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ALEJANDRA C. CACERES-RIGO and VALENTIN FERENCZI

Abstract. We extend the methods used by V. Ferenczi and Ch. Rosendal to obtain
the “third dichotomy” in the program of classification of Banach spaces up to subspaces,
in order to prove that a Banach space E with an admissible system of blocks (Dg, Ag)
contains an infinite-dimensional subspace with a basis which is either Ag-tight or Ag-
minimal. In this setting we obtain, in particular, dichotomies regarding subsequences of
a basis, and as a corollary, we show that every normalized basic sequence (e,), has
a subsequence which satisfies a tightness property or is spreading. Other dichotomies
between notions of minimality and tightness are demonstrated, and the Ferenczi—Godefroy
interpretation of tightness in terms of Baire category is extended to this new context.

Contents

CInfroduction] . . . -« v oot e e e 2
[L.1. A sketch of the proof|] . . ... .......... . ... o 5

B Preliminaries] . . . . . . . . . . 5
2.1. A law and Ramsey-like theorems| . . ... ... ... ... ... ......... 7

B_Admissible sets and familles] . . ... ... ... ... o oo o o 7
B.I_Definitions and notations . . ... ..... .. ... ... .o 7
13.2. Properties of admissible sets| . . . ... ... ... ... o o oL 10
8.3, Admissible families| . . . ... ... . L 12

4. Embeddings and minimality] . . . .. . ... Lo L o 16

o. Interpretations for the set of blocks| . ... ... ... ... ... ... .. 17
1b.1. Blocks as nonzero F-linear combinationsl . . . . . ... ... . ... ....... 17
B2 Blocks as vectors of the Dasisl . - -« v v v v e 19

[5.3. Blocks as signed elements of the basis| . ... ................... 20
|§ Summary of types of MINIMAality] . .« v v v v v e 20
|? Eesults on A-tightness| . ... ......... ... . 24

.1. Notions of tightness| . .. ... ... ... ... ... ... ... ... 24

8. (GGames for tightness| . . ... ... ... ... ... ... . .. 28
9. Games for minimality] . . . .. ... ... 37
9.1. An auxiliary minimal game| . . . . . ... Lo oL Lo oo 39

2020 Mathematics Subject Classification: Primary 46B20; Secondary 46B03, 03E15.

Key words and phrases: tight bases, minimal spaces, spreading bases, dichotomies on
Banach spaces.

Received 19 December 2023; revised 20 December 2024.

Published online 6 April 2025.

DOI: 10.4064/sm231219-14-1 [1] © Instytut Matematyczny PAN, 2025



2 A. C. Caceres-Rigo and V. Ferenczi

[10.Tight-minimal dichotomies| . . . . . .. ... .. .. .. . . 40
[10.1. Corollaries from the A-tight-minimal dichotomy| . . . . . ... ... ... ... 44
[10.2. Corollaries from the A-tight-minimal dichotomy: subsequences| . . . . . . .. 45

References . . . . . . . . o 46

1. Introduction. In this paper, when we refer to a Banach space, we
mean a separable infinite-dimensional Banach space. Subspaces of Banach
spaces are assumed to be infinite-dimensional and closed, unless stated oth-
erwise. In [12] W. T. Gowers began the Classification Program of Banach
spaces up to subspaces. The program aims to classify Banach spaces into “in-
evitable” classes, using dichotomies between two opposite inevitable classes
of Banach spaces. Conditions for a class to be considered of interest for the
program were given by Gowers: the classes must be inevitable, that is, every
Banach space must belong to a class. A class must be hereditary for closed
subspaces or, if the property that determines the class is defined for basic
sequences, then the class must be hereditary for block subspaces. Two dif-
ferent classes must be disjoint. The property that determines the class must
give additional information about the space of operators defined over the
space or over its subspaces.

A Banach space X is decomposable if it can be written as the direct
sum of two closed infinite-dimensional subspaces, otherwise X is said inde-
composable. A Banach is said hereditarily indecomposable (or HI) if all its
infinite-dimensional subspaces are indecomposable. Gowers showed a first
dichotomy (see [11]) giving the first two examples of inevitable classes: every
Banach space has a separable subspace that is either hereditarily indecom-
posable, or has an unconditional basis. In [I2] a second dichotomy was proved:
Any Banach space contains a subspace with a basis such that no pair of dis-
jointly supported block subspaces are isomorphic, or any two block subspaces
have isomorphic subspaces. In résumé, in [12], four inevitable classes were
presented.

Later V. Ferenczi and Ch. Rosendal [10] proved three new dichotomies.
They refined the list of inevitable classes into six main classes and 19 sec-
ondary classes. The main result in [10] is a third dichotomy, which contrasts
the dual notions of minimality and tightness and is central for the present
work:

THEOREM 1.1 (Third dichotomy, [10]). If E is a Banach space, then E
contains a subspace with a basis which is either tight or minimal.

It is well known that a Banach space is minimal if it can be isomorphically
embedded in any of its subspaces. Suppose that E is a Banach space with
a Schauder basis (ej),. A Banach space Y is tight in E (see [10] for the
definition and an extensive study of this notion) if there is a sequence (I, )y,
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of successive finite subsets of N such that for every infinite subset A of N,
Y cannot be isomorphically embedded in [e, : n & (J;c4 Li]. A basis (e,)y is
tight for F if any Banach space Y is tight in E, and F is tight if it has a
tight basis.

A useful characterization of tightness was given in [7] using Baire cat-
egory: Y is tight in E = [ey], if and only if the set of indices A C N for
which Y can be embedded in [e, : n € A] is meager in P(N) (after the
natural identification of P(N) with the Cantor space 2“, via characteristic
functions).

Tightness is an opposite notion to minimality: it is clear that a tight
space cannot be minimal, nor can a minimal space have a tight subspace.
In both definitions, of tight and minimal spaces, the underlying embedding
is an isomorphic embedding. We say that Y = [y,], isomorphically embeds
in E = [ey]n if (yn)n is equivalent to a (basic) sequence (zy,), in E. After a
standard perturbation argument, one can ask that such a basic sequence is a
sequence of finitely supported vectors of E. One can consider different forms
of embedding of Y into F, depending on the properties of the basic sequence
(zn)n in E. For example, one can require (z,), to be a block sequence of
the basis (ey), of E or a sequence of disjointly supported vectors in E.

The authors of [10] also stated that after a variation of the notion of
embedding in the definition of tight basis, and consequently modifying the
methods involved in the proof of the third dichotomy, the following result
can be obtained:

THEOREM (|10, Theorem 3.16|). Every Banach space with a basis con-
tains a block subspace E = [ey], satisfying one of the following properties:

(1) For any [yn]n < E, there is a sequence (I,)n of successive intervals in N
such that for any A € [N]*°, [y,]n does not embed into [e, : n & |J;c 4 Li]
as a sequence of disjointly supported vectors or as a block sequence.

(2) For any [yn)n < E, (en)n is equivalent to a sequence of disjointly sup-
ported vectors of [ynln, or to a block sequence of [yn]n.

Therefore, modifying the embedding we obtain a corresponding type of
minimality and the associated dual type of tightness. In this work we define
and study different types of minimality and the respective dual notions of
tightness, in order to obtain new dichotomies between them. An additional
attractive aspect of this point of view is to allow extending the techniques
to the study of subsequences of a given basis, instead of subspaces of a given
space.

Those ways of interpreting the embedding are coded in what we call an
admissible system of blocks, which is a pair (Dg, Ag) associated to a Banach
space E with a fixed normalized basis (e, ),. Basically, a set Dg of blocks
(see Deﬁnition for F is a set “containing” the possible bases of the block
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subspaces one admits to consider. Meanwhile, an admissible set (see Defini-
tion Apg for E is the set of infinite sequences of vectors which are the
images of the embeddings one wants to consider. Using this coding in the
case of “being equivalent to a subsequence of (e, ),”, for example, Dg would
be the set whose elements are the vectors of the basis and Ag is the set of all
subsequences of E. The properties of sets of blocks and admissible families
will be studied in Section [3

This coding for embedding through admissible sets Ag of vectors natu-
rally leads us to define the notions of Apg-minimality and A-tightness, which
depend on the pair (Dg, Ag), as follows: given a set of blocks Dg and an
admissible set Ag for E, we say that E is Ag-minimal if for every block
sequence (x,), € (Dg)¥, there is a sequence (y,), € Ag N X% equivalent
to (en)n. We say that (e,), is an Apg-tight basis for F if for every Banach
space Y there is an sequence (I;); of successive intervals such that for every
infinite subset A of N,

(1) Y%ﬁ[en:ng’éUL}.
€A
The study of Ag-embeddings and Ag-minimality is taken up in Sec-
tions [ [f and summarized in Section [6} Basic properties of Ag-tight bases
are studied in Section [7
In this work, we generalize the methods of [10] to use admissible systems
and we prove the main theorem of this work:

THEOREM 1.2. Let E be a Banach space with a normalized basis (ey)n
and (Dg, Ag) be an admissible system of blocks for E. Then E contains a
Dg-block subspace which is either Ag-tight or Ag-minimal.

The authors of [10] stated that modifying the notion of embedding in the
definition of tight basis, and consequently modifying the methods involved
in the proof of the third dichotomy, one can deduce the following statement:

e [wery Banach space with a basis contains a block subspace E = [en]y
such that either for any [yn|n < E, there is a sequence (I,), of successive
intervals in N such that for any A € [N]*°, [yn]n does not embed into [ey, :
n & U;ea 1i] as a permutation of a block sequence; or for any [ypln < E,
(en)n is permutatively equivalent to a block sequence of [yn|n-

But, as we see in Proposition below, a basic sequence (yy), being
embedded in [e,], = E as a permutation of (ey), is not an Ag-embbedding
obtained from an admissible set for F, and this is fundamental for the proofs
in this statement to work. We have no evidence that in this case the above
paper is true, but it cannot be obtained just by modifying the embedding
notion in the proof of the third dichotomy, as claimed in [10].
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1.1. A sketch of the proof. The main tool used in [10] in order to prove
the third dichotomy is the notion of generalized asymptotic game which is a
generalization of the notion of infinite asymptotic game (see [17,[14]). A mod-
ification of the infinite asymptotic game was first defined by Ferenczi [6] to
prove that a space saturated with subspaces with a Schauder basis, which
embed into the closed linear span of any subsequence of their basis, must
contain a minimal subspace. The work in [6] generalized the methods and
the result of Pelczar [16]: a Banach space saturated with subsymmetric basic
sequences contains a minimal subspace.

Let X = [z,], and Y = [y,], be two block subspaces of a Banach space
E with a Schauder basis (e, ),. The generalized asymptotic game Hy x with
constant C' is a game with infinite rounds between player I and player II
where in the kth round, player I picks a natural number n; and player 11
responds with a natural number mj and a not necessarily normalized finitely
supported vector ug such that supp(ug) C Uf:o [, m;]. The outcome of the
game is a not necessarily block sequence (uy,),. Player II wins the game if
(Yn)n is C-equivalent to (uy)n.

In order to prove Theorem we follow the demonstration of the third
dichotomy generalizing the arguments for the context of Ag-minimality and
Ap-tightness, creating the notion of “admissible systems of blocks”. First,
we shall adapt to Dg-block subspaces two technical lemmas and ,
whose original versions for block subspaces were proved in [10] and in [15],
respectively. We define an A-version of the generalized asymptotic game
HéX with constant C, depending on an admissible set Ag, requiring that
the outcome (u, ), of the game be an element of Ap N X“. Again, the game
HY y with constant C' is open for player I and so, by the determinacy of
open Gale—Stewart games, is determined.

In Section [§] we prove technical lemmas by varying the methods of Fer-
enczi and Rosendal: we show that if F is in some way saturated by Dg-block
subspaces X and Y such that player I has a winning strategy for the game
Hgﬁ‘ y with constant C, then E has an Ag-tight subspace.

Before the proof of our main theorem it is necessary to introduce two
games for Ap-minimality: the game Gé y With constant C' and a version
assuming that finitely many moves have been made in GY - This will be
done in Section @ The main result in that section relates the existence of a
winning strategy for player Il in the game HY7  to the existence of a winning

strategy for player II in the game G{," - Finally, after the proof of Theorem
in Section some tight-minimal dichotomies are presented.

2. Preliminaries. If F is a Banach space then Sg, Br and Bg denote
the unit sphere and the open and closed ball of E, respectively. For € > 0 and
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r € E, Bp(z,¢) and Bg(z,¢) denote the open and closed ball in E centered
in  with radius €.

Suppose that (e,), is a basis for E. We define the support of x € E
(written suppg(x)) in the basis (ey)n as the set {n € N : e} (x) # 0}, where
e}, are the coordinate functionals defined by x = ZZO:O An€n > A for k € N,
The support of the zero vector of E is the empty set.

We say that a Banach space X is isomorphic to a Banach space Y with
constant K (denoted as Y ~p X) if there exists a one-to-one bounded linear
operator T from X onto Y such that T~ is bounded and K > ||T|| - |T~!|.
We say that X contains a K-isomorphic copy of Y, or Y is K-embeddable
in X (denoted as Y — g X),if Y ~p Z for some subspace Z of X. Finally, Y
is isomorphically embeddable, or just embeddable, in X (in symbols Y — X) if
Y <k X for some K > 1. In this case we say that X contains an isomorphic
copy, or just a copy, of Y.

For K > 1, two basic sequences (z,), and (y,), are K-equivalent
((#n)n ~x (yn)n) if for all k € N and every finite sequence (a;)F_, of scalars

we have
1 k k k
e 2 | < |3 anpn| < K]S v
n=0 n=0 n=0

Two basic sequences are equivalent if they are K-equivalent for some K > 1.
We shall use the following well known result:

PROPOSITION 2.1. Let X be a Banach space with a basis (xy), with basis
constant C and let M > 1. Then there is a constant ¢ > 1, which depends on
C and M, such that if (zn)n and (yn)n are normalized block bases of (y)n
which differ only in M terms, then (yn)n ~c (2n)n-

If A is a nonempty set, then |A| denotes the cardinality of A, P(A)
denotes the power set of A, and [A]<*° and [A]* denote the set of finite
subsets of A and the set of infinite subsets of A, respectively. Given A, B C N
and assuming that max A and min B exist, we write A < B to mean that
max A < min B. When we refer to a sequence (I,), of successive finite
subsets of N, we mean that I, < I,,11 for every n € N. Also, when we refer
to an interval I of natural numbers, we mean that I = [a,b] NN for some
0 < a < b. Let us denote the set of nonempty finite sets of N by FIN, that
is, FIN := [N]<>°\ {0}. We denote by FIN“ the set of infinite sequences of
non-empty finite subsets of N.

We shall consider the Cantor space 2¢ = {0, 1}* with the product topol-
ogy where {0,1} is endowed with the discrete topology. If s = (s;); € 2%,
define supp(s) = {i € N : s; = 1}. Notice that P(N) can be identified
with 2 using characteristic functions: if A € P(N), then the characteristic
function y4 belongs to 2 and A = supp(x4). Thus, families of subsets of
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N will sometimes be viewed as families of sequences in N. Therefore, any
F C P(N) can be seen as a topological subspace of 2. A basic open subset
of 2¥ determined by s € 2 and J € [N]<* is given by

Nog ={u= (up)n €2°:Vn e J (up, = sn)}.

2.1. A law and Ramsey-like theorems. A Polish space is a separable
completely metrizable topological space. In this subsection we shall recall
some classical theorems. The next theorem is known as the first topological
0-1 law:

THEOREM 2.2 ([13], (8.46)]). Let X be a Polish space, and G be a group of
homeomorphisms of X with the following property: for any non-empty open
subsets U and V' of X, there is g € G such that g(U)NV #£ 0. If AC X has
the Baire property and is G-invariant (i.e. g(A) = A for every g € G), then
A is meager or comeager in X.

The next theorem is known as Galvin—Prikry’s Theorem:

THEOREM 2.3 ([13, (19.11)]). Let [N]*® = PyU---U Py_1, where each P;
is Borel and k € N. Then there are H € [N]* and i < k with [H]* C P;.

According to Ramsey theory’s nomenclature, a subset C of [N]* is Ram-
sey if there is some H € [N]* such that [H]|* C C or [H]* C [N]*°\ C. So,
Galvin—Prikry’s Theorem can be enunciated as follows: Borel sets of [N]* are
Ramsey. The next theorem, Silver’s Theorem, says that analytic subsets of
[N]*® are completely Ramsey, which implies that analytic subsets of [N]*> are
Ramsey (since all completely Ramsey subsets are Ramsey). We recommend
[13] for more information about these definitions and proofs.

THEOREM 2.4 ([13, (29.8)]). Analytic subsets of [N|*° are completely
Ramsey.

3. Admissible sets and families. Along this section suppose F is a
Banach space with a Schauder basis (ey),. Set Bg := {e, : n € N} and
Bi :={e, :n € N}U{—e, : n € N}. Let Fzz be a countable subfield of R
containing the rationals such that for all Y- ; A\je; with n € N and (\), €
(Fp)™™!, the norm ||>°1, Aie; | is in F . We denote by Dg the countable set
of nonzero not necessarily normalized finite F g-linear combinations of (e, ).

3.1. Definitions and notations

DEFINITION 3.1. Let (z,), be a sequence of successive finitely supported
vectors of E. For X = [x,],, define xx : (Dp N X)¥ x (D) — (Dg)¥ as
follows: if v = (v,)n, € (DE)“ and u = (up)n, € (D N X)“ are such that for

each n € N,

i€supp x (un)
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then u *x v is the sequence (wy, ), where for each n € N,

Wy, = E A ;.
1€supp x (un)

Notice that the set Dy N X could be empty. In our work we shall take
subspaces generated by vectors in Dg, so this will not occur.

DEFINITION 3.2. We define a set of blocks for the space E to be a set
Dp satistying the following conditions:

b) {en:m € N} C Dpg.

c) If u € Dg, then u/||u|| € Dg.

d) For all (up)n, (vn)n € (Dg)*, we have (upn)n *g (Vn)n € (Dg)®.

e) Let (z:), € (Dp)"™ with z; < z;41 for every 0 < i < n, and X =
[Zi]i<n. If w € Dg is such that

n
u = E )\iibi,
=0

(
(
(
(
(

then .
v = Z e € Dg.
i=0
We say that a vector u is a Dg-block if u € Dg.
ExXAMPLE 3.3. Bg, BE and Dg are sets of blocks for F.

DEFINITION 3.4. Let D C Dg be an infinite subset such that D“ contains
a block basis of (e, ).

(i) We say that (yn)n € E¥ is a D-block sequence if (y,)n is a block basis
of (en)n and for each n € N we have y,, € D.

(ii) A subspace Y is a D-block subspace if it is the closed subspace spanned
by a D-block sequence (yy, ).

Without loss of generality we shall suppose that a D-block subspace is always
generated by a normalized D-block sequence.

DEFINITION 3.5. Let Dg be a set of blocks for E. Let X be a Dg-block
subspace.
(1) We define Dy :=Dg N X.
(i) We denote Dx := Dp N X.
(iii) We denote by bbp(E) the set of normalized Dg-block sequences of E,
ie.
bop(E) := {(xn)n € (Dg)¥ : (zn)n is a Dg-block sequence of E
&Vn e N (||lzn|| = 1)}
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(iv) We denote by bbp(X) the set of normalized Dx-block sequences of E,
ie.

bop(X) := {(yn)n € (Dx)“ : (Yn)n is a Dx-block sequence of E
&Vn e N (||lz,|| =1)}.

If Dg is a set of blocks for F and X is a Dg-block subspace, then we
sometimes identify an element (y;, ), of bbp(X) with the Dg-block subspace
it generates.

We endow (Dpg)“ with the product topology obtained by considering
Dpg with the discrete topology; then (Dg)“ is a Polish space. Also, the set
(N x N x Dg)*¥ with its natural product topology is Polish. The set bbp(E)
is a nonempty closed subspace of (Dg)“, so it is Polish.

DEFINITION 3.6. Let D be a set of blocks for E. We say that a set Ag
is admissible for E if it satisfies the following conditions:

(a) Apg is a closed subset of (Dg)¥.

(b) Apg contains all the Dg-block sequences.

(c) For every (yn)n € Ap and every Dpg-block subspace X = [xy]n, if
(un)n € (Dx)“, then

(un)n € Ap <= (un)n *X (yn)n € Ag.

(d) Let (yn)n be a Dg-block sequence and Y = [y,,],. For every (uy)n € Ag
and k € N, there is (v,), € Y such that (ug, ..., ug, v, v1,...) € Ag.

DEFINITION 3.7. Let Dg be a set of blocks for F/, A an admissible set
for E, and X be a Dg-block subspace.

(i) Set Ax := ApNXY.
(ii) We denote by [Ax] the set of initial parts of Ax, that is,

[Ax] =

U {(uo, w1, un) € (Dx)" ™ I(wi); € Ax (w; = u; for 0 < i < n)}.

neN

REMARK 3.8. (i) Notice that an admissible set depends on the set of
blocks that has been chosen for E.

(ii) Since (Dg)’ is a discrete topological space, the set [Ag] N (Dg)
clopen subset of (Dg)* for every i > 1.

(i) If X and Y are Dg-block subspaces such that ¥ C X, then
Ay C Ax.

DEFINITION 3.9. Let Dg be a set of blocks for F' and Ag, be an admissible
set for E. We say that (Dg, Ag) is an admissible system of blocks for E if for
every Dp-block subspace X of E, for every sequence (d,,), with 0 < 4§, < 1,
and K > 1, there is a collection (Ay), of nonempty subsets of Dx with the
following properties:

Yisa
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(a) For each n and each d € [N]<* such that there is w € Dx with
supp x (w) = d, there are finitely many vectors u € A,, with suppy (u) = d.
(b) For every sequence (w;); € Ax satisfying 1/K < |Jw;|| < K, for every 1,
there is (u;); € Ax such that for each n we have
(b.1) u, € Ay,
(b.2) suppx (un) C suppx (wn),
(b.3) [Jwn — upl| < dp.
3.2. Properties of admissible sets

PROPOSITION 3.10. Let Dg be a set of blocks and Ag be an admissible
set for E. Then the following are equivalent:

(i) For every (yn)n € Ag and every Dg-block subspace X = [xy]n, if
(un)n € (Dx)“ then
(Un)n € Ap <= (up)n *x (Yn)n € Ag.
(ii) For all (yn)n, (2n)n € Ag, if (wp)n € (Dg)* then
(Wn)n *E (Yn)n € Ap <= (Wn)n *E (2n)n € AE.
(i) For all (Yn)n, (2n)n € Ag and every Dg-block subspace X = [xp|n, if
(un)n € (Dx)“ then
(Un)n *x (Yn)n € Ap <= (up)n *x (2n)n € Ag.
Proof. This follows directly from Definitions and 3.0 =

We can easily prove that a set of blocks has the following heredity prop-
erties:
PROPOSITION 3.11. Let Dg be a set of blocks and Ap be an admissible
set for E. If X = [zy]y is a Dg-block subspace, then the following hold:
(i) Dx C Dy.
(ii) {zn : n € N} C Dx.
(ii) If u € Dx, then u/||u|| € Dx.
(iv) For every (un)n € (Dx)* and (vy)n € (Dg)¥, we have (up)n *x (Vn)n €
(Dg)“. In particular, if (vy)n € (Dx)“, then (up)n *x (vn)n € (Dx)%.
(v) Let (yi)i— € (Dx)™ ! with y; < yiy1 for every 0 < i < n, and Y =
[Yili<n- If u € Dx is such that

n
1=0
then

n
v = Z)\ﬂjz € Dx.
=0
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Proof. This follows directly from the definition of a set of blocks. =
The last heredity property is also valid for an admissible set:

PROPOSITION 3.12. Let Dg be a set of blocks and A be an admissible set
for E. Let X = [x,], be a Dg-block subspace. The set Ax has the following
properties:

(i) Ax is a closed subset of (Dx)¥.
(ii) Any block basis (yn)n in (Dx)“ belongs to Ax.
(iii) For every (vp)n € Ax and every Dx-block subspace Y = [yn|n, if
(un)n € (Dy)“, then

(Un)n € Ax <= (Un)pn *y (Un)n € Ax.

(iv) Let Y = [ynln be a Dx-block subspace. For every (up), € Ax and
k € N, there is (vy)n € Y such that (ug, ..., ug,vo,v1,...) € Ax.

Proof. This follows directly from Definition .

Notice that if X is a Dg-block subspace, then using Proposition (ii)
we conclude that [Ax] is infinite. If (D, Ag) is an admissible system of
blocks for E and X is a Dg-block subspace, then as a consequence of Propo-
sitions and the pair (Dx,.Ax) can be thought of as an “admissible
subsystem of blocks” relative to X. The “relativization” of the condition given
in Definition to X is clearly true: For every Dx-block subspace Y of X,
for every sequence (), with 0 < 0, < 1, and K > 1, there is a collection
(Ay)n of nonempty subsets of Dy with the following properties:

(a) For each n and each d € [N]<* such that there is w € Dy with

suppy (w) = d, there are finitely many vectors u € A, with suppy (u) = d.
(b) For every sequence (w;); € Ay satisfying 1/K < min; ||w;|| < sup; [Jw;]|

< K, there is (u;); € Ay such that for each n,

(b.1) uy, € Ap,

(b-2) suppy (un) € suppy (wp),

(b.3) ||wn — upl| < 0p-

PROPOSITION 3.13. Let Dg be a set of blocks for E, and Ag be an ad-
missible set for E.

(i) Let X be a Dg-block subspace. If (u;); € (Dx)¥ is such that for every
n € N the finite sequence (u;)j— is in [Ag], then (u;); € Ax.

(i) If X = [zp]n and Y = [yn]n are Dg-block subspaces such that (zy,), ~
(Yn)n, and T : X —'Y is the linear map such thatVn € N (T(x,) = yn),
then T(Ax) = Ay.

(iii) If X is a Dg-block subspace, then

Ax]=[Ag|N U Xt

i>1
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Proof. (i) Let X and u = (u;); € (Dx)“ be as in the hypothesis. For
each n € N let v" = (v]'); € Ag be such that u; = v} for every 0 < i < n.
Without loss of generality, we can suppose each v™ is in Ax (using Definition
3.6{d)) we can find a sequence in Ay which coincides with v™ in the first

n coordinates). Thus, vj = u; for every n > j. This means that for each

J € N we have (v}') — u; in Dx as n — oc. Therefore, v" — u in (Dx)*.

Proposition [3.12[1) yields u € Ax.
(ii) Let X = [zp]n and Y = [yn]n be Dg-block subspaces of E, and
let T : X — Y be as in the hypothesis. Notice that by Definition [3.6{b),

(%n)ns (Yn)n, (en)n € AE.
Let (up)n € Ax with

Uy = g A

1€supp x (un)

for each n € N. We want to show that (T'(up))n € Ay. Indeed, (T'(uy))n =
(un)n *x (Yn)n, so by Definition B.6{c), (T'(un))n € A NY* = Ay.
On the other hand, let (v,), € Ay with

Up = Z @?yi
i€suppy (vn)
for every n € N. For each n € N set

Uy, = g al'w;.

i€suppy (vn)
Clearly, T'(u,) = v, for every n and (up)n = (vp)n *y (€n)n. By Definition
3.6(c), (un)n € ApN XY = Ax.
(iii) Let X = [zy]n be a Dg-block subspace. Since Ag N X¥ = Ay, it
follows that
[Ax] C [Ag]| N U X°,

i>1

Suppose that (u;)", € [Ag] N X" for some n € N. By Definition (d),
there is (u;)§2, ., € X such that u = (ug,...,Un, Uny1,...) € Ax. Then
(g € [Ax]. u

3.3. Admissible families
DEFINITION 3.14. We define ® : P(w)* x P(w)¥ — P(w)* as follows:

given U = (U;); and V = (V;); in P(w)¥, we define U ® V = (W;); by
Wi = Ujep, Vj for every i € N.
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DEFINITION 3.15.

(i) We denote by bb the set of sequences of successive nonempty finite sub-
sets of N, that is,

bb := {(U;); € FINY : Vi € N (U; < Ujy41)}-
(ii) We denote by db the set of sequences of nonempty finite subsets of N
whose elements are mutually disjoint:
db(N) :={(U;); e FIN¥ : Vi # j (U;nU; = 0)}.
REMARK 3.16. (i) The operation ® is internal on each of FIN“, bb and db.
(i) H U = (U;); and V = (V;); in P(w)® and U ® V = (W};);, then
UwicUv
1€N ieN
(iii) e := ({i}); is a neutral element for ®, that is, if U € P(w)*, then
U®e=eaxlU=U.

We shall consider FIN“ as a topological subspace of (2¥)“, where (2¢)% is
endowed with the product topology which results from considering 2% as the
Cantor space with its topology. The following proposition follows directly
from the definition of the operations *x and ®.

PROPOSITION 3.17. Let Dg be a set of blocks for E. Let X be a Dg-block
subspace of E. Suppose (up)n € (Dx)* and (vn)n € (Dg)¥. If (wn)n =
(un)n *x (Un)n, then
(2) (suppg(wn))n = (SUPPx (tn))n ® (SUPPE(vn))n-

Also, if (vn)n is a basic sequence, then for each n,
(3) SUPPJy,), (Wn) = suppx (un).

DEFINITION 3.18. We say that a nonempty subset B C FINY is an
admissible family if the following conditions are satisfied:

(a) B is a closed subset of FIN“.
(b) bb C B.
(c) For every (U,)i, (Vi)i € B and every (W;); € FIN*, we have
(4) (Wl)l ® (Uz)l €SB — (Wz)l ® (Vz)l € ’B.
(d) For every (U;)i, (Vi)i € B and n € N, there is a subsequence ({t;}); of e
such that
(UO,Ul,...,Un,Wo,Wl,.. ) € B,
where (W;); = (t;)i ® (V;);.
REMARK 3.19. (i) If 98 is an admissible set, condition (b) implies that
the neutral element e belongs to 3.
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(ii) It is easy to see that condition (c) in Definition is equivalent to
the following: for every (V;); € B and every (W;); € FINY,

(5) (W) €B — (W) ®(V;); € B.
PROPOSITION 3.20. The sets FINY, bb and db are admissible families.

Proof. 1t is clear that FIN“ is an admissible set. Both bb and db(N) sat-
isfy condition (a) of Definition as a consequence of the topology we are
considering on FIN“. Conditions (b)—(d) in Definition are consequences
of the properties of ® and the fact that sequences of the type ({m +i}); are
in bb, and therefore in db(N). =

ProproSITION 3.21. The set
per == {(U;); € FINY : 31 a permutation of N, Vi € N (Ur¢y < Ur(is1))}

1s not an admissible family.

Proof. Consider

U:=({0,1},{2},{3},...) and V := ({0}, {2},{1},{3},{4},...),
both in per(N). Notice that U = U ® e and V belong to per(N), but

UeV =({0,2},{1},{3},{4},...)

does not. Thus, per(N) fails to satisfy condition (c) in Definition "

The next definition establishes that an admissible family determines an
admissible set for E.

PROPOSITION 3.22. Let B be an admissible family. Let Dg be a set of
blocks for E. Define

(6) B(Dg) = {(u)i € (Dp)* : (suppg(ui))i € B}
Then B(Dg) is an admissible set for E.
Proof. Set A :=B(Dg). Let us check each condition of Definition
(a) Suppose v := (v;); € A C (Dg)* and let (u;); € A” converge to v. If
for each 4, u; = (u});, then uj; — v; in (Dp)“ as i — oo, for every j € N.
Thus, for each j € N there is N; > 0 such that “; = v; (in particular
suppp(u;) = suppg(v;)) for every i > N;. This means that for each j € N,

(7) suppg(uj) —— suppg(v;)  in FIN.
71— 00

Foreachi e N,u; € A= U; = (suppE(ué))j € 9%B. Note that (7)) shows that
(U;)i converges to (suppg(v;)); € FIN“. Since B is closed in FIN“, we have
(suppg(vj)); € B. By the definition of A, this means that v € A.

(b) Let (yn)n be a sequence of successive blocks, that is, we have
VYn € N (y, € D& yn < Ynt1). Then (suppg(vi)): € bb(N). By Definition
B-18(b), bb(N) C B, s0 (yn)n € A.
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(c) Let (yn)n € A and X = [z,], be a Dpg-block subspace. Suppose
(un)n € (Dx)“, where for each n € N,

Up = Z A
i€supp x (un)
We want to see that
(8) (un)n € A < (vn)n = (un)n >kX (yn)n S A

Observe that (uy), € (Dx)“ and, due to Proposition [3.11{iv), we know that
(un)n * X (yn)n € (DE)UJ
By Proposition [3.1
(9) (suppg (vn))n = (SUPPx (Un))n ® (SUPPE(Yn) )n-
As a consequence of this equality, the definition of A and Definition (3.18((c),

we obtain

(up)p € A <= (suppg(un))n € B
< (suppx(un))n ® (suppg(zs))n € B
< (suppx (un))n ® (suppg(yn))n € B
< (suppg(vn))n € B

<~ (vn)n € A.

(d) Let (yn)n a Dg-block sequence and Y = [y,],. By using item (b), we
have (suppg(yn))n € B. Let (u;); € A, so (suppg(u;)); € B. By Definition
3.18(d) there is ({a;}); € bb(N) such that
(10) (suppg(uo),suppg(u1), . .. ,suppg(un), Bo, B, ...) € B,

where (B;); = ({ai}); ® (suppg(vi))i. For each i € N, let z; = y,,. It is clear
that (2;); € (Dy)” and suppg(z;) = B; for every i € N. Then, by (10),

(Ugy - -y Un, 20,21,--.) €EA. =

Under the hypothesis of Proposition [3.22] we shall refer to the resulting
set B(Dg) as the admissible set for E determined by the admissible family 8.

PROPOSITION 3.23. Let B be an admissible family. Let Dg be a set of
blocks for E. Let X be a Dg-block subspace of E. If Ap = B(Dg), then
.AX - %(Dx)

Proof. This follows from the facts that Ax = Ag N XY, Dx =D N X,
and for every (u,), € (Dx)¥,

(11) (suppg(un))n € B <= (suppx(un))n € B.
And this last fact follows from Proposition [3.17 =

From Proposition [3.22| we obtain immediately:
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PRrROPOSITION 3.24. Let Dg be a set of blocks for E. The following sets
are admissible for E:

(i) The set (Dg)“ of infinite sequences of Dg-blocks.
(ii) The set bb(Dg) of Dr-block sequences of E.
(iii) The set db(Dg) of infinite sequences of pairwise disjointly supported
Dg-blocks.

4. Embeddings and minimality. In this section we shall use the pre-
vious sets of blocks and admissible sets to code different kinds of embeddings.
Doing this we shall be able to associate to each embedding a notion of tight-
ness and of minimality, which in some cases coincide with notions studied
previously, for example in [9]. To simplify the notations we shall fix a Banach
space E with a normalized basis (e )n.

DEFINITION 4.1. Let Dg be a set of blocks for F and Ag an admissible
set for . Suppose that X is a Dg-block subspace. Let Y be a Banach space
with a normalized basis (yy), and suppose K > 1.

(i) We shall say that Y Ax-embeds in X with constant K (in symbols

Y “iK X) if there is some sequence (uy), € Ax of blocks such that
(un)n ~k (Yn)n-

(ii) We say that Y Ax-embeds in X (in symbols Y A X)ify i>K X for
some constant K > 1.

A number of natural properties follow directly from Definition [4.1} For
example, the definition guarantees that if Y is a Dx-block subspace of X

and Z fﬁ> Y, then Z (i X as well.

DEFINITION 4.2. Let E be a Banach space with a normalized basis (e, ).
Let Dg be a set of blocks for F, and Ag an admissible set for E. Suppose
that X is a Dpg-block subspace. We say that X is Ag-minimal if X é) Y
for every Dx-block subspace Y.

The following proposition establishes that the property of being Ag-
minimal is hereditary under taking Dg-subspaces.

ProproSITION 4.3. Let E be a Banach space with a normalized basis
(en)n. Let D be a set of blocks for E, and Ag be an admissible set for E.
Suppose that X is a Dg-block subspace which is Ag-minimal. If Y is a Dx-
block subspace of X, then Y is Ag-minimal.

Proof. Let Y = [yn]n be a Dx-block subspace of X. Let Z = [z,], be
a Dy-block subspace of Y (so it is also a Dx-block subspace of (x,),). We

A
want to see that Y <— Z.
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By the Ag-minimality of X, we have X f£> Z, thus there is (up), €
Az C Ax such that (), ~ (un)n. By Proposition [3.12[(iii) we have

(Yn)n € Ax = (Wn)n = Wn)n *x (Un)n € Ax NZ = Ag.

Thus, (wy,)y is a block basis of the basic sequence (uy), of Dz-blocks (it
is not necessarily a block sequence of X because (uy,), need not be a block
sequence). Since (up)n ~ (xn), and each w, has the same scalars in its

. A
expansion as y,, we have (y,)n ~ (Wp)n. S0, Y < Z. m

REMARK 4.4. In the context of Proposition [3.24] for a fixed set Dg of
blocks, we have

bb(Dg)-minimality = db(Dg)-minimality = (Dg)“-minimality.

5. Interpretations for the set of blocks. Depending on the set of
blocks Dr C Dg we have chosen for the Banach space FE, it is possible
to give different interpretations for the admissible set considered. In this
subsection we shall explore various sets of blocks and analyze the admissible
sets obtained in Proposition in each context.

5.1. Blocks as nonzero F-linear combinations. We start with the
biggest set of blocks possible. Consider the set of blocks Dg, that is, the set
of all nonzero finitely supported Fg-linear combinations of the basis (e, ).
This set of blocks coincides with the blocks used by A. Pelczar [16] and also
by V. Ferenczi and Ch. Rosendal [10].

In this context, a Dg-block sequence is a block basis whose elements are
nonzero finitely supported F g-linear combinations and

bbp(E) = {(2n)n € (DE)* :Vn €N (zp < Tns1 & |za] = 1)}

REMARK 5.1. Any normalized finitely supported basic sequence (yy,), in
E = [en]n is equivalent to (zp,)n € (Dg)¥ with suppg(z,) = suppg(yn) for
every n. This is a consequence of the density of Dg in E and the principle
of small perturbations.

The proof of the following proposition is an adaptation of the beginning
of the proof of [10, Lemma 3.7].

PROPOSITION 5.2. Suppose that we are considering Dg the set of blocks
for E and that Ag is the admissible set for E determined by an admissible
family B, i.e., Ap = B(Dg). Then (Dg, Ag) is an admissible system of
blocks for E.

Proof. Let X = [xy,], be a Dg-block subspace, and (dy,), with 0 < d,, < 1
and K > 1. We are going to construct for each n € N sets D,, of not
necessarily normalized ID x-blocks with the following properties:
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(1) For each d € [N]<*, there are a finite number of vectors u € D,, such
that suppy (u) = d.

(2) If w is a Dx-block vector with norm in [1/K, K], then there is some
u € Dy, with the same support in X as w such that |w — u|| < d,.
Before the proof of the existence of such sets D, let us show why this

is sufficient: Let (v;); € Ax satisfy 1/K < ||v;]| < K for every ¢ € N. Since

(vi)i € Ax and Ag is the admissible set for E determined by an admissible

family B, it follows that

(12) (suppx (vi))i € B.

Using (2), for each ¢ there is w; € D; with ||w; — v;]| < d; and supp y (w;) =
suppx (v;), so by (suppx (w;)); € B, which means that (w;); € Ax.
Therefore, (Dg, Ag) is an admissible system of blocks for E.

Let us prove that such sets D,, exist. Set n € N. We proceed by induction.
If d € [N]!, then since the closed K-ball of [2;];c4 is totally bounded and
Dg is dense in FE, it is possible to find a finite Uy = {u‘f,...,ufn(d)} -
By ([7:)ica) N Dg such that if w € [x;];eq and 1/K < |Jw|| < K, then there
is some j < m(d) with |Jw — ujl|| < Op.

Suppose we have found for every d € [N]<™ such vectors Uy = {ug,...,
ufn(d)} C Bx([xi)ica) N Dg with the desired property. Let d € [N]™. Then as
the closed K-ball in

[ilied \ U [@i)ica
d'Cd
is again totally bounded and D is dense in E, there is Uy = {u, ... ,ufn d)}
C B([zi]ica) "D such that if w € [2;];e4, 1/K < ||w|| < K and supp(w) = d,
then there is some j < m(d) such that |Jw — U?H < 0p,. Finally, set

D= |J U4
de[N]<

As an immediate consequence of Propositions [3.24 and [5.2] we deduce:

COROLLARY 5.3. The pairs (Dg, DY), (Dg, db(Dg) and (Dg, bb(Dg) are
admissible systems of blocks for E.

Notice that it is a fact frequently used, for example in [16], [10], that
after a perturbation argument, a (Dg)“-embedding is “equivalent” to the
usual isomorphic embedding, i.e. if X = [z,], is a Dg-block subspace, then

YAXey o X, when A = (Dg)%. Furthermore, if Y < x X for some
K > 1, then for any € > 0 we have ¥ —x . X.
As proved in Proposition the family per is not admissible for FINY.

So, Proposition [3.22| cannot be used to determine whether the set of se-
quences of blocks that are a permutation of a block basis is an admissible
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set for the Banach space E. In the next proposition we actually prove that
such a set is not admissible for F.

PROPOSITION 5.4. The set
per(Dg) == {(zn)n € (Dr)* : (suppgp(xn))n € per}

is not admissible for E.

Proof. Let

(zn)n = (€0, €2,€1,€3,€4,...) and (wy), = (eg+ €1,€2,€3,€4,...)
Both (zp), and (wy, ), are permutations of Dg-block sequences but (wy,), *g
(2n)n = (eo + €2, €1,e€3,...) is not. So, condition (c) in Definition is not
satisfied. m

5.2. Blocks as vectors of the basis. The smallest set of blocks we
can consider is the set for which the blocks are exclusively the vectors of
the basis Bg. Notice that in this case all blocks are normalized. In this
context a Bg-block sequence is a subsequence of the basis, and a sequence
of disjointly supported blocks is a sequence of different elements of the basis
(not necessarily in increasing order).

PROPOSITION 5.5. Let B be an admissible family. Then (Bg, B(Bg)) is
an admissible system of blocks for E.

Proof. This follows directly from the fact that for each n € N only one
Bg-block has support {n}. In this case, the conditions asked in Definition
are trivial. What we are saying is that for the case of embedding, minimality
or tightness by sequences, it is not necessary to perturb the vectors along
the proofs. m

As a corollary, using the admissible families bb and db (Proposition ,

we obtain:

COROLLARY 5.6. The pairs (Bg, bb(Bg)) and (Bg, bb(Bg)) are admis-
sible system of blocks for E, corresponding to the admissible sets of subse-
quences of (en)n and of pairwise distinct elements of (en)n, respectively.

REMARK 5.7. Let Dp be a set of blocks for the Banach space E, and
Ag be an admissible set determined by an admissible family. Notice that
Proposition is true in the case where for each d € [N]<* such that there
is w € Dg with suppg(w) = d, the set {u € Dg : d = suppg(u)} is finite.
Under this hypothesis a pair (Dg, Ag) is an admissible system of blocks
for E.

DEFINITION 5.8. Let Y be a Banach space with a normalized basis (yy, ).

We write (4n)n < (€n)n to denote that (y,)y is equivalent to a subsequence
of (en)n.
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Note that (yn)n < (€n)n if and only if Y A E where the set of blocks is
Br and Ap = bb(Bg) is the admissible set for E. Therefore this definition
fits into the general context of our paper.

5.3. Blocks as signed elements of the basis. Additionally, we shall
study the case of the set of blocks Bf for F, where we recall that x € BE if
and only if z = eey, for some k& € N and some sign ¢ € {—1,1}.

Since for each n € N only two vectors e, and —e, in Bg have {n} as
support, from Remark we have immediately:

PROPOSITION 5.9. Let B be an admissible family. Then (BE,B(Bg)) is
an admissible system of blocks for E.

DEFINITION 5.10. We say that (x,,), is a signed subsequence of (ey,), if
(Zn)n € bb(BE) := {(cien,)i : (n;); € N is increasing & (g;); € {—1,1}*}.
The sequence (z,,), is a signed permutation of a subsequence of (ey)y if
(Zn)n € db(BE) = {(gien,)i : (n;); € N* are mutually distinct
& (i) € {-1,1}"}.
From Propositions [3.22] and we have:

COROLLARY 5.11. The pairs (ZS%7 bb(l’)’g)) and (B%, db(Bg)) are admis-
sible systems of blocks for E, associated to the admissible sets of signed sub-
sequences of (en)n and signed permutations of subsequences of (ey)n, Tespec-
tively.

6. Summary of types of minimality. We can summarize the inter-
pretation of each embedding as follows: Let Y be a Banach space with nor-
malized basis (yn)n. Suppose that we are considering the set of blocks Dg
to be Bg, Bf or Dg, and Ag the admissible set determined by any of the

admissible families FIN“, bb or db. To say that Y i FE means in each case
that the basis (yn)n is equivalent to a sequence (z,), in E which satisfies
the respective condition we have represented in Table [I]

Notice that since (y,), is a basic sequence, in the trivial cases when
the admissible family is FIN“, (x,), must also be basic, so in particular
Ty # Ty for n # m. For that reason, the first and third rows of the Bg and
BE columns are the same.

We can summarize the notions of Ag-minimality which follow from each
non-trivial Ag-embedding notion given in Table [I} For this we first give a
few simple definitions.

In [8] a basis (ey), for a Banach space E was defined to be block equiva-
lence minimal if any block sequence has a further block sequence equivalent

to (en)n.
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Table 1. A-embeddings for an admissible set determined by an admissible family B

Dr

® Bg B Dg
. . (zn)n is a permuta- | (x,)n is a sequence
FIN® (@n)n is a permutation of a tion of a signed sub- | of finitely supported

subsequence of (en)rn

sequence

vectors of Dg

(zn)n 1s a subsequence of

(zn)n is a signed sub-

(zn)n is a Dg-block

bb
(en)n sequence of (en)n sequence
(@n)n is & permuta (zn)n is a sequence
b (2n)n is a permutation of a tiotl TZ)f N sigll)wd sub. of disjointly finitely

subsequence of (en)n

sequence

supported vectors of
Dg

Recall that two basic sequences (x,,), and (y,), are said to be permuta-
tively equivalent if (xp)n ~ (Yo (n))n for some permutation o of the integers.
Similarly:

DEFINITION 6.1. Let (xy,), and (yn)n, be two basic sequences. We say
that () is signed equivalent to (yn )y if there is some (ey,)n, € {—1,1}* such
that (zp)n ~ (€nYn)n. We say that (z,,),, is signed permutatively equivalent to
(yn)n if it is permutatively equivalent to (€,yy)n for some (€,), € {—1,1}~.

Recall that a basic sequence is spreading when it is equivalent to all its
subsequences. Similarly:

DEFINITION 6.2. We say that the basic sequence (ey,), is signed (resp.
permutatively, signed permutatively) spreading if (ey), is signed equivalent
(resp. permutatively equivalent, signed permutatively equivalent) to all its
subsequences.

In [8] it was proved that, as a consequence of the Galvin—Prikry Theo-
rem, if a basis (ey,), has the property that every subsequence has a further
subsequence equivalent to (ey,)n, then (ey,), is spreading. Adapting the proof
of this fact, we shall use Silver’s Theorem to prove the natural form of min-
imalities in the specific case of subsequences. All notions of minimality are
summarized in the next proposition.

PROPOSITION 6.3. Let E be a Banach space with a normalized basis
(en)n-

e Consider the set of blocks Bg for E, and X = [z,],
subsequence of (en)n. We have:

where (zp)n 1S a

(1) X is bb(Bg)-minimal if and only if (xy,)y is spreading.

(ii) X is db(Bg)-minimal if and only if (x,)n is permutatively spreading.
e Consider the set of blocks B% for E, and X = [x,), where is (xy)y is a

signed subsequence of (en)n. We have:
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(iii) X is bb(Bg)-minimal if and only if (xy)n is signed spreading.
(iv) X is db(B%)-minimal if and only if (x,), is signed permutatively
spreading.

e Consider the set of blocks Dg for E, and X = [z,], a Dg-block subspace
of E. We have:

(v) X is bb(Dg)-minimal if and only if (z,,)n is block equivalence mini-
mal.
(vi) X is db(Dg)-minimal if and only if for every Dx -block sequence (yp )n
of (xpn)n there is a sequence (zy), of disjointly supported blocks of
Y = [yn]n such that (zp)n ~ (zn)n.
(vii) X is (Dg)¥-minimal if and only if X is minimal.

Proof. (i) First, suppose that the set of blocks for E is Bg, and X =
[zn]n is a Bg-block subspace of E, i.e. (xy,), is a subsequence of (e, ). By
Definition X is bbg(E)-minimal if and only if for every subsequence
(Yn)n of (zn)n, there is a further subsequence (yn,)r equivalent to (zy)n,
which implies that the sequence (z,,)y is spreading (see [9]).

Now, consider the set of blocks Dy for E, and suppose that X = [x,], is
a Dg-block subspace of E.

(vii) As noticed in Section Y & X &Y < X when Ap = (Dg)“.
So, the conclusion is clear.

(v) X is bb(Dg)-minimal if and only if for every ID(X)-block sequence
there is a further D(X)-block sequence equivalent to (x,),. Therefore, ()
is a block equivalence minimal basis.

(vi) simply follows from Definition

It remains to prove (ii)—(iv), which are consequences of the facts that if
every subsequence of a basis (e, ), admits a subsequence which is (ii) permuta-
tively equivalent, or (iii) signed equivalent, or (iv) signed permutatively equiv-
alent to (ey)n, then (e,) must be respectively (ii) permutatively equivalent,
(iii) signed equivalent, or (iv) signed permutatively equivalent to all its subse-
quences. We shall only prove (iv), leaving the very similar and easier proofs of
(ii) and (iii) as exercises. We follow the proof of a similar lemma from [8], with
the difference that we shall use the fact that analytic sets in [N]* are Ramsey.

Let C C [N]* be such that
{ni : ke N} € C < (ep,)r is signed permutatively equivalent to (ey)g.
Consider the Polish space [N]* x {—1,1}* x Bij(w), where {—1,1}* is
equipped with the usual topology, and the Polish topology on the set Bij(w)

of bijections of w is induced by its inclusion in w*. Then C can be expressed
as follows:
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C={{nk:keN}e[N>:3(0) € {-1,1}*, Jo € Bij(w)
((6keny )k ~ (eot)k) }
= {{nk : k € N} € [N]*: 3(6;) € {—1,1}*, Jo € Bij(w)
({nk ke N}, (5k)k70) S B}

= prOj[N]OO(B)7
where
B=J () {({ni:ieN} (8:)i,0) € [N x {~1,1}* x Bij(w)
C=1h=0 ((6ien:)izo ~c (eo())i0) }-

Since B a countable union of countable intersections of open sets in [N]> x
{—1,1}*¥ x Bij(w), it is a Borel subset of [N]* x {—1, 1}* x Bij(w). Therefore,
C is analytic in [N]*°. By Silver’s Theorem, there is some H € [N]* such that
either [H]>* C C or [H]* C [N]*\C.

If [H]** C [N]*° \ C then the sequence (en)nem has the property that
none of its subsequences is signed permutatively equivalent to (e )y, which
is a contradiction. On the contrary, if [H]* C C, then (ep)nem is signed
permutatively equivalent to all its subsequences, and so is (ey), because it
is signed permutatively equivalent to (e,)pcm. »

Let us end this section with a few obvious implications:

(eén)n is spreading = (en)n is signed spreading

l l

(en)n is permutatively spreading = (en)n is signed permutatively spreading
and also
(en)n is block equivalence minimal = (en)n is db(Dg)-minimal = F is minimal.

The canonical basis of ¢y and £, with 1 < p < o0, is, in each case, block
equivalence minimal. In [I] it was proved that the canonical basis of the
Schlumprecht space S is block equivalence minimal. In [6] it was observed
that T* has no “block minimal” block subspaces, and so in particular does
not have block equivalence minimal block subspaces. It may actually be seen
that T* contains no block subspace with (vi). Here is a sketch of proof: T*
is “strongly asymptotically ¢~ (see [4 [5]), which means that n normalized
disjointly supported vectors supported far enough on the basis are equivalent
to the natural basis of ¢7_; on the other hand, a standard diagonalization
argument (see e.g. Lemma shows that a block subspace with (vi) must
have a further block subspace (zy,), with the uniform version of (vi), i.e. in
any block sequence (yn)n, the existence of disjointly supported blocks K-
equivalent to (z,) for some fixed K; the conjunction of the two implies that
(5 )n must be K-equivalent to the unit basis of ¢y, contradicting the fact that
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T* does not contain a copy of ¢g. In conclusion, T* satisfies (vii) and does
not satisfy the minimality conditions of (v) (or (vi)) in Proposition[6.3| We do
not know of spaces satisfying the condition of (vi) but not of (v).

7. Results on A-tightness
7.1. Notions of tightness

DEFINITION 7.1. Let E be a Banach space with a normalized basis (e, ).
Let Dg be a set of blocks for E and Ag an admissible set for E. Suppose
that X = [x,], is a Dg-block subspace. We say that a Banach space Y with
Schauder basis is Ag-tight in the basis (z,)y if there is a sequence (I;); of
successive intervals such that for every A € [N]>°,

(13) Ycﬁ[xn:n¢UIz}.
€A
DEFINITION 7.2. Let E be a Banach space with a normalized basis (e, ).
Let Dg be a set of blocks for F, and Ag an admissible set for E. Suppose
that X = [x,], is a Dg-block subspace. The basis (z,), is Ag-tight if every
Dx-block subspace Y of X is Apg-tight in the basis (z,),. The Dg-block
subspace X is Apg-tight if the basis (x,), is Ag-tight.

REMARK 7.3. Let E, Dg and Ag be as in Definition Then E is
Ap-tight if and only if every Dg-block subspace X is Apg-tight in (ey)y.

The following result extends Proposition 3.1 of Ferenczi-Godefroy [7] for
the original notion of tightness. To prove it we use [7, Corollary 2.4] where
the following characterization of meager and comeager subsets of the Cantor
space is given. Let B be a subset of 2 closed under supersets.

(i) B is meager if and only if there exists a sequence (I;); of successive
intervals in N such that

ue€B = {n€w:supp(u) NI, =0} is finite.

(ii) B is comeager if and only if there exists a sequence (I;); of successive
intervals in N such that

{n €w: I, Csupp(u)} is infinite = u € B.

PROPOSITION 7.4. Let E be a Banach space with a normalized basis
(en)n. Let Dy be a set of blocks for E, and Ap an admissible set for E.
Suppose that X = [xn]n is a Dg-block subspace andY is a Dx-block subspace
of X. Then'Y is Ax-tight in the basis (xy)n if and only if the set

(14) Eéx ={ue2v:Y A [y, 1 n € supp(u)]}

s meager in 2%.
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Proof. If Y is Ag-tight in (zy,),, then there are intervals Iy < I} < ---
such that for any A € [N]*°,

(15) Ycii[xn;ngé UI}
i€A
Let u € EéX (clearly supp(u) € [N]*°) and suppose for contradiction that
Ay ={i € N: I, nsupp(u) = 0} is infinite. We have
supp(u) CN\ | J I
€Ay,
By the observation after Definition [4.1] we obtain

A A
Y < [z, :n €supp(u)] =Y < [:cnngé U Ii],
1€EA,
contradicting (15]). Therefore A, is finite and, by [7, Corollary 2.4], E{ is
meager in 2“.

For the converse, suppose that E{* is meager in 2. By [7, Corollary 2.4],
there are subsets Iy < I; < --- such that if u € E}“ﬁ‘, then {i €e N: I; N
supp(u) = (0} is finite. If there is A € [N]*° such that YV’ A [Tn 21 & Uiea 1il,
then take v = N\, 4 1i- Clearly x,, € E5} and {i € N : I;Nv = 0} is infinite,
which contradicts E{ﬁl being meager in 2¢. u

The following lemma uses the same scheme as in [7] to prove that the set
Ey ={u Cw:Y < [z, : n € u]} is meager or comeager.

LEMMA 7.5. Let E be a Banach space with a normalized basis (ey)n. Let
Dg be a set of blocks for E, and Ag an admissible set for E. Suppose that
X = [zp]n is a Dg-block subspace and Y is a Dx-block subspace of X. Then
Egﬁ‘,X defined in is either meager or comeager in 2%.

Proof. As stated in [7, Example 2.2|, the relation E{) defined on P(w) by
uEyv < 3n >0 ((un[n, 00) = vN[n,00)) & (Jun[0,n—1]| = [vN[0,n—1]]))
is an equivalence relation and its equivalence classes are the orbits of the
group Gj, of permutations of N with finite support. Once we see P(w) as the
Cantor space, it is Polish and clearly for any nonempty open subsets U and
V of P(w), there is g € G}, such that g(U) NV # (. We want to use the
first topological 0-1 law (Theorem ) to conclude that E{ﬂ y Is meager or
comeager in 2%, or more specifically we have to prove:

(i) Eg/“’ y has the Baire property.

(ii) E{ﬁ‘,X is G{-invariant.

To prove (i) we shall see that EQX is an analytic subset of 2¥ (see [I3]
Theorem 21.6]). Notice that we can write Ex} as the projection on the first
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coordinate of the set B := | J;c,, Bk, where for each k € w,
By, = {(u, (wn)n) € 2¥ x (Dx)“ :
(Yn)n ~k (Wr)n & (Wp)n € [z; 11 € u] & (wn)n € Ax }.
Each By is Borel in 2¥ x (Dx)“ since the relation of two sequences being
equivalent is closed and Ay is a closed subset of (Dyx)¥.
In order to prove (ii) we shall see that Egﬁ‘X is E{-saturated (this is

sufficient because the orbits of the group G} coincide with the equivalence
classes of the relation E)), that is,

EQX = (E{;"X)E(l) ={vCw:Jue E{;"X (uEjv)}.

Clearly, EgﬁfX C (EQX)E(J. Take v € EQXE(/’ and let u € E{ﬁ‘,X be such that
uEyv. Notice that there is M such that u and v only differ on M elements
and (zp)ney and (x,)new are Dx-block sequences. So, by Proposition
there is K > 1 such that (z,)ney ~k (Tn)nev. Let T be a K-isomorphism
from X, := [zp]neu to Xy = [Tn]ney. From Proposition [3.13|(ii) we know
that T[Ax,] = Ax,. Therefore,
u € E}A,X = (zn)n € Ax, ((Yn)n ~ (2n)n)

= (Yn)n ~ (T'(2n))n and (T'(z5))n € Ax,

— v Ec Eié,X | ]

PROPOSITION 7.6. Let E be a Banach space with a normalized basis
(en)n. Let Dg be a set of blocks for E, and Ag an admissible set for E.
Suppose that X = [xy], is a Dg-block subspace, Y is a Dx-block subspace of
X, and Z is a Dy -block subspace. If Z is Ag-tight in X, then Z is Ag-tight
mY.

Proof. Set
Eéx ={uCw: 74 [T, : n € ul}, E“ZL‘y ={uCw: 74 [Yn 1 Eul}.

By hypothesis, E“Z4 y 1s meager in P(w) after identification of P(w) with 2.
Using Lemma E“Z4Y is meager or comeager. If it were meager, by Proposi-

tion the demonstration ends. Suppose that E?,Y is comeager in P(w). By
[7, Corollary 2.4|, there are sequences (I;); and (J;); of successive intervals
such that

(16) uEEﬁX = {new:unl, =0} is finite,
(17) {n €w:J, Cv}isinfinite = v € Eéy.
Let A € [N]* be such that

{k: eN: (U U supr(yi)) NI, = (7)}

neAiedy,
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is infinite. Such an A exists because each I; and each J; is finite and each y;
is finitely supported. Let v = |J,,c 4 Jn- Then by , we have v € Eéy. If

= Upe, SUPDx (y1), then
A A
Z < yp:nev] = Z < [z,:n€ul

This implication follows from the observation after Definition Therefore,
u € E“Z4 y but it is disjoint from infinitely many intervals I}, contradict-
ing =

COROLLARY 7.7. Let E be a Banach space with a normalized basis (€p,)n,.
Let Dg be a set of blocks for E, and Ag an admissible set for E. Suppose that
X = [xp]n is an Ag-tight Dg-block subspace. Then any Dg-block sequence
(Yn)n of (xn)n is an A-tight basis.

Proof. Let Z be a Dy-block subspace of Y. Since Z is a Dx-block sub-
space of X and Z is Apg-tight in X, by Proposition[7.6] Z is Ap-tight in Y. =

THEOREM 7.8. Let E be a Banach space with a normalized basis (ep)n.
Let Dg, be a set of blocks for E, and Ag an admissible set for E. If X = [xy]n
is an Ap-tight Dg-block subspace, then it contains no Ag-minimal Dx -block
subspaces.

Proof. Towards a contradiction, suppose Y = [yp], is an Ag-minimal
Dx-block subspace of X. Let Z = [z,], be a Dy-block subspace of Y, so
7 is Ag-tight in X. By Proposition Z is Ag-tight in Y, so

A
E“Z“,Y:{ugcu:Z;)[yn:neu]}

must be meager in P(w).

We shall see that E“Z4Y coincides with the set of all characteristic func-
tions of infinite subsets of N , which is comeager, leading to a contradiction.
Suppose v C w is infinite. Then by the Ag-minimality of Y,

A
Y < [y, :n €],

so there is (up)n € Ag N [yn : 1 € v] such that (yn)n ~ (Un)n-
We know that (yn)n, (Un)n, (2n)n € Ay and by Proposition [3.10iii) we
have
(Zn)n *y (yn)n = (Zn)n S AY - (wn)n = (Zn)n *y (Un)n € AY-

Thus, (wy)n is a Dy-block sequence of the basic sequence (uy,)y (it is not
necessarily a block sequence of X because (uy), is not necessarily a block
sequence). Also, each w,, has the same scalars in its expansion as z,. Since
(un)n ~ (Yn)n, we have (z,)n ~ (wy), and also we already know that

A .
(Wp)n € ApNyn :n € v]. So, Z < [y, : n € v], which means that v € Eé,Y-
We have just proved that [N]*° is contained in E“Z4y, so they coincide.
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From Definition [7.1] we obtain the following observation.

PROPOSITION 7.9. Let E be a Banach space with a normalized basis
(eén)n. Consider D as the set of blocks for E and set Ap = (Dg)“.
A Dg-block basis (xy,)n is Ax-tight if and only if (xy)n is tight (in the usual
sense).

In particular:

COROLLARY 7.10 ([10, Proposition 3.3|). If E is a Banach space with a
normalized tight basis (en)n, then E has no minimal subspaces.

As an exercise, the reader may write out the other forms of tightness
associated to the set Dg of blocks Bg, BE or Dg respectively, and to the
choices bb(Dg), db(Dg) and D%. All these forms of tightness will be made
explicit in the final section when we list all dichotomies between minimality
and tightness associated to each case.

8. Games for tightness. In this section the objective is to represent
forms of tightness in terms of certain infinite games, as in [10]. Let (z,,), and
(yn)n be two sequences of successive and finitely supported vectors of E. Let
Y = [yn]n and X = [2,],,. We write Y <* X if there is some N > 1 such that
yn € X, for every n > N. First we need two preliminary lemmas. Lemma
is a modification of [10, Lemma 2.2] and Lemma [8.2]is a modification of
[15] Lemma 2.1]. In both original cases the result was proved for usual block
subspaces. We extend those results to Dg-block subspaces.

ProprosITION 8.1. Let E be a Banach space and Dg be a set of blocks
for E. Suppose X = [2V],, is a Dg-block subspace and [x}], > [x2], > --- is
a decreasing sequence of Dx-block subspaces. Then there exists a Dx-block
sequence (yn)n such that (y,), is VK -equivalent to a Dx-block sequence of

[2X],, for every K > 1.

Proof. Let C be the basis constant of (29),. For M > 0, consider the
constant ¢(M, C') that exists by Proposition applied to X.

For each K > 1, let Mg be the greatest non-negative integer such that
(18) (Mg, C) < VK.

Using a diagonal argument, we can find an increasing sequence ([;); of natural
numbers and a Dx-block sequence (y;, ), with the property that for each K
there is some 7 < Mj such that xfil < y; and (Ym)m>i is a Dx-block
sequence of [zX : n > 4]. Therefore, (y,), differs in i — 1 terms from the

block sequence (ajé( , :z:{( e ,xfi 1> Yis Yit1, - - .). Therefore, such sequences are

¢(Mp, C)-equivalent and by they are v/ K-equivalent. m
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LEMMA 8.2. Let E be a Banach space and Dg a set of blocks for E.
Suppose that X is a Dg-block subspace. Let N be a countable set and let
w:bbp(X) — P(N) satisfy one of the following monotonicity conditions:

VW = pu(V) Cp(W)
VW = u(V) 2 p(W).

Then there exists a “stabilizing” Dx -block subspace Vo < E, i.e. a Dx-block
subspace such that u(V') = u(Vo) for all V-<* V4.

Proof. If p is increasing, suppose for contradiction that for every Dx-
block subspace W, there is V' <* W such that p(V) C u(W). It is possible
to construct a transfinite sequence (Wy) <., of Dx-block subspaces such
that if v < n < wq, then W, <* W, and pu(W,) € p(W,).

The sequence (1(Wp))n<w, obtained is an uncountable strongly decreas-
ing chain (with respect to inclusion) of subsets of N, which contradicts N
being countable. If y is decreasing, the result follows analogously. »

We now define asymptotic games in same vein as in [10], with a careful
choice of the sets of blocks in which the players are allowed to choose their
moves.

DEFINITION 8.3. Let E be a Banach space with a normalized basis (e, )n,
Dpg be aset of blocks for E, and Ag be an admissible set for E. Let X = [z,]n
be a Dg-block subspace, and let Y be a Banach space with a normalized basis
(Yn)n- Suppose C' > 1. We define the asymptotic game H}“ﬁ‘X with constant C
between players I and II taking turns as follows: I plays a natural number N,
and II plays a natural number m; and a not necessarily normalized D x-block
vector u; € X[ng, mo] + - -+ + X [n;, m;], where X[k, m| := [z, : k <n < m]
N Dx for kK < m natural numbers. Diagramatically,

I no ni
II mo, UQ my, ug

The sequence (uy,), is the outcome of the game and we say that II wins
the game Hy', with constant C if (un)n ~c (Yn)n and (u,), € Ax.

The game H{é y with constant C is determined since it is equivalent to
a Gale-Stewart game, which is open for player I; we shall say that the game
Hgﬁ‘X with constant C is open for player I. Notice that if II has a winning

strategy for the game H{f@X with constant C, then for any sequence (I;); of

. A . N
successive intervals we have Y < (X, I;). Therefore, if IT has a winning
strategy for H{ﬁ\X with constant C' then Y is not Apg-tight in X.
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The following definition is similar to the one used in [10].

DEFINITION 8.4. Let E be a Banach space with a normalized basis (ey,)n,
Dg be a set of blocks, and Ag an admissible set for E. Let X = [z,], be a
Dg-block subspace, Y be a Banach space and (I;); be a sequence of successive
nonempty intervals of natural numbers.

(i) Let K be a positive constant. We write
A
Y Sk (X, 1)

if there is A € [N]*° containing 0 such that YV’ é)[{ [T i & U;ea Lil-
(ii) We write

Y & (X, L)
if there is A € [N]*° such that YV’ A [@n i & Ujeq 1l
REMARK 8.5. Notice that under the hypothesis of Definition [8.4] if there
is some A € [N]* such that ¥ A [T i ¢ (J;eq 1i] and 0 ¢ A, then there is
some B € [N]* containing 0 such that ¥’ A [©n i & Uiep Li]-

In the original paper of Ferenczi—-Rosendal, special attention is given to
the (Borel, continuous, ...) dependence of the sequence I; of intervals as-
sociated to a subspace Y in the definition of tightness. This has application
to classification of the isomorphism relations between subspaces and the
so-called “ergodic space” problem [9], as in [I0, Theorem 7.3]. In the present
paper we are not considering these aspects, which allows us to simplify
certain parts of the proof — there is no reference to a Borel or continuous
map defining those intervals as in the notion of continuous tightness [10]
p. 165]. On the other hand, although the general scheme of the proof is
the same, special attention has to be given to the roles of the set of blocks
and of the type of embeddings to generalize the tight-minimal dichotomy
from [10]. Approximation properties work similarly, but diagonalization prop-
erties must be ensured, as well as the topological properties (closed, open)
of the outcomes, and this requires a careful definition of the infinite games
at hand.

LEMMA 8.6. Let E be a Banach space with a normalized basis (ey,)r, and
(Dp, Ag) be an admissible system of blocks for E. Suppose that X = [xy],
1s a Dg-block subspace and that K and € are positive constants such that for
every Dx -block subspace Y of X there is a winning strategy for player I in
the game Héx with constant K + €. Then for every Dx-block subspace Y

. L A
there exists a sequence (I;); of successive intervals such that Y <=k (X, I;).
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Proof. We divide the proof into six steps:

STEP 1. By hypothesis, for each Dx-block subspace Y of X there is a
winning strategy oy for player I in the game Hgﬁ‘ y with constant K + €.

STEP 2. Let C' > 1 be the basis constant of (z,,),. Let p = 1+ . Now,
let 0 < 6 < 1 be such that (1 +6)(1 — )~ = p. Take a sequence A = (5, )n
of positive numbers such that 2CK? Y nen On = 0.

Let (wp)n be a KC-basic sequence of not necessarily normalized blocks
with 1/K < ||wi|| < K for any ¢ € N. If (up), is such that Vi € N
(lwi = w4l < 6;), then

oy lwn = tnll _ o0 g2 S s=6<1.

neN lwn neN
Thus, (un)n ~p (wn)n

STEP 3. We shall obtain some collection {D,, : n € N} of sets of vectors
which will be used in Step 4 to assist in the construction of a strategy for
player L. Since (Dg, Ag) is an admissible system of blocks for E, we infer that
for X, the sequence (d,,), and K, there is a collection (D), of nonempty
sets of vectors of Dx such that

(C-1) For each n and for each d € [N]<* such that there is w € Ax with
suppy (w) = d, there are a finite number of vectors u € D,, such that
supp y (u) = d.

(C-2) For every sequence (w;); € Ax satisfying 1/K < min; ||w;|| < sup; [Jw;]|
< K, for each n there is u,, € D,, such that

(C-2.1) suppx(un) € suppy(wn),
(C-2.2) [Jwy — up|| < 0p,
(0—2.3) (uz)z € Ax.

STEP 4. Suppose now that Y is a Dx-block subspace with normalized
Dx-block basis (yp)n. Suppose that p = (ng,ug, mo,...,n;, u;, m;), with
u; € Dj for j <iis a legal position in the game HgﬁlX in which I has played
according to oy.

I no niy Ce n;
11 up, Mo uy, MmMi mg, Us

We write p < k if nj,uj,m; < k for all j < 4. Since II is playing in
[1;<; Dj, using condition (C-1), for every k there are only a finite number of

such legal positions p which satisfy p < k. So, for every k& € N the following
maximum exists:

(19) a(k) := max {k,max {oy(p) : p < k}}.
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We set I, = [k, a(k)]. The intervals in (Ij) are not necessarily disjoint, but
it is possible to extract a subsequence of successive intervals, with Iy as first
element.

STEP 5. To prove that Y :i)K (X, I;) we shall show that for every A in

[N]>® containing 0, Y’ Jng [Tn i & Upea Ir]
For contradiction, suppose there is A € [N]* containing 0 and a sequence
of blocks (wn)n € Ax N [Ty : 1 & Jpea Ix] such that

(20) (Yn)n ~K (Wn)n-

Recall that since (yy)p is normalized, 1/K < ||w,| < K for all n € N.
By Step 3, condition (C-2), we can find for each ¢ a block u; € D; such
that [[w; — u;l| < &, suppy (u;) € suppx (wi), (un)n € Ax, and

(21) (Un)n ~p (wn)n
By . Un)n ~Kp (Yn)n. Considering that p =14 ¢/K, we conclude that
(un)n ~K4e (yn)n

STEP 6. Finally, we will construct a play p’ in the game H{ﬂX with con-
stant K + ¢, where player I will follow his winning strategy and the outcome
will be the sequence (uy,),. This means that player I wins the game, leading
to a contradiction. In order to do that, we define natural numbers n;, m; and
a; € A as follows:

Let ag = 0 and ng = oy () = «(0). Then, by definition of Iy, Iy =
[0,(0)] = [0,n0]. Find a; € A such that ng,up, a0 < a1 and set my =
ayp — 1. Then py = (ng, mg, ug) is a legal position in HYX in which I has
played according to his winning strategy oy. Since wg € X|[ng, mg] and
supp x (up) € suppy (wp), we have ug € X[ng, mo].

Now, as pg < ai, by the definition of «, if n; = oy (ng, mo,up), we

obtain n1 < «a(a1). Therefore, [mg,ni[ = [mo + 1,01 — 1] = [a1,n — 1] C
[a1,a(ar)] = Iy, -
Suppose by induction that ng, ..., n;, mg,... mZ and ag, . ..,a; € A have

been defined. Since [0, o[ C Iy and |mj, n; 4+ 1[C I, , for all j < i, we have

u; € X|[ng,mo| + X[n1,mi] + -+ X[n;, o0l
Find some a;11 € A greater than ng,...,n;, ug,...,u; and ag, ..., a; and let
m; = aj4+1 — 1. Then

u; € X[ng,mol + X|[ny,mq] + -+ X[ng, my].
Therefore p; = (ng, mo, ug, - - - , ni, My, u;) is a legal position of the game Héx

with constant K + ¢ in which I has played according to oy . Since p; < @41,
we have

Nitr1 = oy (N, Mo, U0, - - -, Mg, My, U;) < a@iyr)
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and
Imi,nia[ = [mi + 1m0 — 1] = [aiv1, i1 — 1] C (i1, a(@ip1)] = Loy, -

Let p be the legal run such that each p; is a legal position for the game. Such
a p is the run we were looking for to produce a contradiction. =

The following technical lemma gives us a criterion for passing from the
existence of intervals depending on K for which Y is not A-embedded in
(I (K)) with constant K, to the existence of intervals (.J;); for which Y is not
embedded for any constant K. It is similar to [10, Lemma 3.8].

LEMMA 8.7. Let E be a Banach space with a normalized basis (ep)n,
and (Dg, Ag) be an admissible system of blocks for E. Suppose that X =
[Tn]n is a Dg-block subspace and Y is a Banach space with a normalized

basis (Yn)n- If for every constant K there are successive intervals (LSK)) of

natural numbers such that Y i>K (X, I](K)), then there is a sequence (J;);

L A
of successive intervals such that Y < (X, Jj).

Proof. We will construct the intervals (J;); inductively. The idea is to
find such a sequence satisfying the following:

(i) For each n > 0, J,, contains one interval of each (I i("))z-.

(ii) For eachn > 1,if M =minJ, —1 and K = [n-¢(M)] (where ¢(M) is
the constant guaranteed by Proposition for (,)n), then maxJ, >
max I(()K) + M.

This can be done as follows: Take Jy = Iél). Now suppose that we have de-
fined Jo, . .., J,, satisfying (i) and (ii). Let a be a natural number greater than

max Jy, put M =a—1and K =[(n+1) -c(M)]. Take b > maxIéK) +M

such that there exists j; € N with IJ(Z) C [a,b] for all i € {1,...,n + 1}
(this can be done because the intervals are finite and we are looking at just
the first n 4+ 1 sequences). Let J,,41 := [a, b]. By construction, J,, 11 satisfies
conditions (i) and (ii).

For contradiction, suppose that A € [N]* and for some integer N, we
have

Y‘iN {xnn¢ UJ,}
€A

This implies that there is a sequence (wy,), of Dx-blocks in Ax N[z, :n ¢
Uica Ji] such that (yn)n ~n (wn)n. Pick a € A such that @ > N and set
M = minJ, — 1 and K = [a-¢(M)]. Define an isomorphic embedding T

from
[wn in ¢ U Ji]

1€A
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into
[y, : maXIéK) <n < maxJ,| + [mn in ¢ U J; & n > maXJa]
i€EA
by setting
(22) () = {xn %f n > max Jg,
xmaxl(()K)JrnJrl if n < M.

Notice that T is an isomorphism between those two D x-block subspaces.
So, by Proposition ii), we have (T'(wy,))n € Ax.

Since T only changes at most M vectors from (xy),, it is a C(M)-
embedding. Hence

(Yn)n ~N (Wn)n ~C(M) (T'(wn))n,
and because N - ¢(M) < a-c¢(M) < K, we obtain

(23) Y<£>K xn:n¢UJi&n>maXJa]
i€A
+ [zy : max IéK) < n < max J,).

1, J, contains one interval of each (I (n) )i, for

K there is b(l) € N such that IIS(I;)) C J;. Let

Now, since for each n
any | € A such that [
B={0}u{b(l):1€ A, 1> K}. Then

>
>

id : [mnn¢ U J; & n > max J, +[:nn:maxléK) < n < max Jg]

icA
— [ZL’n i ¢ U Il.(K)}
i€B
is an isomorphism onto its image and by Proposition [3.13(ii) and we

have
Y <ﬁ>K [azn in ¢ U IZ-(K)},
i€B
which contradicts our initial hypothesis. »

The next lemma uses a “diagonalization” argument to relate the fact
that a space F is saturated with Dg-block subspaces X such that for every
Y < X, player I has a winning strategy for the game HéX for any con-
stant K, with the existence of a Ag-tight Dg-block subspace X. It is similar
to [10, Lemma 3.9], without the study of the Borel dependence of the inter-
vals in the definition of tightness, and on the other hand, with attention to

the types of blocks in the construction so that the diagonalization property
still holds.
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LEMMA 8.8. Let E be a Banach space with a normalized basis (ey,)rn, and
(Dg, Ag) be an admissible system of blocks for E. Suppose that for every
Dg-block subspace Z and constant K there is a Dyz-block subspace X such
that for every Dx-block subspace Y, player I has a winning strategy in the
game H{;‘X with constant K. Then there is a Dg-block subspace X which is
Ap-tight.

Proof. The idea is to construct inductively a sequence Xy > X1 > --- of

Dg-block subspaces and corresponding sequences (I JK );j of successive inter-

vals such that forall V < Xy, V iﬁ(? (XK, I]K) Once these are constructed,
we will use Proposition to obtain the desired Dg-block subspace.

Consider Xg = E and let ¢ > 0. Assuming Xg > X; > --- > X,
have been defined, and applying the hypothesis to X,,, there is a Dy, -block
subspace X,,+1 < X, such that for every D-block subspace Y < X, 11 and for
all € > 0, player I has a winning strategy in the game HgﬁanH with constant
(n +1)2 + ¢. By Lemma , for every Dx,,,,-block subspace V' < X411,
there are intervals I; for which V' <5, 1)2 (Xn11, 1)

Applying Lemma [8.1] to the sequence

Xoz2Xg=2-,

we find a Dg-block subspace Xoo = [22°],, < Xo = E such that for each
K > 1 there is a Dy, -block sequence (2X),, with Zx = [2K],, < Xk such
that

(24) (@)n ~ i (20 -

Let Y = [yn]n < Xo be a Dg-block subspace of X,. For each K > 1
there exists a Dy, -block subspace Vi = [vX], (using the form of the iso-
morphism given in and Proposition [3.11(ii)) such that
(25) (Yn)n ~VEK (Uff)m

and for such Vi we may by construction find (1 JK );j such that

A
(26) Vi S (X, 1)
CLAIM. There are successive intervals (JjK)j such that
A
(27) Vic Sy (Zi, JJ).

Proof of the Claim. Let (n;); and (m;); be increasing sequences in N
such that for each j € N,

o n; < my < Njt1,
e there is k; > 0 with

K K K
SuprK (Zn]_) < ij < SuprK (Zm]')‘
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Let JjK = [nj,m; ] for each j € N. Such sequences (n;); and (m;);

exist because all I JK and suppy, (ZJK ) are finite subsets. Notice that for each

A € [N]* we have
(28) [szngéUJjK}g[xffngé Ullfﬂ
jeA jeA
Now, suppose that there is B € [N]*° such that
Vi cﬂ>K2 [sz in ¢ U JlK}
i€EB
Then there is (wy)n € ApN [z :n & U;ep JE] such that (v ), ~x2 (wy)n.
By 7 (wn)n € «AE N [iL‘,,[f n ¢ UjeB Ilg]a S0

Vi cﬁ>K2 (2K . n ¢ U I]-K],
jEA
where A = {k; : j € B}, which contradicts (26).

. A
Now, we will show that ¥ < g (X, JJK) Suppose that, on the contrary,

Y i)K (XOO,J]-K). Then there is A € [N]* with 0 € A and a sequence
(wn)n € Ap N [25° i n & Ujen JJK] such that
(29) (Yn)n ~K (Wn)n-

Recall that Y and each Zk are Dg-block subspaces. By the isomorphism

in and using Proposition [3.13(ii), we can find (ulf), € Z% (image of
(wn)n by that isomorphism) such that (uX), € Ag N [zK :n ¢ U;cy JJK]
and

Then, using , and , we obtain
(31) (”f)n ~VEK (Yn)n ~K (Wn)n ~VEK (uf)'ﬂ

Thus, (v5), ~k2 (uX),, which means that
A
WK, = Vi Ske [zf in ¢ U le<]
€A
This contradicts .
We have proved that, for every ¥ < X and every K > 1, there is

. . A
a sequence (JJK ); of successive intervals such that ¥ <=g (Xoo,JjK ). By
Lemma there exists a sequence (L) ); of successive intervals such that

Y b (Xoo, LY),
which finishes the proof. =
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9. Games for minimality

DEFINITION 9.1. Let E be a Banach space with a normalized basis (e, ),
Dpg be a set of blocks, and Ag an admissible set for E. Suppose L and M
are Dp-block subspaces of a Banach space E and C' > 1 a constant. We
define the asymptotic game G 7. With constant C' between players I and II
taking turns as follows. In the (z + 1)th round, player I chooses a subspace
E; C L, spanned by a finite Dy -block sequence, a not necessarily normalized
Dyr-block u; € Ey + - -+ + E;, and a natural number m;. On the other hand,
II plays for the first time an integer ng, and in all successive rounds II plays
a subspace F; spanned by a finite Djs-block sequence, a not necessarily
normalized Djs-block vector v; € Fy + - - - + F; and an integer n;41.

For a move to be legal we demand that n; < E;, m; < F; and that for
each play in the game, the chosen vectors u; and v; satisfy (ug, ..., u;) € [Ag]
and (v, ...,v;) € [Ag]. We present the following diagram:

I nog < Eyp C L n <E CL
ug € Eg, my w1 € Eg+ E1, my
(uo,u1) € [Ag]
II ng mog < Fop C M mp < Fy CM
v € Fp, nq v, € Fy + F1, no

(vo,v1) € [AE]

The sequences (u;); and (v;); are the outcome of the games and we say
that II wins the game GﬁM with constant C if (u;); ~¢ (v;);.

In G{} y with constant C, players I and II must choose Ag-block sub-
spaces and vectors in [Ag], in contrast to block subspaces and any block
vectors as in the game Gy, x with constant C' in [10]. Also, in the game G{}X
the outcomes (u;); and (v;); belong to Ag, since for each n € N, we have
(ui)i<n, (Vi)i<n € [Ag] and Ag is closed in (Dg)“.

In addition, since the relation of two sequences being equivalent is closed,
we know that if p’ is a legal run in the game such that every finite stage of p
is a finite stage of a run where II wins the game GA v.x with constant C, then
p itself is a run where II wins G{,‘ y with constant C. In this sense we say
that the Wlnmng condition is closed for player II. The next lemma relates
the games H v.x and GY’ x with the same constant.

LEMMA 9.2. Let E be a Banach space with a normalized basis (ep)n,
Dg be a set of blocks, and Agp an admissible set for E. If X and Y are
Dg-block subspaces of E such that player II has a winning strategy in HéX

with constant C, then II has a winning strategy in G{,‘X with constant C.
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Proof. Suppose that X = [z,], and Y = [y,], are Dg-block subspaces.
We shall exhibit the move of player II after ¢ rounds in the game G{," b%
with constant C', and we will prove that such moves determine a winning
strategy for II in the game G“;‘,X with constant C. For each i (even i = 0),
suppose player I has played ¢ times, and we have the following stage in the

GA .
game Gy’ y:

I 0<ECY 0<ECY
ug € Eg, mg u; € Eg+--- 4+ E;, my;
(uo, C ,ui) S [AE}
I1 0 mo<FpCX -+ m_ 1 <F ,1CX
vo € Fy, 0 Vi1 €Fo+ -+ Fi_q, 0
(vo, ... ,vi—1) € [Ag]
Notice that without loss of generality we can ask player II to play n; =0

for all j (which we may do so since then player I has more possibilities to
play and makes the game more difficult for IT). Let us write each block vector

uj; as Z:j:o /\iyk for all j <i. We can assume that k;j_1 < k; for all j <.
Consider the following run in the game Hg/4 X!

I mo S mo Comy Cmy ms mi
II Po,wo - DPko> Wko =" Pri_1+1, Wk, _q+1 *** Pk; Wk; q(),wl() ql’wll
where player I consecutively plays mg the first (kg + 1)-times, then consec-
utively plays m; for (k; — kj_1)-times, for any j € {1,...,¢}, and then he
plays m; constantly. Meanwhile, II moves according to her winning strategy
for the game Héx with constant C, which, by using the properties of A,
guarantees that

/ / /
w' = (wo, ..., wk,, Wo,w',...) € Ax = Ap N X*.

Since (ug,...,u;) € [Ag], by Definition [3.6(d) there is (¢,), € Y* such
that v = (uo, ..., u; to, t1,...) € Ay = ApNY“. Notice that u' xy (yn)n =
u € Ag and (yn)n € bbp(E) C Ag, thus, using Definition c), we have

V= sy € AN XY = Ax.

If v = (v});, then it follows from the inductive construction that

; .

° vj—vj}cforj<z,
/ i 3

° ”i/: k;/O | Wk

o (v),...,v}) € [Ax].

Set v; := v} and

F; = X[m;, max{pg, ,+1,---,Pk }-
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Therefore, (vo,...,v;) € [Ax]| and v; € Fy + - -+ + F;, with m; < F; C X.
This means that (Fj, v;,0) is a legal position for II to play in the game G{}X
with constant C' in the (i + 1)th round. ’

Suppose that we have continued with the game, where II has played
by using the previous procedure in every round, and we have obtained the
outcome: (u;); (played by I) and (v;); (played by II).

Using the closedness condition (i) in Proposition .13} (u;); and (v;); are
in Ag (each initial part is in [Ag]). Since (u;); and (v;); are defined with the
same coefficients over (y;); and (w;);, respectively, we have (u;); ~c (v;);.
Hence, we have showed the moves that II can make in each round to win the
game. Consequently, II has a winning strategy in Gg‘," y With constant C. =

9.1. An auxiliary minimal game

DEFINITION 9.3. Let E be a Banach space with a normalized basis (e )n,
and Dg be a set of blocks for . We denote by Fg the set of subspaces of
E generated by a finite Dg-block sequence.

DEFINITION 9.4. Let E be a Banach space with a normalized basis (e )n,
and Dg be a set of blocks for E. A state s is a pair (a,b) with a,b €
(DE XfE)<w such that if a = (CL(), A(), ., G, Az) and b = (b(], By, ..., bj, Bj),
then j =4 or j =i — 1. Denote by Sg the (countable) set of states.

REMARK 9.5. Let E be a Banach space with a normalized basis (ey,)n,
Dpg be a set of blocks, and Ag an admissible set for E. Take two Dg-block
subspaces M and L and C' > 1. Consider the game Gf’ u With constant C.
If we forget the integers m/ played by I and n; played by II in such game,
then the set S contains the set of possible positions after a finite number
of runs.

DEFINITION 9.6. Let E be a Banach space with a normalized basis
(én)n, Dr be a set of blocks, and Agr an admissible set for E. Let M
and L be two Dpg-block subspaces and C > 1. We say that the state
s = ((aog, Ao, . .., as, Ai), (bo, Bo, . . . bj, Bj)) € Sg is valid for the game vaM
with constant C'if the finite sequences (ao, ..., a;), (bo, ..., b;) are in [Ag].

DEFINITION 9.7. Let E be a Banach space with a normalized basis (e, ),
Dg be a set of blocks, and Ar an admissible set for E. Let M and L be
two Dp-block subspaces and C' > 1. Consider a valid state s € Sg for the
game G7',, with constant C. We define G7',,(s) to be the game G, with
constant C' in which the vectors and finite s{lbspaces in the state s have been
played in the initial rounds. That is, if s = (a,b) with a = (ag, Ao, - . ., a;, A;)
and b = (bg, By, - .., b;, B;) then the game G‘zl,M(S) goes as follows:
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1 Nit1 < By CL
Uip1 € Ao+ + A + Eip1, mig
((ag,...,ai,uiy1) € [Ag])
IT nip mip1 < F1 CM
viy1 € Bo+ -+ B + Fiy1, nip1
((bo, ..., bi,vip1) € [AE])

The outcome of the game is the pair of infinite sequences (ay,...,a;,
Ui+1y - - ) and (bo, PPN bi,’UiJrl, .. )

If s = (a, b) with a = (ao, A(), ceey Qg A,) and b = (b(), B(), ey bz‘_l, Bi—l)
then the game G“L‘ly 1 (8) goes as follows:

I m n; < Fi1 CL
Uip1 € Ao+ -+ Ai + Eip1, mig
((ag,-..,a;,uiv1) € [Ag])
1T m; < F, C M

v; € Bo+ -+ B + Fy, n;
((bo,. .. ,bifl,’l)i) S [.AE])

The outcome of the game is the pair of infinite sequences (ao,...,a;,
Uit1,.-.) and (bg,...,b;,vit1,...). We say that player II wins the game
G'ﬁM(S) with constant C if (ao, ceey Ay Ujy 1y - - ) ~C (bo, cey bl', Vit1, - - )

10. Tight-minimal dichotomies. Now we are ready to prove our main

result, Theorem

Proof of Theorem [1.3. We shall prove that if no Dg-block subspace is
Apg-tight, then there is a Dg-block subspace which is Ag-minimal.

If E fails to have an Apg-tight subspace then by Lemma 8.8 there are
a Dpg-block subspace Z of E and a constant C' > 1 such that for every
Dyz-block subspace X of Z there is a further Dx-block subspace Y of X
such that I has no winning strategy for the game Hgﬁ‘X with constant C.
If we prove that Z has a Ag-minimal Dg-block subspzice, the proof will be
complete. So, without loss of generality we can suppose that Z = F.

Summing up, we are supposing that for every Dg-block subspace X there
is a further Dx-block subspace Y < X such that player I has no winning
strategy in the game Hgﬁ‘X with constant C'. Since the game H{ﬁ‘X with
constant C' is determined; we can conclude that for any Dg-block sﬁbspace
X, there is a Dx-block subspace Y such that II has a winning strategy in
HQX with constant C'.
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Let 7 : bbp(E) — P(S) be defined by

s € T1(M) <= 3L Djs-block subspace such that player II has a winning
strategy in G“L‘ly v (8) with constant C.

First observe that the elements of 7(M) are valid states for Gf, a and
7(M) is nonempty for each Dg-block subspace M < E: we already saw that
there is a Djys-block subspace L < M such that II has a winning strategy
in H f a With constant C, and by Lemma IT has a winning strategy in
G4 ,; with constant C. Then it is possible to define a valid state s = (a, b),
with b being chosen following the winning strategy for II, such that player 11
has a winning strategy in GﬁM(s) and s € 7(M).

Consider now a Dg-block subspace M’ <* M and s € 7(M’). Then there
is a Djy-block subspace L' < M’ such that II has a winning strategy in
Gf,’ A (8) with constant C'. Since player I can always choose finite subspaces
E; in L’ inside of M and choose integers n; large enough to force player II
to play in M’ and inside of M (the game Gf,y A 1s asymptotic, in the sense
that it does not depend on the first coordinates), it follows that it is possible
to find a Djps-block subspace L < M such that II has a winning strategy
in Gf, v (8) with constant C. Therefore, s € 7(M), and we conclude that
T(M') C 7(M).

By Lemma [8.2) there is a Dg-block subspace My < E which is stabilizing
for 7, i.e. 7(My) = 7(M’) for all Dys-block subspaces M’ <* M.

Define p : bbp(My) — P(S) by setting

s € p(L) <= player II has a winning strategy in Gf’MO(s) with constant C.

Notice that there is a Djy,-block subspace L < My such that p(L) # 0
(the same justification was used to show that 7(M) # () for every Dg-block
subspace M < E), so p is a nontrivial function. As before, let L' <* L be
a Dyy,-block subspace and s € p(L). If player II has a winning strategy in
Gf, Mo(s) then, by the asymptoticity of the game (same previous argument
for 7), II has a winning strategy in Gf’,Mo(S)v so s € p(L{). Thus p is
decreasing. We can apply Lemma [8.2) to p, to find a stabilizing Djy,-block
subspace Lg of My for p. Additionally, we obtain

(32) p(Lo) = 7(Lo) = 7(Mo).

Let us prove (32). Since Ly < My and M stabilizes 7, we have 7(My) =
T(Lo). If s € p(Ly), then player IT has a winning strategy in Gfo M, (8), which
means that s € 7(My), so p(Lg) C 7(My). If s € 7(Mp) = 7(Lyg), then there
is some Dy, -block subspace L' < Ly such that II has a winning strategy in
Gf',Lo (s). Since Ly < My, in particular IT has a winning strategy in G“L‘t,7M0 (s)

with constant C. Thus, s € p(L') = p(Lg) because Ly is stabilizing for p.
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CLAIM. For every Dr,-block subspace M, II has a winning strategy in
the game Gme with constant C.

Proof of the claim. Fix a Dr,,-block subspace M. The idea of the proof
of this claim is to show inductively that for each valid state s from which
player II has a winning strategy in Gfo, 1 (8) with constant C, there is an-
other state s’ which “extends” it such that player II has a winning strategy
in Gfm 2(8"). Then one uses the fact that the winning condition is closed for
player II to justify that II has a winning strategy. This method was used by
A. Pelczar [16] and we are using it in the same way that V. Ferenczi and Ch.
Rosendal did in [10].

First, let us prove that ((,0) € 7(Lg). We know that there is a Dr,-block
subspace Y such that II has a winning strategy in HQLO with constant C.
Lemma implies that II has a winning strategy in G{," L, With constant C,
and, by definition of 7, this means that (0, }) € 7(Lo). Now, we will show that:

(i) For all valid states for the game GfoyM(s),
§ = ((u07E07 ey Us,y EZ)» (UOa F07 B UiaF‘z')) € T(LO)v

there is an n (which player II can play) such that for any subspace
E spanned by a finite Dr,,-block sequence of Ly with support greater
than n, and any u € Ey + - -- + E; + E such that (ug,...,u;,u) € [Ag]
(that is, any move that player I could do in his (i + 1)th round in
Gfo, (), disregarding the integer m;;1), we have

((U(), E07 oo U,y Ei7 u, E)7 (U()a F07 <oy Uiy Fl)) S T(LO)‘

(ii) For any ((uo,Eo, ..., uit1, Eit1), (vo, Fo, ..., v, F5)) € 7(Lo), and for
all m, there is a subspace F' > m spanned by a finite Dj;-block sequence
and v € Fy + -+ + F; + F with (vg,...,v;,v) € [Ag] (which is a legal
move that II can play) such that

((’LL(), EOa s 7ui+17Ei+1)7 (’U(),F(], <oy Uiy Fi?”a F)) € T(LO)'
This will be the case if both players have played ¢+ 1 rounds and player I
has played in his (i + 1)th-move (E;y1,u;41,m), and it corresponds to
player II making a legal move.
Let us prove statement (i). Suppose that

s = ((U(), Ey, ..., u;, EZ'), (7)0, Fy, ... v, Fz)) S T(LQ).

By , IT has a winning strategy in Gfo, Mo(s), which means that there is

n such that for every subspace n < E C Lg spanned by a finite Dr,-block

sequence and u € Ey+---+ E; + E, II has a winning strategy in GfO,MO (s,

where
"= ((U(], E07 ceey ui7Eia U7E)7 (UOa F07 ceey UhE))
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To prove (ii), suppose
((uo, Eo, - - .y wig1, Eig1), (vo, Fo, . .. ,v;, F;)) € T(Lo)

and m is given. Then, as M < Ly < My and 7(M) = 7(Lg), II has a winning
strategy in Gﬁ 1 (s) for some Dys-block subspace L < M. Thus, there are
F < M withm < Fandv € Fy+ ---+ F; + F such that II has a winning
strategy in Gf,M(5/)7 where

8/ - ((’U,(), E07 ... 7ui+17Ei—|—1)7 (’UO, F07 ey Uy, Fi7U7F))'
So, s € 7(M) = 7(Lg).

Starting with state (0,0) € 7(Lg) and following those two steps induc-
tively, we can obtain a sequence (s;); of states such that each s; € 7(Lg) is
the initial part of s;41 € 7(Lg). We can define a strategy for player II as
follows:

Since (0,0) € 7(Lo), by (i) there is ng such that whenever mg, Ey < Ly
and ug € Ey such that ng < Ey are played by I, we have

((u(), Eo), @) S T(Lo).
Let o((0,0)) = (ng). Using (ii), there are Fy < M and vy € Fy such that

((uo, Eo), (vo, Fo)) € 7(Lo).

Again using (i), there is n; such that whatever mi, By < Ly and u; €

FEy + E7 such that ny < Ej are played by I, we have
(<u07 E(), ur, El)a (U()v FU)) € T(L())'
Let o((Eo,uo,mg)) = (Fo,v0,n1). Following this process inductively, sup-
posing that player I in the (k + 1)th round has played (FEk,uy,my), using
(ii) there are Fy, < M and vy € Fy + - - - + F}, such that my < F,, and
((’LLQ, Eo, co, Uk, Ek), (Uo, Fo, ey Uk, Fk)) S T(LQ).

Using (i) there is ng41 such that whatever myy1, Exy1 < Lo and ugyq €
Ey+ -+ Egyq such that ngy1 < Eg4q are played by I, we have

((uo, Eo, - - -, U1, Exg1), (vo, Fo, - . ., vk, Fi)) € T(Lo).

Let o((Eo, ug, mo, - - -, Eg,ug, my)) = (Fg, Vg, nk+1). Then o is a strategy for
IT to play in the game G“L“(),M with constant C.

Let p = (no, Eo, ug, mo, Fo, vo, n1,...) be a legal run of Gfo o Where II
follows the strategy o. So, every finite stage

(nﬁv EO) up, Mo, F07 Vo, N1, ... 7Ei7 U, TN, Eu Vg, ni-‘rl)

of p determines the state s; = ((uo, Eo,-..,ui, E;), (vo, Fo,...,vi, F})) €
7(Lo) = p(Lo) such that player II has a winning strategy in GmeO (84).
By construction of o, II actually plays in M < Ly < My, so for every i € N,
IT has a winning strategy in Gfo a(8i)-
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Therefore, for every ¢ € N, p; is a finite stage of a legal run in Gf‘o M With
constant C' where II wins. So, p' is a run in G’fo a With constant C' where 11
wins. Thus, ¢ is a winning strategy for II. =

Returning to the proof of the theorem: for Lo there is a Dr,-block sub-
space Y = [yp], such that IT has a winning strategy in H{ﬁf L, With constant C'.
We finish the proof by showing that for every Dr,,-block subspace M < Ly,

A
Y 02 M.

Since II has a winning strategy for H{ﬁ‘ L, With constant C', player I can
produce in G“L“O v @ sequence (u;); € Ar, such that (u;); ~c (x;);. That is,
in each round of Gfm > Player I can choose the pair (0, u;), where each u; is
obtained by the moves of I in H{ﬁf Lo+ By the Claim, IT has a winning strategy
in Gfo,M to produce (v;); € Apr such that (u;); ~c (vi);. By transitivity

A .
(x4)i ~c2 (v;);, therefore Y <52 M, which ends the proof. m

REMARK 10.1. It is interesting to note that our theorem always provides
us with a uniform version of A-minimality, namely, there is a constant K
such that Y A-embeds with constant K into any D-block subspace of Y. This

fact was well-known for usual minimality, i.e. every minimal space must be
K-minimal for some K.

10.1. Corollaries from the A-tight-minimal dichotomy. As a coro-
llary of Theorem [1.2] we obtain the third dichotomy of Ferenczi-Rosendal:

COROLLARY 10.2 (Third dichotomy, [10]). Let E be a Banach space with
a normalized basis (ey)n. Then E contains a tight block subspace or a minimal
block subspace.

Proof. In Theorem [I.2] consider the admissible system of blocks
(D, (Dg)¥). As already observed in Proposition and in Proposition
for this particular admissible set, we obtain exactly our conclusion. =

COROLLARY 10.3. Let E be a Banach space with a normalized basis (ey, ).

Then E contains a block subspace X = [x,], with one of the following prop-
erties:

(1) For any [yn|n < X, there is a sequence (I,)y of successive intervals in N
such that for any A € [N]*°, [yn]n does not embed into [z, : n ¢ | J;c 4 Li]
as a block sequence.

(2) (xn)n is a block equivalence minimal basis.

Proof. In Theorem consider the admissible system of blocks (Dg,
bb(Dg)) and apply Proposition [6.3|(vi). =
V. Ferenczi and Ch. Rosendal [10] also remarked that the case of block

sequences in this theorem implies the main result of A. Pelczar [16] and an
extension of it due to Ferenczi [6].
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COROLLARY 10.4. Let E be a Banach space with a normalized basis (ep,)n.
Then E contains a block subspace X = [xy], satisfying one of the following
properties:

(1) For any block basis [ynln of X, there is a sequence (I)n of successive
intervals in N such that for any A € [N]*°, [yn]n does not embed into
[Tn i ¢ Ujea Li], as a sequence of disjointly supported vectors.

(2) For any block basis [yn|n of X, (xn)n is equivalent to a sequence of dis-
jointly supported vectors of [yn|n.

Proof. In Theorem consider the admissible system of blocks (Dg,
ds(Dg)) and apply Proposition [6.3|(vii). =

Notice that properties (1) and (2) in Corollary[10.3/and in Corollary [10.4]
are incompatible (see Theorem [7.§)). Corollaries and are stated as
Theorem 3.16 in [10]. In its enunciation is also considered an embedding as a
permutation of a block sequence. Nevertheless, as already seen in the proofs
of this section, such an embedding corresponds to a nonadmissible set (see
Proposition . So, the proofs we have presented do not work for the case
of the embedding as a permutation of a block sequence, and we see no reason
to think that the corresponding statement is true.

10.2. Corollaries from the A-tight-minimal dichotomy: subse-
quences. We now pass to the case of subsequences, in which we shall see
that Ramsey results allow one to reduce the number of relevant dichotomies.

COROLLARY 10.5. For any basic sequence (ey)n in a Banach space, there
is (Tn)n =X (en)n with one of the following properties:

(i) For any (yn)n = (n)n there is a sequence (I,), of successive intervals
such that for every A € [N|*®, (yn)n is permutatively equivalent to no
subsequence of (zn)n with indices in N\ ;¢ 4 I;.

(i) (zpn)n is spreading.

Proof. In Theorem consider the admissible system of blocks (Bg,
dbp(E)). The result follows from item Proposition i), with “permuta-
tively spreading” as a result of (ii). Additionally we use the fact that every
permutatively spreading basis admits a spreading subsequence. This follows

either from the techniques of [3], or from a proof similar to (and simpler
than) that of the next corollary (Corollary . m

COROLLARY 10.6. For any basic sequence (ey)n in a Banach space, there
is a subsequence () of (€n)n with one of the following properties:

(i) For any subsequence (Yn)n of (xn)n there is a sequence (I,)y of successive
intervals such that for every A € [N|*°, (yn)n is permutatively signed
equivalent to no subsequence of (xn)n with indices in N\ J;c 4 ;-

(ii) (xn)n is signed equivalent to a spreading sequence.
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Proof. In Theorem consider the admissible system of blocks (BEE,
db(BE)). The result follows from Proposition (iv), with “(xy,), signed
permutatively equivalent” as the conclusion of (ii). It remains to check that
such an (x,), contains a subsequence which is sign equivalent to a spreading
sequence. Let (fy,)n be a spreading model of (x,,), (see for example [2]). From
the hypothesis we know that for some constant C', for any n, there is a finite
sequence (gF) of n signs and a linear order <,, on the integers such that

(elwy,...,et,) ~c (f1,..-, fa)<,, where the notation (f;)< means that
span|f;] is equipped with the norm || >, Xifill< = || >2; Aigills if g1,---, 9n
is the <-increasing enumeration of fi,..., fn.

By compactness we find an infinite sequence (&,,), of signs and a linear
order < on the integers such that (e,2,) ~c (fn)<. By Ramsey’s theorem
for sequences of length 2, we may find an infinite subset N of the integers
such that < coincides either with the usual order on N, or with the reverse
order. In the first case, (ep2,)nen is C-equivalent to the spreading sequence
(fr)nen (or equivalently to (fy)n); in the second case, it is C-equivalent to
the basic sequence (gy,) defined by || Zle Aigil| = || Z§:1 Ai—i fill, which is

also spreading. This completes the proof. m

This last result is an interesting improvement on combinatorial results
involving subsequences. Indeed, any basic sequence either contains a signed
subsequence which is spreading, or satisfies a very strong form of tightness
(involving changes of signs and permutations). On the other hand, the fol-
lowing seems to remain unknown.

QUESTION 10.7. Let (zy)n be a basic sequence such that all subspaces
generated by subsequences of (xy), are isomorphic. Must (xy,), contain a
spreading subsequence?
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