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A B S T R A C T

Optimal design of double-span beams under middle support loss depends significantly on beam 
end constraints. Fully clamped constrains favor catenary action, reducing optimal beam cross- 
sections. To provide a more realistic optimization of beam and column designs, a complete 
two-dimensional reinforced concrete (RC) frame is addressed herein, under various ground-floor 
column loss scenarios. This allows simulating realistic lateral drifts on top of columns, and the 
failure of beams and adjacent columns. Nonlinear finite element analysis via OpenSees is carried 
out, allowing Vierendeel, compressive arch and catenary actions to be accurately predicted under 
large displacements. Risk is quantified in terms of total expected progressive collapse cost, so 
design optimization finds the best tradeoff between construction costs and expected consequences 
of failure. Cost-effective mitigation strategies against progressive collapse are shown to depend 
strongly on column loss probabilities, but also on the balance between beam and column flexural 
capacities. For square column cross-sections, increasing beam stiffness to activate compressive 
arch action is observed to be more cost-effective than increasing column stiffness to produce 
catenary action. Conversely, rectangular columns with higher stiffness produce smaller drifts, 
promoting optimal square beam cross-sections to develop satisfactory catenary action.

1. Introduction

Disproportionate progressive collapse relates to a disproportion between damage caused by an initial failure and the total area 
affected by its propagation [1]. When abnormal loads cause failure of a small part of the structure, a cascade of subsequent failures may 
be triggered, affecting a much larger portion of the structure [2]. As a local failure initiates the collapse of nearby elements, further 
progressive failures are triggered, culminating in a chain reaction and large-scale collapse [3]. Such severe events are often triggered 
by threats like fires, earthquakes, flooding, accidental impact and terrorist attacks [4,5]. Robustness characterizes a structure’s 
insensitivity, or small sensitivity, to initial damage and/or to disproportionate damage propagation [4–8].

Structural robustness is typically promoted by enhancing Alternative Load Paths (ALPs) [6,7]. The Alternative Path Method (APM) 
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is a design framework for progressive collapse mitigation, in which structural robustness is enhanced by producing ALPs. Herein, 
initial damage relates to the sudden loss of a single column caused by an unspecified hazard (threat-independent approach), following 
the usual APM guideline framework [8,9] and hazard assumptions from Beck et al. [10,11].

In reinforced concrete (RC) frames, the ALPs rely on complementary resisting mechanisms whose activation depends on the 
remaining beams and columns: flexural action (FA), Vierendeel action (VA), compressive arch action (CAA), and catenary action (CA) 
[5]. These mechanisms depend on which column is lost, as CAA and CA require adjacent columns on both sides to be activated. 
Therefore, loss of an external column relies solely on FA and VA [12]. For an inner missing column scenario, FA, CAA and CA can be 
directly related to the frame’s force vs displacement behavior (Fig. 1).

Flexural action involves elastic behavior, concrete cracking, and steel yielding at the beam ends (point A in Fig. 1a). Beyond this 
point, increasing rotations at the beam-column joints push the beam ends outward. If the adjacent columns provide adequate 
anchorage and lateral confinement, compressive axial forces develop in the double-span beam (Fig. 1b), characterizing CAA, with peak 
resistance related to advanced rebar yielding and concrete crushing (point B in Fig. 1a). A snap-through may then occur, with its 
severity depending on beam depth and adjacent column stiffness. If the structure withstands these stages, the two-bay beam enters CA 
as its axial load shifts to tension (Fig. 1c), being considered the last defense against progressive collapse (point C in Fig. 1a) [13].

Ultimate capacity may be defined at CAA and CA stages, with CA being usually preferable due to its greater ductility. Both 
mechanisms rely on detailing of beams and columns, span lengths, and material properties [14–18]. As some design decisions favor 
CAA capacity while others influence the CA capacity, risk-based optimization can be used to define the most cost-effective solution, as 
well as pre-defined structural requirements, costs of robustness-targeted strengthening and expected costs of progressive collapse [13,
19,20].

For instance, Ribeiro et al. [21] show that an RC beam detailing that prioritizes CA capacity is the optimal risk-based solution for a 
fully clamped double-span beam, or a beam with infinite lateral confinement. To explore a more realistic system, this study addresses 
the optimal risk-based design of a planar RC frame under multiple scenarios of ground-floor column loss, targeting the optimal design 
of all beams and columns. Unlike the idealized setup in Ref. [21], the current model captures the finite stiffness and deformation of 
columns, which directly influence the development of resisting mechanisms such as CAA and catenary action [16,17]. Additionally, 
column dimensions and column reinforcement are now included as design variables, enabling the investigation of trade-offs and 
flexural compromises between beams and columns. These extensions make the current framework significantly more complex and 
representative of actual structural behavior, thereby extending the scope and applicability of the previous study [21]. While this study 
addresses a single five story by six bay perimeter frame, other frame aspect ratios are addressed in a companion paper [62].

In recent years, significant advancements have been made in developing mitigation strategies for progressive collapse, particularly 
in enhancing structural redundancy, continuity, and robustness. These include the use of fuse elements, energy-dissipating compo
nents, segmented structural layouts, and performance-based design approaches aimed at improving post-damage load redistribution 
capacities [6,14,22–26]. The integration of innovative detailing methods and alternative reinforcement strategies has also shown 
potential to improve structural performance under column loss scenarios. While the present work focuses on trade-offs between 
construction cost and collapse performance through optimization of beam and column stiffness in planar RC frames, recent state of the 
art strategies are valuable contributions to the broader field of collapse mitigation and an important direction for future extensions of 
this research.

2. Case-study structure

The planar RC frame tested by Yu and Tan [16] is the object of study (Fig. 2). By addressing multiple scenarios of single column loss 
via pushdown analysis [27], it is possible to investigate how the complex interaction between distinct structural elements reflects on 
the optimal risk-based results. The following initial damage cases are considered: external column loss (ECL), penultimate column loss 
(PCL), antepenultimate column loss (ACL), and middle column loss (MCL). Based on [16], nominal values for dead and live loads are 
7.1 kN/m2 and 4.8 kN/m2, respectively, with an additional load of 2 kN/m to account for non-structural exterior components. It is 

Fig. 1. Resisting mechanisms in a (zoomed-in) two-bay RC beam in a multistory frame.
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further assumed that the structure is located in a non-seismic region, as seismic hazards are beyond the scope of the present 
investigation.

All columns at the ground floor are subjected to a probability of sudden removal given by pLD. Unidirectional floor slabs are 
considered. Hence, the perimeter frame gets floor loads from one side only. If an inner frame was addressed, two floor loads would be 
added to the beams, so greater optimal reinforcements would be expected. However, real life occurrences of progressive collapse due to 
terrorist attacks, for instance, shows that facade columns at the ground floor are more usual targets.

As discussed by Rodrigues da Silva et al. [28], identifying critical failure sequences to simplify the problem is fundamental. 
Therefore, based on [11], 2 types of collapse spread after loss of a single column are assumed: (a) upward propagation due to beam 
failure; and (b) lateral propagation due to column failure. When the first set of adjacent columns fail, beam span length increases, 

Fig. 2. Reference RC structure and studied frame.

Fig. 3. Critical failure sequences (green arrows) and potential damaged extent (in red) for reference frame.
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significantly increasing bending moments and axial forces on the new set of adjacent columns. For the reference frame studied herein, 
this leads to probabilities of beam failure of ~0.99 when the first set of adjacent columns is lost. Therefore, as shown in Fig. 3, only the 
1st and 2nd lateral propagation stages are addressed, with horizontal collapse propagation turning to an upward propagation of 
greater damage extent after failure of the first set of adjacent columns.

To simplify the cascading failure analysis, second-stage events are considered as function of first-stage failures. In Fig. 3, qj
iCL,SR 

relates to the ultimate CA capacity for the ith column loss scenario and jth stage of lateral spread. A uniform sample of 200 points (based 
on Table 1) was used to estimate these ultimate capacities for all stages and scenarios, allowing the beam ultimate capacity at 2nd stage 
to be written in terms of the 1st stage capacity (CoV ≈ 5 %). These relations are used when computing the limit states of the increased 
beam span in case of adjacent column failure (to be later introduced).

Note that penultimate column loss (PCL) has q2
PCL,SR written in terms of q1

ECL,SR, as its 2nd stage cantilever shape resembles a hy
pothetical 3rd stage of ECL. Besides, beam shear demands at 2nd stage are estimated as ‘increased beam length × load’, which are then 
compared to the shear capacity (limit states to be described).

2.1. Sensitivity analysis

Fig. 4 shows a beam sensitivity analysis for the reference frame under MCL. To emphasize the relevance of column stiffness, two 
conditions are shown in this figure: (a) fully clamped two-bay beam, as in Refs. [16,21]; and (b) whole frame. For results in Fig. 4, 
columns are assumed identical to Ref. [16], and only beam parameters are varied: cross-section depth (hB), bottom and top rebar 
diameter (ϕB and ϕT, with 3 rebars per layer), concrete strength (fć) and rebar yielding strength (fy). The reference beam (black lines in 
Fig. 4) shares the seismic-detailing design reported in Ref. [16].

By comparing the models, static pushdown analysis [27] for the RC frame shows less pronounced snap-through compared to the 
fully clamped RC beam. Thus, pushdown behavior may change drastically for beam-only modeling and whole frame simulation. While 
a reduced beam depth (hB) increases ultimate capacity at CA in a beam with clamped ends, the opposite is observed when addressing 
the whole frame (Fig. 4a and b, respectively). Such large differences can be explained by the horizontal drift at the adjacent columns, 
namely: a large drift for the whole frame model, and negligible drift for fully clamped beams.

Ultimate capacities at CAA and CA are greater for the fully clamped beam model, as maximum resistance against horizontal drift is 
present in this case. By contrast, whole frame modeling leads to greater ductility in terms of vertical drift due to adjacent columns 
having lower stiffness. For both modeling strategies, ultimate capacity at CAA and CA is proportional to the rebar diameter of both 
layers, but with increased values of ϕT leading to the greatest resistance values at CA (Fig. 4c–f).

Table 1 
List of failure modes, limit state functions and assumed damaged areas.

Case Failure mode k Limit state function Damaged area

Intact structure (I) Large deflection (SE) 5 gI,SE(x) = δlim − δ(qI)

Positive bending (BM) 30 gI,BM(x) = MRM − MM(qI)

Negative bending (BE) 30 gI,BE(x) = MRE − ME(qI)

Shear failure (SH) 60 gI,SH(x) = VR − V(qI)

Column failure (CO) 60 gI,COL(x) = R(NR ,MR) − S(NSI ,MSI)

Column loss (CLi) Steel rebar rupture (SR) 40 gCLi ,SR(x) = qCLi ,SR − qCL

Shear failure (SH) 60 gCLi ,SH(x) = VR − V(qCL)

Column failure (CO) 80 gCLi ,COL(x) = R(NR,MR) − S(NSCLi,MSCLi)
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When addressing yield strength fy, the end of FA (onset of CAA) is the main feature affected, as the pushdown behavior past this 
point is unaffected (Fig. 4g and h). Additionally, concrete strength fć has a reduced role in the pushdown behavior of the RC frame 
model, since the increase in CAA capacity is not as relevant as for the beam subassemblage model (Fig. 4i and j). Based on these results, 

Fig. 4. Load vs displacement responses: fully clamped beam (left) and frame model (right).
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significant differences are expected in the optimal risk-based design of a whole frame system, in comparison to a fully clamped beam 
subassemblage [21].

3. Methodology

This work addresses the optimal risk-based design of a conventional RC frame under gravity loads and column loss scenarios, 
aiming to understand how optimal design of beams and columns adapts to mitigate progressive collapse. Redistribution-type pro
gressive collapse due to single column loss is addressed, and only intrinsic resisting mechanisms are considered. Hence, the main 
strategy for progressive collapse mitigation consists on enhancing existing ALPs via APM design, as done in the usual guideline 
framework. In this study, only a primary RC frame supporting unidirectional floor slabs is addressed, for which 3D and slab effects can 
be neglected. Design variables in the optimization problem are cross-sectional dimensions and reinforcement ratios (longitudinal and 
transversal).

Under multiple hazards, progressive collapse probability P[C] can be computed as [29]: 

P[C] =
∑

H

∑

LD
P[C|LD,H]P[LD|H] P[H] (1) 

where: P[H] is the probability of hazard occurrence; P[LD|H] is the conditional probability of local damage given H; and P[C|LD,H] is the 
conditional probability of collapse given LD and H.

To focus on system behavior, Beck et al. [10,11] addressed Eq. (1) assuming the (fifty-year) probability of local damage pLD =
∑

HP[LD|H]P[H] as an independent term, accounting for epistemic uncertainty in potential abnormal loading scenarios leading to local 
damage. The authors showed that pLD is the main parameter controlling the decision whether a specific building should be strengthen 
or not. Thus, the authors identified the local damage probability threshold pth

LD, a break-even point which makes the additional cost of 
APM strengthening equal to the reduction in expected cost of progressive collapse failure. When pLD > pth

LD, it is cost-effective to 
strengthen the structure to mitigate progressive collapse. The authors show similar results for a threat-dependent approach involving 
blast loading [30]. For any particular building, pLD is estimated in a risk assessment considering building location, surroundings, 
ownership and use, and all potential hazards leading to the local damage considered [11].

Herein pLD is treated as an independent parameter ranging between pmin
LD = 5 × 10− 6 and 1 (in a lifetime of 50 years), covering 

scenarios where the threat of local damage is negligible up to very significant threats. The lower bound pmin
LD relates to the 50-year 

lifespan equivalent to the “de minimis” annual probability p = 10− 7 [31].

3.1. General framework

Herein, risk-based optimization involves a vector of design variables d, including beam and column cross sections and rein
forcement ratios, and a vector of random variables (RVs) X, encompassing uncertainty in dead and live loads, material strengths and 
member dimensions. Continuous design variables are the beam depth hB, beam rebar diameter (bottom ϕB and top ϕT layers), beam 
stirrup spacing st, column size hC (squared cross section), and diameter of column rebars ϕC. Hence, d = {hB,ϕB,ϕT, st ,hC,ϕC}.

The design domain D contains the mean values of some of the RVs in the sampling domain S ; hence, D ⊂S . Vector D has a 
smaller dimension than vector S , as some RVs are not considered as design variables, e.g. yielding strength, dead load, live loads, and 
model error. Design variables are conveniently considered as the means of RVs in order to: (a) ensure a more robust uncertainty 
modeling; and (b) allow use of the same sample to estimate failure probabilities for all optimal candidates (more details in Section 3.3). 
The adopted framework relies on four pillars and four sample sets, which are integrated according to Fig. 5: 

(a) risk-based optimization: total expected costs, given by cost of construction and expected costs of failure, are minimized for each 
pLD using Firefly Algorithm [32];

(b) reliability analysis: to compute expected costs of failure, probability of occurrence for each failure mode is estimated by 
Weighted Average Simulation (WASM) [33,34];

(c) structural modeling: for each sample point, structural response is obtained via nonlinear static analysis based on the Finite 
Element Method (FEM) using OpenSees software [35];

Fig. 5. Proposed framework.
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(d) interpolation: as integrating structural and reliability analyses has a huge computational cost, the simplified yet accurate In
verse Distance Weighting (IDW) scheme [36] is used to hasten these stages, making the proposed risk optimization a feasible 
process.

For each sample set, the chosen number of points is based on convergence analyses made across S and D . Latin Hypercube 
Sampling (LHS) [37–39] is used to create a 1st uniform sample set across the sampling domain S , containing all the problem’s RVs. 
FEM is used to realistically address structural behavior for the intact structure and for each column loss scenario.

A 2nd and significantly larger sample set is then created via LHS across S , but now structural behavior is quickly interpolated via 
IDW (CoV ≲ 5 %). To ensure convergence in reliability analysis, the 2nd sample set must reach dozens of millions of sample points, so it 
is unfeasible to get their structural behavior estimated directly via FEM. More complex surrogate techniques, such as ordinary kriging, 
were observed to be too slow for the hundreds of outputs needed to estimate the force–displacement pushdown curve (including 
internal forces of interest) for each sample point and for each column loss scenario.

Each sample point in the larger 2nd sample set has its limit state function G = R − D, where R is the resistance of the structure and D 
is the demand, i.e. the effects of loads, on the structure. For each column loss scenario, the force–displacement curve can be estimated 
using eight key points related to fixed values of beam rebar strain εs, as follows: 0, 0.002, 0.01, 0.05, 0.10, 0.15, 0.20, and 0.25. At each 
key point, vertical drift, applied load, and internal forces of interest are inferred via FEM (1st sample set) or estimated via IDW (2nd 
sample set). This enables a less conservative approach for dynamic effects (introduced in Section 3.4), and an efficient and accurate 
parameter estimation at any εs within feasible computational time, meeting the requirements of this study.

Then, a 3rd sample set is created via LHS across the design domain D . For each design sample point, the previous (2nd) large RV 
sample set and their limit state results are used as basis to compute the probability of occurrence and respective reliability index for all 
failure modes via WASM. A 4th sample set is then created via LHS across D for risk-based optimization purposes (initial set of fireflies 
in the Firefly Algorithm). The reliability indices for the 4th sample points are quickly (and accurately) estimated via IDW interpolation 
in terms of the support points previously evaluated in reliability analysis (3rd sample set).

As the iterative optimization process advances, candidate solutions converge towards the optimum (most cost-effective solution), 
and for each candidate the failure probabilities are quickly (and accurately) interpolated via IDW still based on the 3rd sample set 
results. Although the probability of failure modes related to column loss scenarios is conditional on threat probability, the same 
reliability index IDW support points (3rd sample set) can be used for all pLD values. This is possible due to the threat-independent 
approach proposed by Beck et al. [10], which separates the mechanical system behavior in the progressive collapse phase from the 
hazards and conditional local damage probabilities.

3.2. Optimization procedure

The objective function to be minimized is the total expected cost CTE, which addresses manufacturing costs and expected costs of all 
failure modes of the intact structure and of each column loss scenario (Eq. (2)). Since a symmetric frame is addressed, ECL, PCL and 
ACL are considered twice when computing CTE. Additional life-cycle costs could certainly be included; however, this study considers 
only those related to construction and expected failure losses, in line with prior work [21], to specifically address the consequences of 
progressive collapse. The focus is on the trade-off between construction cost and expected failure cost as a starting point for 
risk-informed structural optimization. This narrowed scope enables a tractable framework that isolates the direct economic impli
cations of robust design strategies. While broader life-cycle and sustainability-related costs are indeed important [40], their inclusion 
would extend beyond the core objective of this paper. Future work will incorporate such holistic evaluations as the framework is 
expanded. 

CTE(d)=CM(d) +
∑NIF

i=1
kiCMAipfi +

∑NCL

k=1

∑NCLF

j=1
kjCMAjpfjpLDk (2) 

where CM(d) is the frame construction cost; NIF and NCLF are the number of failure modes for intact and damaged structure, 
respectively; NCL is the number of scenarios of single column loss; k is a failure consequence factor, accounting for direct and indirect 
losses; pf is the probability of occurrence; and CMA is the construction cost of the damaged frame area affected by the addressed failure 
mode. In Eq (2), the term pLDk relates to the local damage probability pLD previously defined in Section 3, corresponding to the kth 
column loss scenario.

The manufacturing cost of the affected area CMA varies depending on the failure mode and column loss scenario, as depicted in 
Table 1. Each failure mode is assumed to damage a specific portion of the frame, and the construction cost of this specific part is used as 
reference when computing its expected cost of failure. To compute CM, costs of formwork, workmanship, concrete and steel are 
accounted for as in Ref. [21], but with updated reference values of July 2024 [41,42]. For each failure mode, k and CMA are shown in 
Table 1. Under normal load condition, the expected cost for any given failure mode is CI

EF(X,d) = k CMA pf , whereas the expected cost 
for each column loss condition is CiCL

EF (X,d) = k CMA pf pLD. Although CMA depends on d and pf is a function of both X and d, this is 
omitted in Eq. (2) for clarity purposes.

Multipliers k reflect the severity of a failure mode in terms of the construction cost CMA related to the area affected by the system 
damage state [10,11,21]. Values range according to the analysis made by Marchand and Stevens [43], which compares the cost of 
construction to the cost of collapse of the Alfred P. Murrah Federal Building, World Trade Center and Pentagon. Hence, less severe 
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failure modes, such as serviceability failure (in terms of allowable deflection) and bending failure (cross-section plastification due to 
rebar yielding and/or concrete peak strength) have smaller values of k, while brittle shear and column failures have greater values. 
Therefore, k is assumed as shown in Table 1. Yet, higher failure cost multipliers could be employed for critical or strategic buildings.

As done in Ref. [21], rebar rupture in CA is considered the less severe failure mode for the column loss scenarios. This is because 
shear failure and adjacent column failure prevent the full development of the pushdown response, causing collapse before the beam 
reaches its ultimate capacity, representing a more critical, premature failure. In contrast, rebar rupture indicates that the structure has 
fully utilized its deformation and material strength capacity, without earlier failures interrupting the load path. Although rebar rupture 
remains undesirable due to the potential for extensive damage, it is treated as the least critical among the evaluated failure modes. 
Shear failure is assumed to compromise a similar portion of the structure but at lower load and displacement thresholds, while adjacent 
column failure impacts an even larger area prematurely. Thus, as whole frame modeling for squared-section columns leads to a 
negligible snap-through (Fig. 4), no penalization is needed to ensure CA capacity above the CAA capacity.

The cost-benefit analysis is done by solving the optimization problem given by: 

for a given pLD
find d*

which minimizes CTE(d)
subject to d ∈ D

(3) 

Since rebar diameter is optimized, a fixed number of 3 rebars at each beam layer and 8 rebars for the squared-section columns is 
adopted, as shown in Fig. 6. Since multiple columns are subject to sudden loss, pLD in Eq. (2) is addressed in two different manners: a) 
pLD relates to a specific column loss, for which progressive collapse is studied individually; b) pLD relates to the loss of any column, with 
local damage probability per column pLDcol = pLD/(number of target columns). This allows consideration of how each scenario indi
vidually influences the optimal design, and how they compete for the strengthening budget.

3.3. Limit states and reliability analysis

Table 1 illustrates all failure modes addressed in this study, inclusive of limit state functions, damaged areas and failure-cost 
multiplication factors.

Beam failure in the intact scenario refers to a single continuous beam, since it is unlikely that live load reaches its 50-year extreme 
value in all stories simultaneously. Column failure in the intact scenario is considered only at the top corner due to the greater bending 
moments and low compressive forces in these regions. Even with a 20-mm eccentricity, column failure does not occur at the frame’s 
base, even for the weakest possible column within D . Although MCL is chosen to illustrate the damaged areas in Table 1, the actual 
damage extent depends on which column is lost, as shown in Fig. 3.

Variables in Table 1 are as follows: 

✓ qI and qCL are the distributed loads for intact (I) and column loss (CL) scenarios, respectively;
✓ δlim is beam displacement threshold of 15 mm [44];
✓ δ(qI) is the beam vertical drift in the intact frame;
✓ MRM and MRE relate to beam bending capacity at midspan and ends, respectively [44];
✓ MM(qI) and ME(qI) are the beam bending demands at midspan and ends, respectively;
✓ VR is the beam shear capacity [44];
✓ V(qI) and V(qCL) are the shear demands in the beams for intact and damaged structure, respectively;

Fig. 6. Cross-sections to be optimized in the RC frame.
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✓ R(NR,MR) relates to the columns axial force vs bending moment resisting envelope [44];
✓ S(NSI,MSI) and S(NSCLi,MSCLi) are the columns axial force vs bending moment demands for intact and damaged frame, respectively;
✓ qCLi ,SR is the beam capacity in terms of top layer rebar rupture at the adjacent beam-column joints.

Table 2 shows the adopted uncertainty modeling. Boundary values for S are chosen in terms of μ ± 2σ for each random variable, 
where μ is the vector of mean values and σ is the vector of standard deviations. Although this range is not optimal for computing small 
probabilities via WASM, it is accurate enough for our risk optimization purposes. Indeed, probabilities below 10− 4 relate to negligible 
expected costs of failure, so high accuracy for smaller probability values is not necessary.

3.4. Structural analysis

OpenSees is used to conduct finite element (FE) structural analysis. Each span is discretized in 5 fiber displacement-based finite 
elements (3 Gauss-Lobatto integration points in each), being three FEs for the member itself and one at both ends to represent the 
beam-column joint regions. Praxedes [13] shows the efficiency of this approach in terms of minimal refinement level and agreement 
with experimental static pushdown curves, even though the beam-column joints are not explicitly modelled.

Corotational transformation is used for all members to account for the expected large geometrical nonlinearities. To avoid 
convergence issues, member cross-sections were meshed through 200 fibers for confined concrete and 10 fibers for each face of un
confined concrete cover. Static bay pushdown analysis [27] is conducted with a displacement-based integrator using Krylov-Newton 
method to solve the nonlinear problem (tolerance set to 10-5). An initial increment size of 1 mm is adopted, whereas an adaptive 
algorithm is used to increase or decrease the step size depending on the lack or need of convergence improvement, respectively.

Since bay pushdown analysis is conducted, two load steps are adopted: (a) nominal values of both dead and live loads are applied 
over all beam spans, as well as the self-weight of all structural members, by means of distributed line loads; (b) if beam rebar rupture 
does not occur in the first stage (possible case for slight reinforcement beam configurations), an increasing distributed line load is 
applied over the beam spans of interest until rebar rupture is attained.

The modified Park-Kent model [50] is used to model confined and unconfined concrete behavior in compression, and the multi
linear model from fib Model Code [51] serves as reference for concrete in tension. As shown in Figure A.1a (Appendix), all main 
parameters from both models are used as inputs for the ‘concretewBeta’ model available in OpenSees. Some parameters, such as K, ε20u 
and ε20c are outputs from the reference concrete model [50], inferred from cross-section geometry, material strengths and stirrup 
detailing. Although commonly used for RC truss modeling, ‘concretewBeta’ is able to satisfactorily represent softening and residual 
stresses both in tension and compression. Residual stress of tensile concrete is negligible in the applications of this study, but assuming 
a residual value of 0.01 fctm is enough to avoid convergence issues related to singular stiffness matrixes.

Rebar behavior is represented by the ‘ReinforcingSteel’ model available in OpenSees, which realistically encompasses the linear 
elastic region, the yield plateau, strain hardening, and strain softening which are expected for typical steel reinforcements (Figure A.1b
in Appendix). Usual bilinear models are not used because they may lead to unrealistic rebar stresses for advanced stages of CA. Hence, 
the chosen rebar model produces realistic results in close agreement with experimental data.

Dynamic effects related to a sudden column loss can be represented by explicit dynamic analysis, Dynamic Amplification Factors 
(DAF, conservative approach), or by Energy Equivalent Method (EEM). As a pragmatic solution is enabled by EEM, this approach is 
chosen herein. EEM consists of a balance between kinetic energy, external work and internal deformation energy, where a pseudo- 

Table 2 
Uncertainty modeling.

Category RV Distribution Mean value and range Standard deviation Coefficient of variation Reference

Geometry Beam depth (hB) Normal To be optimized* 1 mm – [45]
[300, 600] mm

Bottom rebar diameter (ϕB) Normal To be optimized* – 0.05 [45]
[12,30] mm

Top rebar diameter (ϕT) Normal To be optimized* – 0.05 [45]
[12,30] mm

Stirrup spacing (st) Normal To be optimized* – 0.05 (assumed) –
[100, 200] mm

Column size (hC) Normal To be optimized* 1 mm – [45]
[400, 600] mm

Column rebar diameter (ϕC) Normal To be optimized* – 0.05 [45]
[12,30] mm

Material Concrete strength 
(
fć
)

Lognormal 32 MPa – 0.12 [46,47]

Rebar yield strength 
(

fy
)

Normal 510 MPa – 0.05 [46]

Ultimate steel strain (εsu) Normal 0.13 (normal ductility) – 0.14 [46,48]
0.20 (high ductility)

Loads Dead load (D) Normal 1.05 Dn – 0.10 [49]
50-year live load (L50) Gumbel 1.00 Ln – 0.25 [49]
a.p.t. live load 

(
Lapt

)
Gamma 0.25 Ln – 0.55 [49]

Capacity model Model error (ME) Lognormal 1.101 0.187 – This study
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static pushdown curve is obtained by integration of the static pushdown curve [52–55]. For simplification, energy dissipation from 
other sources, such as heat and plastic strains, is neglected, leading to small discrepancies in the dynamic estimation. Herein, the 
pseudo-pushdown curve is estimated via EEM at all sample points, for which key points of the static pushdown curve are obtained 
directly via FEM or interpolated via IDW (1st and 2nd sample sets of Fig. 5, respectively).

4. Results

This section presents the optimal risk-based results obtained by analyzing multiple progressive collapse scenarios. The study 
evaluates the structural response under different column loss cases, including ECL, PCL, ACL, and MCL. As mentioned in Section 3.2, 
the local damage able to trigger progressive collapse is addressed by pLD, which may refer to: (a) loss of a specific column; or (b) 
individual loss of any column. Additionally, the intact structure scenario is considered to ensure that progressive collapse mitigation 
design does not compromise performance under Normal Loading Conditions (NLC). By systematically addressing these scenarios, it 
becomes possible to understand how the complex interaction between distinct structural elements influences the optimal design and 
how ultimate capacity is prioritized.

Four strengthening strategies to enhance structural robustness are examined, resulting from the combination of two parameter 
variations. One parameter is the extent of strengthening, which includes the options of strengthening the entire frame or only the first 
two stories. The other parameter is longitudinal rebar ductility: low-ductility rebars, with a strain limit mean of 0.13 (as in Refs. [13,
16]), are compared to high-ductility rebars, which exhibit a more reasonable limit strain of 0.20, commonly used in studies of 
structural robustness. The results provide insight into how these parameters affect the structural system’s ability to withstand column 
loss while maintaining cost-effective design solutions.

For each case the optimal risk-based design is investigated under increasing values of pLD. Firefly algorithm is used to solve Eq. (3), 

Fig. 7. Optimum manufacturing cost CM as function of column loss probability pLD.
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relying on 10 optimization runs for each pLD value, 100 iterations per run, and 40 fireflies. Despite multiple optimization runs for each 
scenario and each pLD value, only the mean results are shown, as all cases are characterized by small dispersion, with all CoVs 
remaining below 5 %.

4.1. Optimal design solutions and column-loss probability threshold

In the following, superscript (⋅ )* indicates the optimal value of the given design variable. Fig. 7 shows the evolution of optimal 
manufacturing cost CM for all column loss scenarios and strengthening decisions investigated, with pLD ranging from 5× 10-6 (

pmin
LD

)
to 

1. Only CM is shown to highlight how the optimal solution changes from a conventional design to an APM-oriented design as pLD grows. 
Tables in Appendix A show in greater detail the optimal results for all cases and strengthening approaches, including optimal CTE 
values found for all pLD.

The plots in Fig. 7 show two sets of optimal solutions, divided by the threshold local damage probability pth
LD (approximately 10− 2 in 

this study). In the first set, entitled “conventional design” and obtained for small pLD, optimal solutions favor behavior under normal 
loading conditions (NLC); in the second set, entitled “APM-oriented design” and obtained for large pLD, optimal solutions adapt to 
address progressive collapse under column loss scenarios.

The local damage probability threshold pth
LD is the break-even point, for which the costs of APM strengthening nearly match the 

reduction in expected costs of progressive collapse. Therefore, pth
LD indicates an indifference in the objective function, where two near- 

optimal solutions coexist: one prioritizes alternative load paths with reduced expected costs of progressive collapse, while the other 
aligns with conventional design under normal loads, with reduced construction cost [10,11,21].

Both solutions have similar total expected costs at pth
LD: one with smaller construction cost but increased expected costs of pro

gressive collapse (NLC-oriented), and the other with greater construction costs but reduced expected costs of collapse propagation 
(APM-oriented). This explains the sudden increase in CM at pth

LD in the plots of Fig. 7. As pLD increases past pth
LD, greater APM 

strengthening is needed to compensate increasing probabilities of progressive collapse. Hence, CM increases past the corresponding pth
LD 

value as additional progressive collapse strengthening becomes cost-effective.
Optimal conventional beam design (for pLD < pth

LD) is similar to that found in Ref. [21], being controlled by bending failure at the 
beam ends (β*

I,BE ≈ 3.2) and column failure at the frame’s top corner (β*
I,CO ≈ 3.4) (Figure A.2 in Appendix A). Based on Table 1, 

symbols BE and CO relate to beam negative bending and column failure, respectively, both for the intact scenario. Optimal APM beam 
design is similar for all cases: maximum beam depth (600 mm) and reinforcement ratios of 0.82 % for bottom rebars, 1.03 % for top 
rebars, and 0.25 % for stirrups at higher pLD values. Optimal APM design has lower beam safety margins for both steel rupture or shear 
failure, depending on the strengthening strategy and pLD value (Figures A.3 and A.4 in Appendix A). Nonetheless, pth

LD is characterized 
by β*

iCL,SR reaching a minimum of 2.33.
Tables A.1 to A.5 in Appendix A, in conjunction with Fig. 7, show that when pLD relates to the sudden loss of any column, optimal 

APM beam design solutions are similar to those found for specific column loss. Yet, optimal column designs are similar for all cases and 
pLD values (see discussion in Section 4.3). Partial frame strengthening reduces CM and CTE in ~19 %, and the gap between optimal CM 
and CTE is greater for low ductility rebars. High-ductility rebars provide a slight economy in terms of CTE, even when it leads to greater 
CM. Partial frame strengthening makes APM design cost-effective for smaller threat probabilities. Yet, gas explosions at the upper 
floors, for instance, are not addressed by this strategy.

The optimal APM solutions obtained herein are consistently related to literature findings. For instance: beams with greater depth 
promote CAA capacity [14]; greater optimal rebar reinforcements in APM designs promote increase in frame ultimate capacity [17]; 
however, optimal over reinforced beams are related to slightly decreased flexural capacity and earlier mobilization of CA [56]; top 
reinforcement ratio is always greater in optimal progressive collapse-resistant beam design, as progressive collapse is characterized by 
rupture of the top rebar layers at the adjacent beam column-joints [17]; strengthening the two first floors is shown to be a cost-effective 
solution for low-rise frames [57].

Assuming loss of any ground-floor column leads to optimal APM design being cost-effective for 10− 3 < pth
LD < 10− 2 for partial frame 

strengthening. This relates to probabilities per column pth
LDcol ranging from ~ 1.428 × 10− 4 to ~ 1.428× 10− 3. Assuming that such 

probability per column pth
LDcol does not change, overall pth

LD for loss of any ground-floor column increases for higher number of columns. 
Hence, passive measures that reduce the number of potential target columns may have better cost-benefit than addressing an APM 
design that covers multiple scenarios of single column loss [58].

External column loss scenarios are the most critical, as neither CAA nor CA can be mobilized, making the structure entirely 
dependent on VA. Consequently, reinforcement becomes expensive as more steel rebar area is needed to achieve enough capacity for 
the expected abnormal loading, so APM design is cost-effective only for higher threat probabilities (pth

LD > 10− 2). Penultimate column 
loss scenarios are the next most critical. Although CAA and CA can develop, lateral restraint is unbalanced due to a single adjacent 
column on one side, leading to significant axial-flexural demands in the outermost column. In general, the deeper the lost column is 
within the frame, the less critical the scenario becomes, as mobilization of CAA and CA actions improve.
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Optimal APM design has increased safety margins against brittle shear and column failures, while also ensuring a minimum safety 
margin against ductile steel rupture in CA action (i.e., the least bad failure mode) and all NLC failure modes (Figures A.2-A.4 in 
Appendix A). Resistance factors show that flexural capacity for optimal APM designs is at least twice the flexural capacity for optimal 
conventional design. Ultimate capacity in terms of rebar rupture is also shown to become more than double, regardless of column loss 
scenario, for columns of square cross-sections (Figure A.5 in Appendix A).

4.2. Optimal tradeoffs between ultimate load-bearing capacity and frame ductility

A detailed look at risk-based optimum solutions for frame beams (shown in Appendix A) reveals that these solutions explore a 
“Pareto front” of compromises between ultimate capacity and frame ductility (Fig. 4). As shown in the sensitivity analysis of Fig. 4, 
increasing hB increases the ultimate load-bearing capacity at the expense of decreasing the overall frame ductility (large displace
ments) for the same amount of rebar ductility (εsu). Hence, optimizing hB while ensuring a thorough usage of confined concrete beyond 
softening and steel rebars up to their rupture reveals a Pareto front of compromise solutions, as shown in Fig. 8.

In terms of hB, each static pushdown curve is a solution of full usage of each material, and the set of all solutions corresponds to a 
Pareto frontier in terms of εsu. It is noted that multi-objective solutions are not addressed herein. Fig. 8 reveals the different points of 
compromise which are explored in the risk-based optimization, which looks for a good balance between construction costs and ex
pected costs of failure.

In this example, the optimal h*
B = 600 mm obtained for all cases reflects a preference for greater load carrying capacity, in detriment 

of frame ductility. Although both CAA and CA capacities are enhanced, the expected abnormal loading is within the frame’s CAA 
resisting mechanism, so CA is not developed in case of sudden column loss. This might compromise the time needed for building 
evacuation in case of abnormal loading greater than expected, so the balance between ultimate capacity and frame ductility requires 
further investigations. Yet, constraints in terms of ductility requirements could be adopted to ensure minimal evacuation time.

Optimal beam designs with maximum load capacity and minimal vertical drifts (h*
B = 600 mm) correspond to smaller tensile axial 

forces during CA stage, which in turn reduces the bending moments transmitted to adjacent columns. Hence, beam depth is shown to 
be a highly relevant design variable due to its direct effect on strength across 6 failure modes (SE, BM, BE, SH, and SR) and its indirect 
reduction in moment demand on columns. Reducing h*

B in favor of greater frame ductility would require additional longitudinal and 
transversal reinforcements, as well as significantly larger column cross sections, to achieve similar safety margins against all failure 
modes. This approach, however, is shown to be cost-ineffective for the studied frame.

4.3. Optimal column design

As discussed in the previous section, optimal solutions relate to progressive collapse mitigation by means of CAA activation only 
(for the expected abnormal loading demands), with CA mobilization being avoided. Although CA allows maximum deployment of 
materials up to their limits, it is strongly related to the flexural demand on the adjacent columns (as discussed in Section 1 and depicted 
in Fig. 1). Resisting mechanisms in the beam spans above a lost column rely on the development of compressive and tensile axial forces 
(CAA and CA, respectively, all together with VA), which depend on the available horizontal restraint. In this study, RC columns of 
square section are the sole providers of this lateral confinement.

Load combination for accidental/extreme loading condition is given by qCL = 1.22(1.2Dn + 0.5Ln), with 1.22 being a common DAF 
value found between CAA and CA stages. This leads to 57 kN/m for the beam spans above a lost column, 47 kN/m in the non-affected 
beam spans, and 4.8 kN/m for column spans, so 2550 kN is roughly expected at the foot of the adjacent columns. When comparing to 
the resisting envelope of the optimal column designs (same for all cases and pLD values), this axial demand is around 50 % of the 

Fig. 8. Tradeoff between ultimate structural capacity and frame ductility.
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columns’ axial capacity, so the decisive factor behind the APM detailing is not an enhanced compressive demand. Due to VA, optimal 
column design relies on the significant bending moment demands caused by beams under CAA and CA. As tensile forces under CA may 
be significantly greater than compressive forces associated with CAA, greater flexural demands at the adjacent columns are expected 
when beams develop their CA.

4.3.1. External column loss (ECL)
Scenarios of external column loss are unable to trigger CAA and CA mechanisms due to a lack of bi-lateral restraint. Hence, load- 

carrying capacity relies on FA and VA, leading to minor impacts in bending demand on adjacent columns. Fig. 9 shows the resisting 
envelope for the 2nd set of optimum column designs, and the expected force vs moment demands (N–M diagram) obtained by FE 
analysis for 200 sample points. Each FE analysis addresses the same frame and the same 2nd set of optimum column designs, but with 
random combination of beam design variables across the design space D . This allows the identification of the effects that weak, in
termediate and stronger beams have over the N–M column demand.

For all sample points the resisting envelope encompasses the N–M demands of the adjacent columns. In this scenario, Vierendeel 
Action leads to compressive forces at the first floor, tensile forces at the uppermost floor, and a gradual transition from lower to upper 
floors, ensuring equilibrium for the hanging frame span. Those axial forces, which only develop due to the stiffness of the adjacent 
column, cause a flexural demand in it, with the frame being pushed inwards at the lower floors and pulled outwards at the upper floors. 
As shown in Fig. 9, a significant safety margin can be observed for the axial force–moment demand at the bottom of the adjacent 
column, which seems to be indifferent to the beam configuration. However, greater bending moments on top of the adjacent column 
can be observed for weaker beams, leading to smaller safety margins in this region. Nonetheless, this failure mode is related to column 
rebar yielding in tension, which has negligible impact over pushdown behavior, ultimate frame capacity, and structural robustness. 
Remaining floors in the hanging frame span have intermediate force–moment demands, so they are omitted for brevity. In addition, 
column tensile rebar yielding is common for the hanging column span, but with negligible implications.

4.3.2. Penultimate column loss (PCL)
Weak beams cause a major increase in column flexural demand for penultimate column loss, mainly at the outermost adjacent 

column (Fig. 10). Although CA is able to develop, the lateral restraint for the two-bay beams is unbalanced, causing distinct N–M 
demands over the adjacent columns. Weak beams have lower ultimate capacities, while experiencing larger vertical drifts (up to ~4 
hB) until rebar rupture happens.

This inherently leads to the development of greater axial forces in CA, which produce greater bending moments (~370 %) on 
columns, resulting in the exceedance of the maximum bending capacity of the outermost column. This severely compromises the 
frame’s pushdown behavior, leading to a premature collapse of a potentially larger portion of the frame. Despite domino–type pro
gressive collapse not being addressed in this study, the propensity of its occurrence is visibly significant due to the overwhelming 
inward pull of the outer adjacent column.

The optimal APM column design is able to envelope all N–M demands of the inner-most adjacent column. For the outer adjacent 
columns, this only happens (barely) for the strong beams (greater hB). Lower values of conditional reliability index β*

PCL,CO ≈ 3.0 are 
also justified by the aforementioned behavior (Figures A.3 and A.4 in Appendix A). Column flexural demand is greater in the adjacent 
column related to lower capacity of lateral restraint. Hence, the outermost adjacent column should be prioritized when addressing 
structural strengthening for columns lost closer to facades or building corners.

Fig. 9. Column failure assessment (N–M diagram) for external column loss scenario.
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4.3.3. Middle column loss (MCL)
Middle column loss leads to reduced values of flexural demand due to the balanced lateral restraints, but figures up to ~190 % 

above the maximum flexural capacity are still possible for both adjacent columns (Fig. 11). For middle column loss, both adjacent 
columns require strong beams, as weak beam configurations can pull the entire frame inwards (domino-type collapse).

Despite middle column loss leading to smaller flexural demands in adjacent columns, its potential to affect the entire frame through 
zipper-type and domino-type collapses is greater compared to penultimate column loss. All optimal APM column designs found for 
each scenario have one aspect in common: ultimate axial capacity at least twice the maximum expected axial demand. Since column 
failure in redistribution-type progressive collapse is solely attributed to increased flexural demands, Fig. 12 shows that column cross- 
sections other than the classic square-shape could be more appropriate for APM design.

In Fig. 12, an illustrative rectangular cross-section with the same area and number of rebars is used, but with half of the rebars 
placed on each side (an unconventional arrangement adopted for clarity). This results in the same axial capacity, but the maximum 
flexural capacity is increased by approximately 150 %. The new resisting envelope is able to accommodate greater bending demands, 
potentially providing greater safety margins for weaker beams.

Although the new rectangular section alters the N–M demands (hyperstatic frame), the previously calculated demands are kept for 
clarity. In addition, removing 3/4 of the rebars in the compressed side seems to have a negligible negative effect in the tensioned side. 

Fig. 10. Column failure assessment (N–M diagram) for penultimate column loss scenario.

Fig. 11. Column failure assessment (N–M diagram) for middle column loss scenario.
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This could lead to optimal strengthening solutions with APM design paying off at lower threat probabilities and possibly allowing 
weaker beams (lower hB) to be used, allowing CA mobilization.

By monitoring the neutral axis position across the column’s resisting envelope, the thresholds between different flexural domains 
can be identified. As shown in Fig. 12, most failure occurrences correspond to the third domain, where tensioned rebars yield, and 
concrete compressive strains reach the guideline threshold of 0.0035. However, for square-shaped sections, certain weak beam 
configurations cause flexural capacity to be reached in domain 2 — an uncommon outcome in column design. In this domain, adjacent 
ground-floor columns experience significantly higher tensile demands than compressive ones, exhibiting a beam-like behavior.

4.4. Tradeoffs between beam and column stiffness

The RC beam optimized in Ref. [21] had clamped-clamped supports, corresponding to columns with infinite moment of inertia; the 
optimized APM design had a reduced moment of inertia (weak beam), which enhanced CA capacity. In the present study, square 
section columns restricted the cost-effectiveness of greater moments of inertia for these vertical elements; optimal APM design so
lutions relate to almost maximum beam moment of inertia due to significantly smaller column stiffness. The following trend is 
observed: as the optimal depth of elements in a specific direction increases, the depth of elements in the perpendicular direction 
decreases.

An increase in column moment of inertia enhances its flexural capacity. When addressing rectangular and squared sections of 
identical manufacturing costs, area and number of rebars, Fig. 12 shows that a rectangular option has a greater resisting envelope due 
to its greater moment of inertia. Thus, increased column flexural capacity allows greater mobilization of beam CA, which in turn 
enhances the ultimate load-carrying capacity for (weaker) beams with reduced beam depth. In this context, weaker beams have 
reduced flexural capacity, even though their CA capacity is greatly improved when paired with highly rigid columns.

This aligns with Long et al. [17], who show that load capacity of frames under CA strongly depends on the moment capacity of the 
adjacent columns in order to provide strong restraints. This also goes in line with Yu and Tan [16], who show that larger (beam) 
span-to-depth ratios enhances CA capacity, while smaller ratios improve CAA capacity.

As shown in Section 4.2, lower column moments of inertia create a tradeoff between load-carrying capacity and frame ductility. 
With weaker lateral restraints, axial forces from CA induce larger horizontal drifts in adjacent columns (weaker beams in Figs. 10 and 
11). Consequently, vertical drifts increase at lower loads (Fig. 4b). However, Fig. 4a shows that there is no such tradeoff when strong 
lateral restraints are available, as increased beam ductility due to CA also implies greater load-carrying capacity. Stronger lateral 
restraints reduce column horizontal drift, necessitating higher vertical forces for greater vertical drifts.

Therefore, the tradeoff between ultimate capacity and frame ductility displayed in Fig. 8 relates to a specific condition of square 
columns, which have small moment of inertia. However, different tradeoff behaviors emerge when beam and column stiffness are fully 
considered (Fig. 13). For these plots, 2000 sample points for the case-study frame were run in OpenSees, with 3 rebars of 20 mm for 
both beam layers, 20 mm rebars in the columns, and similar materials for the whole frame (fć = 45 MPa and fy = 510 MPa). Rect
angular cross-sections are assumed for beams and columns (width of 300 mm in both), with only their depth varying. For each point, 
ultimate capacity at CA and the corresponding drift are obtained via FEM.

Fig. 12. Column failure assessment (N–M diagrams) for MCL with different cross-sections.
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Ultimate CA capacity reaches its highest values in two scenarios: (a) weak beam with strong columns; and (b) strong beam with 
weak columns. Although the first combination relates to the greatest CA capacity, it significantly reduces CAA capacity (Fig. 4a). In 
contrast, the second setup enables a more pronounced CAA mechanism before CA occurs. However, CA in this case is brief, exhibiting 
much lower ductility (Figs. 4b, 9 and 13b). For a column depth twice its width, ultimate capacities for strong and weak beams become 
equivalent. Increasing values of column depth leads to CA capacity of weak beams up to ~39 % greater than strong beams. Besides, 
greater column moment of inertia leads simultaneously to greater ductility and CA capacity for weaker beams, resembling the behavior 
in Fig. 4a and results in Ref. [21].

Intermediate beams are suboptimal in terms of post-flexural resisting mechanisms, as they fail to develop significant compressive 
forces during CAA and tensile forces during CA. This explains the difference between the optimal design solutions found in Ref. [21] 
and those presented herein (Fig. 14).

Since critical columns behave like beams in column loss scenarios, reinforcement strategies should specifically account for this 
behavior. Greater cost-effectiveness is expected if primary frames in column loss scenarios use columns with increased depth and 
reduced width. However, this may not hold for 3D frames, where significant bending moments occur along both column axes. In such 
cases, squared, L-shaped, or T-shaped cross-sections may be more cost-effective, a topic for future investigations.

Fig. 13. Ultimate frame capacity at CA in terms of beam depth and column depth.

Fig. 14. APM beam results found herein an in Ref. [21] in terms of ultimate capacity.
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5. Conclusions

This work addressed the optimal risk-based design of a reinforced concrete (RC) frame under progressive collapse caused by 
external, penultimate, antepenultimate and middle column loss scenarios. Damage leading to loss of load-bearing elements in RC 
frames are low-probability/high consequence events, with significant impacts in terms of disproportionate collapse consequences and 
in terms of strengthening costs. Herein, the Alternative Path Method (APM) has been addressed under accidental column loss scenarios, 
considering multiple strengthening options and distinct column loss scenarios in a planar frame structure. The risk-based optimization 
looks for a proper point of balance between APM strengthening costs and expected costs of progressive collapse.

Analysis results allow the following conclusions to be drawn: 

- Cost-effectiveness of progressive collapse mitigation strategies in RC frames has been found to strongly depend on the tradeoff 
between beam and column stiffness, as well as on the probability of column loss.

- For columns with squared cross-sections, ensuring great column bending capacity is not cost-effective; hence, ultimate capacity 
solely relies on increasing beam stiffness to promote compressive arch action. This approach leads to beams of depth twice its 
width, keeping the expected abnormal load within the compressive arch action range and preventing the onset of catenary action.

- As demonstrated in a previous investigation by the authors, beams with low stiffness, such as those with square cross-sections, can 
be the most cost-effective solution for alternative load path mechanisms when paired with columns that possess sufficient bending 
capacity and stiffness to anchor the development of catenary action in the beams.

- For this configuration to be effective in the case-study frame, the column depth must be at least twice that of the square beam depth, 
with performance improving as the column depth increases. This design approach reveals strong parallels with the “weak 
beam–strong column” philosophy commonly adopted in seismic design. Such alignment indicates that multi-hazard optimization 
may be attainable through integrated design strategies, although further research is needed to fully explore and validate this 
potential.

- Alternative combinations, such as rectangular beams and columns, are shown to be suboptimal in terms of ultimate capacity.

The preference for strengthening beam stiffness over column stiffness, particularly in the case study square column frame, should 
be interpreted within the specific context and assumptions of this study. Results reflect the case study investigated, including its 
particular geometric configurations, material properties, and design parameters. As such, it is not intended as a universal guideline but 
rather as a case-dependent outcome based on the optimization framework and strengthening strategies employed. Other frame aspect 
ratios are addressed in [62]. Alternative reinforcement techniques and structural configurations, especially those considering different 
axial compression ratios, reinforcement ratios, or advanced strengthening methods [6,14,22–26], may lead to different cost-benefit 
conclusions. Thus, while the probability of local damage is treated generically, different hazards may cause distinct damage pat
terns or affect multiple members simultaneously, which are conditions not captured in the current framework.

Optimal compromise solutions involving beam and column stiffness were discussed, and opportunities for further developments 
were identified. Possible future developments are the consideration of 3D resisting mechanisms, multi-hazard and threat-dependent 
scenarios, cost-benefit analysis for tall structures, joint detailing strategies, and usage of hybrid materials.
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APPENDIX A 

Figure A.1 shows the concrete and steel constitutive models, as discussed in Section 3.4. Figures A.2 to A.5 show the optimal 
reliability indices corresponding to conventional design, under normal loading conditions, and corresponding to APM-oriented de
signs, under different column loss scenarios. Results are discussed in Section 4.1 and elsewhere. Figure A.6 shows validation [16,59, 
60] for the nonlinear structural analysis conducted on OpenSees, disregarding tridimensional effects [5,23,61] in order to fully focus 
on the planar system [62]. Figure A.7 shows convergence of probabilities of failure obtained via WASM for increasing number of 
sample points. Figure A.8 shows how static pushdown curves are estimated via surrogates. Figure A.9 show statistical evidence for 
optimal results. Tables A.1 to A.5 show detailed results of risk-based optimization. 

Fig. A.1. Constitutive models and parameter values for concrete (a) and rebars (b).
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Fig. A.2. Behavior of reliability indices β* with pLD for Normal Loading Condition (NLC).
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Fig. A.3. Behavior of β* with pLD for each column loss scenario (whole frame strengthening). Individual column loss in strong lines, and any column 
loss in thinner lines.

L.R. Ribeiro et al.                                                                                                                                                                                                      Journal of Building Engineering 112 (2025) 113713 

20 



Fig. A.4. Behavior of β* with pLD for each column loss scenario (partial frame strengthening). Individual column loss in strong lines, and any column 
loss in thinner (shadow) lines.
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Optimal resistance factors γ*
iCL are used to address, via adimensional terms, the capacity increase at each pLD and column loss 

scenario in terms of the NLC-oriented optimal design: 

γ*
iCL,fm =

R*
iCL,fm(pLD)

R*
iCL,fm(pmin

LD )
(A.1) 

where iCL is the column loss scenario being addressed; fm is the failure mode being addressed; R*
iCL,fm(pLD) relates to the optimal 

resisting capacity of fm at iCL and pLD. Optimal values of γ*
iCL are shown in Figure A.5 and discussed in Section 4.1. 

Fig. A.5. Behavior of design factors γ*
iCL with pLD.
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Fig. A.6. Validation for nonlinear structural analysis for column loss scenarios.

Since too many scenarios and strengthening options are used, and a broad design domain is adopted, convergence shown in 
Figure A.7 relates to the optimal solution for whole frame strengthening at pLD = 1 for middle column loss scenario, only for rebar 
rupture. Only beam depth is chosen to vary, with smaller values related to higher probabilities and higher values leading to smaller 
probabilities. As it can be seen, convergence becomes evident between 15 and 20 million sample points. 

Fig. A.7. Probability of failure convergence (optimal solution at pLD = 1, whole frame strengthening, high ductility rebars, middle column loss 
scenario, varying beam depth from lower to upper bound, addressing only rebar rupture at column loss scenario).

Figure A.8 shows how the static pushdown curve is approximated in the surrogate stage, considering the reference pushdown curve 
of Fig. 2. Such approximation is needed to reduce computational cost, as for each key point internal forces and corresponding force vs 
displacement must be estimated for each column loss scenario. A total of 8 key points with representative εsu values are chosen. For our 
purposes, such values are shown to be adequate for all sampling cases, but other values could be better suited for different structures. 
An additional εsy is also treated as a key point, but since it relates to rebar yielding, it varies for each sampling point since fy is a random 
variable. 
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Fig. A.8. Static pushdown curve approximation.

To illustrate variability in the risk-based optimization runs, Figure A.9 shows all optimal solutions found for 10 optimization runs 
for pLD = 1, whole frame strengthening, high ductility rebars, and middle column loss scenario. Too many scenarios, strengthening 
cases, and pLD values are addressed herein, so just this representative case is shown. Yet, behavior shown in Figure A.9 is similar for all 
other cases, leading to CoV < 5 % (error between each individual solution and average solution). 

Fig. A.9. Observed variability in risk-optimization results (pLD = 1, whole frame strengthening, high ductility rebars, middle column loss scenario).
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Table A.1 
Optimal risk-based design for each individual scenario of column loss, low ductility rebars and whole frame strengthened.

Scenario pLD h*
B 

(mm)
ϕ*

B 
(mm)

ϕ*
T 

(mm)
s*
t 

(mm)
h*

C 
(mm)

ϕ*
C 

(mm)
C*

TE (€) C*
M (€) C*

Beam 
(€/m)

C*
column 

(€/m)

External column loss 
(ECL)

≤ 10-3 576 14 19 200 400 16 30741.33 30389.03 83.78 127.14
10-2 576 14 19 200 400 16 33287.39 30389.02 83.78 127.14
10-1 588 26 26 149 400 17 42412.93 40923.34 140.96 129.15
1 598 25 28 134 400 17 44390.52 42354.93 147.17 131.75

Penult. column loss 
(PCL)

≤ 10-3 576 14 19 200 400 16 30741.95 30389.03 83.78 127.14
10-2 576 14 19 200 400 16 34522.53 30389.02 83.78 127.14
10-1 590 26 26 148 400 17 41565.87 40996.14 141.25 129.32
1 600 25 28 135 400 17 43230.63 42537.87 147.51 132.76

Antepenult. column loss 
(ACL)

≤ 10-3 576 14 19 200 400 16 30743.50 30389.03 83.78 127.14
10-2 581 14 19 199 400 16 36942.24 30806.65 85.49 128.05
10-1 589 26 26 149 400 17 41361.58 40956.93 141.04 129.30
1 600 25 28 139 400 17 42639.68 42306.72 147.13 131.42

Middle column loss 
(MCL)

≤ 10-3 576 14 19 200 400 16 30744.28 30389.03 83.78 127.14
10-2 580 14 19 200 400 16 31584.05 30820.03 85.66 127.92
10-1 587 26 26 149 400 17 41202.75 40968.68 141.19 129.19
1 600 25 28 135 406 17 42634.67 42513.72 147.33 132.79

Table A.2 
Optimal risk-based design for each column loss scenario, high ductility rebars and whole frame strengthened

Scenario pLD h*
B 

(mm)
ϕ*

B 
(mm)

ϕ*
T 

(mm)
s*
t 

(mm)
h*

C 
(mm)

ϕ*
C 

(mm)
C*

TE (€) C*
M (€) C*

Beam 
(€/m)

C*
column 

(€/m)

External column loss 
(ECL)

≤ 10-3 576 14 19 200 401 16 30994.74 30389.03 83.78 127.14
10-2 576 14 19 200 401 16 33287.33 30389.02 83.78 127.14
10-1 597 20 26 151 412 16 39314.92 38250.37 125.15 130.59
1 600 25 28 137 412 17 42885.04 42490.03 147.03 133.10

Penult. column loss 
(PCL)

≤ 10-3 576 14 19 200 401 16 31118.25 30389.03 83.78 127.14
10-2 576 14 19 200 401 16 34522.48 30389.02 83.78 127.14
10-1 595 20 26 157 413 17 39413.46 38050.66 123.32 131.67
1 600 25 28 138 413 17 42696.26 42338.31 146.86 132.08

Antepenult. column loss 
(ACL)

≤ 10-3 576 14 19 200 401 16 31428.39 30389.03 83.78 127.14
10-2 584 14 19 199 400 17 36062.45 31214.29 85.58 131.31
10-1 600 20 26 157 408 17 39061.80 38257.98 124.16 132.14
1 600 25 28 135 408 17 42592.19 42497.36 147.33 132.71

Middle column loss 
(MCL)

≤ 10-3 576 14 19 200 401 16 31583.99 30389.03 83.78 127.14
10-2 581 14 19 200 401 17 36921.59 31376.24 86.40 131.44
10-1 597 20 26 153 406 17 39135.82 38330.48 125.18 131.21
1 600 25 28 134 406 17 42634.67 42513.72 147.38 132.77

Table A.3 
Optimal risk-based design for each individual scenario of column loss, low ductility rebars and strengthening in the 2 first floors.

Scenario pLD h*
B 

(mm)
ϕ*

B 
(mm)

ϕ*
T 

(mm)
s*
t 

(mm)
h*

C 
(mm)

ϕ*
C 

(mm)
C*

TE (€) C*
M (€) C*

Beam 
(€/m)

C*
column 

(€/m)

External column loss 
(ECL)

≤ 10-3 576 14 19 200 401 16 31294.79 30388.91 83.78 127.14
10-2 576 14 19 200 400 16 33913.41 30392.91 83.78 127.18
10-1 600 25 28 135 400 17 43058.98 34243.77 146.84 132.99
1 600 25 28 137 400 17 44768.34 34898.23 147.31 132.75

Penult. column loss 
(PCL)

≤ 10-3 576 14 19 200 401 16 30685.62 30069.02 84.13 127.75
10-2 600 20 26 153 402 16 33836.69 33188.65 125.77 130.28
10-1 589 26 26 147 400 17 34820.34 34257.38 141.33 130.20
1 600 25 28 134 401 17 35534.19 34832.16 147.04 132.59

Antepenult. column loss 
(ACL)

≤ 10-3 576 14 19 200 401 16 30784.62 30174.30 84.52 129.35
10-2 591 21 26 151 405 17 33586.22 33088.29 124.58 129.96
10-1 590 26 26 148 400 17 34638.90 34247.30 141.13 129.29
1 600 25 28 134 401 17 35149.26 34868.60 147.46 132.72

Middle column loss 
(MCL)

≤ 10-3 576 14 19 200 401 16 31061.62 30112.47 84.71 129.23
10-2 600 20 26 153 401 16 33721.38 33142.14 125.73 130.34
10-1 590 26 26 148 401 17 34911.80 34250.85 146.49 132.60
1 600 25 28 139 401 17 35142.90 34785.19 147.56 132.78
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Table A.4 
Optimal risk-based design for each column loss scenario, high ductility rebars and strengthening in the 2 first floors

Scenario pLD h*
B 

(mm)
ϕ*

B 
(mm)

ϕ*
T 

(mm)
s*
t 

(mm)
h*

C 
(mm)

ϕ*
C 

(mm)
C*

TE (€) C*
M (€) C*

Beam 
(€/m)

C*
column 

(€/m)

External column loss 
(ECL)

≤ 10-3 576 14 19 200 401 16 30568.72 30066.57 84.12 127.71
10-2 576 14 19 200 400 16 32913.38 30015.60 83.78 127.15
10-1 595 25 28 140 400 17 34865.69 34690.66 146.29 130.77
1 600 25 28 135 400 17 35238.62 34853.04 147.24 132.73

Penult. column loss 
(PCL)

≤ 10-3 576 14 19 200 401 16 30685.56 30069.01 84.13 127.75
10-2 600 19 27 138 400 17 33512.69 33204.41 125.36 131.21
10-1 600 20 26 153 401 16 34545.96 33192.13 125.82 130.27
1 600 25 28 135 400 17 35150.65 34876.60 147.53 132.79

Antepenult. column loss 
(ACL)

≤ 10-3 576 14 19 200 401 16 30784.51 30174.04 84.51 129.36
10-2 599 19 26 151 400 17 33238.40 33028.59 122.19 132.29
10-1 600 20 26 152 404 17 33993.89 33164.52 124.57 131.56
1 600 25 28 138 400 17 34914.74 34852.43 147.19 132.79

Middle column loss 
(MCL)

≤ 10-3 576 14 19 200 401 16 30852.53 30174.07 84.51 129.36
10-2 597 19 27 138 401 17 33443.74 33222.64 124.75 132.50
10-1 600 20 26 158 400 18 34007.25 33263.91 123.36 135.43
1 596 25 28 134 402 17 34931.39 34736.58 147.36 130.14

Table A.5 
Optimal risk-based design addressing sudden loss at any ground floor column.

Scenario pLD h*
B 

(mm)
ϕ*

B 
(mm)

ϕ*
T 

(mm)
s*
t 

(mm)
h*

C 
(mm)

ϕ*
C 

(mm)
C*

TE (€) C*
M (€) C*

Beam 
(€/m)

C*
column 

(€/m)

Entire frame strengthened 
Low ductility

≤ 10-3 576 14 19 200 400 16 30740.11 30389.03 83.78 127.14
10-2 576 14 19 200 401 16 31238.16 30389.03 86.98 130.43
10-1 582 25 25 198 400 17 35372.65 31360.22 140.86 129.41
1 589 25 28 152 401 17 41772.35 40935.29 146.78 131.48

Entire frame strengthened 
Greater ductility

≤ 10-3 576 14 19 200 400 16 31238.11 30389.03 83.78 127.14
10-2 583 14 19 199 400 17 35183.22 31188.82 86.41 129.86
10-1 595 20 26 160 404 16 39427.41 37782.89 122.73 130.33
1 600 25 28 136 400 17 42714.02 42486.48 147.25 132.73

Two floors strengthened Low 
ductility

≤ 10-3 576 14 19 200 401 16 30705.37 30182.34 84.71 129.23
10-2 600 20 26 153 404 16 33839.96 33189.20 125.73 130.34
10-1 600 25 28 137 400 17 34909.86 34793.04 146.49 132.60
1 600 25 28 135 400 17 35747.93 34878.20 147.56 132.78

Two floors strengthened 
Greater ductility

≤ 10-3 576 14 19 200 401 16 30785.70 30098.34 84.68 127.54
10-2 600 18 27 140 400 17 33420.76 33135.32 122.98 133.33
10-1 595 20 26 156 400 17 34499.01 33108.15 124.40 130.65
1 600 25 28 144 400 17 35007.08 34683.61 145.78 131.40

Data availability

Data will be made available on request.
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