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Abstract
Karst environments are susceptible to contamination and directly affected by anthropogenic pressures.
Remediation efforts are expensive, time-consuming, and often impractical. Hence, vulnerability maps can be
valuable tools for protecting and preventing the aquifer’s degradation. This study aims to evaluate the
vulnerability of the Napo Karst Formation (NKF), in the western Amazon basin in Ecuador, using three vulnerability
models: EPIK, DRASTIC, and DRASTIC-LUC. The difference between the three models lies in the parameters used
and how each one of them address the vulnerability. Because assigning values to each parameter depends on the
author's expertise and the available data, these models can produce varying outcomes, which we analyze using
spatial and sensitivity analysis. Our results showed that DRASTIC and EPIK classified 45.76% and 35.38% of the
NKF area as highly vulnerable, respectively, while DRASTIC-LUC classified most of the NKF areas under moderate
vulnerability (57.47%). The sensitivity analysis determined that the depth to water table (D) and the infiltration
conditions (I) were the most critical parameters for the vulnerability assessment. The moderate-to-high
vulnerability of the NKF raises a warning, as the impacts on surface and groundwater may affect local
populations that directly depend on its water. This is the first study that evaluates the vulnerability to the
contamination of karst formation in the Ecuadorian Amazon. The results of this research can be used as a
baseline for future research and as technical information for decision-makers to reduce the activities that could
aggravate surface and groundwater quality in Western Amazonia.

1. Introduction
Karstic aquifers are highly vulnerable to anthropogenic pressures (Tziritis and Lombardo 2017; Flores and Szucs
2022). Thin soil coverings, open recharge areas (dolines), shafts and shallow holes, and preferred flow paths in
the epikarst and the vadose zone allow contaminants to easily reach groundwater and be transported promptly
via karstic conduits and fractures over long distances (Zwahlen 2003; Tziritis and Lombardo 2017; Flores et al.
2020). The karst aquifer properties and the lack of paucity hydrogeological studies contribute to the false
perception that karst water is pollution-free (Duarte et al. 2013; Jiménez-Madrid et al. 2019), but, the conversion of
native vegetation and expansion of urban areas threaten aquifers, rendering karst settings especially susceptible
to pollution in comparison to other hydrogeological habitats (Foster et al. 2002; Ravbar and Goldscheider 2009).

There is an incipient hydrogeological research development in Ecuador (Flores et al. 2020; Jiménez-Iñiguez et al.
2022; Campoverde-Muñoz et al. 2023; Intriago et al. 2023). Research efforts are concentrated in areas where
groundwater is the primary source of water supply, such as the Andean and coastal regions (Espol Tech EP 2014;
Calero et al. 2022; Intriago et al. 2023). For example, Quito’s Public Water Supply Company (EPMAPS) promotes
groundwater research for sustainable water supply, and geophysical prospecting surveys due to the increasing
population in the Metropolitan District of Quito (Peñafiel et al. 2021). According to Flores and Szucs (2022), the
low government entities’ focus in groundwater research in the Amazon region could be attributed to their
assumption that in this area there is a high rate of annual precipitation (2500-3000mm/year) (Villacís et al. 2008;
INAMHI 2013), a low population, and relatively high-quality surface water for consumption.

In Ecuadorian Amazonia (the western portion of the Amazon basin), large karstic aquifers systems are present
(Buckalew et al. 1998; Flores et al. 2020; Flores and Szucs 2022; Jiménez-Iñiguez et al. 2022). The high
precipitation levels allow the karstification process to take place, giving rise to different structures that are
representative of karst environments (Andreo et al. 2010; Stevanović 2015; Jiménez-Iñiguez et al. 2022). Previous
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studies have focused on the geology, biodiversity, geobiodiversity, geoconservation, isotopic composition and
speleological characteristics of the karst environment (Sánchez Cortez 2017; Constantin et al. 2018; Jiménez-
Iñiguez et al. 2022; Sanchez-Cortez et al. 2022; Vera et al. 2023), but the vulnerability of karst environment is
unknow.

The Amazon region has been exposed to environmental impacts caused by mining, extensive agriculture, fish
farming, a lack of basic infrastructure and domestic waste, oil extraction (Lessmann et al. 2016), the
mismanagement of solid waste in landfills, and the constant load of domestic waste outfall to the tributaries of
major rivers (Capparelli et al. 2020, 2021; Galarza et al. 2022). For example, in the Napo River Basin,
anthropogenic impacts are consequence of the growth of the population and the diversification of economic
activities (Pimm et al. 2014; Capparelli et al. 2020). Studies suggest that anthropogenic activities have introduced
metals and other contaminants into the aquatic systems in the Napo (Capparelli et al. 2020) and Aguarico rivers
(Merchán and Chiogna 2017). This includes medium-scale to industrial-scale mining and oil exploration,
emerging pollutants and microplastics that have impacted the quality of the aquatic ecosystems making water
not recommended for human consumption (Cabrera et al. 2020, 2022; V. Capparelli et al. 2021; Galarza et al.
2022).

Because information on groundwater is relatively scarce in the Ecuadorian Amazonia and because aquifers are
an important source of water for local population, groundwater vulnerability needs to be evaluated. Remediation
efforts to polluted aquifers are expensive, time-consuming, and often impractical (Saidi et al. 2011; Hadžić et al.
2015; Dos Santos Filho et al. 2017; Terada et al. 2022). Then, the most reliable action is to prevent groundwater
pollution (Aranda et al. 2019, 2021; Conicelli et al. 2021; Pileggi et al. 2021). For that purpose, there are useful
tools, such as groundwater vulnerability assessments (GVA) are useful tools. GVA can consolidate highly complex
technical information about hydrogeology and pollutants into a simple language that planners and decision-
makers can use to plan and protect groundwater (Foster and Hirata 1988; Majandang and Sarapirome 2013;
Baloch and Sahar 2014). For example, GVA of the aquifers that occur in Ecuador, such as those in the
Limoncocha Biological Reserve (Jarrín et al. 2017); in Daule Aquifer (Ribeiro et al. 2017); in Gala, Tengel, and
Siete River Basins, Ponce Enriquez mining area (Campoverde-Muñoz et al. 2023) have provided important
information for the currently condition of these water bodies. However, there are no previous GVAs for karst
environments.

Here, we use the available geographic information to model the vulnerability of the Napo Karst Formation in the
western Ecuadorian Amazonia by using three models (DRASTIC, DRASTIC-LUC, and EPIK). We compare these
models and discuss their qualities and problems in order to select the model that best suits the hydrogeological
conditions of the study area. The protection of groundwater resources is imperative, especially in karst
environments, such as Amazonia Karst (Pacheco et al. 2018; Jiménez-Iñiguez et al. 2022).

2. Materials & Methods
Our methodology was designed to (1) collect data from relevant sources and prepare each parameter for each
vulnerability model; (2) generate vulnerability maps using DRASTIC, DRASTIC-LUC, and EPIK; and (3) perform
sensitivity analysis as an efficiency indicator.

2.1. Study Area
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The Napo Formation is composed of three karst units, Napo North, Napo South, and Upano, formed by the
combined runoff and slope of the calcareous rock structures (Flores and Szucs 2022). The area of Napo North
and South henceforth referred to as the Napo Karst Formation (NKF) ranges between 2096 to 2971.41 km2. The
karstic units present in the Amazon region form part of the so-called Amazon Karst System (AKS) (Chamba 2020)
that covered around 4.5% of the Ecuadorian continental shelf (Flores and Szucs 2022). In conjunction with other
units located in the coastal region of Ecuador (Fig. 1a), they are part of the karstic formations of South America.

Within the Ecuadorian territory, NKF is found mainly in the province of Napo and small parts of the provinces of
Sucumbíos and Orellana (Fig. 1b). More than 70% of the NKF extension is located within protected areas: 28% are
inside Sumaco Napo-Galeras National Park, 23% in the Cayambe-Coca Ecological Reserve, and 26% in the Napo-
Sumaco Geopark (Fig. 1c). In the study area, the altitude ranges from 370 to 3039 m.a.s.l. The NKF is formed by
limestone or karst caves (Chamba 2020) and, its lithology comprises black shales, limestone, and calcareous
sandstones (Espol Tech EP 2014). The aquifers in the NKF can be local or discontinuous, shallow, with high flow
velocity, and connected directly with the surface (Espol Tech EP 2014; Constantin et al. 2018). The NKF is poorly
studied, probably due to the dense vegetation cover that makes accessibility to the area difficult (Chamba 2020).

 

2.2. Gathering and Evaluation of existing data
We collected geographic data from available repositories (Table 1), mainly those developed by government
entities. Once the information was collected, it was processed with QGIS 3.12.0 (Fig. 2).

 
 

Table 1
Data sources to obtain the parameters of each methodology.

Data Source

Land Use and Cover,

Protected Areas – Shapefile
(1:100.000)

Ministry of the Environment, Water and Ecological Transition,
Unique Environmental Information System
(http://suia.ambiente.gob.ec)

Hydrogeologic, Soil, Geological, and
Geopedological Data – Shapefile
(1:100.000)

*MAGAP (http://geoportal.agricultura.gob.ec), National
Information System (https://sni.gob.ec/coberturas)

STRM Worldwide Elevation Data - DEM
(30 m)

United States Geological Survey (www.earthexplorer.com)

Monthly Precipitation Average (1970–
2000) - Raster 30 sec (~ 1 km2)

WorldClim 2.1 (Fick and Hijmans 2017) (https://worldclim.org)

* Ministry of Agriculture, Livestock, Aquaculture, and Fisheries

 

Missing values in the datasets were filled in with similar information from previous years, whenever available.
This includes information on some parameters in protected areas. For example, missing data in the
geopedological shapefiles were filled by merging information from the years 2016 and 2019, under the

http://suia.ambiente.gob.ec/
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assumption that both shapefiles contained the same variables. Other changes and adaptations made for the
parameter determination are detailed below.

2.3. Groundwater Vulnerability Assessment
Because sources of environmental contamination are diffuse in Amazonia (Capparelli et al. 2020), we applied
intrinsic vulnerability analysis, as this does not consider the source of the pollutants and their specific nature, but
focuses on the natural environment’s inherent geological, hydrological, and hydrogeological properties (Abiy et al.
2016). The intrinsic vulnerability analysis, we made using three models: to applied to any hydrogeological setting
(DRASTIC and DRASTIC-LUC) and one specific to karstic environments (EPIK).

2.3.1. DRASTIC Model
DRASTIC (Aller et al. 1987) is the most commonly model used for mapping groundwater vulnerability. It is
calculated roughly analogous to the likelihood that pollutants released in a region reach the groundwater. That
implies that high values are directly related to the probability of pollution (Shirazi et al. 2013; Talozi and Hijazi
2013). Vulnerability maps using DRASTIC have been applied to different environments and showed promising
results in Algeria (Boufekane and Saighi 2018), Tunisia (Ayed et al. 2017), Bangladesh (Hasan et al. 2019), India
(Khan and Jhariya 2019), Pakistan (Maqsoom et al. 2020), Nigeria (Oke 2020), Iran (Oroji and Karimi 2018), and
England (Moustafa 2019). In Ecuador, Coello and Galárraga (2002) used the DRASTIC in the North Quito Aquifer
to determine its susceptibility to pollution. DRASTIC assumes certain conditions, such as (1) pollutants are
introduced through the soil, (2) precipitation carries pollutants into the groundwater, (3) pollutants move with the
water, and (4) the assessment area is equal to or greater than 0.4 km2 (Shirazi et al. 2013; Talozi and Hijazi 2013).

The acronyms of DRASTIC refer to seven hydrogeological parameters: (D) depth to groundwater, (N) net recharge,
(A) aquifer media, (S) soil media, (T) topography, (I) impact on the vadose zone, and (C) hydraulic conductivity
(Pathak et al. 2009). Eq. (1) describes how to calculate the DRASTIC index:

1
Where,  and  are the rating and weight for each parameter, respectively (Table 2). To get a fair understanding of
DRASTIC, each of DRASTIC parameters, its effect on aquifer vulnerability, and the ratings and weight it carries
have been described in Table 2.
 
 
 

DrasticIndex = Dw∙Dr + Rw∙Rr + Aw ∙ Ar + Sw∙Sr + Tw ∙ Tr + Iw ∙ Ir + Cw ∙ Cr

r w
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Table 2
Rating, ranges, and weight of each DRASTIC and DRASTIC-LUC parameters.

Thematic Layer Parameter
Symbol

Range Rating Parameter
Symbol

Weight

Depth to Water Table
(m)

0–1.5 10 5

  1.5–4.6 9    

Net Recharge (mm) 50–103 3 4

    103–178 6    

    178–254 8    

    > 254 9    

Aquifer Media Sandstone, Limestone, and
Shale sequence

6 3

Soil media Thin or Absent 10 2

    Loamy sand 9    

    Loam 8    

    Sandy loamy 7    

    Silty loam 6    

    Clay loam 5    

    Sandy clay loam, Silty clay
loam

4    

    Silty 3    

    Sandy clay, Silty clay 2    

    Clay, Heavy clay 1    

Topography (%) 0–2 10 1

    2.0–6.0 9    

    6.0–12.0 5    

    12.0–18.0 3    

    > 18.0 1    

Impact of Vadose Zone Shale 3 5

    Limestone 6    

Dr Dw

Rr Rw

Ar Aw

Sr Sw

Tr Tw

Ir Iw
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Thematic Layer Parameter
Symbol

Range Rating Parameter
Symbol

Weight

Hydraulic Conductivity
(mm/day)

0.04–4.8 1 3

  > 81.49 10    

The parameter depth to the water table is defined as the distance from the ground surface to the water table (Al-
Zabet 2002). There is an inverse relationship between the depth of the water table and the pollution possibility, so,
a deeper water table levels imply in less pollution (Zghibi et al. 2016; Kumar and Krishna 2020). Moreover, it is
considered relevant to the depth of the material through which any pollutant travels before reaching the aquifer
(Al-Zabet 2002). This parameter was obtained from the geopedological shapefile MAGAP (2015).

Net recharge indicates the amount of recharge that is positively correlated with the vulnerability rating (Saidi et al.
2010; Zghibi et al. 2016; Jang et al. 2017). Net recharge includes the average annual amount of infiltration
without considering the distribution, intensity, or duration of recharge events (Al-Zabet 2002; Hirata and Conicelli
2012; Galvão et al. 2018; Conicelli et al. 2020; Intriago et al. 2023). Due to the lack of information for this
parameter, the APLIS method (Andreo et al. 2004) was used to evaluate the mean annual recharge in carbonate
aquifers (Zagana et al. 2011) as expressed as the percentage of precipitation that infiltrates into the soil. The
APLIS method uses the following variables such as altitude (A), slope (P), lithology (L), infiltration (I), and soil (S).
After the necessary process, the final map is calculated with Eq. (2):

2
The APLIS method was developed for arid areas, so modifications and adaptations were necessary for this study
(Table 3). The adaptations made were similarly to the study Duran et al (Durán et al. 2015), also done in the
Amazon region, but in Peru. These adaptations were applied to lithology, infiltration, and soil according to Napo
Formation conditions. For example, in preferential infiltration, we consider it necessary to consider geologic faults
and caverns (mapped by Sánchez Cortez (2017), as preferential infiltration areas and give them a value of 10
while the rest of the regions acquire a value of 5, a similar approach used by Zagana et al. (2011) and Entezari et
al. (2020). To obtain the recharge values it was necessary to use precipitation data. The available data was not
useful because the precipitation values only covered accumulated data (1980–2010), and historical
meteorological data from the stations network was incomplete. So, we used the average monthly rainfall (1970–
2000) from WorldClim at scale of 340 km2. The recharge in mm is the result of a recharge factor
(recharge%/100%) multiplied by the WorldClim precipitation raster for the area of interest.

 

Cr Cw

%Recharge = (A + P + 3 ∙ L + 2 ∙ I + S)/0.9

∼
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Table 3
Range and rating of each parameter of the APLIS method used in this study, adapted from Andreo et al. (2004).
Altitude (m) Slope (%) Lithology Infiltration Soil

Range Rating Range Rating Range Rating Range Rating Range Rating

300–
600

2 ≤ 3 10 Limestones 7 Geologic
faults

10 Andosols 10

900–
1200

4 16–
21

7 Shales 6 Caverns 10 Umbrisols 9

1500–
1800

6 31–
46

4 Sands,
gravels

5 Rest 5 Leptosols 8

2100–
2400

8 > 100 1 Granite,
gneiss

4     Regosols 7

≥ 
2700

10     Metamorphic
and intrusive
rocks

4     Cambisols 6

        Fine
materials

3     Stagnosols 5

        Schists,
slates

2     Gleysols 4

        Slimes, clays 2     Fluvisols 3

        Basalts,
andesites

1        

The aquifer media indicates the rock material that serves as an aquifer inside the saturated zone (Saida et al.
2017), where the material properties control the pollutant attenuation processes (Awawdeh et al. 2015). This
parameter is related to the permeability that is controlled by the geological characterization (Al-Zabet 2002; Zghibi
et al. 2016). Thus, a high permeability allows more water and, therefore, more pollutants to enter the aquifer
(Bhuvaneswaran and Ganesh 2019). The rating and range for this parameter were based on the hydrogeological
shapefile (Table 1) and shown in Table 2.

The soil media parameter indicates the first zone that water, or any pollutant passes through when it percolates
into the ground. For that reason, soil properties affect water transportation from the surface to the aquifer
(Ouedraogo et al. 2016; Jang et al. 2017). Specifically, soil texture is the property that impacts the amount of
recharge into the ground (Zghibi et al. 2016; Khosravi et al. 2018). This parameter was constructed using a
geopedological and soil texture shapefile (MAGAP 2015). The soil order data was converted from the United
States Department of Agriculture (USDA) taxonomy to the used by the World Reference Base (WRB).

The parameter topography determines the runoff and infiltration capacity of the water into the soil (Ouedraogo et
al. 2016). Furthermore, it enables the collection of geographic information about pollutant concentration (Davis et
al. 2002; Shirazi et al. 2013). The most important topographic parameter required is the slope, which was
estimated from a DEM using GDAL tools available in QGIS. The range and rating for this parameter are the same
as those used in the original methodology for DRASTIC.
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Impact of the vadose zone. The vadose zone could be defined as the space between the water table and the
ground surface (Shirazi et al. 2013; Jang et al. 2017). It is an essential parameter in the vulnerability assessment
because it influences the residence time of the pollutants in the unsaturated zone (Shirazi et al. 2013; Ouedraogo
et al. 2016). To estimate this parameter, the hydrogeological and geopedological shapefiles for the study area
that contain a variable named lithology were used. Here, considering the information above, it was only necessary
to place the value obtained from the original DRASTIC methodology.

Hydraulic conductivity is the capacity of an aquifer to allow fluids (water, pollutants) to pass through it and
regulate their movement in the saturated zone (Al-Zabet 2002; Shirazi et al. 2013). Also, hydraulic conductivity is
positively correlated with the vulnerability rating (Zghibi et al. 2016; Jang et al. 2017; Khosravi et al. 2018; Hasan
et al. 2019). For this parameter, it is necessary to obtain aquifer data (transmissivity, grain size information, and
thickness) to obtain the permeability, which is the same as the hydraulic conductivity, and that could be estimated
from well data and pump tests. Nonetheless, when there is no information available, it is possible to use
theoretical tables. Hydraulic conductivity values were assigned considering values by Freeze and Cherry (1979)
for each lithology (derived from the geopedological and hydrogeological shapefile). The range and rating
assigned are depicted in Table 2.

2.3.2. DRASTIC-LUC Model
DRASTIC-LUC is a modified DRASTIC that includes Land Use and Cover. It is used to assess how human activities
have impacted karstic and non-karstic areas (Umar et al. 2009). This model has primarily been used in India, with
positive results (Alam et al. 2014; Sahoo et al. 2016; Kumar and Krishna 2020; Wei et al. 2021).

For the implementation in DRASTIC-LUC, “Land Use and Cover (LUC)” was defined as the cover over the soil and
the activities therein. The water that has percolated through the soil, reaching an unsaturated zone, can also
transport anthropogenic pollutants (Lerner and Harris 2009). Groundwater quality can be influenced by human
actions. For example, inefficient wastewater treatment, agricultural activities, mining, and industrial tailings
change the physical and chemical composition of water and increase its vulnerability (Ramaraju and Krishna
Veni 2017). On the other hand, changes in land cover affect the available resources by changing recharge rates
(Lerner and Harris 2009). A shapefile with information about land use and cover from 2018 was considered for
the study area. Eq. (3) shows how DRASTIC-LUC is calculated.

3
Where the subscripts  and  are the rating and weight for each parameter, respectively. DRASTIC-LUC assigned
a low value to natural areas (forests) and high values to agricultural, urban, and water bodies. The values
assigned are shown in Table 4 and their distribution is in Fig. 1c.
 

DRASTIC − LUC = DrasticIndex + LUCr∙LUCw

r w
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Table 4
Rating, ranges, and weight for LUC parameter inside of DRASTIC-LUC index.

Parameter Symbol Range Area
%

Rating Symbol Weight

Land Use and
Cover

  Native Forest, Herbaceous
Vegetation

78.91 3 5

Built-Up Land 0.18 5

  Populated Area, Agricultural Land 20.62 7

  Water Bodies 0.28 9

2.3.3. EPIK Model
Intrinsic vulnerability assessment in karst areas requires a model that considers geomorphological, hydrological,
and hydrogeological characteristics (Gogu and Dassargues 2000; de Castro and Menegasse 2017). The EPIK
model was chosen because it is one of the most widely used models for vulnerability assessment that is specific
to karst environments (Hammouri and El-Naqa 2008). EPIK was developed by Doerfliger and Zwahlen (1998). It is
an acronym for epikarst (E), protective cover (P), infiltration conditions (I), and karst network development (K).

A multi-attribute weighting-rating model (Doerfliger et al. 1999) analyzes four parameters individually and
combines them using a raster calculator (Doummar et al. 2012). Also, this model has been applied in different
environments such as Brazil (Lenhare and Sallun Filho 2019; Pereira et al. 2019), Algeria (Nekkoub et al. 2020),
Morocco (Alili et al. 2018), Greece (Vogelbacher et al. 2019). The final product is the protection factor (F). A low F
value represents high vulnerability, while a high F value shows low vulnerability (Marín and Andreo 2015). The
index is calculated as follows:

4
Where,  is the protection factor for each subarea ; , , , and  are the weighting factor for each parameter E,
P, I, and K. Table 5 contains the value assigned for the weighting as mentioned earlier and the rating for each
parameter. The ratings for each class of a given attribute are multiplied by the weight related to the point, and
then the products are added up to arrive at a final score (Doerfliger et al. 1999).

 

LUw

LUr

Fi = (∝ ∙Ei) + (β ∙ Pi) + (γ ∙ Ii) + (δ ∙ Ki)

Fi i α β γ δ
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Table 5
Values for each EPIK parameter were obtained from Doerfliger and Zwahlen (1998).

Parameter Symbol Range Rating Symbol Weight

Epikarst E1 Sinkholes or dolines, karren, polje, caves, springs 1 3

E2 Intermediate zones along doline alignments 2    

Protective
Cover

P2 20–100 cm of soil with low hydraulic conductivity 2 2

P3 > 1 m of soil with low hydraulic conductivity 3    

Infiltration
Conditions

I2 The slope is more than 10% for cultivated areas
and less than 25% for meadows and pastures

1 1

I3 The slope is less than 10% for cultivated areas and
less than 25% for meadows and pastures

2    

Karst
Network

K1 Well-developed karstic network with little fill and
well-interconnected conduits

1 3

K2 Poorly karstic network with poorly interconnected
or infilled drains or conduits

2    

Epikarst is the karstified zone under the soil cover. In some areas, this is open to the surface (Doummar et al.
2012; Stevanović 2015; Bakalowicz 2019). Furthermore, it controls the infiltration into the aquifer and stores water
(Goldscheider 2005). The geomorphological information available (SIGTIERRAS 2015) and the speleological
information of the Napo province (Sánchez Cortez 2017) were used to determine this parameter. Here, areas
around 500 m from the caves and karst morphologies were identified as E1 and the rest of the study area as E2

(Table 5).

The protective cover is defined by soil cover, deposits, and lithologic or non-karstic geological formations over the
aquifer (Doummar et al. 2012; Nekkoub et al. 2020). It is one of the natural protection parameters generally
accounted for in vulnerability mapping (Doerfliger and Zwahlen 1998). To estimate this parameter, soil and a
geopedological shapefile with detailed information were considered. In particular, the geopedological shapefile
contains categories associated with soil depth that allow one to establish the weight for this parameter.

Infiltration conditions are complex to estimate (Gogu and Dassargues 2000) because they determine how aquifer
recharge occurs (Doerfliger and Zwahlen 1998). Infiltration conditions can be estimated using the slope
percentage and a land cover shapefile (Hurtado-Pidal et al. 2022). A correlation between these variables allows
assigning the rating values according to the original methodology for EPIK.

Karst network refers to the degree of karstification or the dissolution process of soluble rocks (limestone,
dolomites, gypsum) by physiochemical interaction with water (Barea et al. 2002; Doummar et al. 2012). This
parameter can be determined through direct geomorphological identification, tracer tests, or variability in water
quality (Nekkoub et al. 2020). Nevertheless, no field trips could be carried out to identify and register the karst
network. For that reason, geomorphological (SIGTIERRAS 2015), speleological (Sánchez Cortez 2017), and other
related data were employed to assign a value to this parameter. Areas with geomorphological characteristics of a

∝

β

γ

δ
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karst environment and the presence of caves were assigned as K1 under the assumption that the karst network
beneath the caves was well developed and the rest of the area was assigned as K2.

2.4. Categorization Scale
The fact that each methodology is different makes it difficult to compare the areas corresponding to each level of
vulnerability. So, for comparative purposes, we standardized the scale for all vulnerability indices as drawn for the
three models, so it, ranges from 0 to 1:

5
Where,  is the value derived from the new scale,  is the original value obtained from each vulnerability index, 

 and  are the minimum and maximum values of the vulnerability index, respectively. To visually identify
vulnerability, 5 ranges of vulnerability classes were established, and each was assigned a specific color, Table 6.

Table 6. Vulnerability classes from Aller et al. (1987), Doerfliger and Zwahlen (1998), and the new scale for each
index.

2.5. Sensitivity Analysis
Sensitivity analysis considers the contribution of individual factors and entry parameters to the outcome of an
analytical model (Napolitano and Fabbri 1996). It means that estimating changes in the output map by changing
the input parameters helps to understand the effect of the parameters on the output of the model (Thapa et al.
2018). Two types of sensitivity analyses (Single Parameter Sensitivity and Map Removal Sensitivity) were used
for this study. These analysis have been used to evaluate the reliability of vulnerability criteria and validate
developed vulnerability maps (Tomer et al. 2019).

2.5.1. Single Parameter Sensitivity Analysis
The single parameter sensitivity analysis, or weighting factor (Napolitano and Fabbri 1996), determines the
impact of each parameter within the vulnerability index. The effective weight of each parameter is calculated by
using the following equation:

6

Xi = (X − min)/(max − min)

Xi X

min max

Wxi = (Pri ∙ Pwi) /Vi ∙ 100%
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Where,  is the rating of each parameter,  is the weight corresponding to each parameter, and  as the
vulnerability index. The mean percent error (MPE) shows the increase or decrease of the effective weight
compared with the theoretical value. It is calculated with the following equation:

7

2.5.2. Map Removal Sensitivity Analysis
This sensitivity analysis was developed by Lodwick et al., (1990) and describes the sensitivity of the vulnerability
index when removing one or more parameters from the suitability analysis. It is computed with the equation:

8
Where  is the vulnerability index,  is the number of layers used for computing ,  is the vulnerability index
excluding one layer and  is the number of layers used for calculating .

Both sensitivity analyses have been used to analyze the reliability of vulnerability criteria (Tomer et al. 2019).
Applying these vulnerability indices may be subjective as the result depends on the author’s weighting assigned to
each parameter. Therefore, sensitivity analysis provided useful information on the effects of weight and rating
values applied to each parameter and allowed determining the importance of the subjective aspects (Gogu and
Dassargues 2000).

3. Results and Discussion

3.1. Vulnerability Models
DRASTIC index values were between 102 and 190, while for DRASTIC-LUC, the values were between 117 and 230.
For the EPIK model, the values were between 13 and 22 (Table 7). Figure 3 shows the adjusted color-coded
vulnerability maps and the area under each vulnerability class. The DRASTIC model showed that about 45.76%
(959.40 km2) of the study area had high vulnerability, followed by 22.51% (471.96 km2) of low exposure, and a
small percentage pertains to very high vulnerability (1.06%) (Table 8). In contrast, the DRASTIC-LUC showed that
57.47% (1204.72 km2) had moderate vulnerability, while 23.10% (484.23 km2) of the area was classified as low
vulnerable, and 0.81% as very highly vulnerable (Table 8). Compared to the other indices, the EPIK model showed
a similar distribution for low to high vulnerability, so that 35.38% of the mapped area (741.78 km2) had high
vulnerability, followed by 25.72% (539.29 km2) as low vulnerable, and 24.24% (508.14 km2) as moderate
vulnerable (Table 8). The percentage of very highly vulnerable area was low (5.60%). This pattern of low
percentages was similar to the very low vulnerability with low values.

Pri Pwi Vi

MPE = (|Theoretical − Real |) /Theoretical ∙ 100%

S = (|V i/N − Vxi/n|) /Vi ∙ 100%

Vi N Vi Vxi
n Vxi
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Table 7
Statistics of the initial index.

Vulnerability Index Mean Min Max SD

DRASTIC 157.21 102 190 18.27

DRASTIC-LUC 165.45 117 230 17.09

EPIK 17.6 13 22 2.06

Min = Minimun, Max = Maximun, SD = Standard Deviation

Table 8
Area distribution, in percentage and km2, for each initial index.

Vulnerability Class DRASTIC DRASTIC-LUC EPIK

(%) (km2) (%) (km2) (%) (km2)

Very Low 10.67 223.75 13.21 276.90 9.05 189.72

Low 22.51 471.92 23.10 484.23 25.72 539.29

Moderate 19.99 419.07 57.47 1204.72 24.24 508.14

High 45.76 959.40 5.42 113.66 35.38 741.78

Very High 1.06 22.25 0.81 16.89 5.60 117.47

3.2. Sensitivity Analysis
Table 9 summarizes the statistics of all parameters and their resulting weights employed in each vulnerability
index. By analyzing the mean value of the weight that DRASTIC (Table 2) assigned to each parameter, the
parameter depth of the water table (9.02) appeared as the most critical contributor. In the case of EPIK (Table 5),
the infiltration conditions (2.86) appeared to be the most critical contributor to the model. On the contrary,
topography (2.87) and karst network (1.25), contribute the least to DRASTIC/DRASTIC-LUC, and EPIK,
respectively.



Page 15/31

Table 9
Statistical summary of each model parameter.

Parameters Symbol Mean Min Max SD

Depth to the water table D 9.02 9 10 0.14

Net Recharge R 5.76 1 8 1.32

Aquifer media A 6.00 6 6 0.00

Soil media S 5.58 1 10 2.12

Topography T 2.87 1 10 2.51

Impact of the vadose zone I 4.98 3 6 1.42

Hydraulic Conductivity C 6.93 1 10 4.27

Land and Use Cover LUC 3.98 3 9 1.99

Epikarst E 1.37 1 2 0.48

Protective cover P 2.43 2 3 0.50

Infiltration conditions I 2.86 2 3 0.35

Karst network K 1.25 1 2 0.43

3.2.1. Single Parameter Sensitivity Analysis
In this analysis, we use the theoretical weight as a value and percentage that comes from each vulnerability
model, and we calculate an effective weight that depends on the theoretical weight and the resulting vulnerability.
The contribution of each parameter was directly related to its weight in the final vulnerability calculation. For the
DRASTIC model, our analysis of the effective weighting (Table 10) indicates that parameter D dominates the
vulnerability index, and that D becomes the most influential, with an effective weight of 7.25 (31.52%). This might
be because the weight and the values assigned to parameter D for the study area corresponded to the shallow
water table (less than 5m depth). Also, it could relate to parameter vadose zone thickness (parameter I) because if
the water table is closer to the surface, it means that the vadose zone is smaller in size. Thus, any pollutant load
would be more easily introduced into the groundwater, generating major contamination problems. Even though,
parameter I decreased from 5 (21.74%) to 3.84 (16.71%), with a lower error percentage (Table 10). In the case of
the parameter T, our results showed that the weight drastically reduces its value (1 to 0.46), causing the error
percent to be high (53.56%) and indicating that the slope is not significant and the least contributor to the
vulnerability calculation. This contrasts with the study by Kumar and Krishna (2020). Their results show that
parameter C is the least important contributor to the index, and the depth to the water table (D) and vadose zone
thickness (I) contribute more to the vulnerability index after the effective weighting factor, which contrasts with
our results, where only the parameter D is the major contributor to the index.
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Table 10
Statistics of single parameter sensitivity analysis for each vulnerability index.

Parameter Theoretical
Weight

Theoretical Weight
(%)

Effective Weight (%) Real
Weight

Mean
Error %

Mean Min Max SD

D 5 21.74 31.52 24.32 44.25 4.29 7.25 44.99

R 4 17.39 16.13 2.70 27.59 4.38 3.71 7.25

A 3 13.04 12.58 9.47 17.65 1.70 2.89 3.53

S 2 8.70 7.72 1.23 16.81 3.09 1.77 11.26

T 1 4.35 2.02 0.55 8.55 1.85 0.46 53.56

I 5 21.74 16.71 10.14 22.39 3.38 3.84 23.14

C 3 13.04 13.31 2.03 22.39 7.96 3.06 2.07

D 5 17.86 27.57 20.27 39.06 3.10 7.72 54.37

R 4 14.29 14.07 2.27 24.43 3.53 3.94 1.54

A 3 10.71 11.01 7.826 15.38 1.23 3.08 2.75

S 2 7.14 6.74 1.00 14.93 2.60 1.89 5.60

T 1 3.57 1.74 0.45 7.58 1.55 0.49 51.26

I 5 17.86 14.82 7.77 20.13 3.55 4.15 17.02

C 3 10.71 12.00 1.55 20.13 7.31 3.36 12.02

LUC 5 17.86 12.06 7.32 29.41 5.83 3.38 32.47

E 3 33.33 22.10 15.79 37.50 6.64 1.99 33.69

P 1 11.11 14.26 9.52 21.43 2.95 1.28 28.35

I 3 33.33 47.22 31.58 56.25 6.15 4.25 41.67

K 2 22.22 16.43 10.00 26.67 5.16 1.48 26.06

Similarly to the DRASTIC, for the DRASTIC-LUC, the effective weight calculated for the parameters D, A, and C
increased to 7.72 (27.57%), 3.08 (11.01%), and 3.36 (12.00%), respectively. In addition, parameter R showed a
decline from 4 (10.71%) to 3.94 (14.07%). Regarding the parameter LUC, it had a weight equal to 5 (17.86%) in the
index calculation, which means that LUC had a detrimental impact on vulnerability. Nevertheless, with the real
weight, this value decreased to 3.38 (12.06%). This could be related to the fact that the LUC parameter did not
have a great influence on the increase in vulnerability because most of the study area is still covered by natural
areas. This contrasts with the assignment given to the LUC parameter by Kumar and Krishna (2020), in an area
with a predominance of agriculture and coal mining activities and with a small proportion of natural areas. In
their case, LUC had a significant influence on the DRASTIC-LUC model. In the Napo province, the extent of the
pollution generated by agricultural activities is still not mapped, although it has been shown that pollution can
spread dozens of kilometers from the main sources (Capparelli et al. 2020; Galarza et al. 2021; Lucas-Solis et al.
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2021). Therefore, it would be necessary to consider a more in-depth mapping of land use and cover in NKF to
generate more realistic results for the study area.

For the EPIK model, the value of the parameter E declined from 3 to 1.99 when the effective weight factor was
calculated. Parameter K experiences a similar decline from 2 to 1.8. These results indicate that the impact on the
vulnerability index of parameters E and K was lower than the other parameters (P and I). This could be related to
the criteria and the information that was used to obtain the E and K parameters. In the absence of explicit
information on the karstic network and epikarst, assumptions were made based on available information and
previous knowledge. On the other hand, for the parameter I the theoretical value was 3 (33.33%), and the updated
value was 4.25 (47.22%), while in the case of P, the weight changed from 1 (11.11%) to 1.28 (14.26%). The
parameter P presented a slight increase that could be related to the soil thickness above the water table that is
close to the surface. On the other hand, the considerable increase in the P parameter could also be associated
with the fact that the study area is in a foothill zone where the slope in the lower zone is less than 25%, facilitating
the infiltration of water and possible pollutants. These results contrast to the ones obtained by the DRASTIC
model, where the slope (parameter T) was found to be unimportant for vulnerability calculation and thus had low
weight.

Once the effective weight or the real weight had been determined, each vulnerability index was recalculated. The
actual weight obtained from the effective weight produces a variation in each vulnerability class’s area. This
shows somehow more realistic results with the characteristics of the study area and the ranges and ratings
employed. As summarized in Table 11, changes occurred in the statistics of each model, meaning an increase or
decrease in the values compared to the originals. Regarding the reclassification of vulnerability maps (Fig. 4), for
DRASTIC, the area of high vulnerability slightly increased (from 45.76–48.95%) compared to moderate
vulnerability (from 19.99–15.21%). Also, the values for very low and very high vulnerability increased to a lesser
degree (from 10.67–12.11% and from 1.06–1.22%, respectively). For DRASTIC-LUC, the values of moderate
vulnerability (from 57.47–48.09%) were reduced to a greater extent than for the other classes. However, for high
vulnerability, the value increased from 5.42–16.59%. For the EPIK model, the percentage of highly vulnerable
areas increased from 35.38–47.98%, and similarly, the percentage of very highly vulnerable areas went from
5.60–17.15%. By contrast, moderate, low, and very low vulnerable areas decreased. It is especially noteworthy
that low vulnerability has decreased from 25.72–5.91% (Fig. 5).

Table 11
Statistics of the initial index and the index after weighting

factor (WF).
Vulnerability Index Mean Min Max SD

WF_DRASTIC 155.26 115.5 195.8 17.26

WF_DRASTIC-LUC 179.77 133.6 236.6 17.26

WF_EPIK 19.82 14.53 23.53 2.05

DRASTIC 157.21 102 190 18.27

DRASTIC-LUC 165.45 117 230 17.09

EPIK 17.6 13 22 2.06
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3.2.2. Map Removal Sensitivity Analysis
The values corresponding to the variation index showed that leaving-one-out of the parameter causes a variation
in the resulting vulnerability index (Table 12). When analyzing the DRASTIC and DRASTIC-LUC statistical data,
they followed a similar pattern, D > T > C > S > LUC > I > R > A, without the LUC parameter for DRASTIC. For
DRASTIC, the parameters causing the least variation were A (0.35%), R (0.61%), and I (0.64%), while for DRASTIC-
LUC, they were A (0.25%), R (0.45%), I (0.56%) and LUC (0.68%). Interestingly, these parameters produced the least
variation considering their weight within the index calculation (Table 2 and Table 4). On the other hand, for EPIK,
the parameter that produced the least variation was E (2.13%), which contrasts with parameter I (7.97%), which
was responsible for the greatest variation. The pattern of variation obtained from this model was I > P > K > E.

Table 12
Statistics of map removal sensitivity analysis: one parameter

removed.
Parameter Removed Variation index (%)

Mean Min Max SD

Depth to the water table 2.87 1.67 4.99 0.71

Topography 2.04 0.96 2.29 0.31

Hydraulic Conductivity 1.21 0.25 2.04 0.57

Soil media 1.10 0.00 2.18 0.51

Impact of the vadose zone 0.64 0.02 1.35 0.27

Net Recharge 0.61 0.00 2.20 0.50

Aquifer media 0.35 0.00 0.80 0.19

Depth to the water table 2.15 1.11 3.79 0.44

Topography 1.54 0.70 1.72 0.22

Hydraulic Conductivity 0.97 0.08 1.56 0.40

Soil media 0.82 0.01 1.64 0.37

Land and Use Cover 0.68 0.01 2.42 0.48

Impact of the vadose zone 0.56 0.01 1.09 0.22

Net Recharge 0.45 0.00 1.70 0.32

Aquifer media 0.25 0.00 0.67 0.11

Infiltration conditions 7.97 2.19 10.42 1.83

Protective cover 3.69 1.19 5.16 0.96

Karst network 3.63 0.00 5.00 1.43

Epikarst 2.13 0.64 4.17 0.68
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The resulting patterns in Table 12 allowed for a new exclusion analysis where more parameters were eliminated
until only the one that generated the most variation remains. The variation index after removing more parameters
is shown in Table 13. The models may agree on the same level of vulnerability in some areas while disagreeing in
other areas. The notable difference may be related to the number of parameters considered by each methodology.
For example, DRASTIC is based on seven hydrogeological parameters that are combined to assess vulnerability.
DRASTIC-LUC includes the parameters mentioned above, plus land use and cover related to anthropogenic
activities. In contrast, EPIK only consists of four parameters oriented to specific characteristics of karst
environments that require a higher level of information and specificity. According to Hammouri and El-Naqa
(2008), the capacity of EPIK to characterize epikarstic features is an essential distinction between it and DRASTIC
when the area to be evaluated presents epikarstic traits.

Table 13
Statistics of map removal sensitivity analysis. The variation index

caused after using only one parameter o many of them to calculate
the vulnerability index.

Parameter Used Variation index (%)

Mean Min Max SD

DRASTIC        

D T C S I R   0.45 0.00 0.83 0.24

D T C S I     0.36 0.00 1.37 0.33

D T C S       1.87 0.00 4.79 1.56

D T C         3.57 0.06 9.59 2.63

D T           1.86 0.00 8.10 1.87

D             14.84 9.52 27.73 3.78

DRASTIC-LUC        

D T C S LUC I R 0.25 0.00 0.67 0.11

D T C S LUC I   0.53 0.00 2.19 0.45

D T C S LUC     0.66 0.00 2.42 0.39

D T C S       0.89 0.00 4.33 0.87

D T C         1.88 0.00 5.37 0.98

D T           2.20 0.00 9.40 1.78

D             15.07 7.77 26.56 3.10

EPIK        

I P K         2.13 0.64 4.17 0.68

I P           6.48 0.00 10.29 3.03

I             23.91 6.58 31.25 5.48
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There was no direct association between the number of removed parameters and the variation in the vulnerability
index. The findings of Kumar and Krishna (2020), which used DRASTIC and DRASTIC-LUC, show a different
pattern on the parameters causing the least variation (I > D > C > LUC > S > T > R > A). In their study, the factor that
exhibited the most variation was the impact on the vadose zone (parameter I), which weighed 5. In other words,
the variations were directly associated with values assigned to each parameter and their weight in the calculation.
Nonetheless, it is unfeasible to evaluate vulnerability using one or three parameters because inconsistent values
can be obtained and do not reflect the reality of the study area.

When contrasted to DRASTIC or DRASTIC-LUC, EPIK employs just four parameters with a limited range of values
and weights. Therefore, removing one or more parameters creates a significant variation in the final output. For
example, eliminating parameter I causes more variation than removing parameter E. Nevertheless, the infiltration
conditions are intriguing because they have a low vulnerability index weight but produce the highest variation
when removed. That could be related to how the protective factor operates, where low values represent high
vulnerability and high values represent low vulnerability (Doerfliger and Zwahlen 1998; Doerfliger et al. 1999).

4. Conclusion and Recommendations
The first step in the protection of groundwater resources is the vulnerability assessment, which is carried out in
this research. Then the potential contamination sources are mapped, so that using these two pieces of
information, we will obtain a complete overview of the most vulnerable areas and the potential sources of
contamination risk. The use of vulnerability maps becomes important and necessary when there are
contamination sources on the surface that could threaten groundwater quality. Even more so in a karst
environment, already considered vulnerable, and located in the Amazon region that has been exploited for its
biodiversity and has received a slight investment in development in return.

It is important to emphasize that this is the first research that evaluates the vulnerability of karst formation in the
Ecuadorian Amazon. Our research used DRASTIC, DRASTIC, and EPIK to evaluate the vulnerability of the Napo
Karst Formation (NKF). Our results showed that DRASTIC and EPIK, classify 45.76% and 35.38% of the NKF as
highly vulnerable, respectively, while DRASTIC-LUC shows moderate vulnerability (57.47%). The sensitivity
analysis showed that the weight assigned to each parameter affects the final vulnerability index, and for the NKF
the most critical parameter is the Depth to water table (D). The moderate-to-high vulnerability of the NKF raises a
warning, as the impacts on surface and groundwater may affect local populations that directly depend on its
water. Therefore, the results obtained can be used as a baseline for future research and as technical information
for decision-makers to reduce the activities that could aggravate surface and groundwater quality in Western
Amazonia. There is evidence of contamination problems at the surface, and due to the interaction between the
surface and groundwater, this resource may be in potential danger if the appropriate actions are not taken.
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Figures

Figure 1

Geographical location of the study area. a) Karst Formations in South America and the Amazon Basin, b) Napo
Karst Formation (NKF), the study area in Ecuador, c) Protected areas, Land Use and Cover, and Caves in the NKF.
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Figure 2

Flowchart of the overall methodology. We first downloaded data from the available repositories as vector or raster
files. After processing, the information was inserted in the DRASTIC, DRASTIC-LUC, and EPIK models. The
outcomes were vulnerability models that were further tested with sensitivity analysis.
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Figure 3

Vulnerability maps developed for each methodology.
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Figure 4

Vulnerability maps after calculating the weighting factor.

Figure 5

Area distribution in percentage for each vulnerability index after weighting factor.


