modeling time series, which may include linear and nonlinear
structures of explanatory variable sets as well as the conditional symmetric errors up
to order p. This model class generalizes the previous ones proposed by Relvas and
Paula (2016) and Oliveira and Paula (2021).

An advantage of this model class is the possibility of including linear and additive
terms in the systematic component of the model. For example to assess the effect of
covariates on the mean response by controlling the trend and seasonality of the time
series. In addition, the assumption of symmetric error distributions allows kurtosis
flexibility and consequently the application of a wide class of error distributions with
heavier and lighter tails than the ones of the normal distribution. The P-GAM iterative
process is being proposed in this paper for estimating the parametric and additive
components in a simplerway than the traditional backfitting algorithm. However,when
the number of nonlinear explanatory variables is large, a more appropriate approach
rather than an additive function for each nonlinear variable is to accommodate all
explanatory variables into the samepredictor, named single-index term, that ismodeled
by a unique additive function. Since the paper byYu and Ruppert (2002) a wide variety
of papers has been published on the single-index approach. In the context of time series
one has, for instance, the proposal of a novel partial-linear single-index model with
autocorrelated errors (Huang et al. 2016, 2019) and studies on partially linear single-
index spatial autoregressive models (Cheng et al. 2019).

Time series data on air pollution, weather conditions and measures of health out-
comes (e.g., mortality, hospital admissions) have been modeled to assess how external
(pollution, environmental) factors may contribute to increase in morbidity (Bhaskaran
et al. 2013). To date, numerous time series analysis have been showing that extreme
weather such as, low or high temperatures, relative humidity and air pollution mea-
sures are associated with increased risks for a variety of health outcomes (Basu and
Samet 2002; Basu 2009; Ye et al. 2012). Respiratory diseases have been representing
a huge burden on primary health resources (Lim et al. 2023). COVID-19 studies have
showed associations between temperature, relative humidity and stability and trans-
missibility. Flexible time series model may contribute with the appropriate public
health mitigation for outbreak readiness and guide healthcare resources planning.
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Additive partial linear models... 5147

The inclusion of linear covariates in the proposed model could be beneficial for
understanding the linear effects of external factors, in addition to temporal information
such as trend and seasonality.

We illustrate in this paper the application of the proposed model class for analyzing
the weekly data of respiratory disease hospitalizations associated with climate and air
pollution in the city of Sorocaba, São Paulo, Brazil.

The paper is organized as follows. Section 2 presents the model class, some of
its properties and the derivation of the penalized likelihood function. In Sect. 3 a P-
GAM type iterative process for the estimation of the parametric and nonparametric
components is derived that is combined with a quasi-Newton procedure for the corre-
lation structure estimation. Discussion on the derivation of the approximate standard
errors, simultaneous confidence intervals and effective degrees of freedom are given.
Section4 describes diagnostic procedures, including residual analysis and sensitivity
studies based on local influence. Simulation studies for evaluating the small and large
sample behavior of the proposed methodology are described in Sect. 5. The proposed
methodology is applied in Sect. 6 for analyzing the data set on weekly hospitalization.
Finally, concluding remarks are given in the last section whereas various technical
results are given as supplementary materials.

2 Themodel

Let y1, ..., yn be the arranged responses in time. We propose the following additive
partial linear model to explain the mean response:

yi = x�
i β + f1(ti1) + . . . + fk(tik) + εi ,

εi = ρ1εi−1 + ρ2εi−2 + . . . + ρpεi−p + ei , (1)

where xi = (1, xi2, . . . , xir0)
� contains the intercept and r0 − 1 explanatory variable

values, β denotes a p-dimensional vector with the coefficients of the parametric com-
ponent, f1(ti1), . . . , fk(tik) are smoothing functions, that may represent either trend
or seasonality, ti1, . . . , tik denote time units, for example, daily, weekly or monthly
data, whereas the error term is correlated up to p lag, that is ρ1, . . . , ρp are the autore-
gressive coefficients and ei are iid zeromean symmetric errors of dispersion parameter
φ, that is, ei∼S(0, φ), for i = 1, . . . , n. Model class (1) will be named additive partial
linear model with autoregressive symmetric errors of order p.

The probability density function of a symmetric random variable ei is given by

he(ei ) = 1√
φ
g(δi ), ei ∈ R,

with δi = φ−1e2i , and g : R → [0,∞), known as a density generator, satisfying
∫ ∞
0 u− 1

2 g(u)du = 1.When they exist, we have E(ei ) = 0 andVar(ei ) = ξφ, with ξ >

0 being a constant that is obtained from the expected value or from the characteristic
function. This class includes some well known symmetric distributions, including
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normal, Student-t , logistic I and II and power exponential (Fang and Anderson 1990;
Cysneiros and Paula 2005, see, for instance).

We propose the use of cubic or cyclic splines (Wood 2017) to approximate the
smooth functions f1(ti1), ..., fk(tik) with fixed knots t01� < · · · < t0m��

, � = 1, . . . , k,
respectively. In this way, model (1) may be written in matrix notation as follows:

y = Xβ + N1γ 1 + . . . + Nkγ k + ε, (2)

where y is n-dimensional vector of response variables, X denotes the (n × r0)
model matrix with rows x�

i (intercept and r0 − 1 covariates) and parameter vector
β = (β1, . . . , βr0)

�, N� are (n × r�) base function matrices with rows ηi�(ti�) =
(
η1�(ti�), . . . , ηr��(ti�)

)�, whose elements depend on the respective knots, whereas
γ � = (γ1�, . . . , γr��)

� are the parameter vectors, for i = 1, . . . , n and l = 1, . . . , k.
Therefore, one has the model matrices

X =

⎡

⎢
⎢
⎢
⎣

1 x12 . . . x1r0
1 x22 . . . x2r0
...

...
. . .

...

1 xn2 . . . xnr0

⎤

⎥
⎥
⎥
⎦

e N� =

⎡

⎢
⎢
⎢
⎣

η1�(t1�) . . . ηr��(t1r� )
η1�(t2�) . . . ηr��(t2r� )

...
. . .

...

η1�(tn�) . . . ηr��(tnr� )

⎤

⎥
⎥
⎥
⎦

,

where l = 1, 2, . . . , k.
Some properties for the model (1) can be derived.

1. For the first observation, y1 ∼ S(μ∗
1, φ) one has that

μ∗
1 = E(y1) = f1(t11) + · · · + fk(t1k)

= x�
1 β + η�

11(t11)γ 1 + · · · + η�
1k(t1k)γ k .

2. For the conditional distribution yi | yi−1, . . . , ymax(i−p,1)∼S(μ∗
i , φ) it follows

μ∗
i = E(yi | yi−1, . . . , ymax(i−p,1))

= x�
i β + η�

i1(ti1)γ 1 + · · · + η�
ik(tik)γ k +

min(i−1,p)∑

j=1

ρ j {yi− j − x�
(i− j)β

− η�
(i− j)1(t(i− j)1)γ 1 − · · · − η�

(i− j)k(t(i− j)k)γ j },

for i = 2, . . . , n.
3. In general, the marginal mean is given by

μi = E(yi ) = x�
i β + η�

i1(ti1)γ 1 + · · · + η�
ik(tik)γ k, i = 1, . . . , n.
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4. The marginal variance of the model with AR(p) error may be expressed as

Var(yi ) = ξφ + ξφ

i−1∑

j=1

ρ2
jVar(yi− j ) + 2

i−1∑

j=1

i−1∑

j ′=1
j 
= j ′ j< j ′

ρ jρ j ′Cov(yi− j , yi− j ′).

5. The covariances between two observations assume the forms

(a) For j = i − 1,

Cov(yi , yi− j ) = Cov(yi , y1) =
p∑

l=1

ρlE(yi−1e1).

(b) For j = i − 2,

Cov(yi , yi− j ) = Cov(yi , y2) = ρ2
1Cov(yi−1, yi− j−l) +

p∑

l=1

ρlE(yi−l ek)

+ ρ1

p∑

l=2

ρlCov(yi−l , y1).

(c) For j = i − p,

Cov(yi , yi− j ) = Cov(yi , yp) =
p−1∑

l=1

ρ2
l Cov(yi−l , yk−l) +

p∑

l=1

ρlE(yi−l ek)

+
p∑

l=1

p−1∑

l ′=1
l 
=l ′

ρlρl ′Cov(yi−l , yk−l ′).

(d) For j < i − p = k,

Cov(yi , yi− j ) = Cov(yi , yk) =
p∑

l=1

ρ2
l Cov(yi−l , yk−l) +

p∑

l=1

ρlE(yi−l ek)

+
p∑

l=1

p∑

l ′=1
l 
=l ′

ρlρl ′Cov(yi−l , yk−l ′).

The proposed model class may be applied to study at least three practical situations.
First, when there are nonlinear relationships between the response and continuous
explanatory variables, that may be modeled by additive functions. Second, when the
interest is on the study of the explanatory variable effects in a parametric way, but
controlling trend and seasonality of the time series by additive functions. Third, when
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the interest is to assess the trend of the time series by some additive function control-
ling the seasonality by cyclic additive functions. So, since the proposed model class
assumes p-order autoregressive errors with kurtosis flexibility, one has a wide class
of symmetric models to analyze data sets from these practical situations.

2.1 Penalized likelihood function

By defining θ = (γ �
0 , γ �

1 , . . . , γ �
k , φ, ρ1, . . . , ρp)

� ∈ � ⊆ Rr , where γ 0 = β with
r = r0 + r1 + . . .+ rk + p+1 the number of estimated parameters, the log-likelihood
function of θ is given by

L(θ) = −n

2
log(φ) +

n∑

i=1

log{g(δi )}. (3)

Since maximizing (3) without restrictions on the nonparametric functions can lead
to overfitting and unidentifiable parameters, a penalty function for each nonparametric
component must be incorporated. By assuming these functions continuous and their
second derivative integrable, the penalized log-likelihood function is defined by

Lp(θ ,λ) = L(θ) − λ1

2

∫ b1

a1

[
f ′′
1 (t)

]2
dt − . . . − λk

2

∫ bk

ak

[
f ′′
k (t)

]2
dt, (4)

which includes penalties of second derivative for a� ≤ t ≤ b�, with a� and b� defined
according to the domain of each �’s smoothing function, and λ� > 0 being the smooth-
ing parameters that are estimated separately, � = 1, . . . , k.

It may be showed that

∫ b�

a�

[
f ′′
� (t)

]2
dt = γ �

� M�γ �,

where M� = D�
� B

−1
� D� are non-negative definite matrices of dimensions (rl × r�),

named penalty matrices (Lancaster and Salkauskas 1986; Wood 2017), � = 1, . . . , k,
which are defined according to the knots (see Table 5.1 inWood 2017). Consequently,
the penalized log-likelihood function can be expressed by

Lp(θ ,λ) = L(θ) − λ1

2
γ �
1 M1γ 1 − . . . − λk

2
γ �
k Mkγ k, (5)

where λ = (λ1, . . . , λk)
� are the smoothing parametric vector. In the following

section, a joint iterative process, combining a P-GAM type iterative process and a
quasi-Newton algorithm, is proposed for obtaining the maximum penalized likeli-
hood estimate (MPLE) θ̂ by maximizing (5) for fixed λ. The Sect. 3.3 describes two
methods to optimize the parameters λ in order to select an appropriate smoothing
parameter.
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3 Parameter estimation

The traditional and elegant iterative process for deriving the MPLE of γ = (γ �
0 , . . . ,

γ �
k )� is the backfitting (Gauss–Seidel) algorithm that has been largely applied in

various classes of additive models (Hastie and Tibshirani 1990; Green and Silverman
1994, see, for instance).However, this algorithmmayget slowas thenumber of additive
components increases and particularly for correlated data, such as time series. So,
similarly to Cardozo et al. (2022) we develop a joint iterative process, that combines
the P-GAM algorithm proposed by Marx and Eilers (1998) with a quasi-Newton
algorithm, for obtaining the MPLE θ̂ .

From Section S.1 of Supplementary Materials (SM), the score function for γ may
be expressed as

Uγ
p = φ−1N�

ADv(Ay − NAγ ) − Mγ (λ)γ ,

where NA = (AN0,AN1, . . . ,ANk)
�, A is a correlation matrix whereas Dv =

diag{v1, . . . , vn} with vi > 0 being weights that depend on the error distribution
and Mγ (λ) = blockdiag

{
0r0 , λ1M1, . . . , λkMk

}
. Then, by fixing ρ and λ, the pro-

filed MPLE of γ may be obtained by setting Uγ
p = 0 whose solution leads to the

following iterative process:

γ (u+1) =
{
N�

AD
(u)
v NA + φMγ (λ)

}−1
N�

AD
(u)
v yd , (6)

for u = 0, 1, . . ., where yd = Ay works as a dependent variable. It is assumed that
NA is a full column rank matrix, which guarantees the identification of the additive
functions in (1). The profiled MPLE of ξ = (ρ�, φ)� may be obtained as

ξ (s+1) = argmax
(ρ,φ)

Lp(γ
(s+1), ρ, φ,λ) (7)

for s = 0, 1, 2 . . ., where γ (s+1) corresponds to the profiled MPLE of γ , obtained
at the (s + 1)th convergence of the iterative process (6). Equation (7) may be solved
by applying the quasi-Newton Broyden–Fletcher–Goldfarb–Shanno (BFGS) method
(Davidon 1991; Mittelhammer et al. 2000) or the “L-BFGS-B” (Byrd et al. 1995)
procedure. The MPLEs γ̂ and ξ̂ are obtained by combining the iterative processes (6)
and (7).

Then, by fixing λ and defining the matrices N1, . . . ,Nk and M1, . . . ,Mk as well
as the respective knots, we propose the following algorithm to obtain θ̂ :

1. Set the counter u to zero and the initial values γ (0) and ρ(0).
2. Performing the iterative process (6) for obtaining the profiled MPLE of γ .
3. Given the profiled MPLE of γ obtained from the (s + 1)th convergence of the

iterative process (6), obtaining the profiled MPLE of ξ from (7).
4. Alternating the iterative processes (6) and (7) until the joint convergence for obtain-

ing the MPLE θ̂ .
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5152 S. W. Chou-Chen et al.

In particular, for normal error, one has Dv = In and consequently the profiled

MPLE of γ , given ρ and λ, takes the form γ̂ = {
N�

ANA + φMγ (λ)
}−1

N�
Ayd , that

should be iterated with (7) until the convergence.

3.1 Inferential results

The asymptotic normality of the MPLE γ̂ with variance–covariance matrix Var(̂θ) =
(Iθθ

p )−1, whereIθθ
p denotes the penalized Fisher informationmatrix for θ , has support

in the Bayesian approach for linear models, as pointed by Wood (2017). In addition,
simulation studies performed by Oliveira and Paula (2021) for additive models with
autoregressive symmetric errors give support for the consistency of the MPLEs ρ̂ and
φ̂ as well as for the MPLEs of the additive functions.

One has orthogonality among the parameters γ , ρ and φ (see Sections S.2 and S.3
from SM). So, the asymptotic variance–covariance matrix for γ̂ takes the form

Var(γ̂ ) = (Iγ γ
p )−1 =

{4dg
φ

N�
ANA + Mγ (λ)

}−1
,

whereas the asymptotic variance of φ̂ becomes given by Var(φ̂) = (Iφφ
p )−1 =

4φ2/[n(4 fg − 1)], where dg and fg are constants that depend on the symmetric
distribution. Similarly, one may derive the asymptotic variance–covariance matrix
for ρ̂ as Var(̂ρ) = (Iρρ

p )−1 whose elements are given in Section S.3 (SM). Finally,
pointwise asymptotic confidence bands for the additive functions at the knots, namely
( f�(t01�), . . . , f�(t0m��

))� for � = 1, . . . , k, may be constructed by using the approach
described in Vanegas and Paula (2016).

3.2 Effective degrees of freedom

Given that penalizing the smoothing functions f1(t1), ..., fk(tk) contributes to a shrink-
age of the MPLEs γ̂ 1, . . . , γ̂ k with respect to the unpenalized MLEs, obtaining the
effective degrees of freedom according to the MPLEs is essential for model selection
and inferential procedures, such as hypothesis testing. The idea, similarly to the linear
regression, is to assess the cost of estimating the linear predictor N̂Aγ̂ from the depen-

dent response variable ŷd . Then, since one may express N̂Aγ̂ = D̂
− 1

2
v Ĥ(λ)D̂

1
2
v ŷd ,

where

Ĥ(λ) = D̂
1
2
v N̂A

{
N̂�

A D̂vN̂A + φMγ (λ)
}−1

N̂�
A D̂

1
2
v ,

the effective degrees of freedom may be estimated as the sum of the eigenvalues

of the linear smoother D̂
− 1

2
v Ĥ(λ)D̂

1
2
v that corresponds to its trace [see, for instance,

Chapter 5 in Hastie and Tibshirani (1990); Green and Silverman (1994) and Wood
(2017)]. Thus, the effective degrees of freedom according to γ̂ are given by dfs(λ) =
tr{D̂− 1

2
v Ĥ(λ)D̂

1
2
v } = tr{Ĥ(λ)}.
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One may establish the relationship (Eilers and Marx 1996)

dfs(λ) =
r0+r1+...+rk∑

i=1

1

1 + αi (λ)
,

with αi (λ) ≥ 0 the eigenvalues of the non-negative definite matrix Q− 1
2Mγ (λ)

Q− 1
2 and Q

1
2Q

1
2 = N̂�

A D̂vN̂A, for i = 1, . . . , r0 + r1 + . . . + rk . The effective
degrees of freedom dfs(λ0), dfs(λ1), . . . , dfs(λk) estimated for the parameter esti-
mates γ̂ 0, γ̂ 1, . . . , γ̂ k correspond, respectively, to the sum of the first r0, followed by
the sum of the next r1 until the sum of the last rk eigenvalues of the linear smoother
Ĥ(λ). Consequently, the total effective degrees of freedom of the fitted model is
obtained by df(λ) = dfs(λ) + p + 1.

3.3 Smoothing parameter

The estimation of the smoothing parameter λ may be performed by some information
criterion, generalized cross-validation or direct maximization of the penalized log-
likelihood function. Thus, for a grid of λ values, the MPLE of θ may be obtained by
minimizing either the Akaike or the Schwarz criteria, respectively, defined as

AIC(λ) = −2Lp(θ,λ) + 2df(λ) and BIC(λ) = −2Lp(θ ,λ) + log(n)df(λ).

As another option, the generalized cross-validation method (Wood 2017), which is
defined by minimizing the function

GCV(λ) = n
∑n

i=1{yi − Ê(yi )}2
{n − df(λ)}2

may be applied, as well as the faster criterion of maximizing the function

Lp(γ
(s+1), ρ(s+1), φs+1),λ)

after each cycle of the algorithm (6) and (7). For example, by using the procedure
optim available in the R package.

4 Diagnostics methods

Once the model is selected and fitted, diagnostic procedures are recommended to
assess the model adequacy and possible presence of atypical observations.
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4.1 Residual analysis

Residual analysis is being applied in statistical modeling to assess important devia-
tions from the model assumptions as well as to identify outliers. Quantile residuals
(Dunn and Smyth 1996), originally proposed for assessing goodness of fit in statis-
tical models under independent observations, have been largely applied and may be
extended to correlated data, such as in multivariate and time series models, as pointed
out by Barros and Paula (2019). Such residuals are derived in these models from the
conditional cumulative function distributions of the responses. Specifically, for the
additive partial linear model (2), we denote the conditional cumulative distribution
functions by Fy1(y1; θ), Fy2|y1(y2; θ), . . . , Fyn |(y1,...,yn−1)(yn; θ) and the conditional
quantile residuals by rq1 = �−1{Fy1(y1; θ̂)}, rq2 = �−1{Fy2|y1(y2; θ̂)}, . . . , rqn =
�−1{Fyn |(y1,...,yn−1)(yn; θ̂)}, where �(·) is the cumulative distribution function of the
N(0, 1). For large n, the conditional quantile residuals, rq1, . . . , rqn , are independent
distributed as the standard normal distribution. So, the qqplot between the conditional
quantile residuals and the quantiles of the N(0, 1) may be employed to assess devia-
tions from the model error assumptions. Another usual graph, between the conditional
quantile residuals and time, may be also applied to assess the error variability control
over time.

4.2 Sensitivity analysis

The aim of sensitivity analysis is to assess the effects of perturbations in the model
and/or data, on the parameter estimates. The likelihood displacement LD(δ) =
2{Lp (̂θ,λ) − Lp (̂θ δ,λ)}, where θ̂ δ is the MPLE under the perturbed penalized log-
likelihood function Lp(θ,λ|δ), with δ = (δ1, . . . , δn)

� denoting the perturbation
vector, is usually considered as the influence measure in additive partial linear models
(see, for instance, Oliveira and Paula 2021).

In the context of linear models with autoregressive symmetric errors, Liu (2000,
2004) presents derivations and applications of the local influence procedure. In the
sequel, curvatures of local influence are derived in arbitrary (n× 1) unitary directions
‖�‖ = 1 and evaluated at the MPLE θ̂ and δ0 (the no perturbation vector).

The conformal normal curvature of local influence, proposed by Poon and Poon
(1999), is defined as

C�(θ) = ��C�/
√
tr(C2),

where 0 ≤ C�(θ) ≤ 1, C = 
�{(−L̈θ̂ θ̂
p )−1}
 with −Lθθ

p being the observed infor-
mation matrix of θ , tr(C2) = ∑n

i=1 α2
i with α1, . . . , αn being the eigenvalues of C

and 
 = (
�
0 ,
�

1 , . . . ,
�
k ,
�

k+1,

�
k+2, . . . ,


�
k+p+1)

� is a (r0 + r1 + . . . + rk +
p + 1 × n) matrix that contains sub matrices related with the perturbation schemes
(derivation in Section S.4 of SM).

Several diagnostic graphs may be derived here. For instance, by denoting the nor-
malized eigenvalues as α̂max = α̂1 ≥ · · · ≥ α̂k ≥ q/

√
n > α̂k+1 ≥ · · · ≥ α̂n ≥ 0, an
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aggregate influence measure for every q influential eigenvector is defined as

m(q)i =
√√
√
√

k∑

j=1

α̂ j e2j i ,

where e ji is the i th component of the j th eigenvector e j corresponding to the j th
normalized eigenvalue α̂ j , for i = 1, . . . , n, j = 1, . . . , k and q = 0, 1, 2, . . .. The
index plot of m(q)i is suggested by Poon and Poon to expose those observations that
are q-influential, that is, influential for all eigenvectors, so that Ce j (θ) ≥ q/

√
n.

To be precise, if our focus is on assessing the conformal normal curvature along
the direction of the i th observation, denoted by the (n × 1) vector di , which consists
of zeros with a value of 1 in the i th position, we have

Cdi (θ) = Ci = m2(0)i =
n∑

j=1

α̂ j e
2
j i ,

which matches to the square of the cumulative contribution of the orthonormal eigen-
vectors.A cutoff criterion, proposed byLee andXu (2004), assesses those observations
such that Ci > C + cSD(C) to be possible influential, where C̄ and SD(C) denote,
respectively, the mean and standard deviation of {Ci , i = 1, . . . , n} and c is a cutoff
value defined appropriately.

For a particular partition θ = (θ�
1 , θ�

2 )� with θ1 defined as the interest, e.g. θ1 = γ ,
θ1 = φ or θ1 = ρ, we may determine the conformal normal curvature as

C�(θ1) = ��C1�/

√
tr(C2

1),

where 0 ≤ C�(θ1) ≤ 1, C1 = 
�{(−L̈θ̂ θ̂
p )−1 − Gθ̂2 θ̂2

p }
 with Gθ2θ2
p = Gθ2θ2

p =
blockdiag{0, (L̈θ2θ2

p )−1}. Therefore, the index plot of Ci (θ1) can be performed.
In general, some confirmatory analysis is recommended to verify if the pointed out

observations from the sensitivity graphs are, in fact,more influential than the remaining
observations. In some regression analysis, for example, the impact of dropping the
pointed out observations is compared with the impact of dropping a sample of not
highlighted observations. However, this procedure is not usual in time series models.
So, the useful of the sensitivity graphs in this work is in the sense of model selection.
Such models for which the parameter estimates are more resistant to the perturbation
schemes are candidates to be chosen.

5 Simulation studies

In this section, we carry out simulation studies to evaluate the small and large sample
behavior of the proposed estimation method of the model (1). The observations are
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generated using the model with r0 − 1 = 2 covariates and k = 2, that is

yi = β1 + β2xi1 + β3xi2 + f1(ti ) + f2(ti ) + εi ,

εi = ρ1εi−1 + ρ2εi−2 + . . . + ρpεi−p + ei , (8)

where ei∼S(0, φ), f1(ti ) = −30 cos (π ti ) and f2(ti ) = 10 sin (2π ti )with ti = t
T , for

i = 1, ..., n. For the parametric part, we assume β1 = 5, β2 = 3, β3 = 2 and φ = 5.
The covariates xi1 and xi2 are generated independently from a uniform distribution in
the interval [0, 3].

For the error structure, normal (N), Student-t with ν = 3 (t3) and power exponential
with light tail (PE1) and heavy tail (PE2), that is, with shape parameter κ = −0.3 and
0.5, respectively, are assumed. Moreover, we consider p = 1 with ρ = −0.6, 0.5,
and p = 2 with (ρ1, ρ2) = (−0.5,−0.3) and (0.6, 0.2). In total, 16 scenarios are
simulated for different sample sizes, namely n = 100, 500, 1000, based on R = 5000
independent replications.

To assess the estimation properties of the parametric part (β1, β2, β3, φ, ρ), the
Monte Carlo (MC) mean, the bias and the mean squared error (MSE) are computed

as bias = ¯̂
θ − θ and MSE = ∑R

r=1(θ̂
(r) − ¯̂

θ)2/R, with ¯̂
θ being the MC mean for a

specific parameter θ . On the other hand, the consistency of the additive functions ( f1
and f2) are evaluated by computing the average estimates ¯̂f1 and ¯̂f2.

The results are summarized in Section S.5 of the SM. Tables S.1 and S.2 show that
the bias and MSE of all estimates, except for φ, decrease as the sample size increases,
indicating consistency. Specifically for φ, the bias does not seem to decrease, while the
MSE becomes smaller as n increases. On the other hand, we observe that the average

estimates of ¯̂f1 and ¯̂f2 converge to the true functions f1 and f2, respectively (Figs.
S.1 and S.2 of SM).

6 Application

We illustrate the proposed model with the application of the weekly count of hospi-
talization due to respiratory diseases in an epidemiological week, in Sorocaba from
January 1st 2005 to November 28, 2022. Figure1 shows the hospitalization time series
and its monthly empirical distribution. A positive trend is visualized in the first figure
and both figures show a strong seasonal effects, which high hospitalization from April
to August may be due to the winter season. We are interested in modeling the effect
of climatic variables on the hospitalization due to respiratory diseases.

6.1 Model selection

In order to incorporate the trend and seasonality into the model, we eliminate the week
53 in some of the years, in order to standardize 52 weeks in each year. In total, we have
935 weeks. Then, we model the data using the model (1) by considering the following
explanatory variables:
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Fig. 1 The time series of respiratory hospitalizations and its empirical distribution in Sorocaba from January
2005 to November 2022

1. r0 −1 = 24 environment covariates, that include the weekly maximum, minimum
and average of the following covariates: particulate matter 10 micrometers or less
in diameter (PM10), nitrogen monoxide (NO), nitrogen dioxide (NO2), nitrogen
oxides (NOx ), ozone (O3), air temperature (TEMP), daily temperature amplitude
(AMPLtemp) and relative humidity (RH).

2. f1(timei ) and f2(weeki ), smooth functions approximated by cubic regression
and cyclic cubic regression splines, respectively, in order to model the trend and
seasonality of the data.

Following the recommendation from Ruppert et al. (2003), we set r1 =
min {(1/4) · 935, 35} = 35 and r2 = min {(1/4) · 52, 35} = 13 equidistant knots
for f1 and f2, respectively. At this initial stage, we set smoothing parameters as
(λ1, λ2) = (100, 10).

Then, we execute the forward stepwise algorithm using 10% of significance
level, assuming AR(5) normal error structure, in order to select the most significant
covariates in the linear parametric part. The reduced model contains five covariates:
weekly average of PM10 (PM10avg), minimum of NO2 (NO2,min), maximum of NO2
(NO2,max), average of NO (NOavg) and the minimum of relative humidity (RHmin), in
order of inclusion. Similar results were obtained under p ≤ 5 and with Student-t and
Power Exponential error models.

In addition,wefix the parametric structurewith these five covariates and the additive
part and fit themodel under three different error structures: Normal, Student-t with ν =
5, 10, 15 and Power Exponential with shape parameter κ = 0.1, 0.3, 0.7. Moreover,
autoregressive error term up to p = 5 is considered. Table 1 shows the goodness of
fit measures of all combinations. Both AIC and BIC (in bold) indicate that the best
model is the Student-t with ν = 10 and AR(4) error structure, described as following:

yi = β1 + {
PM10avg

}
i · β2 + {

NO2,min
}
i · β3 + {

NO2,max
}
i · β4 +

+{
NOavg

}
i · β5 + {RHmin}i · β6 + f1(timei ) + f2(weeki ) + εi , (9)
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Table 1 Goodness of fit measures of the model under Normal, Student-t with ν = 5, 10, 15 and Power
Exponential with shape parameter κ = 0.1, 0.3, 0.7 and AR(p) error structure up to p = 5, fitted to the
hospitalization time series

Information AR structure
Criteria Error p = 1 p = 2 p = 3 p = 4 p = 5

Normal 7528.8660 7451.2774 7434.5763 7430.1617 7432.1606

t5 7538.6168 7457.0348 7431.0665 7423.4061 7423.4061

t10 7523.1181 7444.2018 7421.6561 7415.3582 7415.3582

AIC t15 7521.6953 7443.5118 7422.4434 7416.7664 7416.7664

PE0.1 7525.8424 7446.2160 7427.2506 7422.0210 7422.0210

PE0.3 7530.5659 7446.5169 7423.9540 7417.0719 7417.0719

PE0.7 7563.6926 7471.8848 7445.9465 7435.1780 7435.1780

Normal 7586.4291 7510.8021 7498.5436 7499.0501 7505.8575

t5 7598.9541 7519.0809 7497.3928 7494.7580 7501.4115

t10 7582.3829 7505.3208 7487.0880 7485.7545 7492.5959

BIC t15 7580.5141 7504.2311 7487.5082 7486.7352 7493.5966

PE0.1 7584.8220 7507.0698 7492.4985 7492.2513 7499.1663

PE0.3 7592.6551 7510.3168 7492.2611 7490.4004 7497.2215

PE0.7 7634.3350 7547.1010 7524.3753 7519.5256 7526.9660

Table 2 Generalized cross
validation (GCV) measures for
all combinations of
λ1 = (10, 20, 30, 40, 50) and
λ2 = (6, 12, 18, 24)

λ2

λ1 6 12 18 24

10 132.8354 134.4184 135.4307 136.1104

20 133.0057 134.5791 135.5748 136.2445

30 133.0894 134.6639 135.6568 136.3192

40 133.1486 134.7241 135.7148 136.3759

50 133.1948 134.7738 135.7622 136.4171

where εi = ρ1εi−1 +ρ2εi−2 +ρ3εi−3 +ρ4εi−4 + ei and ei
iid∼ t10, for i = 1, . . . , 935.

Finally, in order to choose the appropriate smoothing parameters (λ1, λ2), we
selected the model with the lowest Generalized Cross Validation (GCV) by using a
grid of different values for them, λ1 = (10, 20, 30, 40, 50) and λ2 = (6, 12, 18, 24).
We selected (λ1, λ2) = (10, 6) (in bold) as the most appropriate smoothing values
(Table 2).

6.2 Residual and sensitivity analyses

Before the interpretation of the fitted model, we perform residual and sensitivity anal-
ysis in order to evaluate the adequacy of the model and possible presence of atypical
observations.
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Figure2 presents various graphs related with the conditional quantile residual, such
as rqi against the time, histogram, density, autocorrelation and partial autocorrelation
functions of rqi , quantile of rqi against theN(0, 1) quantile and rqi against the estimated
weight v̂i . The graphs indicate no trend and seasonality pattern and that the Student-t
with ν = 10 and AR(4) error structure seems to perform a suitable fit. As it is well
known in Student-t errormodels the iterative process assigns smallerweights for larger
residuals. The absence of autocorrelation of the residuals up to 60 lags is not rejected
by the Ljung-Box test.

In addition, to assess the sensitivity of the parameter estimates under three different
perturbation schemes, we perform index plots of Ci for assessing the local influence
on the MPLEs. Figure3 presents the index plots of Ci for assessing the local influence
on θ̂ , γ̂ , φ̂ and ρ̂ under the case-weight perturbation scheme (left column) and under
the response perturbation scheme (right column). Similarly, Fig. 4 presents the index
plots of Ci for assessing the local influence on the MPLEs under each explanatory
variable perturbation scheme. Since one has a large sample, the cutoff value c = 4 is
considered in each graph. So, only observations suspect to be highly influential on the
MPLEs are pointed out.

From all graphs few points are highlighted, which are identified as follows:

1. Under the case-weight perturbation scheme, possible influential periods are week
1 in 2005, week 20 in 2012 and weeks 5, 47 and 48 in 2022.

2. Week 1 in 2005 and week 26 in 2014 are pointed out as possible influential periods
under the response perturbation scheme.

3. Finally, under explanatory variable perturbation schemes, week 1 in 2005, week
41 in 2008, week 24 in 2010, weeks 33 and 40 in 2012 and week 26 in 2014 are
highlighted.

A more detailed analysis should be performed to understand the reasons that lead
such periods to be more sensitive on the MPLEs. However, as mentioned before, the
aim of the sensitivity studies in this work is help in choosing of appropriate error
models whose MPLEs are resistant to perturbation schemes.

6.3 Model interpretation

In this section we perform a model interpretation, particularly the parameter estimates
from the parametric component and the additive trends. Table 3 presents the parameter
estimates from the parametric component and one may obtain similar interpretations
of linear models, as follows:

1. The increase in one unit (µg/m3) of weekly average of PM10 increases, in average,
0.2 the number of weekly hospitalizations.

2. The increase in one unit (µg/m3) ofweeklyminimumofNO2 increases, in average,
0.81 the number of weekly hospitalizations.

3. The increase in one unit (µg/m3) ofweeklymaximumofNO2 increases, in average,
0.06 the number of weekly hospitalizations.

4. The increase in one unit (µg/m3) of weekly average of NO decreases, in average,
0.21 the number of weekly hospitalizations.
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Fig. 2 Quantile residual analysis of the model (9) fitted to the hospitalization data
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Fig. 3 Index plots of Ci for
assessing the local influence on
the MPLEs under case-weight
and response perturbation
schemes in the model (9) fitted
to the hospitalization data
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Fig. 4 Index plots of Ci for assessing the local influence on the MPLEs under explanatory variable pertur-
bations in the model (9) fitted to the hospitalization data

123



Additive partial linear models... 5163

Table 3 Parameter estimates
(parametric part) and their
approximate standard errors
from the model (9) fitted to the
hospitalization data

Covariate Estimate Std. Error z-value P-value

Intercept 67.5151 3.8899 17.3566 < 0.0001

PM10avg 0.1998 0.0629 3.1787 0.0015

NO2,min 0.8105 0.2160 3.7532 0.0002

NO2,max 0.0599 0.0257 2.3341 0.0198

NOavg −0.2112 0.0871 −2.4236 0.0156

RHmin 0.1044 0.0513 2.0341 0.0422

Parameter

ρ1 0.4270 0.0326 13.1084 < 0.0001

ρ2 0.2010 0.0350 5.7348 < 0.0001

ρ3 0.1234 0.0355 3.4806 0.0005

ρ4 0.0893 0.0327 2.7306 0.0064

φ 128.7017 6.7977 18.9331 < 0.0001

5. The increase in one unit (1%) of weekly minimum RH increases, in average, 0.10
the number of weekly hospitalizations.

We are assuming for each interpretation above that the remaining effects are fixed. So,
in accordancewith the findings fromprevious studies (Negrisoli andNascimento 2013;
Schwartz 2004; Amâncio and Costa Nascimento 2012), we find a positive association
between short and medium-term exposure to average of PM10, minimum of NO2 and
maximum of NO2 with respiratory disease hospitalizations. The fact that maximum
of NO2 presents a smaller positive effect than minimum of NO2 could be explained
by a potential saturation effect by smaller effects of changes in weekly maximum of
NO2 in a city with high baseline levels of NO2, as Sorocaba is classified due to its high
industrialization. Several epidemiological studies demonstrate the harmful effects of
atmospheric pollutants on humanhealth in terms of aggravation of respiratory diseases,
in addition to their seasonal behavior, with higher concentrations in the winter months,
when air quality is more compromised due to the impaired dispersion of pollutants
consequence of rain absence, lower relative humidity andwind. In Sorocaba, themonth
with the highest relative humidity is February (79.29%) and the month with the lowest
relative humidity is August (64.72%), whereas the month with the highest number of
rainy days is January (20.67 days) and the month with the smallest number is August
(4.60 days).1

Additionally, Table 4 shows that both smooth functions are significant and Fig. 5
describes the 95% pointwise confidence bands for trend and seasonality. We observe
a significant seasonality with higher hospitalization from week 20 to week 30 which
agrees with the winter season described above. Regarding to the trend component,
controlling the seasonality the trend increases significantly after 2020. We may con-
jecture two possibilities: (1) confounding factor ofCOVID19 and (2) because pollution
has steadily risen in the past years and the covariates included into the model are not
sufficient to explain all effects on hospitalization.

1 https://pt.climate-data.org/america-do-sul/brasil/sao-paulo/sorocaba-756/.
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Table 4 Wald statistics,
respective p-values and effective
degrees of freedom of the
additive components from the
model (9) fitted to the
hospitalization data

Wald dfs (λ) p-value

f1 22.5479 4.0305 < 0.0001

f2 36.1920 2.1655 < 0.0001

Fig. 5 Pointwise confidence bands of 95% for trend (left) and seasonality (right) components from the
model (9) fitted to the hospitalization data

Fig. 6 Observed (black) and estimated (blue) hospitalization from the model (9) fitted to the hospitalization
data

Finally, Fig. 6 describes the observed hospitalization time series and the estimated
hospitalization from the fitted model and we may observe a very close agreement
between them.

7 Concluding remarks

The additive model with symmetric autoregressive errors in which trend and seasonal-
ity of time series are decomposed, proposed by Oliveira and Paula (2021), is extended
in this paper by including a linear component and general additive terms. A novel
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iterative process that combines the P-GAM algorithm proposed by Marx and Eilers
(1998)with a quasi-Newton algorithm is derived. Inferential procedures, residual anal-
ysis and sensitivity studies are given as well as various additional results are given as
n material. The weekly hospitalization for respiratory diseases in Sorocaba city, São
Paulo, Brazil, is modeled as an application using climate and pollution explanatory
variables. It is possible to find, from the fitted model, an association between the mean
response with exposure to the atmospheric pollutants PM10avg, NO2,min, NO2,max,
NOavg and RHmin, and hospital admissions for respiratory diseases, may provide use-
ful information for the development of policies to reduce public health risks. The
authors are developing a R package with the procedures presented in this paper and
possible future works include forecast procedures and extensions for single-index and
spatial models.
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