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Abstract: In recent years, Internet of Healthcare Things (IoHT) devices have attracted
significant attention from computer scientists, healthcare professionals, and patients. These
devices enable patients, especially in areas without access to hospitals, to easily record and
transmit their health data to medical staff via the Internet. However, the analysis of sensitive
health information necessitates a secure environment to safeguard patient privacy. Given
the sensitivity of healthcare data, ensuring security and privacy is crucial in this sector.
Federated learning (FL) provides a solution by enabling collaborative model training
without sharing sensitive health data with third parties. Despite FL addressing some
privacy concerns, the privacy of IoHT data remains an area needing further development.
In this paper, we propose a privacy-preserving federated learning framework to enhance
the privacy of IoHT data. Our approach integrates federated learning with ϵ-differential
privacy to design an effective and secure intrusion detection system (IDS) for identifying
cyberattacks on the network traffic of IoHT devices. In our FL-based framework, SECIoHT-
FL, we employ deep neural network (DNN) including convolutional neural network (CNN)
models. We assess the performance of the SECIoHT-FL framework using metrics such as
accuracy, precision, recall, F1-score, and privacy budget (ϵ). The results confirm the efficacy
and efficiency of the framework. For instance, the proposed CNN model within SECIoHT-
FL achieved an accuracy of 95.48% and a privacy budget (ϵ) of 0.34 when detecting attacks
on one of the datasets used in the experiments. To facilitate the understanding of the
models and the reproduction of the experiments, we provide the explainability of the
results by using SHAP and share the source code of the framework publicly as free and
open-source software.

Keywords: IoHT; federated learning; differential privacy; deep learning; intrusion detection

1. Introduction
Currently, the Internet of Healthcare Things (IoHT) is a promising technology for

providing remote monitoring of patients. IoHT relies on high-speed Internet connectivity
to connect smart sensors that collect health data about patients and reliably transmit them
to hospitals and other medical facilities for use [1]. Using these real-time technologies
in healthcare, however, could be more reliable for certain critical treatments that need to
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be administered before the patient’s condition worsens. Since all connections between
IoHT devices and medical care units occur over open-access networks, they are highly
susceptible to a wide range of potential attacks, such as privacy breaches [2].

To prevent cyberattacks on IoHT devices, intrusion detection systems (IDSs) have
been developed as the main part of a security infrastructure. These systems are designed
to identify security breaches within computer networks by continuously monitoring and
assessing incidents. Machine learning-based IDSs, for instance, employ a model that can
detect both attacks and normal behavior. It is important to note, however, that traditional
learning-based IDSs usually require the collection and storage of centralized training data,
which may pose a number of challenges, such as privacy concerns, the use of large networks,
and power consumption issues [3].

To overcome privacy concerns and prevent the sharing of patients’ private data, the
concept of federated learning (FL) enables collaborative learning capabilities that preserve
privacy and reduce training costs by allowing devices to jointly train a distributed model
with an aggregation server while retaining all learning data on the device, thus separating
machine learning capabilities from centralized storage [4]. However, in some cases, FL
alone may not be sufficient to guarantee proper privacy protection [5]. For instance, by
backtracking gradients and analyzing updates to the communication models, it is possible
to obtain sensitive information [6]. Several types of attacks can be conducted on FL models,
such as poisoning attacks [7], inference attacks [8], and backdoor attacks [9].

Several techniques are available to preserve privacy in the FL environment. In conven-
tional FL, differential privacy (DP) is widely used to protect clients’ sensitive information as
a privacy-preserving technique [10]. Differential privacy is a mathematical framework that
ensures the privacy of an individual’s data by adding noise to the data and preventing the
disclosure of sensitive information [11]. In [12], the authors used local differential privacy
on heterogeneous IoT data. The works in [13,14] combine FL and differential privacy for
mobility forecasting and smart cyber–physical grid stability assessment.

In this paper, we demonstrate that by using the DP technique, we can address the
privacy problem, and FL-based IDSs can be more secure, efficient, and privacy-preserving.
Moreover, to detect attacks in the IoHT environment, we propose a basic deep neural
network (DNN) including a convolutional neural network (CNN). In our experiments, we
use two public IoHT datasets: wustl-ehms-2020 [15] and ECU-IoHT [16]. Our proposed
SECIoHT-IDS achieves 93.20% accuracy (the higher the better) with a privacy budget (ϵ)
of 0.43 (the lower the better) on the wustl-ehms-2020 dataset. On the ECU-IoHT dataset,
the framework achieves 95.48% accuracy, with a privacy budget (ϵ) of 0.34. To the best
of our knowledge, this is the first paper to apply differential privacy FL to specific IoHT
datasets for the development and validation of an IDS. As an additional contribution, and
to facilitate the understanding of the neural network models and the reproduction of the
experiments, we provide the explainability of the results using SHAP and share the source
code of the framework publicly as free and open-source software.

The remainder of this paper is structured as follows: Section 2 reviews prior research
on IoT and IoHT security. Section 3 provides background information on FL and DL, as well
as a description of our proposed method. In Section 4, we detail the datasets used, outline
the data preprocessing steps, and evaluate the performance of our approach. Section 5
discusses the explainability of the results, while Section 6 concludes this paper and suggests
directions for future work.

2. Related Work
The FL concept preserves data privacy and has significant implications for applications

such as anomaly detection in IoT devices [17]. In this approach, sensitive data are trained
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on local devices, eliminating the need to transfer personal data to a central server, which
helps ensure the security of IoHT devices. However, there are certain attacks in the FL
environment that could compromise privacy. In recent years, the use of privacy-preserving
federated learning in anomaly detection has been shown to enhance patient data privacy.

In [18], the authors proposed an advanced federated transfer learning-based IDS
specifically designed to enhance the security of healthcare-connected devices. The model
uses a DNN algorithm to train the network and transfer knowledge from intercon-
nected edge models. To evaluate the model’s effectiveness, they utilized the CICIDS2017
(https://github.com/elifnurkarakoc/CICIDS2017 (accessed on 3 July 2017)) dataset, as-
sessing performance metrics such as accuracy, detection rate, and average training time.

Rashid et al. [19] proposed a federated learning-based IDS to identify and pre-
vent intrusions in Industrial IoT (IIoT) networks using a CNN and recurrent neu-
ral network (RNN). This method prioritizes privacy and security by performing
federated training with local IoT device data. To evaluate the approach, the au-
thors used a novel dataset called Edge-IIoTset (https://www.kaggle.com/datasets/
mohamedamineferrag/edgeiiotset-cyber-security-dataset-of-iot-iiot (accessed on 27
April 2023)), assessing performance metrics such as accuracy and training time through
comprehensive experiments.

In [20], the authors introduce Fed-Inforce-Fusion, a privacy-preserving federated
learning-based IDS designed for identifying cyberattacks in IoHT networks. This
model utilizes reinforcement learning techniques to uncover complex relationships
within medical data. The authors assessed the model using the ToN-IoT (https://
ieee-dataport.org/documents/toniot-datasets (accessed on 17 May 2022)) dataset,
evaluating metrics such as accuracy, loss, and detection rate. The experimental results
show that Fed-Inforce-Fusion outperforms established benchmark IDS methods in
detecting complex attack vectors.

Friha et al. [21] introduce the differentially private federated learning-based IDS (2DF-
IDS), specifically designed to protect smart industrial environments. The proposed model
ensures a differentially private gradient exchange within the FL framework. To evaluate its
effectiveness, the authors used the same dataset as [19]. The experimental results highlight
the exceptional performance of the 2DF-IDS in detecting various cyber threats within
Industrial IoT setups, achieving impressive results in metrics such as accuracy, F1-score,
recall, and precision.

In [22], the authors propose ImageFed, a federated learning-based IDS that uses a
convolutional neural network (CNN) in a privacy-preserving federated environment. They
investigate two scenarios that may impact the performance of ImageFed in real-world
applications: non-independent and identically distributed (non-IID) clients, and a scarcity
of training data. To evaluate the proposed model, the authors used a car-hacking dataset
(https://ocslab.hksecurity.net/Datasets/car-hacking-dataset (accessed on 29 December
2021)) from the domain of the Internet of Vehicles (IoV), assessing performance metrics
such as accuracy and F1-score.

In [23], the authors propose a federated learning architecture, Fed-IIoT, aimed at
mitigating adversarial threats like model poisoning within industrial IoT systems. Their
approach focuses on detecting Android malware in IIoT environments by leveraging a
dual-component strategy. On the participant side, adversarial scenarios are simulated
using GAN-based poisoning attacks, while on the server side, an anomaly detection and
mitigation mechanism, termed A3GAN, is employed to ensure robust aggregation during
model training. Additionally, Fed-IIoT incorporates GAN-based defense techniques to
strengthen collaboration while preserving data privacy. The framework’s effectiveness
was validated on three IoT datasets, showing an 8% improvement in attack detection and

https://github.com/elifnurkarakoc/CICIDS2017
https://www.kaggle.com/datasets/mohamedamineferrag/edgeiiotset-cyber-security-dataset-of-iot-iiot
https://www.kaggle.com/datasets/mohamedamineferrag/edgeiiotset-cyber-security-dataset-of-iot-iiot
https://ieee-dataport.org/documents/toniot-datasets
https://ieee-dataport.org/documents/toniot-datasets
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defense accuracy compared to existing methods, alongside strong privacy protection for
Android users.

In our previous work [24], we proposed a federated learning-based intrusion detection
system to secure Internet of Healthcare Things (IoHT) devices. It employs deep neural
networks (DNNs) in a federated setting to detect anomalies in network traffic generated by
IoHT devices, addressing privacy concerns by keeping sensitive health data on local devices.
In the current paper, we enhance the federated learning approach from [24] by integrating
differential privacy (DP) for increased security, which adds an extra layer of protection by
introducing noise into model updates.This was not included in our previous work, which
focused solely on federated learning without addressing the risk of information leakage
from model updates.

Table 1 compares all the related work and our proposal in terms of the learning model
employed, the availability of the code to allow the reproduction of experiments, the domain
considered, the dataset used, the consideration of privacy budget, and explainability.
The SECIoHT-FL framework introduces a privacy-enhancing mechanism designed to
strengthen resilience against adversarial threats in healthcare IoHT environments. The
framework uses Locally Differential Privacy (LDP) to prevent the reverse engineering of
individual client data and effectively mitigate the risk of malicious gradient manipulation.
Compared to other approaches such as the FED-IIoT framework [23], which primarily
addresses security in industrial IoT environments, SECIoHT-FL focuses on the challenges
faced by IoHT devices. These include heightened data sensitivity and heterogeneity,
necessitating stronger privacy assurances during collaborative model training.

Table 1. Comparison to the related works.

References Algorithm/Model Code
Availability Domain Dataset Privacy Budget

(ϵ) Explainability

[18] DNN × IoHT CICIDS2017 × ×

[19] CNN × IIoT Edge-IIoTset × ×RNN

[20] Reinforcement × IoHT ToN-IoT × ×learning

[21] DNN × IIoT Edge-IIoTset ✓ ×

[22] CNN × IoV Car-hacking × ×

[23] FEDGAN ✓ IIoT
Drebin,

× ×Gnome,
Contagio datasets

[24] DNN-FL × IoHT wustl-ehms-2020 × ×CNN-FL ECU-IoHT

This work DNN
✓ IoHT wustl-ehms-2020

✓ ✓CNN ECU-IoHT

It is possible to observe that our work is the only privacy-preserving federated learning-
based IDS that focuses on datasets from the IoHT. This sets our approach apart from others,
even those that present themselves as IoHT-oriented. Our investigation revealed that the
work [21] is the only one that addresses a privacy-preserving federated learning method
for IIoT data, aiming to enhance privacy. However, in our research, we combine federated
learning and ϵ-differential privacy techniques to improve privacy while maintaining the
confidentiality of health data in IoHT devices. Additionally, we share our source codes and
experimental results on GitHub to ensure the reproducibility of our research and provide
the explainability of our results.
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3. The Proposed SECIoHT-FL Method
This section covers the foundational concepts of federated learning (FL) and differen-

tial privacy (DP). We then introduce the architecture of our FL-based intrusion detection
system (IDS) model and outline alternative learning approaches for comparison with
our model.

3.1. Federated Learning

FL is a machine learning approach designed to solve the “data island” problem. A data
island occurs when a device has limited connectivity to other devices, making it difficult
to share valuable information for a given application. FL also emphasizes data privacy
preservation. In this approach, multiple clients, such as IoT devices, collaborate with one
or more servers to implement decentralized learning configurations.

One of the key practical applications of FL has been demonstrated by Google, which
uses FL to predict the next word entered by the user on the Android GBoard keyboard [25].
In this case, each user’s private data remain stored locally on their devices, eliminating the
need for data transmission over the network. This reduces both the costs of data transfer
(a significant contributor to mobile device battery consumption) and the privacy risks
associated with sharing sensitive information.

In the context of our work, FL enables the implementation of learning models across
multiple medical institutions and IoHT devices. It follows a client–server model where each
IoHT device creates a local model based on its data. These local models are then aggregated
on the server side to generate a unified global model, which is subsequently sent back to
the clients for further refinement. This iterative process contributes to a collaborative and
comprehensive learning system. A key advantage of FL is its emphasis on local training
at medical institutions or devices, ensuring that sensitive data remain private and are not
exposed to the global model.

3.2. Differential Privacy

While FL enhances privacy compared to traditional machine learning methods by pre-
venting direct data transmission to a central server, it still faces security vulnerabilities, and
it has encountered challenges in healthcare, where privacy and security are paramount [26].
FL is susceptible to various attack types, and private information could potentially be
inferred from the exchanged model updates. For instance, a membership inference attack
can determine whether a particular sample was part of the training data based on the
trained model, potentially revealing sensitive information in healthcare applications, such
as disease classification models [27].

To address these security concerns and further protect privacy, one effective approach
is the integration of privacy-enhancing technologies such as DP. The DP technique can
reduce the risk of privacy leakage in the FL framework by adding random noise to the orig-
inal data. The method masks sensitive private data in a dataset and prevents cyberattacks
on FL using statistical probability models [28]. A randomized algorithm M is (ϵ, δ)-DP if
for all datasets D and D′ differ on at most one element, where P is a probability and all
S ∈ Range(M).

P[M(D) ∈ S] ≤ eϵP[M(D′) ∈ S] + δ (1)

In Equation (1), δ captures the privacy protection of the Gaussian distribution. Fur-
thermore, ϵ shows the privacy leakage. The smallest ϵ ensures the highest privacy.

There are two major categories of differential privacy algorithms: global differential
privacy and local differential privacy. By using global differential privacy, information
cannot be leaked from one site to another via the merging procedure on the central server.
In the context of global differential privacy, the FL aggregation function undergoes per-
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turbation by the server. This crucial step ensures that the aggregated output remains
indistinguishable. However, in this method, each participant needs to trust the data curator
both to share the updated model accurately and to perform the necessary perturbation
by adding noise reliably [29]. The second DP method is local differential privacy, which
prevents information from leaking from one site to the central server. It is a distributed
variation of DP that ensures privacy for each local participant while eliminating the need
for a trusted third party [30].

3.3. Architecture

We aim to develop local differential privacy approaches based on stochastic gradient
descent (SGD) to ensure the privacy of gradients in FL. DP-SGD has the advantage of
closely mimicking the classic stochastic gradient descent-based training of neural networks
while applying differential privacy to deep learning models. This technique introduces
differential privacy in the FL environment during local model training by perturbing model
gradients. The DP-SGD algorithm starts by calculating per-sample gradients, clipping
them to a predetermined threshold, and then aggregating them into a batch gradient.
Finally, before updating the model parameters, DP-SGD adds Gaussian noise to the batch
gradient. Many Python libraries, like Opacus for PyTorch (https://opacus.ai/, accessed
on 12 November 2024) and TensorFlow Privacy for TensorFlow (https://github.com/
tensorflow/privacy, accessed on 12 November 2024), implement the SGD approach.

Also, we used deep learning models, including CNNs and feedforward DNNs, as
classifiers for each participant within the federation. We implemented these two deep
learning methods with PyTorch in order to enhance the detection of anomalous behavior
in IoHT network traffic. We performed extensive experiments, systematically adjusting
model parameters to determine optimal values. In all experiments, we use PyTorch and
Opacus to implement our privacy-preserving FL framework to detect potential attacks in
IoHT applications.

Decentralized Model (FL-Based Architecture)

We evaluated the SECIoHT-FL framework’s performance by employing both feedfor-
ward DNN and CNN models as local classifiers. The federated learning process consisted
of 100 rounds, where clients independently trained their models and shared differentially
private gradients with the server for aggregation. Each communication round involved
local model training using a batch size of 64 over 100 epochs per client.

Our proposed feedforward DNN architecture consists of one input layer, one hidden
layer, and one output layer. It represents the 64 nodes (8 × 8) in the input layer, 32 nodes in
the hidden layer, and 2 nodes in the output layer (because the target is 1 for attack instances
and 0 for benign instances). For the forward function, we used the ReLu activation function
and Softmax for output activation. The feedforward DNN is trained using the stochastic
gradient descent (SGD) optimization algorithm with a learning rate of 0.01, employing
binary cross-entropy as the loss function to reduce the prediction error.

Our proposed CNN architecture (a convolutional variant of the DNN model) com-
prises an input layer with 128 nodes, followed by three hidden convolutional layers with
64, 32, and 16 nodes, respectively. The output layer consists of 2 nodes, aligning with the
binary nature of the target labels (1 for attack instances and 0 for benign instances). The
forward function incorporates ReLU activation for hidden layers and Softmax activation
for the output layer. The model was trained with SGD and binary cross-entropy, similarly
to the DNN, ensuring consistency in optimization. Table 2 depicts the parameters common
to both the feedforward DNN and CNN architectures.

https://opacus.ai/
https://github.com/tensorflow/privacy
https://github.com/tensorflow/privacy
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Privacy preservation was implemented using the Opacus PrivacyEngine, which ap-
plied differential privacy during local model training. Gradients were clipped to a max-
imum norm of 10−4 to maintain training stability, and Gaussian noise with a multiplier
of 0.5 and 1.5 was added to each gradient to increase privacy guarantees. These privacy-
preserving mechanisms safeguarded sensitive data while maintaining robust performance.
To identify the optimal noise level, we tested various noise values and evaluated their effect
on performance metrics, including accuracy, precision, recall, and F1-score. The results
were analyzed to select a configuration that balances strong privacy guarantees with high
model performance.

Table 2. Parameters common to feedforward DNN and CNN architectures.

Activation function Relu

Output activation Softmax

Loss function Binary cross-entropy

Optimizer SGD

Learning rate 0.01

Epochs 100

Batch size 64

Delta 1 × 10−4

Noise multiplier 0.5, 1.5

The overview of the SECIoHT-FL-based IDS is shown in Figure 1. In the proposed
model, the training and aggregation process is structured to address data heterogeneity
among IoHT devices while ensuring effective synchronization. Each IoHT device (client)
trains its local model using private data and sends updates to the server, which manages
the global model.

• Local model training: Each client holds its own sensitive data. Initially, during
each communication, the local client receives a training model (feedforward DNN
and CNN) from the server (blue arrow). The client uses its local data to train the
received model for 100 epochs on the IoHT device, generating gradients from the
updated parameters. To ensure privacy, Opacus’ PrivacyEngine is employed, intro-
ducing differential privacy by adding Gaussian noise to the gradients. Next, the noisy
gradients and parameters with the injected Locally Differential Privacy (LDP) noise
are uploaded to the server (red arrow).

• Parameter aggregation: Subsequently, the server calculates the average of uploaded
gradients received from the clients and updates the global model with the averaging
algorithm. Ultimately, the server transmits the aggregated global model back to the
IoHT devices for the subsequent iteration (depicted by the green arrow). In fact, by
introducing LDP noise, the retrieval of users’ information through the reversing of
their uploaded gradients becomes unfeasible for servers or attackers.

• Handling data heterogeneity: The server performs the aggregation of client parame-
ters based on the volume of data each client processes. This is achieved by calculating
a scaling factor derived from the ratio of a client’s data samples to the total data
across all clients. The client’s model parameters are scaled accordingly before aggrega-
tion, ensuring that clients with larger datasets contribute proportionally more to the
global model.

• Convergence criteria: The training process runs iteratively until the convergence condi-
tions are satisfied. These conditions include a fixed number of communication rounds
(100 epochs) and a minimal reduction in loss between consecutive rounds (δ < 10−4).
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Figure 1. Architecture of our SECIoHT-FL for anomaly detection.

Finally, we evaluate the performance of our proposed classifier based on confusion
matrices, accuracy, recall, precision, F1-score, and the privacy budget. The bounds for
the privacy budget ϵ can vary depending on the application and configuration [31]. The
theoretical lower bound of ϵ in differential privacy is greater than 0 [11]. Common lower
bounds in practice are typically around 0.1 or 0.5, though specific applications may use
slightly lower values [32]. The upper bound of ϵ is more flexible, depending on the
acceptable trade-off between privacy and utility for a given application. In practice, ϵ

values between 1 and 10 are often considered reasonable, with values above 10 providing
weaker privacy guarantees [33].

4. Performance Evaluation
We compare our proposed SECIoHT-IDS with conventional FL models and central-

ized machine learning methods, including feedforward DNN, LSTM, and CNN-LSTM.
Additionally, we benchmark the SECIoHT-IDS framework against results obtained from
the same authors using the wustl-ehms-2020 dataset with the Support Vector Machine
(SVM) method, as outlined in [15]. To facilitate the reproduction of our experiments and
check the results, the source code is available for download in the GitHub public repository
(https://github.com/fatemehm/SECIoHT-FL-based-IDS, accessed on 12 November 2024).

4.1. Experimental Setup

The models were developed using Python, with PyTorch 1.8.0 as the primary library
for building the learning models. The experiments were conducted on a local machine
featuring an Intel Core i5-7200U CPU @ 2.50GHz (×4), 8 GB of RAM, and a 256 GB hard
drive, running Ubuntu 20.04.6 LTS. Additionally, we utilized the Pandas framework for
dataset loading and manipulation.

4.2. Datasets

In our performance evaluation, we focused on analyzing network traffic generated
by IoHT devices. For this purpose, we evaluated the models using two distinct publicly
available IoHT datasets, each featuring different characteristics. The following subsections
provide detailed descriptions of each dataset.

https://github.com/fatemehm/SECIoHT-FL-based-IDS
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4.2.1. Wustl-Ehms-2020

The wustl-ehms-2020 dataset [15] was generated using a specialized testbed that incor-
porates a multi-sensor board designed for the comprehensive measurement of biometric
data from patients’ bodies. This testbed features a computer interface connected to the
multi-sensor board, enabling data transmission to a server for storage and analysis to
inform medical decisions. In parallel, another computer within the network is used to
simulate attacks. The dataset contains 36 features, including both network and biometric
data, and classifies attacks into two categories: spoofing attacks and data alteration. It com-
prises 2046 attack instances and 14,272 instances of normal behavior. In these scenarios, the
attacker attempts to intercept packets, manipulate them through spoofing or alteration, and
then reroute them to the server. The medical board consists of four key sensors, as follows:

• An electrocardiogram sensor, capable of capturing the electrical signals from the heart.
• An oxygen saturation sensor, designed to measure the oxygen levels in the blood.
• A temperature sensor, responsible for accurately measuring the patient’s body temperature.
• A blood pressure sensor, which captures both systolic and diastolic pressure readings.

The authors describe that data are sent from the sensors to the gateway computer via
a USB connection and then forwarded to the server over Wi-Fi using the TCP/IP protocols
stack. However, the specific application protocols used for data transfer (such as HTTP or
MQTT) between the gateway and the server are not mentioned.

4.2.2. ECU-IoHT

The ECU-IoHT dataset [16] was generated in a comprehensive experimental setup.
The environment for dataset generation includes Windows 10, Kali Linux, a mobile Wi-
Fi hotspot, a wireless network adapter, and a Bluetooth adapter to facilitate Internet
connectivity for the hosts. Additionally, the setup incorporates a healthcare kit, MySignals,
which is equipped with various components and multiple sensors. These sensors monitor
and store a range of biometric data, including the following:

• Temperature sensor.
• Blood pressure sensor.
• Heart rate sensor.

Each sensor collects data from the patient’s body and transmits the information to the
user’s cloud. The paper describes the development and testing of the ECU-IoHT dataset
but does not provide specific details about the application protocols used for data transfer
for each sensor.

The dataset includes seven features related to network data, such as source, destination,
protocol, and the nature of attacks. It contains 87,754 instances of normal behavior and
23,453 instances of attacks. The attack classes in the ECU-IoHT dataset are ARP spoofing,
DoS, nmap port scan, and smurf.

4.3. Data Preprocessing

Before feeding the models with the data, we first removed any NaN values and
duplicate records. The “Label” column was binary-encoded, with normal instances labeled
as 0 and attack instances labeled as 1. Due to the class imbalance in the datasets, we applied
an oversampling technique to balance the data. Finally, feature scaling was performed
using the StandardScaler() function to normalize the data within a range of 0 to 1.

4.4. Baseline Models

To evaluate the efficiency of our proposed model, we conducted a comprehensive
performance assessment, comparing it with two FL-based architectures that do not employ
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differential privacy. This comparison aims to determine whether integrating differential
privacy affects the model’s accuracy. Additionally, we benchmarked our model against
three centralized learning models from our previous research, which are based on a basic
feedforward DNN, Long Short-Term Memory (LSTM), and CNN-LSTM [24]. This compara-
tive analysis provides insights into the strengths and capabilities of our proposed approach,
highlighting its advantages over both FL and centralized learning methods.

When implementing FL without incorporating DP, we used feedforward DNN and
CNN architectures. The configurations of the input, hidden, and output layers were
maintained consistently with those used in SECIoHT-FL.

In the centralized deep learning method, the implemented feedforward DNN model is
composed of three layers, with 64 neurons in the first and second layers and 32 neurons in
the third layer. The activation function employed is ReLU following each DNN layer. The
learning rate and batch size were set at 0.1 and 20, respectively. Additionally, the sigmoid
activation function was utilized, aligning with our target range of values between 0 and 1.

The second centralized model is a LSTM network comprising one input layer and one
output layer. For the LSTM model, we adopted binary cross-entropy as the loss function
and employed the Adam optimizer. Key parameters such as LSTM size, dropout rate,
learning rate, and epochs were configured at 4, 0.5, 0.1, and 100, respectively.

The final centralized model is the CNN-LSTM, characterized by a single input layer
and a corresponding output layer. In this model, we employed the ReLU as the activation
function, Adam as the optimizer, and binary cross-entropy as the loss function. The LSTM
size was set to 20, while the dropout rate, learning rate, and epochs were configured at 0.2,
0.1, and 100, respectively.

4.5. Results for the Wustl-Ehms-2020 Dataset

Table 3 presents the results obtained when detecting attacks in the wustl-ehms-2020
dataset. When applying SECIoHT-FL, both feedforward DNN and CNN models achieved
an F1-score of 96%. Additionally, the feedforward DNN and CNN models had similar
accuracies of 93.20% and 93.10%, respectively, with training times of 0.045 and 0.039 s.

Within the SECIoHT-FL framework, we employed DP to ensure the privacy of gra-
dients in the FL process. Clients implement an ϵ-DP mechanism on the gradient before
transmitting it to the central server. After n epochs (n = 100), the ϵ-DP mechanism results
in the (n × ϵ)-DP mechanism. This means that the privacy leakage is initially ϵ at the first
epoch and increases to n × ϵ after n epochs. In the SECIoHT-FL framework, ϵ is the privacy
budget, and it is crucial to keep it within the range of 0 to 1, where a larger ϵ indicates a
less private model. Indeed, a lower epsilon value corresponds to a higher degree of privacy
protection. As shown in Table 3, the privacy budgets of the feedforward DNN and CNN
methods are 0.44 and 0.43, respectively, indicating a satisfactory level of privacy protection
achieved by the proposed model.

Table 3. Results of accuracy, precision, recall, F1-score, and privacy budget for SECIoHT-IDS com-
pared to the baseline (FL without DP and centralized deep learning methods)—wustl-ehms-2020.

Methods Algorithm Accuracy (%) Precision (%) Recall (%) F1-Score (%) Train Time (s) Test Time (s) Privacy Budget

FL without DP method DNN 94.48 95 99 97 0.040 0.010 -
CNN 94.37 95 99 97 0.055 0.019 -

SECIoHT-FL

DNN (Noise = 1.5) 93.20 94 99 96 0.045 0.013 0.44
CNN (Noise = 1.5) 93.10 94 99 96 0.039 0.013 0.43
DNN (Noise = 0.5) 92.74 94 98 96 0.038 0.015 6.69
CNN (Noise = 0.5) 89.44 89 100 94 0.036 0.011 6.69

Deep learning [24]
DNN 90.53 93 88 90 0.039 0.014 -
LSTM 76.69 79 73 76 0.045 0.015 -
CNN-LSTM 89.08 86 93 90 0.043 0.016 -

EHMS [15] SVM 92.40 - - - 0.21 0.05 -
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We conducted a comparative analysis between our SECIoHT-FL proposal and the SVM
model presented by the creators of the wustl-ehms-2020 dataset. Our feedforward DNN
model in the SECIoHT-IDS framework achieved the best accuracy of 93.20%, compared to
92.40% for the SVM model. Moreover, the training times of the DNN and CNN models
in the SECIoHT-IDS are 0.045 and 0.039 s, respectively, compared to 0.21 s for the SVM.
Furthermore, the testing times for both of our models are 0.013 s, compared to 0.05 s for the
SVM, demonstrating that our models run faster in both training and testing.

We tested the SECIoHT-FL framework at two different noise levels (Noise = 1.5 and
Noise = 0.5) to assess the trade-off between privacy and model performance. As shown
in Table 3, the privacy budget (ϵ) increases significantly with lower Noise (0.5), with
ϵ = 6.69, compared to higher Noise (1.5), where ϵ = 0.43 for the CNN and 0.44 for the DNN.
The results indicate that increasing the noise level enhances privacy guarantees without
significantly impacting model performance. The DNN models maintained comparable
accuracy (93.20% to 92.74%) and F1-scores (96%), while the CNN accuracy dropped more
noticeably (93.10% to 89.44%). These findings underscore the SECIoHT-FL framework’s
robustness under strong privacy settings and highlight the need to carefully select the
appropriate noise level to balance privacy and utility.

We also compared the results of our proposed model (SECIoHT-FL) with the FL with-
out DP method. The results show that the DNN (in the FL without DP method) achieved
an accuracy of 94.48%. Although this is 1.28% better than the accuracy of our proposed
basic DNN (in SECIoHT-FL), it may pose potential data exposure risks during federated
updates. When comparing the performance of our proposed models with the centralized
deep learning method, we found that the DNN model (in SECIoHT-FL) achieved an accu-
racy that is 2.67% better than the centralized DNN model. Additionally, the centralized
model lacks the decentralized privacy benefits and is more vulnerable due to centralized
data storage.

Table 4 presents the confusion matrix for the CNN and basic feedforward DNN models
with and without DP. The results indicate that in the SECIoHT-FL framework, the DNN
method accurately detected 24,047 attack instances as attack instances (true positives)
and classified 1394 normal instances as attack instances (false positives), while the CNN
model in the SECIoHT-FL correctly identified 19,282 attack instances as attack instances
(true positives) and accurately classified 1026 normal instances as normal instances (true
negatives). Therefore, we note that the differentially private DNN model exhibits a higher
number of detected attack instances compared to the other models, which is crucial for
intrusion detection. Furthermore, we employed FL-based feedforward DNN and CNN
models in an identical setting without applying DP to investigate whether adding noise to
the gradients impacts the detection of attacks. The outcomes of the FL approach without DP
reveal that in the SECIoHT-FL framework, the feedforward DNN model, when integrated
with differential privacy, achieved the best performance in identifying attacks compared to
the FL-based model without DP.

When the noise multiplier is lowered to 0.5, the DNN shows a slight decrease in true
positives (19,293) and true negatives (303), while false positives and false negatives increase
slightly to 1093 and 1294, respectively. For the CNN, performance drops significantly with
a higher false negative count of 2319 and a true negative count of 0, indicating the poor
classification of benign instances. This highlights the CNN’s sensitivity to reduced noise
levels and its inability to maintain robustness under weaker privacy settings (ϵ = 6.69).

Overall, SECIoHT-FL with Noise = 1.5 proves to be the most effective choice for IoHT
applications, offering strong privacy guarantees and balanced performance, particularly
for DNN models. Lowering noise to Noise = 0.5 affects robustness, especially for CNNs,
making it less ideal for sensitive environments.
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Table 4. Results of loss, TP, TN, FP, and FN for wustl-ehms-2020 datasets.

Methods Algorithm TP TN FP FN Loss

SECIoHT-FL

DNN (Noise = 1.5) 24,047 346 1394 1510 0.0059
CNN (Noise = 1.5) 19,282 221 1026 1258 0.0060
DNN (Noise = 0.5) 19,293 303 1093 1294 0.0060
CNN (Noise = 0.5) 19,636 0 0 2319 0.0066

FL without DP method DNN 23,893 225 1736 1279 0.0058
CNN 23,891 218 1495 1296 0.0058

4.6. Results for the ECU-IoHT Dataset

Table 5 presents the results achieved by all models on the ECU-IoHT dataset. In the
SECIoHT-IDS framework, the CNN model, with an accuracy of 95.48% and an F1-score
of 96%, achieved the best result. Overall, when comparing the results of our proposed
SECIoHT-IDS with FL-based models without DP and a centralized deep learning model,
our differentially private CNN model achieved satisfactory results. Furthermore, as shown
in Table 5, the privacy budget of our differentially private DNN and CNN models is 0.34,
which shows the acceptable level of privacy protection provided by them.

Table 5. Results of accuracy, precision, recall, F1-score, and privacy budget for SECIoHT-IDS com-
pared to the baseline (FL without DP and centralized deep learning models)—ECU-IoHT dataset.

Methods Algorithm Accuracy (%) Precision (%) Recall (%) F1-Score (%) Train Time (s) Test Time (s) Privacy Budget

FL without DP method DNN 95.80 92 100 96 0.048 0.012 -
CNN 94.52 90 100 95 0.039 0.012 -

SECIoHT-FL

DNN (Noise = 1.5) 94.35 90 100 95 0.065 0.026 0.34
CNN (Noise = 1.5) 95.48 92 100 96 0.055 0.021 0.34
DNN (Noise = 0.5) 95.68 92 100 96 0.041 0.012 5.20
CNN (Noise = 0.5) 94.17 90 100 95 0.046 0.022 5.21

Deep learning [24]
DNN 94.56 90 100 95 0.028 0.030 -
LSTM 94.48 90 100 95 0.043 0.016 -
CNN-LSTM 94.72 91 100 95 0.042 0.015 -

In comparing our SECIoHT-FL model with the FL method without differential privacy
(DP), we note that while the feedforward DNN in the FL without DP model achieves a
slightly higher accuracy of 95.80%, which is 0.32% more than our CNN model in SECIoHT-
FL, it poses a potential risk of sensitive data leakage. Additionally, the result of the
centralized deep learning model shows that our CNN model in SECIoHT-FL achieved
results very similar to the deep learning models. However, the centralized approach lacks
the decentralized privacy advantages offered by federated models like SECIoHT-FL and is
more vulnerable to security risks due to its reliance on centralized data storage.

The performance comparison of SECIoHT-FL with noise multipliers of 0.5 and 1.5 on
the ECU-IoHT dataset highlights the trade-offs between privacy and model accuracy. At a
noise multiplier of 1.5, the privacy budget (ϵ) stands at 0.34, which offers strong privacy
protections. The DNN model achieves an accuracy of 94.35%. The CNN model, under
the same settings, slightly edges out the DNN with an accuracy of 95.48%. These results
indicate that SECIoHT-FL maintains strong privacy while still performing competitively
in IoHT applications. In contrast, when the noise multiplier is reduced to 0.5, the privacy
budget increases to 5.20, suggesting weaker privacy guarantees. The DNN model shows a
slight accuracy boost, reaching 95.68%, but the CNN model’s accuracy drops slightly to
94.17%. These results indicate that reducing the noise level improves DNN performance
but slightly degrades CNN performance.

The comparison reveals the trade-off between privacy and performance in differential
privacy mechanisms. A lower noise multiplier (0.5) improves DNN accuracy but at the
expense of weaker privacy guarantees. Conversely, a higher noise multiplier (1.5) offers
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better privacy protection with only a minor impact on performance, especially for CNN
models. In conclusion, SECIoHT-FL with Noise = 1.5 offers a more favorable trade-off
between privacy and performance, making it the optimal choice for IoHT applications that
require robust privacy protections. The use of Noise = 0.5 is best suited for cases where
privacy needs are less critical, and minor gains in DNN accuracy are acceptable.

Table 6 shows the confusion matrix results for the FL models applied to the ECU-IoHT
dataset. Our findings demonstrate that in the SECIoHT-IDS framework, the feedforward
DNN model successfully classified 22,116 attack instances as true positives (TPs) and
identified 19,333 normal instances as false positives (FPs). Compared to the CNN model,
the basic feedforward DNN model in SECIoHT-IDS achieved the best results in detecting
attack instances.Moreover, when comparing the results of SECIoHT-IDS with the FL-based
models without the DP method in an identical setting, excluding privacy considerations,
we observe that incorporating differential privacy into the FL-based models and adding
noise to the gradients does not compromise the effectiveness of our proposed model in
attack identification.

Table 6. Results of loss, TP, TN, FP, and FN—ECU-IoHT dataset.

Methods Algorithm TP TN FP FN Loss

SECIoHT-FL

DNN (Noise = 1.5) 22,116 0 19,333 2481 0.0058
CNN (Noise = 1.5) 21,824 1 20,110 1821 0.0055
DNN (Noise = 0.5) 17,343 0 15,916 1500 0.0056
CNN (Noise = 0.5) 17,460 0 15,304 2028 0.0058

FL without DP method DNN 17,614 0 16,198 1482 0.0056
CNN 17,452 0 15,587 1915 0.0058

The performance analysis of SECIoHT-FL under noise multipliers of 1.5 and 0.5 reveals
the trade-offs between privacy and accuracy. At Noise = 1.5, the DNN model has 22,116 true
positives (TP) and 19,333 false positives (FP), with no true negatives (TN = 0) and 2481 false
negatives (FN). The CNN model has slightly fewer true positives (21,824) and one true
negative (TN = 1), with a higher false positive count of 20,110 and a lower false negative
count of 1821, suggesting better recall. The FP count for the CNN increases to 20,110, while
the FN count decreases to 1821, suggesting better recall compared to the DNN. Loss values
are stable across both models. When the noise multiplier is reduced to 0.5, the DNN’s true
positives decrease to 17,343, with improved precision and fewer false positives (15,916).
The true negatives remain at zero, and false negatives drop to 1500. The CNN model shows
similar trends with 17,460 true positives, 15,304 false positives, and no true negatives, with
an FN count of 2028. Loss values remain stable across both models.

Comparing the two noise levels, Noise = 1.5 improves sensitivity to positive instances,
indicated by higher true positive counts for both DNN and CNN models. However,
this higher noise also leads to more false positives, reducing precision. On the other
hand, Noise = 0.5 lowers false positives, improving precision, while also decreasing false
negatives, suggesting better recall. The trade-off is evident in the privacy guarantees:
Noise = 1.5 offers a stronger privacy budget (ϵ = 0.34), but Noise = 0.5 weakens privacy
(ϵ = 5.20).

In summary, SECIoHT-FL with Noise = 1.5 offers a better balance between privacy and
performance, especially for applications requiring strong privacy guarantees. Reducing
noise to Noise = 0.5 enhances precision and recall but at the cost of significantly weaker
privacy. For privacy-sensitive IoHT applications, Noise = 1.5 is the preferred choice, while
Noise = 0.5 may be better suited for scenarios where detection performance takes priority
over privacy.
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5. Explainable AI
In this section, we explore the reasons behind the anomaly detection performance

of our proposed model. As outlined in Section 4.2, we trained our model on two IoHT
datasets. We employed the SHAP framework to analyze how the features contribute to
the detection performance of our models. SHAP calculates the importance score of each
feature. The most important features learned by our proposed model from the two datasets
are illustrated in Figures 2 and 3.

The beeswarm plot in SHAP highlights the most important features. Each dot in
the plot represents the Shapley value of a feature for a specific sample in the dataset. On
the x-axis, the position indicates the Shapley values, while the y-axis shows the features,
ordered by their importance. Each dot is colored according to the value of the feature for
that sample. For example, red represents a high impact, purple indicates a medium effect,
and blue signifies a low value of the feature.

Figure 2 shows the Shapley values ranging from −0.8 to above 0.4 for the wustl-ehms-
2020 dataset. The following features are considered the most important in detecting attacks:

• Dur: This feature refers to the duration of the flow. Duration is the most important
feature, with higher durations (red points) strongly contributing to the prediction of
an intrusion (moving the SHAP value to the right). Low values of “Dur” have little to
no impact on the model’s attack detection.

• Sport: Refers to the source port. As shown in the figure, the source port plays a critical
role, with higher values (red) pushing the model toward detecting an intrusion. High
source port numbers may correlate with specific attack patterns or protocols used
in intrusions.

• Temp (temperature) and pulse rate: These two biometric features are crucial in the
IoHT intrusion detection model. Higher temperatures (red) and pulse rates contribute
positively to intrusion detection, potentially indicating abnormal behavior associated
with certain health conditions being monitored.

• DstJitter (destination jitter) and SrcJitter (source jitter): DstJitter: High jitter values
(red) contribute positively to detecting intrusions, as they may indicate irregularities
in network traffic.

• Heart Rate and Resp Rate (respiratory rate): Similar to temperature and pulse rate,
these features may indicate health anomalies that align with network intrusions in an
IoHT setting. Higher values push the model toward predicting an intrusion.

Figure 3 presents the beeswarm plot for the ECU-IoHT dataset, showing Shapley
values ranging from −0.4 to above 0.4. The following features are considered the most
important for detecting attacks, listed in order of their significance:

• Length: The packet or data length is the most important feature in this model. Lower
values (blue points) have a negative SHAP value, meaning they reduce the probability
of an intrusion. Higher values (red points) are spread between positive and negative
SHAP values, indicating that larger packet sizes have a mixed effect, depending on
the specific scenario. This suggests that both unusually high and low packet sizes are
important for detecting certain types of attacks.

• Protocol: Higher values for each protocol (red points) contribute positively to predict-
ing intrusions, while lower values (blue points) show less contribution. This indicates
that certain protocols, such as ICMP and TCP, are strongly associated with intrusions,
while others are not.

• Destination: Increasing the value of the “Destination” feature increases the probability
of detecting an attack. Higher destination values (red points) are associated with a
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greater likelihood of intrusion detection, suggesting that specific destination addresses
or ports are likely targeted during attacks.

• Time: Time also plays a key role. Higher values (red points) push the model toward
predicting an intrusion, indicating that attacks might occur more frequently at certain
times or during long sessions.

• Source: Higher source values (red points) have a stronger impact on pushing the
model toward predicting an intrusion, while lower values (blue points) have less influ-
ence. This suggests that certain source IP addresses, devices, or ports are commonly
associated with malicious traffic.

Figure 2. SHAP values for detected attacks in wustl-ehms-2020.
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Figure 3. SHAP values for detected attacks in ECU-IoHT.

6. Conclusions and Future Works
In this paper, we proposed a privacy-preserving federated learning framework

(SECIoHT-FL) for detecting attacks in IoHT network traffic. Our framework combines
decentralized learning with ϵ-differential privacy to design an FL-based intrusion detection
system (IDS) for analyzing network traffic generated by IoHT devices and identifying cyber-
attacks in the smart healthcare sector. We developed FL-based, differentially private DNN
and CNN models to evaluate the privacy protection level of our proposed framework. For
comparison, we also considered an FL-based model without applying ϵ-differential privacy
and a centralized deep learning model as baselines. We validated our framework using the
wustl-ehms-2020 and ECU-IoHT datasets. The differentially private DNN model achieved
the best performance on the wustl-ehms-2020 dataset, with an accuracy of 93.20%, an
F1-score of 96, and a privacy budget (ϵ) of 0.44. For the ECU-IoHT dataset, the differentially
private CNN model performed the best, with an accuracy of 95.48%, an F1-score of 96, and
a privacy budget (ϵ) of 0.34. Our future work will focus on using real-time SHAP analysis
in deployed environments to help healthcare providers understand why certain network
activities are flagged as intrusions. Additionally, we will explore advanced differential
privacy techniques, such as adaptive noise addition, to further enhance privacy guaran-
tees in federated learning. Also, the aggregation server in federated learning combines
client updates to form the global model. However, it is vulnerable to adversarial attacks
like model poisoning. Enhancing the robustness of the aggregation process against more
sophisticated attacks, such as targeted model poisoning, is an area for future development.
Implementing advanced aggregation functions could improve the security and scalability
of the framework.
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